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I	suppose	that	it's	a	cliché	to	dedicate	a	book	to	your	wife.	If	so,	it's	for	a	very
good	reason.	Who	plays	a	more	important	role	in	the	life	of	an	author	than	his	or
her	spouse?	Robyn	is	my	partner—the	person	who	is	always	there	and	the	one
who	shares	my	life	in	so	many	ways.	The	expression	about	a	great	woman	being

behind	every	good	man	is	true,	yet	my	wife	is	deserving	of	recognition	for
reasons	that	go	far	beyond	the	usual	one	of	being	"supportive."

She	agreed	to	take	on	a	regular	working	position	to	make	it	possible	for	me	to
spend	time	on	a	very	long	project	with	an	uncertain	payoff.	She	took	on	most	of
the	tasks	of	taking	our	children	to	school	and	dealing	with	their	needs,	to	give
me	time	to	write.	She	also	gracefully	agreed	to	"do	without"	many	things	that

many	other	wives	would	not	have	been	too	happy	about	forgoing.

But	most	of	all,	she	deserves	a	world	of	credit	for	putting	up	with	me.	For
constantly	reassuring	me	that	it	was	okay	that	I	was	spending	years	on	a	project
that	might	not	be	successful.	For	listening	to	me	talk	for	countless	hours,	and	for
giving	her	opinions	on	many	portions	of	my	writing,	all	on	a	subject	that	really
doesn't	interest	her.	And	most	important,	for	encouraging	me	when	I	felt	this	was

a	waste	of	time,	and	even	kicking	me	in	the	butt	when	I	felt	like	giving	up.
Without	Robyn,	this	book	simply	would	not	exist.	Thanks,	R.

My	three	boys	deserve	credit	for	similar	reasons,	but	to	a	lesser	extent.	They
have	had	to	put	up	with	my	constantly	sitting	at	the	computer,	trying	to	tune
them	out	so	I	could	concentrate;	my	too-frequent	grouchy	moods;	and	my

reluctance	to	spend	time	with	them	when	I	had	work	on	my	plate.	I	am	sure	there
were	many	times	that	they	wished	I	just	had	a	regular	"day	job."

Ryan,	my	big	boy,	has	been	very	patient	in	waiting	for	me	to	finish	this	project
so	we	can	resume	several	activities	that	we	used	to	engage	in	regularly.

Matthew,	my	fun-loving	and	rambunctious	middle	son,	has	also	had	to	deal	with
me	not	being	able	to	spend	as	much	time	as	I	would	have	liked	with	him.	And
little	Evan	has	had	a	father	working	on	a	long-term	project	for	his	entire	life!	All
three	of	my	boys	have	been	very	understanding	and	provided	me	with	much-

needed	joy	and	laughter	at	times	when	I	needed	them	most.



ABOUT	THE	AUTHOR
I	was	born	in	1966	in	Windsor,	Ontario,	Canada	and	raised	in	nearby	Toronto.	I
married	my	wife	Robyn	in	1990;	we	now	live	in	southern	Vermont	with	our
three	sons,	Ryan	(12),	Matthew	(9),	and	Evan	(4).

I	have	had	an	interest	in	the	field	of	computers	ever	since	my	early	years,
starting	at	the	age	of	14	when	I	received	my	first	computer,	an	Apple	][,	a	gift
from	my	parents.	Since	that	time,	I	have	worked	in	various	computer-related
fields	in	hardware	and	software.	In	1989,	I	obtained	a	Bachelor	of	Applied
Science	from	the	University	of	Waterloo,	in	Waterloo,	Ontario,	Canada.	I
completed	my	formal	education	in	1993	with	two	master's	degrees,	in
management	and	in	electrical	engineering	and	computer	science	(EECS),	from
MIT.

After	a	brief	"conventional"	technical	career,	I	created	and	published	The	PC
Guide,	an	extensive	online	reference	work	on	personal	computers,	and	in	1998,	I
decided	to	devote	myself	to	my	writing	projects	full	time.	The	TCP/IP	Guide
was	part	of	a	larger	networking	project	that	I	spent	time	on	earlier	this	decade.	I
continue	to	work	in	the	technical	writing	and	editing	field	on	various	projects,
for	myself	and	other	companies.

You	may	have	noticed	something	missing	here:	no	impressive	listings	of
credentials.	No,	I'm	not	a	New	York	Times	best-selling	author;	I	haven't	been	a
professor	at	a	prestigious	Ivy	League	university	for	a	quarter	century;	neither	am
I	a	top	executive	at	a	Silicon	Valley	giant.	In	some	ways,	I	am	a	student	of
technology,	just	as	you	are.	And	my	experience	over	the	years	has	shown	me
that	many	of	the	people	who	know	the	most	about	how	technology	works	have
rather	limited	success	in	explaining	what	they	know	in	a	way	that	will	allow	me
to	understand	it.	My	interests,	and	I	believe	my	skills,	lie	not	in	being	an	expert,
but	in	serving	as	an	educator,	presenting	complex	information	in	a	form	that	is
sensible,	digestible,	and	fun	to	read.

When	I'm	not	working—all	too	rare	these	days—I	spend	time	with	my	family
and	enjoy	the	peaceful	quiet	and	natural	beauty	of	the	state	of	Vermont.	I	am
also	an	avid	amateur	photographer,	with	interests	particularly	in	nature	and
landscapes.



landscapes.
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INTRODUCTION
Goals	of	The	TCP/IP	Guide
Every	author	who	sets	out	to	write	a	book	or	other	document	has	certain
objectives	that	he	or	she	hopes	to	accomplish	when	the	work	is	completed.	This
is	why	you	can	go	into	a	library	or	bookstore,	pick	up	several	books	that	cover
the	same	subject,	and	discover	that	they	are	surprisingly	different—not	just	in
their	content	or	scope,	but	in	their	entire	approach	to	the	material.

I,	too,	had	a	number	of	goals	when	I	set	out	to	write	this	book.	You	certainly
don't	need	to	know	them	in	order	to	read	and	appreciate	the	material,	but
understanding	what	I	had	in	mind	while	I	was	writing	may	help	you	while	you
are	reading.	And	if	you	are	reading	this	information	prior	to	buying	The	TCP/IP
Guide,	knowing	what	I	strove	for	in	writing	the	book	may	help	you	decide	if	this
is	the	right	resource	for	you.

My	overall	goal	in	writing	this	book	was	to	create	a	resource	that	would	allow
anyone	to	obtain	a	deep	understanding	of	how	TCP/IP	technologies	really	work.
To	accomplish	this,	I	had	a	number	of	specific	objectives	that	guided	my	writing
efforts:

Comprehensiveness	Like	most	authors	writing	a	resource	that	covers	a	large
subject,	I	wanted	The	TCP/IP	Guide	to	be	comprehensive.	Of	course,	no	single
document	can	cover	everything,	so	I	have	needed	to	limit	the	scope	of	the
material.	However,	I	feel	I	cover	more	about	TCP/IP	as	a	whole	than	any	other
single	book	or	other	resource.

Comprehensibility	Creating	a	resource	that	is	comprehensive	is	important,	but	I
felt	that	it	was	even	more	important	that	the	book	be	comprehensible.	Over	the
past	few	years,	I've	had	the	opportunity	to	review	many	hundreds	of	books,
guides,	websites,	and	papers	related	to	networking.	I	have	found	that	even
though	most	of	them	are	generally	high	in	quality,	too	many	use	unexplained
technical	jargon	or	assume	extensive	prior	knowledge	of	networking	concepts
and	technologies	on	the	part	of	the	reader.	I	worked	very	hard	to	ensure	that	my
descriptions,	even	of	very	complex	concepts,	can	be	understood	by	almost	every



student	of	networking.

Rationale	It's	certainly	important	to	know	how	every	TCP/IP	protocol	functions.
However,	to	gain	a	true	understanding	of	complex	material,	one	also	needs	to
understand	the	reasons	behind	why	things	are	what	they	are.	In	writing	this
material,	I	have	always	tried	to	explain	not	just	the	what,	but	also	the	why	of
TCP/IP.	I	have	anticipated	and	answered	questions	that	I	believe	might
commonly	arise	in	the	mind	of	someone	learning	about	this	technology.

Illustrations	A	picture	is	worth	a	thousand	words,	as	they	say.	There	are	many
concepts	that	no	amount	of	verbiage	will	adequately	explain,	while	a	simple
illustration	will	do	the	trick.	For	this	reason,	I	spent	many	months	creating	more
than	300	diagrams	(some	simple	and	some	not	so	simple!)	to	complement	the
written	material	in	The	TCP/IP	Guide.

User-friendliness	I	have	intentionally	broken	many	of	the	rules	of	conventional
book	authorship,	in	creating	a	document	that	uses	a	conversational,	first-person
style,	and	no	small	amount	of	humor	where	appropriate.	My	intention	was	to
make	you	feel	at	home	while	you	read	material	that	can	be	quite	technically
difficult.	I	want	you	to	think	of	me	as	a	friend	sitting	next	to	you	at	your
computer	explaining	how	TCP/IP	works,	rather	than	a	professor	preaching	at
you	from	a	podium.

Organization	Many	networking	books	consist	of	dozens	of	subjects	just	listed
one	after	the	other,	leaving	the	reader	to	wonder	how	everything	fits	together.
When	I	first	began	this	book,	I	spent	weeks	just	organizing	it,	with	the	result
being	a	structure	that	indicates	clearly	how	subjects	are	interrelated.	I	also
carefully	laid	out	each	individual	section	to	ensure	that	it	covered	its	topic	in	a
way	that	made	sense.

Multiple	levels	of	detail	I	realize	that	some	people	reading	a	TCP/IP	book	might
want	only	a	quick	summary	of	the	operation	of	its	constituent	protocols,	while
others	want	to	learn	all	the	nuances	of	how	everything	works.	I	have	provided
the	full	details	that	most	readers	will	want,	while	also	including	overview	topics
in	each	chapter	that	summarize	each	technology	for	quick	perusal.	This	gives
you	the	option	of	either	skimming	the	surface	or	"diving	deep,"	as	you	choose.

Platform	independence	I	have	endeavored	whenever	possible	to	avoid



describing	TCP/IP	in	terms	specific	to	any	hardware	or	software	platform.	Even
though	I	use	a	PC	for	most	of	my	computing	and	UNIX	for	some	tasks,	most	of
the	material	is	not	particular	to	any	type	of	device	or	operating	system	(though	I
do	focus	more	on	networks	of	smaller	computers	than	larger	ones).

How	successful	was	I	in	achieving	these	goals?	I'd	like	to	think	I	did	a	pretty
good	job,	but	ultimately,	you	will	be	the	judge!



Scope	of	The	TCP/IP	Guide
The	first	step	to	dealing	with	a	problem	is	recognizing	that	you	have	one.	So,	I
have	to	come	clean	with	you,	my	reader.	I	have	a	problem:	an	addiction	to	…
detail.	Every	time	I	set	out	to	write	about	a	particular	protocol,	technology,	or
concept,	I	start	with	a	modest	goal	regarding	how	much	I	want	to	write.	I	always
begin	knowing	that	I	really	need	to	control	myself,	to	prevent	my	project	from
going	on	forever.	But	as	I	explore	each	subject,	I	learn	more	and	more,	and	I
start	to	say	to	myself	things	like,	"This	is	important.	I	simply	must	include
coverage	for	it,"	and,	"If	I'm	going	to	cover	subject	#1,	I	also	should	cover
subject	#2,	because	they	are	related."	This	is	how	I	turn	six-month	projects	into
multiyear	ordeals.

However,	even	though	self-control	in	this	area	is	a	weakness	for	me,	even	I
realized	I	could	not	possibly	cover	everything	related	to	TCP/IP	in	this	book.
Consider	that	the	TCP/IP	suite	contains	dozens	of	protocols	and	technologies,
each	written	about	in	thick	books.	I	was	willing	to	spend	years	on	this	project,
but	not	decades!	Thus,	I	had	to	limit	the	scope	of	this	book	somewhat,	both	to
preserve	what	remains	of	my	sanity	and	to	spare	you	from	having	to	wade
through	a	ridiculously	large	document.

Here	are	a	few	different	points	that	will	help	explain	decisions	that	I	made	to
limit	the	scope	of	The	TCP/IP	Guide:

Theory	versus	practice	This	is	primarily	a	reference	resource	on	the	TCP/IP
protocol	suite.	The	material	here	is	designed	to	allow	a	student	to	learn	the	nuts
and	bolts	of	how	TCP/IP	works.	I	do	discuss	quite	a	number	of	"real-world"
practical	issues	related	to	how	TCP/IP	internetworks	operate,	but	this	is	not	my
primary	focus	here.	If	you	want	to	really	understand	what	TCP/IP	is	and	what
makes	it	work,	you've	come	to	the	right	place.	If	all	you	want	is	simple
instructions	on	how	to	connect	a	few	PCs	together	in	your	home	using	TCP/IP,
this	probably	isn't	the	book	for	you.

Current	versus	future	protocols	Most	of	the	emphasis	in	this	book	is	on	the
present	state	of	the	art	in	TCP/IP.	The	suite	is	always	changing,	new	protocols
are	constantly	being	written,	and	revisions	to	existing	protocols	continue	to	be
published.	I	have	not	provided	extensive	coverage	of	technologies	still	in



development,	to	try	to	keep	the	size	of	the	book	manageable	and	to	prevent	the
book	from	being	out-of-date	before	it	even	hits	the	store	shelves.	The	one
exception	to	this	general	rule	of	thumb	is	version	6	of	the	Internet	Protocol
(IPv6),	which	represents	a	significant	change	to	the	core	of	how	most	of	TCP/IP
operates.	While	not	universally	deployed	yet,	IPv6	is	sufficiently	far	along	in	its
development	that	I	feel	any	student	of	TCP/IP	needs	to	know	what	it	is,	learn
how	it	works,	and	understand	its	significance.	Thus,	I	have	included	several
detailed	chapters	on	IPv6,	and	also	mentioned	how	it	impacts	the	operation	of
several	other	key	protocols	such	as	the	Internet	Control	Message	Protocol
(ICMP),	Domain	Name	System	(DNS),	and	Dynamic	Host	Configuration
Protocol	(DHCP).

Application	coverage	Many	thousands	of	different	applications	run	on	TCP/IP
internetworks,	and	I	could	not	possibly	hope	to	describe	all	of	them.	The	scope
of	this	book	is	limited	to	the	most	important,	"classic"	TCP/IP	applications	and
application	protocols,	such	as	electronic	mail,	general	file	transfer,	and	the
World	Wide	Web.

TCP/IP	versus	the	Internet	The	TCP/IP	protocol	suite	and	the	Internet	are	very
closely	related	in	many	ways,	as	you	will	discover	as	you	read	this	book.	In	fact,
they	are	often	tied	together	so	much	that	it	is	hard	to	discuss	one	without	the
other.	However,	the	Internet	as	a	whole	is	an	enormous	subject,	and	trying	to
describe	it	in	general	terms	would	have	substantially	increased	the	size	of	this
book.	Thus,	I	describe	Internet	issues	only	within	the	context	of	explanations	of
TCP/IP	technologies.	For	example,	while	I	cover	the	World	Wide	Web	in	this
book,	I	discuss	its	generalities	only	briefly.	I	focus	my	technical	discussions	on
how	the	Hypertext	Transfer	Protocol	(HTTP)	that	implements	it	works.	I	don't
talk	about	how	to	set	up	a	website,	how	to	choose	a	web	browser,	or	any	of	those
sorts	of	details.	Those	subjects	are	covered	in	a	dazzling	array	of	different	books,
papers,	and,	of	course,	websites.

Limited	TCP/IP	security	coverage	Security	is	a	very	important	and	large	topic,
especially	in	modern	networking.	This	book	does	include	a	fairly	detailed
section	on	the	operation	of	the	IP	Security	protocol	(IPSec),	and	also	touches	on
security	issues	in	describing	several	other	protocols	and	technologies.	However,
it	is	not	specifically	geared	toward	detailed	discussions	of	security



considerations.

Small	computer	orientation	In	general	terms,	TCP/IP	technologies	can	be	used
to	connect	together	any	types	of	devices	that	have	the	appropriate	hardware	and
software.	There	are	some	issues,	however,	where	explanations	require	me	to
focus	on	how	specific	types	of	underlying	networks	and	devices	work;	this	is
especially	true	of	some	of	my	diagrams.	In	these	cases,	my	preference	has
generally	been	to	show	how	TCP/IP	is	used	to	connect	together	typical	small
computers	such	as	PCs,	Macintoshes,	and	UNIX	workstations,	which	are	what
most	people	use.



The	TCP/IP	Guide	Features
I	created	The	TCP/IP	Guide	to	provide	you	with	an	unparalleled	breadth	and
depth	of	information	about	TCP/IP.	This	meant	including	a	lot	of	content	in	this
book—it	has	88	chapters,	several	hundred	sections,	and	more	than	1,600	pages.
However,	I	recognized	as	I	was	writing	this	tome	that	the	real	goal	is	not	just	to
provide	a	lot	of	detailed	information,	but	also	to	present	it	in	such	a	way	that	it
can	be	easily	understood	by	you,	the	reader.	This	requires	more	than	just	writing
large	amounts	of	text	and	putting	it	all	into	a	big	file.

For	this	reason,	I	have	incorporated	a	number	of	special	features	into	this	book	to
help	make	it	easier	for	you	to	"digest."	These	include	the	special	structure	of	the
book,	special	inserts	to	help	you	remember	topics,	and	more.

First,	The	TCP/IP	Guide	uses	a	three-level	structure	to	organize	its	content.	The
book	as	a	whole	is	divided	into	three	overall	sections,	covering
overview/background	information,	lower-layer	protocols,	and	higher-layer
application	protocols,	respectively.	Within	each	section	is	a	number	of	parts,
which	group	together	related	chapters.	Each	chapter	is,	in	turn,	structured	with
sections	and	subsections	to	present	the	material	in	the	most	understandable	way
possible.

The	TCP/IP	Guide	contains	more	than	300	detailed	illustrations,	which	support
the	textual	descriptions	of	TCP/IP	technologies	and	protocols,	and	help	make
sense	of	difficult	concepts.	Most	include	brief	descriptions	that	allow	you	to
quickly	understand	what	the	illustration	means	without	even	needing	to	read	the
full	surrounding	text.	The	book	also	has	more	than	300	tables,	which	present
large	amounts	of	information	in	an	organized	and	readable	manner	or	highlight
examples.

Most	of	the	discussions	in	The	TCP/IP	Guide	are	presented	as	free-form	text,	as
you	would	expect	in	any	document.	However,	I	use	notes	when	I	need	to	clarify
or	explain	something	that	I	feel	you	need	to	know,	but	which	is	either	not
directly	related	to	the	topic	under	discussion	or	is	sufficiently	"tangential"	that	it
needs	to	be	separated	from	the	main	text	to	avoid	disrupting	its	flow.	Examples
include	terminology	explanations,	"sidebar"	historical	discussions,	anecdotes,
and	clarifications	relating	to	how	I	am	describing	particular	concepts.



Last,	but	definitely	not	least,	are	the	key	concepts	inserts.	I	tried	very	hard	in
crafting	this	book	to	provide	a	variety	of	ways	to	present	information,	to	better
suit	the	learning	styles	of	different	readers.	To	that	end,	I	have	created	hundreds
of	these	special	paragraphs,	which	summarize	and	highlight	the	most	important
concepts	and	essential	pieces	of	knowledge	in	The	TCP/IP	Guide.	They	can	be
very	useful	for	quickly	distilling	the	essence	of	a	topic	without	reading	an	entire
explanation,	or	for	refreshing	your	memory	of	a	subject.	Obviously,	however,
they	contain	few	details,	so	you	should	not	assume	that	you	fully	understand	a
topic	or	concept	just	by	reading	this	sort	of	summary.



The	TCP/IP	Guide	Online!
This	book	had	its	origins	as	an	online	website,	called	appropriately	enough,	The
TCP/IP	Guide.	The	site	is	still	active	and	presents	the	same	information	as	this
book	contains,	albeit	in	a	slightly	different	format	and	structure.

You	may	find	the	online	version	of	the	site	useful	if	you	are	traveling	or	need	to
look	up	TCP/IP	information	quickly	when	you	don't	have	the	book	handy.	As	a
further	bonus,	the	pages	of	the	site	are	extensively	hyperlinked	for	ease	of	use,
and	the	diagrams	are	in	full	color.	The	online	version	also	has	a	full	hyperlinked
table	of	contents	and	a	search	engine!	Visit	the	site	at:

http://www.TCPIPGuide.com.

http://www.TCPIPGuide.com


Your	Feedback	and	Suggestions
One	of	the	ways	that	this	book	differs	from	the	typical	technical	reference	book
is	that	it	is	a	very	personal	work.	When	you	read	the	material	here,	I	want	you	to
feel	as	though	I	am	explaining	the	many	technologies	and	concepts	to	you
personally,	because	that's	how	I	feel	when	I	am	writing.	A	published	book	of	this
sort	is	by	its	nature	a	type	of	"one-way"	communication,	from	me	to	you;
however,	I	am	also	interested	in	what	you	have	to	say	to	me.	For	this	reason	I
strongly	encourage	you	to	provide	me	with	feedback	on	this	book	and
suggestions	that	you	may	have	for	it.

First,	let	me	point	out	that	all	books	have	mistakes,	and	despite	undergoing	a
rigorous	technical	review	and	multiple-stage	editing	process,	this	book	is
probably	no	exception.	Before	contacting	me	regarding	an	error	or	problem	with
this	book,	please	check	the	errata	page	to	see	if	what	you	found	has	already	been
reported.	You	can	find	that	page	here:
http://www.tcpipguide.com/bookerrata.htm.	I	welcome	your	constructive
criticisms	and	suggestions.	If	there	is	something	you	don't	like	about	the
material,	please	tell	me.	Even	better,	make	a	suggestion	for	how	to	improve	it.	I
am	also	happy	to	read	your	compliments	or	complaints,	and	I	will	gladly	answer
questions	that	pertain	directly	to	the	use	of	the	book.	You	can	contact	me	at
tcpipbook@tcpipguide.com.

http://www.tcpipguide.com/bookerrata.htm
mailto:tcpipbook@tcpipguide.com


Part	I-1.	NETWORKING	FUNDAMENTALS
TCP/IP	OVERVIEW	AND	BACKGROUND	INFORMATION

They	say	the	best	place	to	start	is	at	the	beginning,	and	that's	exactly	where	you
are	now.	This	initial	section	contains	background	information	that	will	help	you
to	understand	what	networking	is	about	and	where	TCP/IP	fits	into	the	grand
scheme	of	things.	This	introductory	information	will	help	ease	you	into	your
studies	of	TCP/IP,	and	it	is	particularly	valuable	to	those	who	are	new	to	the
world	of	networking.

This	section	contains	three	parts.	The	first	part	covers	a	number	of	important
fundamental	aspects	of	networks,	discussing	how	they	are	used,	the	standards
that	define	them,	the	terminology	that	describes	them,	and	much	more.	The
second	part	describes	the	important	OSI	Reference	Model,	which	is	an	essential
tool	to	comprehending	the	function	and	organization	of	networking	technologies.
The	third	part	contains	a	high-level	overview	of	the	TCP/IP	protocol	suite,	which
will	frame	the	more	complete	discussions	of	individual	TCP/IP	protocols	that
follow	in	the	latter	two	sections	of	this	book.

Let's	get	started!

Chapter	1

Chapter	2

Chapter	3

Chapter	4

Unlike	authors	of	many	other	TCP/IP-related	resources,	I	do	not	assume	that
readers	already	know	what	networking	is	all	about.	After	all,	that's	why	you	are
reading	this	book!

This	part	provides	an	overview	of	some	of	the	basic	issues	related	to	networking.
It	includes	discussions	of	some	of	the	most	fundamental	networking	concepts
and	ideas.	It	serves	not	only	to	provide	you	with	useful	background	material,	but
also	as	a	repository	for	general	information,	so	that	I	don't	need	to	repeat	it	in
many	different	places	elsewhere	in	the	book	(and	if	you	already	know	about
these	basics,	you	don't	need	to	skip	over	them	in	many	other	locations).	The
topics	covered	here	are	useful	for	understanding	certain	TCP/IP	concepts.



topics	covered	here	are	useful	for	understanding	certain	TCP/IP	concepts.
However,	some	of	the	material	is	very	broadly	oriented	toward	networking	as	a
whole	and	is	not	specific	to	TCP/IP	internetworking.

This	part	consists	of	four	chapters.	The	first	chapter	in	this	part	introduces
networking	in	broad	terms,	describes	its	fundamental	characteristics,	and
differentiates	between	network	sizes	and	types.	The	second	chapter	talks	about
many	different	matters	related	to	network	performance.	The	third	chapter
explains	the	importance	of	networking	standards	and	standards	organizations.
Finally,	the	fourth	chapter	provides	background	information	about	how	data	is
stored	and	manipulated	in	computers;	if	you	are	new	to	computing,	you	may	find
this	information	useful	when	reading	some	other	parts	of	this	book.	If	you	are
experienced	in	networking	and	related	technologies,	you	may	wish	to	skip	this
part	of	the	book.	Or,	you	can	scan	the	headings	in	the	chapters;	if	you	understand
the	terminology	mentioned	in	a	heading,	you	can	probably	skip	the	discussion.
Cross-references	in	other	areas	of	the	book	refer	to	information	in	this	part	as
appropriate,	so	if	you	need	to	fill	in	your	knowledge	of	a	particular	fundamental
on	the	fly,	you	can	do	so	rather	easily.



Chapter	1.	NETWORKING
INTRODUCTION,
CHARACTERISTICS,	AND	TYPES

Someone	new	to	networking	will	usually	have	some	pretty	important	questions.
What	is	networking	all	about?	What	are	the	most	important	attributes	that
describe	networks?	And	what	sort	of	networks	exist?	The	obvious	place	to	begin
discussing	networking	fundamentals	is	to	answer	those	questions	using	a	high-
level	introduction	to	networking	as	a	whole.

This	chapter	is	divided	into	three	sections.	The	first	provides	a	quick
introduction	to	networking.	I	define	networking	in	the	most	basic	terms,	then
place	networking	in	an	overall	context	by	describing	some	of	its	advantages	and
benefits,	as	well	as	some	of	its	disadvantages	and	costs.

The	second	section	discusses	key	concepts	that	describe	and	differentiate
between	types	of	networks	and	networking	technologies.	This	is	where	I'll	define
terms	and	"buzzwords"	that	you	cannot	avoid	if	you	are	going	to	learn	about
networks.	The	topics	here	include	explanations	of	protocols,	switching	methods,
types	of	network	messages,	message	formatting,	and	ways	of	addressing
messages.	I	also	discuss	the	differences	between	client-server	and	peer-to-peer
networking.

In	the	final	section,	I	describe	the	major	types	of	networks	by	drawing
distinctions	between	them	based	on	their	size	and	scope,	and	I	also	show	you
how	to	use	each	type	and	size.	I	discuss	LANs,	WLANs,	and	WANs,	and	a	few
variations	on	these	three	main	categories.	I	also	explore	the	many	terms	that	are
related	to	the	various	sizes	of	networks	and	how	they	are	used,	including
segments,	subnetworks,	internetworks,	intranets,	and	extranets.



Introduction	to	Networking
In	this	day	and	age,	networks	are	everywhere,	especially	in	the	form	of	the
Internet.	The	Internet,	the	ultimate	network,	has	revolutionized	not	only	the
computer	world,	but	the	lives	of	millions.	We	tend	to	take	for	granted	that
computers	should	be	connected	together.	In	fact,	these	days,	whenever	I	have
two	computers	in	the	same	room,	I	have	a	difficult	time	not	connecting	them!

Given	the	ubiquitousness	of	networking,	it's	hard	to	believe	that	the	field	is	still	a
relatively	young	one,	especially	when	it	comes	to	hooking	up	PCs.	In
approaching	any	discussion	of	networking,	it	is	very	useful	to	take	a	step	back
and	look	at	networking	from	a	higher	level.	What	is	it,	exactly,	and	why	is	it	now
considered	so	important	that	it	is	just	assumed	that	most	PCs	and	other	devices
will	be	networked?

What	Is	Networking?
For	such	an	extensive	and	involved	subject	that	includes	so	many	different
technologies,	hardware	devices,	and	protocols,	networking	is	actually	quite
simple.	A	network	is	simply	a	collection	of	computers	or	other	hardware	devices
that	are	connected	together,	either	physically	or	logically,	using	special	hardware
and	software	that	allows	the	devices	to	exchange	information	and	cooperate.
Networking	is	the	term	that	describes	the	processes	involved	in	designing,
implementing,	upgrading,	managing,	and	otherwise	working	with	networks	and
network	technologies.

TIP

KEY	CONCEPT	A	network	is	a	set	of	hardware	devices	connected	together,	either	physically	or
logically.	This	allows	them	to	exchange	information.

Networks	are	used	for	an	incredible	array	of	purposes.	Most	people	learning
about	networking	think	about	networking	as	interconnecting	PCs	and	other
"true"	computers,	but	you	use	a	variety	of	types	of	networks	every	day.	Each
time	you	pick	up	a	phone,	use	a	credit	card	at	a	store,	get	cash	from	an	ATM
machine,	or	even	plug	in	an	electrical	appliance,	you	are	using	some	type	of
network.



In	fact,	the	definition	can	even	be	expanded	beyond	the	world	of	technology.	I'm
sure	you've	heard	the	term	networking	used	to	describe	the	process	of	finding	an
employer	or	employee	through	friends	and	associates.	Similarly,	the	idea	here	is
that	independent	units	are	connected	together	to	share	information	and
cooperate.

The	widespread	networking	of	personal	computers	is	a	relatively	new
phenomenon.	For	the	first	decade	or	so	of	their	existence,	PCs	were	very	much
"islands	unto	themselves,"	and	were	rarely	connected	together.	In	the	early
1990s,	PC	networking	began	to	grow	in	popularity	as	businesses	realized	the
advantages	that	networking	could	provide.	By	the	late	1990s,	networking	in
homes	with	two	or	more	PCs	really	started	to	take	off	as	well.

This	interconnection	of	small	devices	represents,	in	a	way,	a	return	to	the	good
old	days	of	mainframe	computers.	Before	computers	were	small	and	personal,
they	were	large	and	centralized	machines	that	many	users	operating	remote
terminals	shared.	Although	having	all	of	that	computer	power	in	one	place	had
many	disadvantages,	one	benefit	was	that	all	users	were	connected	because	they
shared	the	central	computer.

Individualized	PCs	took	away	that	advantage.	Networking	attempts	to	move
computing	to	a	middle	ground.	It	provides	PC	users	with	the	best	of	both	worlds:
the	independence	and	flexibility	of	personal	computers,	and	the	connectivity	and
resource	sharing	of	mainframes.	In	fact,	networking	today	is	considered	so	vital
that	it's	hard	to	conceive	of	an	organization	with	two	or	more	computers	that
would	not	want	to	connect	them	together!

The	Advantages	and	Benefits	of	Networking
You	have	undoubtedly	heard	the	expression	"The	whole	is	greater	than	the	sum
of	its	parts."	This	phrase	describes	networking	very	well	and	explains	why	it	has
become	so	popular.	A	network	isn't	just	a	bunch	of	computers	with	wires
running	between	them.	Properly	implemented,	a	network	is	a	system	that
provides	its	users	with	unique	capabilities,	above	and	beyond	what	the	individual
machines	and	their	software	applications	can	provide.

Most	of	the	benefits	of	networking	can	be	divided	into	two	basic	categories:
connectivity	and	sharing.	Networks	allow	computers,	and	hence	their	users,	to



connect	to	each	other.	They	also	allow	for	the	easy	sharing	of	information	and
resources,	and	for	the	simple	cooperation	between	the	devices	in	other	ways.
Since	modern	business	depends	so	much	on	the	intelligent	flow	and	management
of	information,	this	ease	of	use	tells	you	a	lot	about	why	networking	is	so
valuable.

Here,	in	no	particular	order,	are	some	of	the	specific	advantages	generally
associated	with	networking:

Connectivity	and	Communication	Networks	connect	computers	and	the	users
of	those	computers.	Individuals	within	a	building	or	workgroup	can	be
connected	through	local	area	networks	(LANs);	LANs	in	distant	locations	can	be
interconnected	to	form	larger,	wide	area	networks	(WANs).	Once	computers	are
connected,	it	is	possible	for	network	users	to	communicate	with	each	other	using
technologies	such	as	electronic	mail.	This	makes	the	transmission	of	business	(or
nonbusiness)	information	easier,	more	efficient,	and	less	expensive	than	it	would
be	without	the	network.

Data	Sharing	One	of	the	most	important	uses	of	networking	is	to	allow	the
sharing	of	data.	Before	networking	was	common,	an	accounting	employee	who
wanted	to	prepare	a	report	for	her	manager	would	have	to	produce	it	on	her	PC,
put	it	on	a	floppy	disk,	and	then	walk	it	over	to	the	manager,	who	would	transfer
the	data	to	her	PC's	hard	disk.	(This	sort	of	"shoe-based	network"	was	sometimes
sarcastically	called	a	sneakernet.)

True	networking	allows	thousands	of	employees	to	share	data	much	more	easily
and	quickly	than	this.	It	also	makes	possible	applications	that	enable	many
people	to	access	and	share	the	same	data,	such	as	databases,	group	software
development,	and	much	more.

Hardware	Sharing	Networks	facilitate	the	sharing	of	hardware	devices.	For
example,	instead	of	giving	each	employee	in	a	department	an	expensive	color
printer	(or	resorting	to	the	sneakernet	again),	you	can	place	one	printer	on	the
network	for	everyone	to	share.

Internet	Access	The	Internet	is	itself	an	enormous	network,	so	whenever	you
access	the	Internet,	you	are	using	a	network.	The	significance	of	the	Internet
today	is	hard	to	exaggerate!



Internet	Access	Sharing	Small	computer	networks	allow	multiple	users	to	share
a	single	Internet	connection.	Special	hardware	devices	allow	the	bandwidth	of
the	connection	to	be	easily	allocated	to	various	individuals	as	they	need	it,	and
these	devices	permit	an	organization	to	purchase	one	high-speed	connection
instead	of	many	slower	ones.

Data	Security	and	Management	In	a	business	environment,	a	network	allows
the	administrators	to	manage	the	company's	critical	data	better.	Instead	of
spreading	data	over	dozens	or	even	hundreds	of	small	computers	in	a	haphazard
fashion	as	users	create	it,	administrators	can	centralize	data	on	shared	servers.
This	makes	it	easy	for	everyone	to	find	the	data	and	makes	it	possible	for	the
administrators	to	ensure	that	the	data	is	regularly	backed	up.	Administrators	can
also	implement	security	measures	to	control	who	can	read	or	change	various
pieces	of	critical	information.

Performance	Enhancement	and	Balancing	Under	some	circumstances,	you
can	use	a	network	to	enhance	the	overall	performance	of	some	applications	by
distributing	the	computation	tasks	to	various	computers	on	the	network.

Entertainment	Networks	facilitate	many	types	of	games	and	entertainment.	The
Internet	itself	offers	many	sources	of	entertainment.	In	addition,	many
multiplayer	games	operate	over	a	LAN.	Many	home	networks	are	set	up	for	this
reason,	and	gaming	across	WANs	(including	the	Internet)	has	also	become	quite
popular.	Of	course,	if	you	are	running	a	business	and	have	employees	who	are
easily	amused,	you	might	insist	that	this	is	really	a	disadvantage	of	networking
rather	than	an	advantage!

TIP

KEY	CONCEPT	At	a	high	level,	networks	are	advantageous	because	they	allow	computers	and	people
to	be	connected	together	so	that	they	can	share	resources.	Some	of	the	specific	benefits	of	networking
include	communication,	data	sharing,	Internet	access,	data	security	and	management,	application
performance	enhancement,	and	entertainment.

The	Disadvantages	and	Costs	of	Networking
Now	that	I	have	discussed	the	great	value	and	many	useful	benefits	of
networking,	I	must	bring	you	crashing	back	to	Earth	with	that	old	nemesis	of	the
realistic:	TANSTAAFL.	For	those	who	are	not	Heinlein	fans,	this	acronym



realistic:	TANSTAAFL.	For	those	who	are	not	Heinlein	fans,	this	acronym
stands	for	"There	ain't	no	such	thing	as	a	free	lunch."	Even	though	networking
really	does	represent	a	whole	that	is	greater	than	the	sum	of	its	parts,	it	does	have
some	real	and	significant	costs	and	drawbacks	associated	with	it.

Here	are	a	few	disadvantages	of	networking:

Network	Hardware,	Software,	and	Setup	Costs	Computers	don't	just
magically	network	themselves,	of	course.	Setting	up	a	network	requires	an
investment	in	hardware	and	software,	as	well	as	funds	for	planning,	designing,
and	implementing	the	network.	For	a	home	with	a	small	network	of	two	or	three
PCs,	this	is	relatively	inexpensive.	It	amounts	to	more	or	less	a	hundred	dollars
with	today's	low	prices	for	network	hardware,	and	practically	no	setup	costs
considering	that	the	operating	systems	have	already	been	designed	for	networks.
For	a	large	company,	however,	costs	can	easily	run	into	tens	of	thousands	of
dollars	or	more.

Hardware	and	Software	Management	and	Administration	Costs	In	all	but
the	smallest	of	implementations,	ongoing	maintenance	and	management	of	the
network	requires	the	care	and	attention	of	an	IT	professional.	In	a	smaller
organization	that	already	has	a	system	administrator,	a	network	may	fall	within
this	person's	job	responsibilities,	but	it	will	take	time	away	from	other	tasks.	In
more	substantial	organizations,	a	network	administrator	may	need	to	be	hired,
and	in	large	companies	an	entire	department	may	be	necessary.

Undesirable	Sharing	With	the	good	comes	the	bad;	though	networking	allows
the	easy	sharing	of	useful	information,	it	also	allows	the	sharing	of	undesirable
data.	One	significant	sharing	problem	in	this	regard	has	to	do	with	viruses,	which
are	easily	spread	over	networks	and	the	Internet.	Mitigating	these	effects	costs
time,	money,	and	administrative	effort.

Illegal	or	Undesirable	Behavior	Similar	to	the	previous	point,	networking
facilitates	useful	connectivity	and	communication,	but	also	brings	difficulties
with	it.	Typical	problems	include	the	abuse	of	company	resources,	distractions
that	reduce	productivity,	the	downloading	of	illegal	or	illicit	materials,	and	even
software	piracy.	In	larger	organizations,	these	issues	must	be	managed	through
explicit	policies	and	monitoring,	which,	again,	further	increases	management
costs.



Data	Security	Concerns	If	a	network	is	implemented	properly,	it	is	possible	to
greatly	improve	the	security	of	important	data.	In	contrast,	a	poorly	secured
network	puts	critical	data	at	risk,	exposing	it	to	the	potential	problems	associated
with	hackers,	unauthorized	access,	and	even	sabotage.

Most	of	these	costs	and	potential	problems	can	be	managed	by	those	who	set	up
and	run	networks.	In	the	end,	the	choice	of	whether	to	use	a	network	is	a	matter
of	weighing	the	advantages	against	the	disadvantages.	Today,	nearly	everyone
decides	that	networking	is	worthwhile.

TIP

KEY	CONCEPT	Networking	has	a	few	drawbacks	that	you	can	weigh	against	its	many	positive
aspects.	Setting	up	a	network	has	costs	in	hardware,	software,	maintenance,	and	administration.	It	is	also
necessary	to	manage	a	network	to	keep	it	running	smoothly	and	to	address	possible	misuse	or	abuse
issues.	Data	security	also	becomes	a	much	bigger	concern	when	computers	are	connected	together.



Fundamental	Network	Characteristics
There	are	many	different	kinds	of	networks	and	network	technologies	that	are
used	to	create	them.	The	proliferation	of	networking	methods	has	generally
occurred	for	a	very	good	reason:	Different	needs	require	different	solutions.	The
drawback	of	this	is	that	there	are	so	many	different	types	of	protocols	and
technologies	for	the	networking	student	to	understand!

Before	you	can	really	compare	these	approaches,	you	need	to	understand	some
of	the	basic	characteristics	that	make	networks	what	they	are.	Although	network
types	may	be	quite	dissimilar,	they	are	often	described	and	even	contrasted	on
the	basis	of	a	number	of	common	attributes,	which	I'll	discuss	in	the	following
sections.

Networking	Layers,	Models,	and	Architectures
One	of	the	reasons	why	many	people	find	networking	difficult	to	learn	is	that	it
can	be	a	very	complicated	subject.	One	of	the	chief	reasons	for	this	complexity	is
that	networks	consist	of	so	many	hardware	and	software	elements.	While	a
network	user	may	perceive	that	he	is	using	only	one	computer	program	(like	a
web	browser)	and	one	piece	of	hardware	(like	a	PC),	these	are	parts	of	a	much
larger	puzzle.	In	order	for	even	the	simplest	task	to	be	accomplished	on	a
network,	dozens	of	different	components	must	cooperate	by	passing	control
information	and	data	to	accomplish	the	overall	goal	of	network	communication.

The	best	way	to	understand	any	complex	system	is	to	break	it	down	into	pieces
and	then	analyze	what	those	pieces	do	and	how	they	interact.	The	most	logical
approach	is	to	divide	the	overall	set	of	functions	into	modular	components,	each
of	which	is	responsible	for	a	particular	function.	At	the	same	time,	you	also	need
to	define	interfaces	between	these	components,	which	describe	how	they	fit
together.	This	enables	you	to	simplify	the	complexity	of	networking	by
approaching	it	in	digestible	chunks.

Networking	technologies	are	most	often	compartmentalized	in	this	manner	by
dividing	their	functions	into	layers,	each	of	which	contains	hardware	and
software	elements.	Each	layer	is	responsible	for	performing	a	particular	type	of
task	and	interacts	with	the	layers	above	and	below	it.	Layers	are	conceptually



arranged	into	a	vertical	stack.	Lower	layers	are	charged	with	more	concrete	tasks
such	as	hardware	signaling	and	low-level	communication;	they	provide	services
to	the	higher	layers.	The	higher	layers,	in	turn,	use	these	services	to	implement
more	abstract	functions	such	as	implementing	user	applications.

Dividing	networks	into	layers	this	way	is	somewhat	like	the	division	of	labor	in
a	manufacturing	facility,	and	it	yields	similar	benefits.	Each	hardware	device	or
software	program	can	be	specialized	to	perform	the	function	needed	by	that
layer,	like	a	well-trained	specialist	on	an	assembly	line.	The	different	modules
can	be	combined	in	different	ways	as	needed.	This	way,	it's	also	easier	to
understand	how	a	network	functions	overall.

One	other	important	benefit	of	layering	is	that	makes	it	possible	for	technologies
defined	by	different	groups	to	interoperate.	For	this	to	be	possible,	it	is	necessary
for	everyone	to	agree	on	how	layers	will	be	defined	and	used.	The	most	common
tool	for	this	purpose	is	a	networking	model.	The	model	describes	what	the
different	layers	are	in	the	network,	what	each	is	responsible	for	doing,	and	how
they	interact.	A	univerally	accepted	model	ensures	that	everyone	is	on	the	same
page	when	creating	hardware	and	software.

The	most	common	general	model	in	use	today	is	the	Open	Systems
Interconnection	(OSI)	Reference	Model,	which	consists	of	seven	stacked	layers.
These	range	from	the	physical	layer	(layer	1)	at	the	bottom,	which	is	responsible
for	low-level	signaling,	to	the	application	layer	(layer	7)	at	the	top,	where
application	software	is	implemented.	Understanding	the	OSI	model	is	essential
to	understanding	networking	as	a	whole.	I	explain	models	and	layers	in	more
detail,	and	provide	a	complete	description	of	the	OSI	Reference	Model,	in	Part	I-
2	of	this	book.

Closely	related	to	the	concept	of	a	model	is	the	concept	of	an	architecture.	An
architecture	is	essentially	a	set	of	rules	that	describes	the	function	of	some
portion	of	the	hardware	and	software	that	constitutes	a	stack	of	layers.	Such	a
ruleset	usually	takes	the	form	of	a	specification	or	standard	that	describes	how
equipment	and	programs	using	the	technology	must	behave.	A	networking
architecture	is	designed	to	implement	the	functions	associated	with	a	particular
contiguous	set	of	layers	of	the	OSI	Reference	Model,	either	formally	or
informally.



In	this	book,	I	discuss	TCP/IP,	the	protocol	suite	that	runs	the	Internet.	TCP/IP	is
a	complex	set	of	technologies	that	spans	many	layers	of	the	OSI	model.	By
examining	the	various	components	of	TCP/IP	and	how	they	implement	different
OSI	model	layers,	you	will	really	learn	how	TCP/IP	works.	For	starters,	the
name	of	the	suite,	TCP/IP,	comes	from	the	Transmission	Control	Protocol
(TCP),	which	operates	at	layer	4	of	the	OSI	model,	and	the	Internet	Protocol
(IP),	which	runs	at	OSI	model	layer	3.	IP	provides	services	to	layer	4	and	uses
services	from	layer	2	below	it.	TCP	uses	IP's	functions	and	provides	functions	to
the	layers	above	it.

I'll	start	a	more	complete	examination	of	TCP/IP	by	looking	at	its	architecture,
and	by	looking	at	a	second,	special	model	that	was	developed	specifically	to
make	sense	of	TCP/IP.	Both	are	explored	in	Chapter	8.

Protocols:	What	Are	They,	Anyway?
If	there's	one	word	you	will	get	used	to	seeing	a	lot	as	you	go	through	this	book,
it	is	protocol.	You	will	see	references	to	networking	protocols,	internetworking
protocols,	high-level	protocols,	low-level	protocols,	protocol	stacks,	protocol
suites,	subprotocols,	and	so	on.	Clearly,	protocols	are	important,	yet	many
reference	works	and	standards	use	the	term	over	and	over	again	without	ever
explaining	it.	One	reason	for	this	may	be	because	the	term	is	somewhat	vague
and	can	have	many	meanings.

In	some	cases,	understanding	a	technical	term	is	easier	if	you	go	back	to	look	at
how	the	term	is	used	in	plain	English.	In	the	real	world,	a	protocol	often	refers	to
a	code	of	conduct	or	a	form	of	etiquette	observed	by	diplomats.	These	people
must	follow	certain	rules	of	ceremony	and	formality	to	ensure	that	they
communicate	effectively	without	causing	conflict.	They	also	must	understand
what	is	expected	of	them	when	they	interact	with	representatives	from	other
nations,	making	sure	that,	for	example,	they	do	not	offend	anyone	due	to	an
unfamiliarity	with	local	customs.	In	fact,	most	people	follow	various	protocols;
they	are	sort	of	the	unwritten	rules	of	society.

This	may	seem	to	have	little	to	do	with	networking,	but	in	fact,	this	is	a	pretty
good	high-level	description	of	what	networking	protocols	are	about.	They	define
a	language	and	a	set	of	rules	and	procedures	that	enable	devices	and	systems	to
communicate.	Obviously,	computers	do	not	have	local	customs,	and	they	hardly



communicate.	Obviously,	computers	do	not	have	local	customs,	and	they	hardly
have	to	worry	about	committing	a	faux	pas	that	might	cause	another	computer	to
take	offense.	Networking	protocols	concern	themselves	with	ensuring	that	all	the
devices	on	a	network	or	internetwork	are	in	agreement	about	how	various
actions	must	be	performed	in	the	total	communication	process.

A	protocol	is	thus	basically	a	way	of	ensuring	that	devices	are	able	to	talk	to
each	other	effectively.	In	most	cases,	an	individual	protocol	describes	how
communication	is	accomplished	between	one	particular	software	or	hardware
element	in	two	or	more	devices.

In	the	context	of	the	OSI	Reference	Model,	a	protocol	is	formally	defined	as	a
set	of	rules	governing	communication	between	entities	at	the	same	layer.	For
example,	TCP	is	responsible	for	a	specific	set	of	functions	on	TCP/IP	networks.
Each	host	on	a	TCP/IP	network	has	a	TCP	implementation,	and	those	hosts	all
communicate	with	each	other	logically	at	layer	4	of	the	OSI	model.

NOTE

The	formalized	OSI	Reference	Model	meaning	of	the	word	protocol	is	covered	in	the	OSI	Reference
Model	topic	on	horizontal	layer	communication	(discussed	in	Chapter	5,	in	the	section	titled	"Protocols:
Horizontal	(Corresponding	Layer)	Communication").

While	OSI	Reference	Model	definitions	are	sometimes	overly	theoretical	in
nature,	this	definition	of	protocol	is	rather	accurate	in	assessing	protocols	in	real-
world	networking.	If	something	doesn't	specify	a	means	of	communication,	it
arguably	isn't	a	protocol.

TIP

KEY	CONCEPT	A	networking	protocol	defines	a	set	of	rules,	algorithms,	messages,	and	other
mechanisms	that	enables	software	and	hardware	in	networked	devices	to	communicate	effectively.	A
protocol	usually	describes	a	means	for	communication	between	corresponding	entities	at	the	same	OSI
Reference	Model	layer	in	two	or	more	devices.

Despite	this,	the	term	protocol	is	often	used	colloquially	to	refer	to	many
different	concepts	in	networking.	Some	of	the	more	common	alternative	uses	of
the	word	are	listed	here:

Protocol	Suites	It	is	very	common	to	hear	the	word	protocol	used	to	refer	to	sets



of	protocols	that	are	more	properly	called	protocol	suites	(or	stacks,	in	reference
to	a	stack	of	layers).	For	example,	TCP/IP	is	often	called	just	a	protocol	when	it
is	really	a	(large)	set	of	protocols.

Microsoft	Windows	Protocols	One	important	example	of	the	issue	of	referring
to	protocol	suites	as	single	protocols	is	the	networking	software	in	Microsoft
Windows.	It	usually	calls	a	full	networking	stack	like	TCP/IP	or	IPX/SPX	just	a
protocol.	When	you	install	one	of	these	so-called	protocols,	however,	you
actually	get	a	software	module	that	supports	a	full	protocol	suite.

Other	Technologies	Sometimes	technologies	that	are	not	protocols	at	all	are
called	protocols,	either	out	of	convention	or	perhaps	because	people	think	it
sounds	good.	For	example,	TCP/IP	Remote	Network	Monitoring	(RMON)	is
often	called	a	protocol	when	it	is	really	just	an	enhancement	to	the	Simple
Network	Management	Protocol	(SNMP),	which	is	a	protocol!	(See	Part	III-4	for
details	on	SNMP	and	RMON.)

So,	does	it	really	matter	whether	a	protocol	is	a	"true"	protocol	or	not?	Well,	the
networking	hardware	devices	and	software	programs	sure	don't	care.	But
hopefully,	having	read	about	the	term	and	what	it	means,	you	will	be	able	to
better	understand	the	word	when	you	encounter	it	in	your	studies—especially	in
the	places	where	it	may	not	always	be	used	in	a	way	that's	entirely	consistent
with	its	formal	definition.

Circuit-Switching	and	Packet-Switching
Networks
Networks	are	devices	that	are	connected	together	using	special	hardware	and
software	that	allows	them	to	exchange	information.	The	most	important	word	in
that	sentence	is	the	final	one:	information.	As	you	will	see	in	your	exploration	of
this	book,	there	are	many	methods	for	exchanging	information	between
networked	devices.	There	are	also	a	number	of	ways	of	categorizing	and
describing	these	methods	and	the	types	of	networks	that	use	them.

One	fundamental	way	to	differentiate	between	networking	technologies	is	on	the
basis	of	the	method	used	to	determine	the	path	between	devices	over	which
information	will	flow.	In	highly	simplified	terms,	there	are	two	approaches:	a
path	can	be	set	up	between	the	devices	in	advance,	or	the	data	can	be	sent	as



individual	data	elements	over	a	variable	path.

Circuit	Switching
In	the	circuit-switching	networking	method,	a	connection	called	a	circuit,	which
is	used	for	the	whole	communication,	is	set	up	between	two	devices.	Information
about	the	nature	of	the	circuit	is	maintained	by	the	network.	The	circuit	may	be
either	a	fixed	one	that	is	always	present	or	one	that	is	created	on	an	as-needed
basis.	Even	if	many	potential	paths	through	intermediate	devices	may	exist
between	the	two	devices	that	are	communicating,	only	one	will	be	used	for	any
given	dialogue,	as	shown	in	Figure	1-1.

The	classic	example	of	a	circuit-switched	network	is	the	telephone	system.
When	you	call	someone	and	she	answers,	you	establish	a	circuit	connection	and
can	pass	data	in	a	steady	stream.	That	circuit	functions	the	same	way,	regardless
of	how	many	intermediate	devices	are	used	to	carry	your	voice.	You	use	it	for	as
long	as	you	need	it	and	then	terminate	the	circuit.	The	next	time	you	call,	you	get
a	new	circuit,	which	may	(probably	will)	use	different	hardware	than	the	first
circuit	did,	depending	on	what's	available	at	that	time	in	the	network.

Figure	1-1.	Circuit	switching	In	a	circuit-switched	network,	before	communication	can	occur	between
two	devices,	a	circuit	is	established	between	them.	This	is	shown	as	a	darker	line	for	the	conduit	of	data

from	Device	A	to	Device	B,	and	a	matching	lighter	line	from	B	back	to	A.	Once	it's	set	up,	all
communication	between	these	devices	takes	place	over	this	circuit,	even	though	there	are	other	possible
ways	that	data	could	conceivably	be	passed	over	the	network	of	devices	between	them.	Contrast	this

diagram	to	Figure	1-2.

Packet	Switching
In	the	packet-switching	network	type,	no	specific	path	is	used	for	data	transfer.
Instead,	the	data	is	chopped	up	into	small	pieces	called	packets	and	sent	over	the
network.	You	can	route,	combine,	or	fragment	the	packets	as	required	to	get



them	to	their	eventual	destination.	On	the	receiving	end,	the	process	is	reversed
—the	data	is	read	from	the	packets	and	reassembled	to	form	the	original	data.	A
packet-switched	network	is	more	analogous	to	the	postal	system	than	it	is	to	the
telephone	system	(though	the	comparison	isn't	perfect).	An	example	is	shown	in
Figure	1-2.

Figure	1-2.	Packet	switching	In	a	packet-switched	network,	no	circuit	is	set	up	prior	to	sending	data
between	devices.	Blocks	of	data,	even	from	the	same	file	or	communication,	may	take	any	number	of

paths	as	they	journey	from	one	device	to	another.	Compare	this	to	Figure	1-1.

TIP

KEY	CONCEPT	One	way	that	networking	technologies	are	categorized	is	based	on	the	path	used	to
carry	data	between	devices.	In	circuit	switching,	a	circuit	is	first	established	and	then	used	to	carry	all
data	between	devices.	In	packet	switching,	no	fixed	path	is	created	between	devices	that	communicate;	it
is	broken	into	packets,	each	of	which	may	take	a	separate	path	from	sender	to	recipient.

Which	Switching	Method	to	Choose?
A	common	temptation	when	considering	alternatives	such	as	these	is	to	ask
which	is	better;	the	answer	is	neither.	There	are	places	for	which	one	is	more
suited	than	the	other,	but	if	one	were	clearly	superior,	both	methods	wouldn't	be
used.

One	important	issue	in	selecting	a	switching	method	is	whether	the	network
medium	is	shared	or	dedicated.	Your	phone	line	can	be	used	for	establishing	a
circuit	because	you	are	the	only	one	who	can	use	it—assuming	you	can	keep	that
pesky	wife/husband/child/sister/brother/father/mother	off	it.	However,	this
doesn't	work	well	with	LANs,	which	typically	use	a	single	shared	medium	and
baseband	signaling.	If	two	devices	were	to	establish	a	connection,	they	would
lock	out	all	the	other	devices	for	a	long	period	of	time.	It	makes	more	sense	to



chop	the	data	into	small	pieces	and	send	them	one	at	a	time.	Then,	if	two	other
devices	want	to	communicate,	their	packets	can	be	interspersed,	and	everyone
can	share	the	network.

The	ability	to	have	many	devices	communicate	simultaneously	without
dedicated	data	paths	is	one	reason	why	packet	switching	is	becoming
predominant	today.	However,	there	are	some	disadvantages	of	packet	switching
compared	to	circuit	switching.	One	is	that	since	all	data	does	not	take	the	same
predictable	path	between	devices,	it	is	possible	that	some	pieces	of	data	may	get
lost	in	transit	or	show	up	in	the	incorrect	order.	In	some	situations	this	does	not
matter,	but	in	others	it	is	very	important	indeed.

Although	the	theoretical	difference	between	circuit	and	packet	switching	is
pretty	clear-cut,	understanding	how	to	use	them	is	a	bit	more	complicated.	One
of	the	major	issues	is	that	in	modern	networks,	they	are	often	combined.

For	example,	suppose	you	connect	to	the	Internet	using	a	dial-up	modem.	You
will	be	using	IP	datagrams	(packets)	to	carry	higher-layer	data,	but	it	will	be
over	the	circuit-switched	telephone	network.	Yet	the	data	may	be	sent	over	the
telephone	system	in	digital	packetized	form.	So	in	some	ways,	both	circuit
switching	and	packet	switching	are	being	used	concurrently.

Another	issue	is	the	relationship	between	circuit	and	packet	switching,	and
whether	a	technology	is	connection-oriented	or	connectionless.	The	two
concepts	are	related	but	not	the	same,	as	you	will	see	in	a	moment.

NOTE

The	word	packet	is	only	one	of	several	terms	that	are	used	to	refer	to	messages	that	are	sent	over	a
network.	Other	terms	that	you	will	encounter	include	frame,	datagram,	cell,	and	segment.	You	will	learn
more	about	these	terms	later	in	this	chapter.

Connection-Oriented	and	Connectionless
Protocols
I	just	compared	networking	technologies	based	on	whether	or	not	they	use	a
dedicated	path	or	circuit	over	which	they	send	data.	Another	way	in	which
technologies	and	protocols	are	differentiated	has	to	do	with	whether	or	not	they



use	connections	between	devices.	This	issue	is	closely	related	to	the	matter	of
packet	versus	circuit	switching.

Protocols	are	divided	into	the	following	two	categories	based	on	their	use	of
connections:

Connection-Oriented	Protocols	These	protocols	require	you	to	establish	a
logical	connection	between	two	devices	before	transferring	data.	This	is
generally	accomplished	by	following	a	specific	set	of	rules	that	specify	how	a
connection	should	be	initiated,	negotiated,	managed,	and	eventually	terminated.
Usually,	one	device	begins	by	sending	a	request	to	open	a	connection,	and	the
other	responds.	The	devices	pass	control	information	to	determine	if	and	how	the
connection	should	be	set	up.	If	this	is	successful,	data	is	sent	between	the
devices.	When	they	are	finished,	the	connection	is	broken.

Connectionless	Protocols	These	protocols	do	not	establish	a	connection
between	devices.	As	soon	as	a	device	has	data	to	send	to	another,	it	just	sends	it.

TIP

KEY	CONCEPT	A	connection-oriented	protocol	is	one	in	which	a	logical	connection	is	first
established	between	devices	prior	to	data	being	sent.	In	a	connectionless	protocol,	data	is	just	sent
without	a	connection	being	created.

You	can	probably	immediately	see	the	relationship	between	the	concepts	of
circuits	and	connections.	Obviously,	in	order	to	establish	a	circuit	between	two
devices,	you	must	connect	them.	For	this	reason,	circuit-switched	networks	are
inherently	based	on	connections.	This	has	led	to	the	interchangeable	use	of	the
terms	circuit-switched	and	connection-oriented.

However,	this	is	an	oversimplification	that	results	from	a	common	logical	fallacy
—people	make	the	mistake	of	thinking	that	if	A	implies	B,	then	B	implies	A,
which	is	like	saying	that	since	all	apples	are	fruit,	then	all	fruit	are	apples!	A
connection	is	needed	for	a	circuit,	but	a	circuit	is	not	a	prerequisite	for	a
connection.	There	are,	therefore,	protocols	that	are	connection-oriented,	even
though	they	aren't	predicated	on	the	use	of	circuit-based	networks	at	all.

These	connection-oriented	protocols	are	important	because	they	enable	the
implementation	of	applications	that	require	connections	over	packet-switched



networks	that	have	no	inherent	sense	of	a	connection.	For	example,	to	use	the
TCP/IP	File	Transfer	Protocol	(FTP),	you	want	to	be	able	to	connect	to	a	server,
enter	a	login	and	password,	and	then	execute	commands	to	change	directories,
send	or	retrieve	files,	and	so	on.	This	requires	the	establishment	of	a	connection
over	which	commands,	replies,	and	data	can	be	passed.	Similarly,	the	Telnet
Protocol	(TP)	involves	establishing	a	connection—it	lets	you	remotely	use
another	machine.	Yet,	both	of	these	work	(indirectly)	over	IP,	which	is	based	on
the	use	of	packets,	through	the	important	principle	of	layering	(see	Chapter	5).

TIP

KEY	CONCEPT	Circuit-switched	networking	technologies	are	inherently	connection-oriented,	but	not
all	connection-oriented	technologies	use	circuit	switching.	Logical	connection-oriented	protocols	can	be
implemented	on	top	of	packet-switching	networks	to	provide	higher-layer	services	to	applications	that
require	connections.

To	comprehend	the	relationship	between	connections	and	circuits,	you	must
recall	the	layered	nature	of	modern	networking	architecture	(as	I	discuss	in	some
detail	in	Chapter	5).	Even	though	packets	may	be	used	at	lower	layers	for	the
mechanics	of	sending	data,	a	higher-layer	protocol	can	create	logical	connections
through	the	use	of	messages	sent	in	those	packets.

TCP/IP	has	two	main	protocols	that	operate	at	the	transport	layer	of	the	OSI
Reference	Model.	One	is	TCP,	which	is	connection-oriented;	the	other,	the	User
Datagram	Protocol	(UDP),	is	connectionless.	TCP	is	used	for	applications	that
require	the	establishment	of	connections	(as	well	as	TCP's	other	service
features),	such	as	FTP;	it	works	using	a	set	of	rules,	as	described	earlier,	by
which	a	logical	connection	is	negotiated	prior	to	sending	data.	UDP	is	used	by
other	applications	that	don't	need	connections	or	other	features,	but	do	need	the
faster	performance	that	UDP	can	offer	by	not	needing	to	make	such	connections
before	sending	data.

Some	people	consider	the	layering	of	a	connection-oriented	protocol	over	a
connectionless	protocol	to	be	like	a	simulation	of	circuit	switching	at	higher
network	layers;	this	is	perhaps	a	dubious	analogy.	Even	though	you	can	use	a
TCP	connection	to	send	data	back	and	forth	between	devices,	all	that	data	is
indeed	still	being	sent	as	packets;	there	is	no	real	circuit	between	the	devices.
This	means	that	TCP	must	deal	with	all	the	potential	pitfalls	of	packet-switched



This	means	that	TCP	must	deal	with	all	the	potential	pitfalls	of	packet-switched
communication,	such	as	the	potential	for	data	loss	or	receipt	of	data	pieces	in	the
incorrect	order.	Certainly,	the	existence	of	connection-oriented	protocols	like
TCP	doesn't	obviate	the	need	for	circuit-switching	technologies,	though	you	will
get	some	arguments	about	that	one	too.

The	principle	of	layering	also	means	that	there	are	other	ways	that	connection-
oriented	and	connectionless	protocols	can	be	combined	at	different	levels	of	an
internetwork.	Just	as	a	connection-oriented	protocol	can	be	implemented	over	an
inherently	connectionless	protocol,	the	reverse	is	also	true:	a	connectionless
protocol	can	be	implemented	over	a	connection-oriented	protocol	at	a	lower
level.	In	a	preceding	example,	I	talked	about	Telnet	(which	requires	a
connection)	running	over	IP	(which	is	connectionless).	In	turn,	IP	can	run	over	a
connection-oriented	protocol	like	Asynchronous	Transfer	Mode	(ATM).



Messages:	Packets,	Frames,	Datagrams,	and
Cells
Many	networking	technologies	are	based	on	packet	switching,	which	involves
the	creation	of	small	chunks	of	data	to	be	sent	over	a	network.	Even	though
packet	appears	in	the	name	of	this	method,	the	data	items	sent	between
networked	devices	are	most	generically	called	messages.	Packet	is	one	of	a
variety	of	similar	words	that	are	used	in	different	contexts	to	refer	to	messages
sent	from	one	device	to	another.

In	some	cases,	the	different	terms	can	be	very	useful,	because	the	name	used	to
refer	to	a	particular	message	can	tell	you	something	about	what	the	message
contains,	as	you	will	see	shortly.	In	particular,	different	message	names	are
usually	associated	with	protocols	and	technologies	operating	at	specific	layers	of
the	OSI	Reference	Model.	Thus,	the	use	of	these	different	names	can	help	clarify
discussions	that	involve	multiple	protocols	operating	at	different	layers.

Unfortunately,	these	terms	can	also	cause	confusion,	because	they	are	not	always
applied	in	a	universal	or	even	consistent	manner.	Some	people	are	strict	about
applying	particular	message	designations	only	to	the	appropriate	technologies
where	they	are	normally	used,	while	others	use	the	different	terms	completely
interchangeably.	This	means	that	you	should	be	familiar	with	the	different
message	types	and	how	they	are	normally	used,	but	you	should	still	be	prepared
for	the	unexpected.

The	most	common	terms	used	for	messages	are	the	following:

Packet	This	term	is	considered	by	many	to	correctly	refer	to	a	message	sent	by
protocols	operating	at	the	network	layer	of	the	OSI	Reference	Model.	So	you
will	commonly	see	people	refer	to	IP	packets.	However,	this	term	is	commonly
also	used	to	refer	generically	to	any	type	of	message,	as	I	mentioned	earlier.

Datagram	This	term	is	basically	synonymous	with	packet	and	is	also	used	to
refer	to	network	layer	technologies.	It	is	also	often	used	to	refer	to	a	message
that	is	sent	at	a	higher	level	of	the	OSI	Reference	Model	(more	often	than	packet
is).

Frame	This	term	is	most	commonly	associated	with	messages	that	travel	at	low



levels	of	the	OSI	Reference	Model.	In	particular,	it	is	most	commonly	seen	used
in	reference	to	data	link	layer	messages.	It	is	occasionally	also	used	to	refer	to
physical	layer	messages,	when	message	formatting	is	performed	by	a	layer	1
technology.	A	frame	gets	its	name	from	the	fact	that	it	is	created	by	taking
higher-level	packets	or	datagrams	and	"framing"	them	with	additional	header
information	needed	at	the	lower	level.

Cell	Frames	and	packets,	in	general,	can	be	of	variable	length,	depending	on
their	contents;	in	contrast,	a	cell	is	most	often	a	message	that	is	fixed	in	size.	For
example,	the	fixed-length,	53-byte	messages	sent	in	ATM	are	called	cells.	Like
frames,	cells	are	usually	used	by	technologies	operating	at	the	lower	layers	of	the
OSI	model.

Protocol	Data	Unit	(PDU)	and	Service	Data	Unit	(SDU)	These	are	the	formal
terms	used	in	the	OSI	Reference	Model	to	describe	protocol	messages.	A	PDU	at
layer	N	is	a	message	sent	between	protocols	at	layer	N.	It	consists	of	layer	N
header	information	and	an	encapsulated	message	from	layer	N+1,	which	is
called	both	the	layer	N	SDU	and	the	layer	N+1	PDU.	After	you	stop	scratching
your	head,	see	the	"Data	Encapsulation,	Protocol	Data	Units	(PDUs),	and
Service	Data	Units	(SDUs)"	section	in	Chapter	5	for	a	discussion	of	this.

I	should	also	point	out	that	there	are	certain	protocols	that	use	unusual	names,
which	aren't	used	elsewhere	in	the	world	of	networking,	to	refer	to	their
messages.	One	prominent	example	is	TCP,	which	calls	its	messages	segments.

TIP

KEY	CONCEPT	Communication	between	devices	on	packet-switched	networks	is	based	on	items	most
generically	called	messages.	These	pieces	of	information	also	go	by	other	names	such	as	packets,
datagrams,	frames,	and	cells,	which	often	correspond	to	protocols	at	particular	layers	of	the	OSI
Reference	Model.	The	formal	OSI	terms	for	messages	are	protocol	data	unit	(PDU)	and	service	data	unit
(SDU).

In	this	book,	I	have	made	a	specific	effort	not	to	imply	anything	about	the	nature
of	a	message	solely	based	on	the	name	it	uses,	but	I	do	follow	the	most	common
name	used	for	a	particular	technology.	For	example,	messages	sent	over	Ethernet
are	almost	always	called	Ethernet	frames—they	are	not	generally	called	Ethernet
datagrams,	for	example.	However,	I	do	not	structure	discussions	so	that	the	type



of	name	used	for	a	message	is	the	only	way	to	determine	what	sort	of	message	it
is.

Message	Formatting:	Headers,	Payloads,	and
Footers
Messages	are	the	structures	used	to	send	information	over	networks.	They	vary
greatly	from	one	protocol	or	technology	to	the	next	in	how	they	are	used,	and	as
just	described,	they	are	also	called	by	many	different	names.	Shakespeare	had
the	right	idea	about	names,	however.	The	most	important	way	that	messages
differ	is	not	in	what	they	are	called	but	in	terms	of	their	content.

Every	protocol	uses	a	special	formatting	method	that	determines	the	structure	of
the	messages	it	employs.	Obviously,	a	message	that	is	intended	to	connect	a	web
server	and	a	web	browser	is	going	to	be	quite	different	from	one	that	connects
two	Ethernet	cards	at	a	low	level.	This	is	why	I	separately	describe	the	formats
of	dozens	of	different	protocol	messages	in	various	areas	of	this	book.

While	the	format	of	a	particular	message	type	depends	entirely	on	the	nature	of
the	technology	that	uses	it,	messages	on	the	whole	tend	to	follow	a	fairly
uniform	overall	structure.	In	generic	terms,	each	message	contains	the	following
three	elements	(see	Figure	1-3):

Header	Information	that	is	placed	before	the	actual	data.	The	header	normally
contains	a	small	number	of	control-information	bytes,	which	are	used	to
communicate	important	facts	about	the	data	that	the	message	contains	and	how	it
is	to	be	interpreted	and	used.	It	serves	as	the	communication	and	control	link
between	protocol	elements	on	different	devices.

Data	The	actual	data	to	be	transmitted,	often	called	the	payload	of	the	message
(metaphorically	borrowing	a	term	from	the	space	industry!).	Most	messages
contain	some	data	of	one	form	or	another,	but	some	messages	actually	contain
none.	They	are	used	for	only	control	and	communication	purposes.	For	example,
these	may	be	used	to	set	up	or	terminate	a	logical	connection	before	data	is	sent.

Footer	Information	that	is	placed	after	the	data.	There	is	no	real	difference
between	the	header	and	the	footer,	as	both	generally	contain	control	fields.	The
term	trailer	is	also	sometimes	used.



Figure	1-3.	Network	message	formatting	In	the	most	general	of	terms,	a	message	consists	of	a	data
payload	that	will	be	communicated,	bracketed	by	a	set	of	header	and	footer	fields.	The	data	of	any
particular	message	sent	in	a	networking	protocol	will	itself	contain	an	encapsulated	higher-layer

message	containing	a	header,	data,	and	a	footer.	This	"nesting"	can	occur	many	times	as	data	is	passed
down	a	protocol	stack.	The	header	is	found	in	most	protocol	messages;	the	footer	only	in	some.

Since	the	header	and	footer	can	contain	both	control	and	information	fields,	you
might	rightly	wonder	what	the	point	is	of	having	a	separate	footer	anyway.	One
reason	is	that	some	types	of	control	information	are	calculated	using	the	values
of	the	data	itself.	In	some	cases,	it	is	more	efficient	to	perform	this	computation
as	the	data	payload	is	being	sent,	and	then	transmit	the	result	after	the	payload	in
a	footer.	A	good	example	of	a	field	often	found	in	a	footer	is	redundancy	data
such	as	cyclic	redundancy	check	(CRC)	code,	which	can	be	used	for	error
detection	by	the	receiving	device.	Footers	are	most	often	associated	with	lower-
layer	protocols,	especially	at	the	data	link	layer	of	the	OSI	Reference	Model.

TIP

KEY	CONCEPT	The	general	format	of	a	networking	message	consists	of	a	header,	followed	by	the
data	or	payload	of	the	message,	followed	optionally	by	a	footer.	Header	and	footer	information	is
functionally	the	same	except	for	its	position	in	the	message;	footer	fields	are	only	sometimes	used,
especially	in	cases	where	the	data	in	the	field	is	calculated	based	on	the	values	of	the	data	being
transmitted.

Generally	speaking,	any	particular	protocol	is	concerned	with	only	its	own
header	(and	footer,	if	present).	It	doesn't	care	much	about	what	is	in	the	data
portion	of	the	message,	just	as	a	delivery	person	worries	only	about	driving	the
truck	and	not	so	much	about	what	it	contains.	At	the	beginning	of	that	data	will
normally	be	the	headers	of	other	protocols	that	were	used	higher	up	in	the
protocol	stack;	this,	too,	is	shown	in	Figure	1-3.	In	the	OSI	Reference	Model,	a
message	handled	by	a	particular	protocol	is	said	to	be	its	PDU;	the	data	it	carries
in	its	payload	is	its	SDU.	The	SDU	of	a	lower-layer	protocol	is	usually	a	PDU	of
a	higher-layer	protocol.	The	discussion	of	data	encapsulation	in	Chapter	5



contains	a	full	explanation	of	this	important	concept.

Message	Addressing	and	Transmission
Methods:	Unicast,	Broadcast,	and	Multicast
In	a	networking	technology	that	uses	messages	to	send	data,	you	must	undertake
a	number	of	tasks	in	order	to	successfully	transmit	the	data	from	one	place	to
another.	One	is	simply	addressing	the	message—putting	an	address	on	it	so	that
the	system	knows	where	it	is	supposed	to	go.	Another	is	transmitting	the
message,	which	is	sending	it	to	its	intended	recipient.

There	are	several	different	ways	of	addressing	and	transmitting	a	message	over	a
network.	One	way	in	which	messages	are	differentiated	is	in	how	they	are
addressed	and	how	many	recipients	will	receive	them.	The	method	used	depends
on	the	function	of	the	message	and	also	on	whether	or	not	the	sender	knows
specifically	or	generally	whom	they	are	trying	to	contact.

To	help	explain	these	different	methods,	I	will	use	a	real-world	analogy.
Consider	a	social	function	with	300	people	that	is	being	held	in	a	large	hall.
These	people	are	mingling	and	having	different	conversations.	There	are
different	kinds	of	messages	that	you	may	need	to	send	in	this	setting,	as	is	the
case	with	networks.



Figure	1-4.	Unicast,	multicast,	and	broadcast	message	addressing	and	transmission	The	three	basic	types
of	addressing	and	message	delivery	in	networking	are	illustrated	in	this	simplified	LAN.	Device	6	is

sending	a	unicast	message	to	Device	2,	shown	as	the	dark,	heavy	arrow.	Device	4	is	sending	a	multicast
message	to	multicast	group	X,	shown	as	the	medium-weight	arrows.	In	this	case,	that	group	includes

Devices	1	and	3,	which	are	highlighted.	Finally,	Device	5	is	sending	a	broadcast	message,	which	goes	to
all	other	devices	on	the	LAN,	shown	as	the	thin,	faint	arrows.

Bearing	this	analogy	in	mind,	consider	these	three	kinds	of	message
transmissions,	which	are	illustrated	in	Figure	1-4:

Unicast	Messages	These	are	messages	that	are	sent	from	one	device	to	another
device;	they	are	not	intended	for	others.	If	you	have	a	friend	at	this	social	event,
this	is	the	equivalent	of	pulling	him	aside	for	a	private	conversation.	Of	course,
there	is	still	the	possibility	of	someone	else	at	the	event	overhearing	your
conversation—or	even	eavesdropping	on	it.	The	same	is	true	in	networking	as
well—addressing	a	message	to	a	particular	computer	doesn't	guarantee	that
others	won't	also	read	it;	it's	just	that	they	normally	will	not	do	so.

Broadcast	Messages	As	the	name	suggests,	these	messages	are	sent	to	every
device	on	a	network.	You	use	them	when	you	need	to	communicate	a	piece	of
information	to	everyone	on	the	network,	or	when	the	sending	station	needs	to
send	it	to	just	one	recipient,	but	doesn't	know	its	address.	For	example,	suppose	a



new	arrival	at	the	social	gathering	saw	in	the	parking	lot	a	blue	sedan	with	its
lights	left	on.	She	does	not	know	who	the	car	belongs	to.	The	best	way	to
communicate	this	information	is	to	broadcast	it	by	having	the	host	make	an
announcement	that	will	be	heard	by	all,	including	the	vehicle's	owner.	In
networks,	broadcast	messages	are	used	for	a	variety	of	purposes,	including
finding	the	locations	of	particular	stations	or	the	devices	that	manage	different
services.

Multicast	Messages	These	are	a	compromise	between	the	previous	two	types.
Multicast	messages	are	sent	to	a	group	of	stations	that	meet	a	particular	set	of
criteria.	These	stations	are	usually	related	to	each	other	in	some	way.	For
example,	they	serve	a	common	function	or	are	set	up	into	a	particular	multicast
group.	(Note	that	you	can	also	consider	broadcast	messages	to	be	a	special	case
of	multicast	in	which	the	group	is	"everyone.")

Back	to	our	analogy:	This	would	be	somewhat	like	a	group	of	friends	who	go	to
this	large	social	hall	and	then	stay	together	in	a	small	discussion	group—or
perhaps	use	radios	to	talk	to	each	other	from	a	distance.	Multicasting	requires
special	techniques	that	make	clear	who	is	in	the	intended	group	of	recipients.

Since	these	transmission	methods	differ	based	on	how	many	and	which	devices
receive	the	transmission,	they	are	tied	directly	to	the	methods	used	for
addressing,	as	follows:

Unicast	Addressing	Unicast	delivery	requires	that	a	message	should	be
addressed	to	a	specific	recipient.	This	is	the	most	common	type	of	messaging,	so
this	addressing	capability	is	present	in	almost	all	protocols.

Broadcast	Addressing	Broadcasts	are	normally	implemented	via	a	special
address	that	is	reserved	for	that	function.	Whenever	devices	see	a	message	sent
to	that	address,	they	all	interpret	it	as	"This	message	goes	to	everyone."

Multicast	Addressing	Multicasts	are	the	most	complex	type	of	message	because
they	require	a	means	of	identifying	a	set	of	specific	devices	that	will	receive	a
message.	It	is	often	necessary	to	create	several	such	groups,	which	may	or	may
not	partially	overlap	in	their	membership.	Some	mechanism	is	needed	to	manage
which	devices	are	in	which	groups.

TIP



KEY	CONCEPT	Three	basic	methods	are	used	to	address	and	transmit	data	between	networked
devices.	A	unicast	transmission	goes	from	one	device	to	exactly	one	other;	this	is	the	most	common
method	used	for	most	message	transactions.	A	broadcast	transmission	is	sent	from	one	device	to	all
connected	devices	on	a	network.	A	multicast	transmission	is	addressed	and	sent	to	a	select	group	of
devices.

Finally,	one	special	case	in	the	field	of	addressing	is	worth	mentioning.	In	some
networks	or	links,	only	two	devices	are	connected	together,	forming	what	is
often	called	a	point-to-point	network.	In	this	situation,	everything	sent	by	one
device	is	implicitly	intended	for	the	other,	and	vice	versa.	Thus,	no	addressing	of
messages	on	a	point-to-point	link	is	strictly	necessary.

NOTE

A	new	type	of	message-addressing	method	was	defined	as	part	of	IP	version	6	(IPv6):	the	anycast
message.	This	term	identifies	a	message	that	should	be	sent	to	the	closest	member	of	a	group	of	devices.
Chapter	25	describes	this	type	of	addressing	and	transmission.



Network	Structural	Models	and	Client-Server
and	Peer-to-Peer	Networking
I	mentioned	in	my	discussion	of	the	advantages	of	networking	that	networks	are
normally	set	up	for	two	primary	purposes:	connectivity	and	sharing.	If	you	have
a	network	with	a	number	of	different	machines	on	it,	each	computer	can	interact
with	another's	hardware	and	software,	which	enables	you	to	perform	a	variety	of
tasks.	How	this	is	actually	done	depends	to	a	large	degree	on	the	overall	design
of	the	network.

One	very	important	issue	in	network	design	is	how	to	configure	the	network	for
the	sharing	of	resources.	Specifically,	the	network	designer	must	decide	whether
or	not	to	dedicate	resource	management	functions	to	the	devices	that	constitute
it.	In	some	networks,	all	devices	are	treated	equally	in	this	regard,	while	in
others,	each	computer	is	responsible	for	a	particular	job	in	the	overall	function	of
providing	services.	In	this	latter	arrangement,	the	devices	are	sometimes	said	to
have	roles,	somewhat	like	actors	in	a	play.

The	following	two	common	terms	are	used	to	describe	these	different
approaches	to	setting	up	a	network:

Peer-to-Peer	Networking	In	a	strict	peer-to-peer	networking	setup,	every
computer	is	an	equal,	a	peer	in	the	network.	Each	machine	can	have	resources
that	are	shared	with	any	other	machine.	There	is	no	assigned	role	for	any
particular	device,	and	each	of	the	devices	usually	runs	similar	software.	Any
device	can	and	will	send	requests	to	any	other,	as	illustrated	in	Figure	1-5.

Client-Server	Networking	In	this	design,	a	small	number	of	computers	are
designated	as	centralized	servers	and	are	given	the	task	of	providing	services	to	a
larger	number	of	user	machines	called	clients,	as	shown	in	Figure	1-6.	The
servers	are	usually	powerful	computers	with	a	lot	of	memory	and	storage	space,
and	fast	network	connections.	The	clients	are	typically	smaller,	regular
computers	like	PCs;	they	are	optimized	for	human	use.

The	term	client-server	also	frequently	refers	to	protocols	and	software,	which	are
designed	with	matching,	complementary	components.	Usually,	server	software
runs	on	server	hardware,	and	client	software	is	used	on	client	computers	that



connect	to	those	servers.	Most	of	the	interaction	on	the	network	is	between	client
and	server,	not	between	clients.	Server	software	is	designed	to	efficiently
respond	to	requests,	while	client	software	provides	the	interface	to	the	human
users	of	the	network.

TIP

KEY	CONCEPT	Networks	are	usually	configured	to	share	resources	using	one	of	two	basic	structural
models.	In	a	peer-to-peer	network,	each	device	is	an	equal,	and	none	are	assigned	particular	jobs.	In	a
client-server	network,	however,	devices	are	assigned	particular	roles—a	small	number	of	powerful
computers	are	set	up	as	servers	and	respond	to	requests	from	the	other	devices,	which	are	clients.	Client-
server	computing	also	refers	to	the	interaction	between	complementary	protocol	elements	and	software
programs.	It's	rising	in	popularity	due	to	its	prevalence	in	TCP/IP	and	Internet	applications.

Figure	1-5.	Peer-to-peer	networking	In	this	model,	each	device	on	the	network	is	treated	as	a	peer,	or
equal.	Each	device	can	send	requests	and	responses,	and	none	are	specifically	designated	as	performing
a	particular	role.	This	model	is	more	often	used	in	very	small	networks.	Contrast	this	with	Figure	1-6.

The	choice	of	client-server	or	peer-to-peer	is	sometimes	called	choosing	a
structural	model	for	the	network.	As	with	most	situations	in	which	two	different
schemes	are	used,	there	is	no	right	answer	in	this	regard.	Your	choice	depends
entirely	on	the	needs	of	the	particular	network.



Peer-to-peer	networking	has	primary	advantages	of	simplicity	and	low	cost,
meaning	that	it	has	traditionally	been	used	on	small	networks.	Client-server
networking	provides	advantages	in	the	areas	of	performance,	scalability,
security,	and	reliability,	but	is	more	complicated	and	expensive	to	set	up.	This
makes	it	better	suited	to	larger	networks.	Over	time,	however,	there	has	been	a
steady	evolution	toward	client-server	networking,	even	on	smaller	networks.
Many	years	ago,	it	was	common	to	see	even	networks	with	20	to	50	machines
using	the	peer-to-peer	model;	today,	even	networks	with	only	a	half-dozen
machines	are	sometimes	set	up	in	a	client-server	mode	because	of	the	advantages
of	centralized	resource	serving.

The	rise	in	popularity	of	client-server	networking	is	ironic	because,	in	some
ways,	it	is	actually	a	throwback	to	the	days	of	large	mainframes	decades	ago.	A
mainframe	with	attached	terminals	can	be	thought	of	as	a	client-server	network,
with	the	mainframe	itself	being	the	server	and	the	terminals	being	clients.	This
analogy	is	not	perfect,	of	course,	because	modern	client	computers	do	a	lot	more
work	than	dumb	terminals	on	mainframes.

One	of	the	reasons	why	the	client-server	structural	model	is	becoming	dominant
is	that	it	is	the	primary	model	used	by	the	world's	largest	network:	the	Internet.
Client-server	architecture	is	the	basis	for	most	TCP/IP	protocols	and	services.
For	example,	the	term	web	browser	is	really	another	name	for	a	web	client,	and	a
website	is	really	a	web	server.

NOTE

For	more	information	on	client-server	computing,	I	recommend	that	you	read	the	section	"TCP/IP
Services	and	Client/Server	Operation"	in	Chapter	8.	That	topic	also	contains	a	very	relevant	exposition
on	the	different	meanings	of	the	terms	client	and	server	in	hardware,	software,	and	transactional
contexts.



Figure	1-6.	Client-server	networking	In	the	client-server	model,	a	small	number	of	devices	are
designated	as	servers	and	equipped	with	special	hardware	and	software	that	allows	them	to	interact

efficiently	and	simultaneously	with	multiple	client	machines.	Though	the	clients	can	still	interact	with
each	other,	most	of	the	time	they	send	requests	of	various	sorts	to	the	server,	and	the	server	sends	back

responses	to	them.	Contrast	this	with	the	peer-to-peer	networking	example	in	Figure	1-5.



Types	and	Sizes	of	Networks
One	of	the	reasons	that	understanding	networks	can	be	difficult	at	times	is	that
there	are	so	many	different	types!	When	someone	talks	about	a	network,	she	can
mean	anything	from	two	computers	hooked	together	in	an	apartment	to	a	globe-
spanning	entity	with	millions	of	nodes.	Every	network	is	unique,	and	each	one
has	an	important	role	to	play	in	filling	the	communication	and	data-sharing
needs	of	different	individuals	and	organizations.	In	fact,	the	great	diversity	and
flexibility	of	networking	is	one	of	its	most	important	strengths.

Two	of	the	most	basic	ways	that	you	can	distinguish	and	contrast	various
networks	are	the	relative	distances	between	the	devices	that	they	connect	and	the
general	mechanisms	used	to	communicate	between	them.	The	reason	for	making
these	distinctions	is	that	the	technological	needs	of	a	network	differ	greatly
depending	on	the	amount	of	ground	you	are	trying	to	cover,	and	also	by	the
overall	way	that	you	want	to	transmit	and	receive	information.

Many	people,	including	me,	like	to	divide	the	many	kinds	of	networks	in
existence	into	three	general	classes,	as	follows:

Local	Area	Networks	(LANs)	Networks	that	connect	computers	that	are
relatively	close	to	each	other—generally,	within	the	same	room	or	building.
When	most	people	think	about	networking	PCs	and	other	small	computers,	this
is	what	they	usually	have	in	mind.	The	vast	majority	of	regular	LANs	connect
using	cables,	so	the	term	LAN	by	itself	usually	implies	a	wired	LAN,	but	not
always.

Wireless	LANs	(WLANs)	LANs	that	connect	devices	without	wires,	using
radio	frequencies	or	light.	WLANs	can	be	entirely	wireless,	but	most	are	not.
They	usually	connect	wireless	devices	to	each	other	as	well	as	to	the	wired
portion	of	the	network.	Due	to	the	limits	of	most	wireless	technologies,	WLANs
usually	connect	devices	that	are	very	close	to	each	other,	generally	within	a	few
hundred	feet	at	most.

Wide	Area	Networks	(WANs)	Networks	that	connect	devices	or	other
networks	over	a	greater	distance	than	that	which	is	practical	for	LANs.	If	the
distance	between	devices	can	be	measured	in	miles,	you	will	generally	use	WAN



and	not	LAN	technology	to	link	them.

More	often	than	not,	WANs	are	used	to	link	physically	distant	LANs.	For
example,	a	company	with	locations	in	two	different	cities	would	normally	set	up
a	LAN	in	each	building	and	then	connect	them	together	in	a	WAN.	I	also
consider	most	Internet	access	technologies	to	be	a	form	of	WAN,	though	some
might	not	agree	with	that.	There	is	also	the	term	wireless	WAN	(WWAN),
which	just	refers	to	a	WAN	that	uses	wireless	technology.

As	with	most	other	distinctions	and	categorizations	in	the	world	of	networking,
the	lines	between	these	various	definitions	are	not	very	concrete.	As	I	mentioned
already,	WLANs	are	usually	not	entirely	wireless	because	they	contained	wired
elements.	Similarly,	trying	to	say	absolutely	when	a	network	is	"local"	and	when
it	is	"wide"	is	difficult.

It's	also	somewhat	pointless	to	spend	too	much	energy	on	differentiating	these
network	classes	precisely.	In	some	cases	it's	not	the	definitions	that	decide	what
technology	to	use,	but	rather	the	technology	that	indicates	what	kind	of	network
you	have!	Since	some	protocols	are	designed	for	WANs,	if	you	are	using	them,
many	would	say	you	have	a	WAN,	even	if	all	the	devices	in	that	technology	are
near	each	other.	On	the	other	hand,	some	LAN	technologies	allow	for	the	use	of
cables	that	can	run	for	many	miles;	most	would	still	consider	a	mile-long
Ethernet	fiber	link	to	be	a	LAN	connection,	even	though	it	may	span	WAN
distances.

There	are	many	dimensions	in	which	LAN	and	WAN	technologies	differ;	two	of
the	most	important	are	cost	and	performance.	It's	easy	to	establish	a	high-speed
conduit	for	data	between	two	systems	that	are	in	the	same	room,	but	it's	much
more	difficult	if	the	two	are	in	different	states.	This	means	that	in	the	world	of
WAN,	one	either	pays	a	lot	more	or	gets	a	lot	less	throughput—often	it's	both.

The	gray	area	between	LAN	and	WAN	is	becoming	more	muddled	every	year.
One	reason	is	the	emergence	of	intermediate	network	types	that	straddle	the	line
between	these	more	familiar	terms.	Two	of	the	more	common	ones	are	as
follows:

Campus	Area	Networks	(CANs)	A	CAN	is	one	created	to	span	multiple
buildings	in	the	same	location,	such	as	the	campus	of	a	university.	Campus	area



networking	is	a	gray	area,	since	neither	LANs	nor	WANs	alone	are	always	well
suited	for	this	type	of	application.	Often,	a	mix	of	LAN	and	WAN	techniques	is
used	for	campus	networking,	depending	on	the	characteristics	of	the	campus	and
the	needs	of	the	organization.

Metropolitan	Area	Networks	(MANs)	Another	intermediate	term	that	you	may
see	sometimes	is	the	MAN.	As	the	name	implies,	this	refers	to	a	network	that
spans	a	particular	small	region	or	a	city.	MANs	can	be	considered	small	WANs
that	cover	a	limited	geographical	area,	or	large	LANs	that	cover	an	area	greater
than	what	is	normally	associated	with	a	local	network.	Wireless	MANs	are
sometimes	called	WMANs;	IEEE	802.16	is	an	example	of	a	WMAN	standard.

Finally,	there	is	one	other	term	occasionally	used	that	I	should	mention:	the
personal	area	network	(PAN).	This	type	of	network	generally	means	a	very	small
LAN	with	a	range	of	only	a	few	feet.	PANs	mostly	connect	devices	used	by	a
single	person	(or	very	small	group).	The	term	is	most	commonly	used	in
reference	to	Bluetooth/IEEE	802.15	wireless	technology,	so	you	will	sometimes
see	the	terms	wireless	PAN	(WPAN)	and	PAN	used	interchangeably.

TIP

KEY	CONCEPT	Networks	are	often	divided	by	size	and	general	communication	method	into	three
classes.	Local	area	networks	(LANs)	generally	connect	proximate	devices,	usually	using	cables.
Wireless	LANs	(WLANs)	are	like	cabled	LANs	but	use	radio	frequency	or	light	technology	to	connect
devices	without	wires.	Wide	area	networks	(WANs)	connect	distant	devices	or	LANs	to	each	other.
Campus	area	networks	(CANs)	and	metropolitan	area	networks	(MANs)	fall	between	LANs	and	WANs
in	terms	of	overall	size.	Personal	area	networks	(PANs)	are	like	very	small	LANs	and	often	appear	as
wireless	PANs	(WPANs).



Segments,	Networks,	Subnetworks,	and
Internetworks
One	of	the	reasons	that	networks	are	so	powerful	is	that	they	can	be	used	to
connect	not	only	individual	computers,	but	also	groups	of	computers.	Thus,
network	connections	can	exist	at	multiple	levels;	one	network	can	be	attached	to
another	network,	and	that	entire	network	can	be	attached	to	another	set	of
networks,	and	so	on.	The	ultimate	example	of	this	is,	of	course,	the	Internet,
which	is	a	huge	collection	of	networks	that	have	been	interconnected	into…dare
I	say,	a	web?

This	means	that	a	larger	network	can	be	described	as	consisting	of	several
smaller	networks	or	even	parts	of	networks	that	are	linked	together.	Conversely,
we	can	talk	about	taking	individual	networks	or	network	portions	and
assembling	them	into	larger	structures.	The	reason	why	this	concept	is	important
is	that	certain	technologies	are	best	explained	when	looking	at	an	entire	large
network	at	a	high	level,	while	others	really	require	that	you	drill	down	to	the
detailed	level	of	how	constituent	network	pieces	work.

Over	time,	a	collection	of	terms	has	evolved	in	the	networking	world	to	describe
the	relative	sizes	of	larger	and	smaller	networks.	Some	of	the	most	common	ones
are	as	follows:

Network	This	is	the	least	specific	of	the	terms	mentioned	here.	Basically,	a
network	can	be	pretty	much	any	size,	from	two	devices	to	thousands.	When
networks	get	very	large,	however,	and	are	clearly	comprised	of	smaller	networks
connected	together,	they	are	often	no	longer	called	networks	but	internetworks,
as	you	will	see	momentarily.	Despite	this,	it	is	fairly	common	to	hear	someone
refer	to	something	like	"Microsoft's	corporate	network,"	which	obviously
contains	thousands	or	even	tens	of	thousands	of	machines.

Subnetwork	(Subnet)	A	subnetwork	is	a	portion	of	a	network,	or	a	network	that
is	part	of	a	larger	internetwork.	This	term	is	also	a	rather	subjective	one;
subnetworks	can	be	rather	large	when	they	are	part	of	a	network	that	is	very
large.

The	abbreviated	term	subnet	can	refer	generically	to	a	subnetwork,	but	also	has	a



specific	meaning	in	the	context	of	TCP/IP	addressing	(see	Chapter	18).

Segment	(Network	Segment)	A	segment	is	a	small	section	of	a	network.	In
some	contexts,	a	segment	is	the	same	as	a	subnetwork	and	the	terms	are	used
interchangeably.	More	often,	however,	the	term	segment	implies	something
smaller	than	a	subnetwork.	Networks	are	often	designed	so	that,	for	the	sake	of
efficiency,	computers	that	are	related	to	each	other	or	that	are	used	by	the	same
groups	of	people	are	put	on	the	same	network	segment.

Some	LAN	technologies—including	Ethernet—use	the	term	segment	to	refer
specifically	to	a	collection	of	geographically	proximate	machines	that	are
connected	directly	to	each	other,	either	by	a	single	cable	or	single	device	such	as
a	hub.	Such	technologies	have	specific	rules	about	how	many	devices	can	be	on
a	segment,	how	many	segments	can	be	connected	together,	and	so	on,	depending
on	what	sort	of	network	interconnection	devices	you	are	using.

Internetwork	(or	Internet)	Most	often,	this	refers	to	a	larger	networking
structure	that	is	formed	by	connecting	smaller	ones.	Again,	the	term	can	have
either	a	generic	or	a	specific	meaning,	depending	on	context.	In	some
technologies,	an	internetwork	is	just	a	very	large	network	that	has	networks	as
components.	In	others,	a	network	is	differentiated	from	an	internetwork	based	on
how	the	devices	are	connected	together.

An	important	example	of	the	latter	definition	is	TCP/IP,	in	which	a	network
usually	refers	to	a	collection	of	machines	that	are	linked	at	layer	2	of	the	OSI
Reference	Model,	using	technologies	like	Ethernet	or	Token	Ring,	as	well	as
interconnection	devices	such	as	hubs	and	switches.	An	internetwork	is	formed
when	these	networks	are	linked	together	at	layer	3,	using	routers	that	pass	IP
datagrams	between	networks.	Naturally,	this	is	highly	simplified,	but	in	studying
TCP/IP,	you	should	keep	this	in	mind	when	you	encounter	the	terms	network
and	internetwork.

NOTE

The	shorter	form	of	the	word	internetwork	(internet)	is	often	avoided	by	people	who	wish	to	avoid
confusion	with	the	proper	noun	form	(Internet).	The	latter,	of	course,	refers	only	to	the	well-known
global	internetwork	of	computers	and	all	the	services	it	provides.	I	personally	try	to	use	the	word
internetwork	most	of	the	time	in	this	book	instead	of	internet,	for	this	very	reason.

Understanding	these	different	terms	is	important	not	only	for	helping	you



Understanding	these	different	terms	is	important	not	only	for	helping	you
comprehend	what	you	read	about	networks,	but	also	because	they	are	important
concepts	in	network	design.	This	is	particularly	true	for	LANs	in	which
decisions	regarding	how	to	set	up	segments	and	how	to	connect	them	to	each
other	have	an	important	impact	on	the	overall	performance	and	usability	of	the
network.

TIP

KEY	CONCEPT	Several	terms	are	often	used	to	describe	the	relative	sizes	of	networks	and	parts	of
networks.	The	most	basic	term	is	network	itself,	which	can	refer	to	most	anything,	but	often	means	a	set
of	devices	connected	using	an	OSI	layer	2	technology.	A	subnetwork	is	a	part	of	a	network	(or
internetwork),	as	is	a	segment,	though	the	latter	often	has	a	more	specific	meaning	in	certain
technologies.	An	internetwork	refers	either	generically	to	a	very	large	network,	or	specifically,	to	a	set	of
layer	2	networks	connected	using	routers	at	layer	3.

The	term	segment	is	notably	problematic	because	it	is	routinely	used	in	two
different	ways,	especially	in	discussions	related	to	Ethernet.	Traditionally,	a
segment	referred	to	a	specific	cable.	The	earliest	forms	of	Ethernet	used	coaxial
cables,	and	the	coaxial	cable	segment	was	shared	and	became	the	collision
domain	for	the	network.	Collision	domain	is	a	term	that	refers	generally	to	a
collection	of	hardware	devices	in	which	only	one	can	transmit	at	a	time.	Devices
such	as	hubs	and	repeaters	were	used	to	extend	collision	domains	by	connecting
together	these	segments	of	cable	into	wider	networks.	Over	time,	the	terms
collision	domain	and	segment	started	to	be	used	interchangeably.	Thus	today	a
segment	can	refer	either	to	a	specific	piece	of	cable	or	to	a	collection	of	cables
connected	electrically	that	represent	a	single	collision	domain.

NOTE

As	if	that	potential	ambiguity	in	the	use	of	the	word	segment	isn't	bad	enough,	it	also	has	another,	totally
unrelated	meaning:	It	is	the	name	of	the	messages	sent	in	TCP!



The	Internet,	Intranets,	and	Extranets
I	mentioned	in	the	preceding	discussion	of	segments,	networks,	subnetworks,
and	internetworks	that	the	Internet	is	really	the	king	of	internetworks.	After	all,
you	don't	get	to	be	called	"the"	something	unless	you	pretty	much	define	it!

In	fact,	the	Internet	is	not	just	a	large	internetwork,	but	substantially	more.	The
Internet	is	defined	not	just	as	the	computers	that	are	connected	to	each	other
around	the	world,	but	as	the	set	of	services	and	features	that	it	offers.	More	than
that,	the	Internet	defines	a	specific	way	of	doing	things,	of	sharing	information
and	resources	between	people	and	companies.	And	though	it	might	be	a	bit
melodramatic	to	say	so,	to	many	people,	the	Internet	is	a	way	of	life.

As	Internet	use	exploded	in	the	1990s,	many	people	realized	that	the	techniques
and	technologies	used	on	the	Internet	would	be	useful	if	applied	to	internal
company	networks	as	well.	The	term	intranet	was	coined	to	refer	to	an	internal
network	that	functioned	like	a	private	Internet.	It	comes	from	the	prefix	intra,
which	means	within.	Of	course,	inter	is	the	opposite	of	intra,	so	this	makes	some
people	think	that	an	intranet	is	the	opposite	of	an	internet.	In	fact,	most	intranets
are	internetworks	as	well!

As	if	that	weren't	bad	enough	from	a	jargon	standpoint,	the	buzzword	buzzards
then	decided	to	take	matters	a	step	further.	If	an	intranet	is	extended	to	allow
access	to	it	not	only	by	people	or	groups	strictly	from	within	the	organization,
but	also	by	people	or	groups	outside	the	main	company,	this	is	sometimes	called
an	extranet.	Extra,	of	course,	is	a	prefix	that	means	outside,	or	beyond.

So,	an	extranet	is	a	type	of	internal,	private	Internet	that,	well,	isn't	entirely
internal.	An	extranet	is	an	extended	intranet,	which	is	really	a	type	of	internet
that	works	like	the	Internet.	(You	can	start	to	see	why	I	am	not	a	big	fan	of	these
fancy	terms.	But	then,	I	don't	get	to	choose	them;	I	just	have	to	help	you
understand	them!)	An	extranet	isn't	public	and	open	to	all—it	is	controlled	by	a
private	organization.	At	the	same	time,	it	isn't	entirely	private	either.

TIP

KEY	CONCEPT	The	generic	noun	internet	is	a	short	form	for	the	word	internetwork,	while	the	proper
noun	Internet	refers	to	the	global	internetwork	of	TCP/IP	networks	that	we	all	know	and	use.	The	term



intranet	refers	to	an	internal	network	that	uses	TCP/IP	technologies	as	the	Internet	does.	An	extranet	is
like	an	intranet	that	is	extended	to	individuals	or	organizations	outside	the	company.	All	these	terms	can
be	used	ambiguously,	so	you	must	take	care	to	determine	exactly	what	they	mean	in	any	given	context.

As	you	can	see,	the	lines	between	the	Internet,	intranets,	and	extranets	were
pretty	blurry	from	the	start,	and	the	concepts	are	rapidly	blending	into	a	diffuse
gray	mass	as	the	whole	computing	world	becomes	more	tightly	integrated.	For
example,	even	if	you	have	an	entirely	private	intranet,	you	will	want	to	connect
it	to	the	Internet	to	communicate	with	the	outside	world	and	to	allow	access	to
Internet	resources.	And	an	extranet	may	be	implemented,	in	part,	through	the
public	Internet	infrastructure,	using	technologies	such	as	virtual	private
networking	(VPN).	I	think	you	get	the	picture.

The	key	that	binds	all	of	these	concepts	together	is	that	they	all	use	Internet
technologies,	which	is	a	term	that	is	also	somewhat	vague.	This	usually	refers	to
the	use	of	the	TCP/IP	protocol	suite,	which	is	the	defining	technology	of	the
Internet	as	well	as	the	set	of	services	that	are	available	on	the	Internet.

The	bottom	line	is	that	being	told	that	a	company	has	an	intranet	or	an	extranet—
as	opposed	to	a	plain	old	boring	network—doesn't	tell	you	much	at	all.	It	is	best
not	to	rely	on	the	slogans	and	instead	look	at	the	underlying	characteristics	of	the
network	or	internetwork	itself.	Furthermore,	when	designing	such	a	network,
you	should	focus	on	using	the	technologies	and	protocols	that	make	sense—let
the	marketing	people	decide	what	to	call	it	later.



Chapter	2.	NETWORK
PERFORMANCE	ISSUES	AND
CONCEPTS

Networking	is	largely	about	connecting	together	devices	so	that	information	can
be	shared	between	them.	Since	the	idea	is	to	send	data	from	one	place	to	another,
a	very	important	characteristic	of	any	network	is	its	speed:	How	fast	can	data	be
transmitted	and	received?	This	matter	of	speed	turns	out	to	be	only	one	of
several	issues	that	determine	the	overall	performance	of	a	network.

In	the	computing	world,	performance	is,	in	general,	one	of	the	most	discussed
but	least	understood	characteristics	of	any	system	or	hardware	device.	This	is
true	of	networking	as	well.	For	example,	most	people	know	the	raw	throughput
rating	of	their	network	hardware,	and	they	may	even	start	to	draw	conclusions
about	its	capabilities	based	on	those	numbers.	Many,	however,	don't	realize	that
they	will	never	actually	achieve	that	rated	amount	of	performance	in	the	real
world.

Most	of	the	other	subtle	issues	related	to	performance	are	also	typically	ignored
or	misunderstood,	such	as	the	impact	of	software	drivers	on	hardware
performance,	and	the	fact	that	certain	applications	need	more	than	just	raw	bit
speed—they	need	reliable	delivery	of	data.	But	even	beyond	all	of	this,	one	of
the	most	important	issues	related	to	network	performance	is	understanding	what
your	needs	are,	because	then	you	can	make	sure	you	don't	spend	too	much
money	for	performance	you	don't	need—or	worse,	create	a	network	that	can't
meet	your	requirements.

In	this	chapter,	I	discuss	various	performance	issues	and	concepts	that	are	related
to	networking	in	one	way	or	another.	First	and	foremost,	I	try	to	put	performance
in	context	and	also	contrast	it	with	nonperformance	issues.	Then	I	talk	about



in	context	and	also	contrast	it	with	nonperformance	issues.	Then	I	talk	about
several	key	performance	terms	and	metrics:	speed,	bandwidth,	throughput,	and
latency.	I	also	discuss	some	of	the	units	used	to	measure	network	performance.	I
then	explain	how	the	real-world	performance	of	a	network	differs	from	its
theoretical	performance	and	talk	about	factors	that	have	an	impact	on	network
performance.	I	conclude	by	contrasting	full-duplex	and	half-duplex	network
operation,	and	talking	about	quality	of	service,	which	is	a	concept	that	is
especially	important	in	the	use	of	networks	for	real-time	applications	such	as
streaming	multimedia.

Putting	Network	Performance	in	Perspective
Performance	is	probably	the	mother	of	all	buzzwords	in	the	computer	industry.
There	are	many	people	who	consider	it	the	ultimate	goal	of	any	computer	or
computer	system,	and	by	extension,	any	network.	A	lot	of	people	spend	many
dollars	and	hours	of	time	trying	to	maximize	it.	There's	good	reason	for	this:
Performance	is	very	important.	A	network	that	does	not	offer	adequate
performance	simply	will	not	get	the	job	done	for	those	that	rely	on	it.	However,
it	is	very	important	to	keep	performance	in	perspective.	Successfully	maximizing
performance	requires	that	you	first	take	a	step	back	and	look	at	the	big	picture.

The	first	question	you	must	ask	yourself	is	also	the	most	essential	one:	How
important	is	performance	to	you?	Before	you	answer	this	question,	recall	the	old
auto	racing	adage:	"Speed	costs	money—how	fast	do	you	want	to	go?"	While
there	are	some	situations	in	which	you	can	get	much	better	performance	in	a
network	by	spending	just	a	little	more	money,	in	general,	you	don't	get	more
performance	without	paying	for	it	in	some	way.	That	may	mean	a	higher	cost	for
the	network,	or	it	may	mean	a	trade-off	of	some	nonperformance	feature.

If	you	are	designing	or	specifying	a	network,	it's	very	important	to	keep	in	mind
that	your	goal	is	to	come	up	with	a	system	that	will	meet	the	needs	that	were
determined	for	it	during	requirements	analysis.	This	means	coming	up	with	a
network	that	has	a	level	of	performance	that	matches	the	requirements	and
leaves	some	room	for	expansion.	Unless	you	have	an	unlimited	budget—and
who	does,	right?—your	objective	is	not	"performance	at	any	cost."	It	is	to	create
a	network	that	meets	all	of	your	users'	needs,	including	balancing	performance



and	nonperformance	characteristics,	as	you	will	see	shortly.

NOTE

Buyer	beware.	Companies	are	constantly	coming	out	with	the	"latest	and	greatest"	high-performance
networking	technologies.	They	usually	try	to	sell	their	technologies	by	attempting	to	convince	you	that
you	just	cannot	live	without	this	latest	advance;	that	you	"need"	to	upgrade—immediately,	if	not	sooner!
Well,	it's	simply	not	the	case.	For	example,	even	though	you	can	find	Ethernet	hardware	that	runs	with	a
theoretical	throughput	of	10,000	megabits	per	second,	there	are	many	older	networks	that	continue	to
work	just	fine	at	one	1/100th	that	speed—or	even	1/1,000th!

Finally,	remember	that	designing	a	network	is	usually	not	an	irreversible,
permanent	decision.	Networks	can	be	upgraded	and	expanded.	While	it	is
prudent	to	build	some	slack	into	any	network	to	allow	for	growth,	it	is	not	wise
to	spend	too	much	time	and	money	planning	for	the	future	when	changes	can	be
made	later.	This	is	especially	true	given	that	network	hardware	prices	drop	over
time.	Again,	this	is	a	matter	of	drawing	an	appropriate	balance	between	future
performance	planning	and	budget.



Balancing	Network	Performance	with	Key
Nonperformance	Characteristics
We	all	know	that	performance	is	very	important	to	any	network.	However,
anyone	putting	together	a	network	must	also	be	concerned	with	many	different
nonperformance	characteristics	as	well.	Depending	on	the	network,	these	can	be
just	as	essential	to	the	users	of	the	network	as	performance,	and	possibly	even
more	critical.	More	than	this,	nonperformance	issues	often	trade	off	against
performance,	and	in	fact,	more	often	than	not	they	have	to	be	reduced	to	get
performance	to	increase.

Before	you	can	create	a	very	high-performance	network,	you	must	understand
the	key	nonperformance	network	characteristics	that	you	may	need	to
compromise.	The	following	are	a	few	of	these	issues:

Design	and	Implementation	Cost	Unless	you	have	bottomless	pockets,	you
must	be	concerned	with	the	network's	costs.	As	mentioned	earlier,	cost	is	the
main	trade-off	with	performance.	Going	faster	usually	costs	more	money.

Quality	The	quality	of	the	network	is	a	function	of	the	quality	of	the
components	used	and	how	they	are	installed.	Quality	is	important	because	it
impacts	all	of	the	other	factors,	such	as	reliability	and	ease	of	administration,	as
well	as	performance.	Quality	doesn't	trade	off	directly	with	performance—you
can	design	high-quality,	high-performance	networks—but	it	does	compete	with
performance	for	resources	in	the	budget.	All	else	being	equal,	it	costs	a	great
deal	more	to	implement	a	high-quality,	high-performance	network	than	a	high-
quality,	low-speed	one.

Standardization	Network	protocols	and	hardware	can	be	designed	to	meet
either	universally	accepted	standards	or	nonstandard,	proprietary	ones.	Standard
designs	are	almost	always	preferable,	because	they	make	interoperability,
upgrading,	support,	and	training	easier.	Proprietary	standards	may	include
enhancements	that	improve	performance,	but	may	increase	cost	or	make
management	more	difficult.

Reliability	This	is	related	to	several	other	issues,	especially	quality	and
performance.	Faster	networks	aren't	necessarily	less	reliable,	but	they	are	more



difficult	and	expensive	to	make	run	reliably	than	slower	ones.

Expandability	and	Upgradability	It's	very	important	to	always	plan	for	the
future	when	creating	a	network.	Higher-performance	networks	can	be	more
difficult	to	expand,	and	they	are	certainly	more	expensive	to	expand.	Once	again,
the	matter	of	implementing	a	network	with	a	capacity	for	future	needs	now,	as
opposed	to	upgrading	later	if	it	becomes	necessary,	is	an	important	network
design	decision.

Ease	of	Administration	and	Maintenance	Higher-performance	networks
require	more	work	and	resources	to	administer	and	maintain,	and	they	are	more
likely	to	require	troubleshooting	than	slower	ones.

Premises	and	Utility	Issues	Implementation	of	high-speed	networks	may	be
limited	by	the	physical	premises	or	may	have	an	impact	on	how	they	are	laid	out.
Choosing	a	higher-speed	option	may	require	more	infrastructure	to	be	put	in
place,	thus	increasing	cost.	The	classic	example	of	this	is	choosing	between
wired	and	wireless	options	for	a	home	or	small	office	network.	You	can	go	much
faster	with	wires,	but	do	you	really	want	to	run	them?

TIP

KEY	CONCEPT	While	performance	is	one	of	the	most	important	characteristics	of	any	network,	there
are	others	that	are	equally	important.	In	many	cases,	you	must	weigh	the	cost,	quality,	reliability,
expandability,	maintainability,	and	other	attributes	of	a	network	against	overall	performance.	The	faster
you	want	your	network	to	go,	the	more	difficult	it	is	to	ensure	that	these	other	attributes	are	kept	at
sufficiently	high	levels.



Performance	Measurements:	Speed,	Bandwidth,
Throughput,	and	Latency
A	number	of	terms	are	commonly	used	to	refer	to	various	aspects	of	network
performance.	Some	of	them	are	quite	similar	to	each	other,	and	you	will	often
see	them	used—and	in	many	cases,	misused	or	even	abused!	I'll	examine	each	of
them	to	see	how	they	are	commonly	used	and	what	they	really	mean.

NOTE

More	than	just	the	issue	of	different	terms	related	to	performance,	however,	is	the	more	important	reality
that	there	are	multiple	facets	to	performance.	Depending	on	the	application,	the	manner	in	which	data	is
sent	across	the	network	may	be	more	important	than	the	raw	speed	at	which	it	is	transported.	In
particular,	many	multimedia	applications	require	real-time	performance;	they	need	data	sent	in	such	a
manner	that	it	will	be	delivered	steadily.	For	these	purposes,	raw	speed	isn't	as	important	as	consistent
speed.	This	is	an	issue	that	is	often	not	properly	recognized.

Speed
Speed	is	the	most	generic	performance	term	used	in	networking.	As	such,	it	can
mean	just	about	anything.	Most	commonly,	however,	it	refers	to	the	rated	or
nominal	speed	of	a	particular	networking	technology.	For	example,	Fast	Ethernet
has	a	nominal	speed	of	100	Mbps	(megabits	per	second);	for	that	reason,	it	is
often	called	100	Mbps	Ethernet,	or	given	a	designation	such	as	100BASE-TX.

Rated	speed	is	the	biggest	performance	magic	number	in	networking—you	see	it
used	to	label	hardware	devices,	and	many	people	bandy	the	numbers	about	as	if
those	numbers	actually	represented	the	network's	real	speed.	The	problem	with
using	nominal	speed	ratings	is	that	they	are	only	theoretical,	and	as	such,	tell	an
incomplete	story.	No	networking	technology	can	run	at	its	full-rated	speed,	and
many	run	substantially	below	it,	due	to	real-world	performance	factors.

Speed	ratings	such	as	100	Mbps	Ethernet	are	also	often	referred	to	as	the
throughput	of	a	technology,	even	though	the	maximum	theoretical	speed	of	a
technology	is	more	analogous	to	bandwidth	than	throughput,	and	the	two	are	not
identical.

Bandwidth



Bandwidth	is	a	widely	used	term	that	usually	refers	to	the	data-carrying	capacity
of	a	network	or	data-transmission	medium.	It	indicates	the	maximum	amount	of
data	that	can	pass	from	one	point	to	another	in	a	unit	of	time.	The	term	comes
from	the	study	of	electromagnetic	radiation,	where	it	refers	to	the	width	of	a
band	of	frequencies	used	to	carry	data.	It	is	usually	given	in	a	theoretical	context,
though	not	always.

Bandwidth	is	still	used	in	these	two	senses:	frequency	bandwidth	and	data
capacity.	For	example,	radio	frequencies	are	used	for	wireless	technologies,	and
the	bandwidth	of	such	technologies	can	refer	to	how	wide	the	radio	frequency
band	is.	More	commonly,	though,	bandwidth	refers	to	how	much	data	can	be
sent	down	a	network,	and	it	is	often	used	in	relative	terms.	For	example,	for
Internet	access,	a	cable	or	xDSL	connection	is	considered	high-bandwidth
access;	using	a	regular	analog	modem	is	low-bandwidth	access.

Throughput
Throughput	is	a	measure	of	how	much	actual	data	can	be	sent	per	unit	of	time
across	a	network,	channel,	or	interface.	While	throughput	can	be	a	theoretical
term	like	bandwidth,	it	is	more	often	used	in	a	practical	sense—for	example,	to
measure	the	amount	of	data	actually	sent	across	a	network	in	the	real	world.
Throughput	is	limited	by	bandwidth,	or	by	rated	speed:	If	an	Ethernet	network	is
rated	at	100	Mbps,	that's	the	absolute	upper	limit	on	throughput,	even	though
you	will	normally	get	quite	a	bit	less.	So,	you	may	see	someone	say	that	they	are
using	a	100	Mbps	Ethernet	connection	but	getting	throughput	of,	say,	71.9	Mbps
on	their	network.

The	terms	bandwidth	and	throughput	are	often	used	interchangeably,	even
though	they	are	really	not	exactly	the	same.

Latency
Latency	is	a	very	important,	often	overlooked	term,	which	refers	to	the	timing	of
data	transfers	on	a	communications	channel	or	network.	One	important	aspect	of
latency	is	how	long	it	takes	from	the	time	a	request	for	data	is	made	until	it	starts
to	arrive.	Another	aspect	is	how	much	control	a	device	has	over	the	timing	of	the
data	that	is	sent,	and	whether	the	network	can	be	arranged	to	allow	for	the



consistent	delivery	of	data	over	a	period	of	time.	Low	latency	is	considered
better	than	high	latency.

Summary	of	Performance	Measurements
As	with	all	networking	terms,	there	are	no	hard-and-fast	rules;	many	people	are
rather	loose	with	their	use	of	terms	relating	to	performance	measurement.	You
will	even	see	terms	such	as	throughput	bandwidth,	bandwidth	throughput,	and
other	charming	inventions	from	the	department	of	redundancy	department.	More
often,	you	will	just	see	a	lot	of	mishmashed	term	usage,	and	especially,	spurious
conclusions	being	drawn	about	what	data	streams	a	network	can	handle	based	on
its	rated	speed.	Making	matters	worse	is	that	speed	ratings	are	usually	specified
in	bits	per	second,	but	throughput	may	be	given	in	bits	or	bytes	per	second.

TIP

KEY	CONCEPT	The	three	terms	used	most	often	to	refer	to	the	overall	performance	of	a	network	are
speed,	bandwidth,	and	throughput.	These	are	related	and	often	used	interchangeably,	but	are	not
identical.	The	term	speed	is	the	most	generic	and	often	refers	to	the	rated	or	nominal	speed	of	a
networking	technology.	Bandwidth	can	mean	either	the	width	of	a	frequency	band	used	by	a	technology
or	more	generally,	data	capacity,	where	it's	used	as	more	of	a	theoretical	measure.	Throughput	is	a
specific	measure	of	how	much	data	flows	over	a	channel	in	a	given	period	of	time.	It	is	usually	a
practical	measurement.

In	general,	speed,	bandwidth,	and	throughput	get	a	lot	of	attention,	while	latency
gets	little.	Yet	latency	considerations	are	very	important	for	many	real-time
applications	such	as	streaming	audio	and	video	and	interactive	gaming.	In	fact,
they	are	often	more	important	than	raw	bandwidth.

For	example,	suppose	you	move	to	a	rural	home,	and	your	choices	for	Internet
access	are	a	regular	28.8	Kbps	modem	connection	or	fancy	satellite	Internet.	The
companies	selling	satellite	connectivity	call	it	"broadband"	and	advertise	very
high	rated	speeds—400	Kbps	or	more.	They	make	a	big	deal	about	it	being	"over
ten	times	as	fast	as	dial-up,"	and	they	certainly	charge	a	lot	for	this	very	high-
tech	service.	This	is	a	slam	dunk,	right?

Wrong.	The	satellite	connection	has	high	bandwidth,	but	very	poor	(high)
latency	due	to	the	time	it	takes	for	the	signals	to	travel	to	and	from	the	satellite.
It	is	definitely	much	better	than	the	modem	for	downloading	that	nice	little	150



MB	patch	from	Microsoft.	However,	it	is	much	worse	than	the	modem	for
playing	the	latest	online	video	game	with	your	buddy	over	the	Internet,	because
of	the	latency,	or	lag,	in	transmissions.	Every	move	you	make	in	your	game	will
be	delayed	for	over	half	a	second	as	the	signal	bounces	around	between	the
satellite	and	the	earth,	making	online	gaming	nearly	impossible.	Thus,	whether
satellite	Internet	is	worth	the	extra	money	depends	entirely	on	what	you	plan	to
use	it	for.

NOTE

An	important	issue	closely	related	to	latency	is	quality	of	service,	a	general	term	that	refers	(among	other
things)	to	the	ability	of	networks	to	deliver	necessary	bandwidth	and	reliable	data	transfer	for
applications	that	need	it.	See	the	section	"Quality	of	Service	(QoS)"	later	in	the	chapter.

TIP

KEY	CONCEPT	Where	bandwidth	and	throughput	indicate	how	fast	data	moves	across	a	network,
latency	describes	the	nature	of	how	it	is	conveyed.	It	is	most	often	used	to	describe	the	delay	between	the
time	that	data	is	requested	and	the	time	when	it	arrives.	A	networking	technology	with	very	high
throughput	and	bad	(high)	latency	can	be	worse	for	some	applications	than	one	with	relatively	low
throughput	but	good	(low)	latency.



Understanding	Performance	Measurement	Units
People	who	make	networking	hardware,	or	write	materials	that	try	to	tell	you
how	to	operate	it,	use	many	terms	to	describe	performance,	such	as	throughput
and	bandwidth.	(These	terms	are	explained	in	the	previous	section.)	In	addition,
they	also	use	several	different	units	to	measure	performance.	Unfortunately,
these	units	are	often	used	incorrectly,	and	they	are	also	very	similar	to	each	other
in	name.	Worse,	they	also	have	overlapping	abbreviations,	and	lots	of	people	use
these	abbreviations	without	making	clear	what	the	heck	they	are	talking	about.
Isn't	that	great?

Bits	and	Bytes
The	first	issue	is	the	infamous	letter	B.	Or	rather,	I	should	say,	the	matter	of	the
big	B	and	the	little	b.	By	popular	convention,	the	capitalized	B	is	supposed	to	be
used	for	byte,	and	the	lowercase	b	for	bit—this	is	the	way	these	abbreviations	are
always	used	in	this	book.

NOTE

A	byte	is	normally	eight	bits;	sometimes	the	term	octet	is	used	instead.	If	you	aren't	familiar	with	these
terms,	refer	to	Chapter	4	for	a	primer	on	binary	basics,	where	you	will	also	find	a	discussion	of	the	small
controversy	related	to	bytes	and	octets.

Unfortunately,	this	convention	is	not	followed	strictly	by	everyone.	As	a	result,
you	may	on	occasion	see	b	being	used	to	refer	to	bytes,	and	B	used	for	bits.	This
b	and	B	business	causes	a	tremendous	amount	of	confusion	sometimes,	with
people	mistaking	bits	for	bytes	and	accidentally	thinking	that	networks	are
running	eight	times	faster	or	slower	than	they	really	are.

Bear	in	mind	when	looking	at	speed	ratings	that	they	are	almost	always	given	in
terms	of	bits,	not	bytes.	The	56K	in	a	modem	rating	means	56,000	bits,	not
56,000	bytes	of	theoretical	transfer	speed.	(This	is	true	even	if	someone	calls	it	a
"56K"	modem.)	Similarly,	Fast	Ethernet	operates	at	100	megabits	per	second,
not	megabytes,	and	a	1.544	Mbps	T1	link	sends	a	theoretical	maximum	of
1,544,000	bits	each	second.	This,	at	least,	is	usually	pretty	consistent.

When	it	comes	to	throughput	measurements,	however,	both	bits	and	bytes	are
used,	so	you	have	to	be	careful.	Raw	throughput	values	are	normally	given	in



used,	so	you	have	to	be	careful.	Raw	throughput	values	are	normally	given	in
bits	per	second,	but	many	software	applications	report	transfer	rates	in	bytes	per
second,	including	many	web	browsers	and	FTP	client	programs.	This	often	leads
to	users	wondering	why	they	are	only	getting	one-eighth	of	their	expected
download	or	transfer	speeds.

TIP

KEY	CONCEPT	In	most	cases	in	discussions	of	networking	performance,	the	lowercase	letter	b	refers
to	bits	and	the	uppercase	B	to	bytes.	However,	these	conventions	are	not	always	universally	followed,	so
context	must	be	used	to	interpret	a	particular	measurement.

The	standard	unit	for	bit	throughput	is	the	bit	per	second,	which	is	commonly
abbreviated	bit/s,	bps,	or	b/s.	The	byte	unit	is	byte	per	second,	abbreviated
bytes/s,	Bps	or	B/s—unless	some	cruel	author	decides	to	use	a	lowercase	b	just
to	confuse	you!	This	means	that	the	maximum	theoretical	throughput	of
100BASE-TX	(100	Mbps)	Ethernet	is	about	12	MB/s.	Where	the	context	is
unclear,	it	is	better	to	spell	out	the	unit	as	100	Mbits/s	or	12	Mbytes/s,	which,	of
course,	I	try	to	do	in	this	book.

You	will	also	occasionally,	especially	when	dealing	in	the	realm	of
communications,	see	throughput	measured	in	characters	per	second,	or	cps.	In
most	computer	systems	(including	PCs),	each	character	takes	up	one	byte,	so	cps
is	equivalent	to	bytes/s,	B/s,	or	Bps.

Of	course,	most	networking	technologies	don't	move	just	a	few	bits	and	bytes
around	every	second;	they	move,	thousands,	millions,	or	even	billions.	Thus,
most	speed	ratings	are	not	in	bits	per	second,	but	rather	kilobits	(Kb),	megabits
(Mb),	or	gigabits	(Gb)	per	second,	and	the	same	thing	can	be	done	for	bytes.
Thus,	you	find	terms	such	as	100	Mbps	Ethernet	or	700	kb/s	ADSL.

Here,	you	run	into	another	problem:	the	existence	of	both	decimal	and	binary
versions	of	the	terms	kilo,	mega,	and	giga.	For	example,	the	decimal	form	of	the
prefix	for	a	million	(mega)	is	106	or	1,000,000,	while	the	binary	form	is	220	or
1,048,576.	This	differential	of	about	5	percent	leads	to	all	sorts	of	confusion.
When	you	see	these	abbreviations,	bear	in	mind	that	in	networking,	they	almost
always	refer	to	the	decimal	form.	Thus,	100	Mbps	Ethernet	is	rated	at
100,000,000	bits	per	second,	not	104,857,600	bits	per	second.



TIP

KEY	CONCEPT	The	unit	most	often	used	to	express	networking	throughput	is	bits	per	second	or	bps.
This	term	is	often	expressed	in	thousands,	millions,	or	billions	as	Kbps,	Mbps,	or	Gbps.	It	almost	always
uses	the	decimal,	not	binary,	versions	of	the	kilo,	mega,	or	giga	multipliers.

Baud
Finally,	there's	another	term	that	you	will	encounter	frequently	in	discussions	of
modems	and	some	other	technologies:	the	baud.	Named	for	telegraphy	pioneer
Jean-Maurice-Émile	Baudot	(1845–1903),	this	unit	measures	the	number	of
changes,	or	transitions,	that	occur	in	a	signal	in	each	second.	So,	if	the	signal
changes	from	a	one	value	to	a	zero	value	(or	vice	versa)	one	hundred	times	per
second,	that	is	a	rate	of	100	baud.

In	the	early	days	of	very	slow	modems,	each	bit	transition	encoded	a	single	bit	of
data.	Thus,	300	baud	modems	sent	a	theoretical	maximum	of	300	bits	per	second
of	data.	This	led	to	people	confusing	the	terms	baud	and	bits	per	second—and
the	terms	are	still	used	interchangeably	far	too	often.	You	will	commonly	hear
people	refer	to	a	28.8	Kbps	modem,	for	example,	as	running	at	28,800	baud.

But	the	two	units	are	in	fact	not	the	same;	one	measures	data	(the	throughput	of	a
channel),	and	the	other	measures	transitions	(called	the	signaling	rate).	Modern
modems	use	advanced	modulation	techniques	that	encode	more	than	one	bit	of
data	into	each	transition.	A	28,800	bps	modem	typically	encodes	nine	bits	into
each	transition;	it	runs	at	3,200	baud,	not	28,800	baud	(the	latter	number	being
the	product	of	3,200	and	9).	In	fact,	there's	no	way	to	operate	a	modem	on	a
conventional	phone	line	at	28,800	baud—it	exceeds	the	frequency	bandwidth	of
the	phone	line.	That's	the	reason	why	advanced	modulation	is	used	to	encode
more	data	into	each	transition.

TIP

KEY	CONCEPT	The	baud	and	bps	units	are	often	treated	equivalently,	but	are	not	the	same.	Baud
measures	not	the	throughput	of	a	network	but	its	signaling	rate,	meaning	the	number	of	times	that	the
signal	changes	value	in	each	second.	Since	modern	encoding	and	modulation	techniques	often	encode
either	greater	or	less	than	one	bit	value	into	each	such	transition,	the	throughput	and	baud	rate	of	network
technologies	are	usually	different.



Theoretical	and	Real-World	Throughput,	and
Factors	Affecting	Network	Performance
When	assessing	the	performance	of	networks,	keep	in	mind	that	there	is	always	a
difference	between	theoretical	speed	ratings	and	real-world	throughput.	If	your
network	is	set	up	well,	this	difference	is	relatively	small	but	still	significant.
Otherwise,	the	difference	can	be	extremely	large.	(Notice	that	the	difference
between	theoretical	and	practical	performance	can	never	be	negligible.)

There	are	many	reasons	for	the	difference	between	what	a	network	or
communications	method	is	supposed	to	be	able	to	do	and	what	it	actually	can	do.
The	reasons	generally	fall	into	three	categories:	normal	network	overhead,
external	performance	limiters,	and	network	configuration	problems.

NOTE

There	are	many	different	ways	of	measuring	and	assessing	performance.	Synthetic	benchmark	programs
are	often	used	to	measure	throughput,	and	can	produce	impressive	performance	scores,	which	usually
have	little	to	do	with	how	a	network	will	actually	operate.	Such	metrics	are	best	used	for	comparison
purposes	by	showing	that	one	network	or	system	is	faster	than	another,	rather	than	by	paying	too	much
attention	to	the	actual	number	the	metrics	produce.	Even	when	doing	comparisons,	however,	caution	is
wise.

Normal	Network	Overhead
Every	network	has	some	degree	of	normal	network	overhead,	which	guarantees
that	you	will	never	be	able	to	use	all	of	the	bandwidth	of	any	connection	for	data.
Take	as	an	example	10	Mbps	Ethernet.	Sure,	the	line	may	be	able	to	transmit
10,000,000	bits	every	second,	but	not	all	of	those	bits	are	data!	Some	are	used	to
package	and	address	the	data—data	can't	just	be	thrown	onto	the	network	in	raw
form.	Also,	many	of	those	bits	are	used	for	general	overhead	activities,	and	they
deal	with	collisions	on	transmissions	and	other	issues.	There	are	natural
inefficiencies	in	any	networking	technology.

Even	beyond	this,	there	are	other	overhead	issues.	Any	network	transaction
involves	a	number	of	different	hardware	and	software	layers,	and	overhead
exists	at	each	of	them,	from	the	application	and	operating	system	down	to	the
hardware.	These	overheads	mean	that	you	generally	lose	at	least	20	percent	of



the	rated	speed	of	a	local	area	network	(LAN)	technology	off	the	top,	and
sometimes	even	more.	For	example,	7	Mbps	user	data	throughput	on	a	regular	10
Mbps	Ethernet	network	is	actually	very	good.

External	Performance	Limiters
There	are	external	factors	that	limit	the	performance	of	a	network.	Important
issues	here	include	the	ability	of	the	hardware	to	process	the	data	and	also	any
bandwidth	limitations	that	exist	in	the	chain	of	data	transmission	between	two
nodes.	Hardware	issues	most	often	show	up	with	very	fast	networking
technologies.

Consider	a	gigabit	(1,000	Mbps)	Ethernet	connection	between	two	regular	PCs.
In	theory,	this	connection	should	allow	the	transmission	of	1	GB	of	data	every
second.	Even	beyond	the	matter	of	overhead	mentioned	earlier,	no	regular	PC	is
capable	of	pumping	this	much	data	per	second.	Only	high-end	servers	have	this
capacity—and	even	they	would	have	problems	sustaining	this	unless	they	were
doing	nothing	else.	An	older	PC's	hard	disk	probably	can't	even	stream	data	fast
enough	to	keep	a	100	Mbps	Ethernet	connection	busy.	Thus,	upgrading	a	100
Mbps	Ethernet	card	in	an	older	machine	to	gigabit	is	not	likely	to	help	as	much
as	you	might	expect.

Bandwidth	limitations	cause	network	throughput	issues	because	the	entire
network	can	run	only	as	fast	as	its	slowest	link.	These	bottlenecks	create	reduced
performance.	As	a	common	example,	suppose	you	have	a	cable	modem
connection	to	the	Internet	that	is	rated	at	1	Mbps	for	downloads.	It	may	be	very
fast	most	of	the	time,	but	if	the	website	you	are	accessing	is	totally	bogged	down
or	it	is	having	connectivity	problems	itself,	you	are	not	going	to	download	from
that	site	at	1	Mbps.	In	fact,	your	download	probably	won't	even	get	close	to	that
speed.

Finally,	it's	also	important	to	remember	that	there	are	many	technologies	that
simply	do	not	always	operate	at	a	constant	fixed	speed,	though	they	may	change
speeds	based	on	physical	network	characteristics.	A	good	example	is	an	analog
modem,	which	can	vary	greatly	in	performance	depending	on	the	quality	of	the
line	over	which	it	operates.



Network	Configuration	Problems
The	issues	I	mentioned	earlier	are	usually	ones	that	you	cannot	do	anything
about;	they	are	just	the	nature	of	the	networking	beast.	The	third	category	of
performance	limiters,	misconfiguration,	is	different.	This	refers	to	network
slowdowns	that	occur	because	hardware	or	software	has	not	been	set	up
correctly.	Poor	cabling,	misconfigured	interface	cards,	or	bad	drivers	can
seriously	reduce	the	performance	of	a	network—by	90	percent	or	even	more.

These	problems	can	usually	be	corrected,	but	only	if	you	are	looking	for	them.
Driver	problems	are	particularly	insidious	because	the	natural	tendency	is	for
people	to	blame	hardware	when	slowdowns	occur.	However,	you	cannot	get	the
most	of	your	hardware	devices	without	proper	software	to	run	it.	These	issues
are	much	more	significant	with	bleeding-edge	hardware	than	with	established
products,	incidentally.

Also	included	in	this	category	of	issues	are	problems	that	occur	due	to	poor
design.	For	example,	putting	30	busy	workstations	on	a	shared	10	Mbps	Ethernet
segment	is	likely	to	result	in	poor	performance—using	a	switch	would	be	much
better.	Another	common	mistake	is	not	providing	a	"fatter	pipe"	(higher
bandwidth	connection)	to	servers	in	a	client/server	setup.	These	issues	can	be
avoided	or	ameliorated	by	reconfiguring	the	network—or	even	better,	by
designing	it	properly	in	the	first	place,	right?

Asymmetry
Bear	in	mind	that	many	networking	technologies,	especially	ones	used	for
Internet	access,	are	asymmetric,	meaning	that	they	offer	much	higher	bandwidth
in	one	direction	than	the	other.	Usually,	this	is	arranged	so	that	more	bandwidth
goes	down	to	the	user	than	from	the	user	to	the	network,	since	most	Internet
users	download	far	more	than	they	upload.	However,	it's	always	important	to
find	out	if	a	speed	rating	is	for	both	directions,	or	for	only	one	direction,	and	if
so,	what	the	other	direction's	speed	is.	Common	technologies	with	asymmetric
performance	include	56K	modems,	Asymmetric	Digital	Subscriber	Line
(ADSL),	cable	modems,	and	satellite	Internet	access.	Beware,	because	the
marketing	people	who	sell	these	technologies	will	often	try	to	hide	the
asymmetry	of	their	services,	usually	highlighting	only	the	bigger	download



figure	and	avoiding	mention	of	the	slower	uploads.

Asymmetry	can	also	have	unexpected	effects	on	network	performance,	because
most	communications,	even	if	they	seem	unidirectional,	are	not.	The	most
common	case	is	when	an	Internet	access	technology	has	much	higher	download
bandwidth	than	upload	bandwidth.	When	using	TCP/IP	to	download	data,
acknowledgments	must	be	sent	regularly.	If	the	upstream	bandwidth	is	too	low,
this	may	make	it	impossible	to	fully	exploit	the	download	bandwidth	of	the	link.

TIP

KEY	CONCEPT	The	theoretical	rated	speed	of	a	network	is	never	achieved	in	practice	for	a	number	of
reasons.	Overhead	issues	mean	that	not	all	of	the	possible	capacity	of	a	network	can	be	used	for	data.
External	factors	such	as	hardware	bandwidth	limitations	restrict	data	input	and	output.	Configuration
problems	can	also	greatly	reduce	real-world	performance.	Finally,	it	is	important	to	remember	that	many
technologies	are	asymmetric,	offering	higher	speed	in	one	direction	than	the	other,	and	often,	the	larger
number	is	the	one	that	is	advertised.



Simplex,	Full-Duplex,	and	Half-Duplex	Operation
Another	aspect	of	performance	that	is	worthy	of	some	attention	is	the	mode	of
operation	of	the	network	or	connection.	Obviously,	whenever	we	connect
together	Device	A	and	Device	B,	there	must	be	some	way	for	Device	A	to	send
to	Device	B	and	Device	B	to	send	to	Device	A.	Many	people	don't	realize,
however,	that	networking	technologies	can	differ	in	terms	of	how	these	two
directions	of	communication	are	handled.	Depending	on	how	the	network	is	set
up	and	the	characteristics	of	the	technologies	used,	you	may	be	able	to	improve
performance	through	the	selection	of	performance-enhancing	modes.

Let's	begin	with	a	look	at	the	three	basic	modes	of	operation	that	can	exist	for
any	network	connection,	communications	channel,	or	interface.

Simplex	Operation
In	simplex	operation,	a	network	cable	or	communications	channel	can	send
information	in	only	one	direction;	it's	a	one-way	street.	This	may	seem
counterintuitive:	What's	the	point	of	communications	that	travel	in	only	one
direction?	In	fact,	there	are	at	least	two	different	places	in	which	simplex
operation	is	encountered	in	modern	networking.

The	first	is	when	two	distinct	channels	are	used	for	communication:	one
transmits	from	A	to	B	and	the	other	from	B	to	A.	This	is	surprisingly	common,
even	though	it	isn't	always	obvious.	For	example,	most,	if	not	all,	fiber-optic
communication	is	simplex,	meaning	that	it	uses	one	strand	to	send	data	in	each
direction.	But	this	may	not	be	obvious	if	the	pair	of	fiber	strands	are	combined
into	one	cable.

Simplex	operation	is	also	used	in	special	types	of	technologies,	especially	ones
that	are	asymmetric.	For	example,	one	type	of	satellite	Internet	access	sends	data
over	the	satellite	only	for	downloads,	while	a	regular	dial-up	modem	is	used	for
upload	to	the	service	provider.	In	this	case,	both	the	satellite	link	and	the	dial-up
connection	are	operating	in	a	simplex	mode.

Half-Duplex	Operation
Technologies	that	employ	half-duplex	operation	are	capable	of	sending



information	in	both	directions	between	two	nodes,	but	only	one	direction	or	the
other	can	be	utilized	at	a	time.	This	is	a	fairly	common	mode	of	operation	when
there	is	only	a	single	network	medium	(cable,	radio	frequency,	and	so	forth)
between	devices.

While	this	term	is	often	used	to	describe	the	behavior	of	a	pair	of	devices,	it	can
refer	more	generally	to	any	number	of	connected	devices	that	take	turns
transmitting	information.	For	example,	in	conventional	Ethernet	networks,	any
device	can	transmit,	but	only	one	may	do	so	at	a	time.	For	this	reason,	regular
(unswitched)	Ethernet	networks	are	often	said	to	be	half-duplex,	even	though	it
may	seem	strange	to	describe	a	LAN	that	way.

Full-Duplex	Operation
In	full-duplex	operation,	a	connection	between	two	devices	is	capable	of	sending
data	in	both	directions	simultaneously.	Full-duplex	channels	can	be	constructed
either	as	a	pair	of	simplex	links	(as	described	earlier)	or	by	using	one	channel
that's	designed	to	permit	bidirectional	simultaneous	transmissions.	A	full-duplex
link	can	connect	only	two	devices,	so	many	such	links	are	required	if	multiple
devices	are	to	be	connected	together.

NOTE

The	term	full-duplex	is	somewhat	redundant;	duplex	would	suffice,	but	everyone	still	says	full-duplex
(likely,	to	differentiate	this	mode	from	half-duplex).

Of	these	three	options,	full-duplex	is	obviously	the	one	that	yields	the	highest
performance.	Full-duplex	operation	doubles	the	theoretical	bandwidth	of	the
connection.	If	a	link	normally	runs	at	1	Mbps	but	can	work	in	full-duplex	mode,
it	really	has	2	Mbps	of	bandwidth	(1	Mbps	in	each	direction).	Remember	the	key
word	theoretical,	however—you	do	not	really	get	double	the	performance	in	real
life,	because	communications	usually	do	not	involve	sending	a	lot	of	data	in	both
directions	at	once.	However,	you	certainly	get	better	throughput	than	you	do	in	a
half-duplex	mode.

In	some	cases,	the	mode	of	operation	is	a	function	of	the	technology	and	cannot
be	changed.	In	others,	however,	full-duplex	mode	is	a	matter	of	the	correct
hardware	settings,	and	also	whether	the	software	supports	full-duplex	operation.
Thus,	getting	higher	performance	in	this	area	is	sometimes	simply	a	matter	of



Thus,	getting	higher	performance	in	this	area	is	sometimes	simply	a	matter	of
ensuring	proper	configuration.

Full-duplex	operation	has	been	pretty	much	taken	for	granted	in	communications
for	years.	The	more	interesting	development	has	been	the	rise	in	the	significance
of	full-duplex	operation	for	local	area	networking.	Traditionally,	LANs	have
always	used	half-duplex	operation	on	a	shared	access	medium.	As	the	use	of
switches	has	increased,	thereby	allowing	dedicated	bandwidth	to	each	computer,
full-duplex	operation	has	become	very	popular.	Full-duplex	operation	in
Ethernet	not	only	allows	the	simultaneous	transmission	of	data	in	both
directions,	but	also	eliminates	contention	for	the	formerly	shared	access	medium
—thus,	no	more	collisions.	The	combination	of	these	two	effects	improves
performance,	sometimes	substantially.

TIP

KEY	CONCEPT	There	are	three	basic	operating	modes	that	describe	how	data	is	sent	between
connected	devices	on	a	network.	In	a	simplex	operation,	data	can	flow	in	only	one	direction	between	two
devices.	Half-duplex	networks	allow	any	device	to	transmit,	but	only	one	may	do	so	at	a	time.	Full-
duplex	operation	means	two	attached	devices	can	each	transmit	and	receive	simultaneously.	The	latter
offers	the	greatest	potential	performance,	because	forcing	one	device	to	wait	for	another	before	sending
data	does	not	decrease	throughput.



Quality	of	Service	(QoS)
In	my	discussion	of	common	network	performance	measurements	earlier	in	this
chapter,	I	mentioned	that	there	are	many	different	aspects	to	network
performance.	I	also	introduced	the	concept	of	latency,	which	measures	how	long
it	takes	for	data	to	travel	across	a	network.	Latency	is	one	important	part	of	a
larger	issue	in	networking	that	is	sometimes	called	quality	of	service	or	QoS.

The	inherent	nature	of	most	networking	technologies	is	that	they	are	more
concerned	with	pumping	data	from	one	place	to	another	as	fast	as	possible	than
they	are	with	how	the	data	is	sent.	For	example,	the	Internet	is	designed	on	top
of	the	Internet	Protocol	(IP),	a	packet-switching	technology	(described	in
Chapter	1)	that	is	designed	to	get	packets	from	point	A	to	point	B	in	the	most
effective	way,	without	requiring	the	user	to	have	any	knowledge	about	what
route	will	be	taken.	In	fact,	some	packets	in	the	same	data	stream	may	be	sent
along	different	routes.	Packets	may	be	stored	for	a	while	before	being	forwarded
to	their	destination,	or	even	dropped	and	retransmitted.

For	most	applications,	such	as	simple	file	or	message	transfers,	this	is	perfectly
fine.	However,	there	are	applications	for	which	this	sort	of	service	represents
low	quality.	In	these	cases,	the	nature	of	how	the	data	is	delivered	is	more
important	than	merely	how	fast	it	is,	and	there	is	a	need	for	technologies	or
protocols	that	offer	QoS.	This	general	term	can	encompass	a	number	of	related
features	such	as	the	following:

Bandwidth	Reservation	The	ability	to	reserve	a	portion	of	bandwidth	in	a
network	or	interface	for	a	period	of	time	so	that	two	devices	can	count	on	having
that	bandwidth	for	a	particular	operation.	This	is	used	for	multimedia
applications	for	which	data	must	be	streamed	in	real	time,	and	packet	rerouting
and	retransmission	would	result	in	problems.	This	is	also	called	resource
reservation.

Latency	Management	A	feature	that	limits	the	latency	between	two	devices	in
any	data	transfer	to	a	known	value.

Traffic	Prioritization	In	conventional	networks,	all	packets	are	created	equal.	A
useful	QoS	feature	is	the	ability	to	handle	packets	so	that	more	important



connections	receive	priority	over	less	important	ones.

Traffic	Shaping	This	refers	to	the	use	of	buffers	and	limits,	both	of	which
restrict	traffic	across	a	connection	to	a	value	below	a	predetermined	maximum.

Network	Congestion	Avoidance	This	QoS	feature	refers	to	monitoring
particular	connections	in	a	network	and	rerouting	data	when	a	particular	part	of
the	network	is	becoming	congested.

So,	in	essence,	QoS	in	the	networking	context	is	analogous	to	QoS	in	the	real
world.	It	is	the	difference	between	getting	take-out	and	sit-down	service	at	a	nice
French	restaurant—both	cure	the	hunger	pangs,	but	they	meet	very	different
needs.	Some	applications,	especially	multimedia	applications	such	as	voice,
music,	and	video,	are	time	dependent	and	require	a	constant	flow	of	information
more	than	raw	bandwidth.

TIP

KEY	CONCEPT	The	generic	term	quality	of	service	(QoS)	describes	the	characteristics	of	how	data	is
transmitted	between	devices,	rather	than	how	quickly	it	is	sent.	QoS	features	seek	to	provide	more
predictable	streams	of	data	rather	than	faster	ones.	Examples	of	such	features	include	bandwidth
reservation,	latency	minimums,	traffic	prioritization	and	shaping,	and	congestion	limitation.	QoS	is	more
important	for	specialty	applications,	such	as	multimedia,	than	for	routine	applications,	such	as	those	that
transfer	files	or	messages.

To	support	QoS	requirements,	many	newer	technologies	have	been	developed	or
enhanced	to	add	QoS	features	to	them.	This	includes	the	ability	to	support
isochronous	transmissions	that	can	reserve	a	specific	amount	of	bandwidth	over
time	to	support	applications	that	must	send	data	in	real	time.	One	technology	that
has	received	a	lot	of	attention	for	its	QoS	features	is	Asynchronous	Transfer
Mode	(ATM).	ATM	is	designed	to	support	traffic-management	features	that	are
not	generally	available	on	networks	that	haven't	been	optimized	to	provide	QoS
features	(such	as	Ethernet).

QoS	has	become	a	big	buzzword	lately.	By	itself,	this	term	conveys	about	as
much	useful	information	about	what	the	technology	offers	as	being	told	that	it	is
high	performance.	You	have	to	dig	past	the	marketing-speak	and	find	out	exactly
what	QoS	features	are	being	offered.



Chapter	3.	NETWORK
STANDARDS	AND	STANDARDS
ORGANIZATIONS

You	can't	study	networking	and	its	related	technologies	without	very	quickly
encountering	a	whole	host	of	standards	that	are	related	to	the	subject,	as	well	as
the	organizations	that	create	these	standards.	Network	standards	facilitate	the
interoperability	of	network	technologies	and	are	extremely	important.	It	may	be
an	exaggeration	to	say	that	networking	would	not	exist	without	standards,	but	it
isn't	an	exaggeration	to	say	that	networking	as	we	know	it	would	not	exist
without	them.	Networks	are	literally	everywhere,	and	every	hardware	device	or
protocol	is	governed	by	at	least	one	standard	and	usually	many.

In	this	chapter,	I	briefly	examine	the	often	overlooked	subject	of	network
standards	and	standards	organizations.	I	begin	with	a	background	discussion	of
why	standards	are	important,	highlighting	the	differences	between	proprietary,
de	facto,	and	open	standards.	I	give	an	overview	of	networking	standards	in
general	terms	and	then	describe	the	most	important	international	standards
organizations	and	industry	groups	related	to	networking.	I	then	describe	the
structure	of	the	organizations	responsible	for	Internet	standards,	including	the
registration	authorities	and	registries	that	manage	resources	such	as	addresses,
domain	names,	and	protocol	values.	I	conclude	with	a	discussion	of	the	Request
for	Comment	(RFC)	process	used	for	creating	Internet	standards.

Proprietary,	Open,	and	De	Facto	Standards
Why	are	standards	important?	An	old	saw	in	the	computer	world	says,	"The
beauty	of	standards	is	that	there	are	so	many	to	choose	from."	This	little	joke



reflects	the	frustration	that	technicians	often	feel	at	the	thousands	of	standards
that	are	found	in	the	industry.	Aside	from	differing	in	terms	of	content—what
technologies	and	protocols	they	describe—standards	also	often	differ	in	terms	of
their	type	and	how	they	came	about.	In	fact,	part	of	the	reason	why	there	are
sometimes	so	many	to	choose	from	in	a	particular	area	is	because	of	how	they
come	about.

Proprietary	Standards
In	the	early	days	of	computing,	many	people	didn't	quite	understand	just	how
important	universal	standards	were.	Most	companies	were	run	by	skilled
inventors,	who	came	up	with	great	ideas	for	new	technologies,	but	who	weren't
particularly	interested	in	sharing	them.	It	wasn't	considered	a	smart	business
move	to	share	information	about	new	inventions	with	other	companies—the
competition!	Oh	sure,	companies	believed	that	standards	were	important,	but
they	thought	it	was	even	more	important	that	they	be	the	ones	to	control	those
standards.

For	example,	imagine	that	it's	1985,	and	I	have	just	come	up	with	a	great
networking	technology,	which	I	have	incorporated	into	a	fancy	new	local	area
networking	(LAN)	product	called	SooperDooperNet.	SooperDooperNet	is	my
product.	I	have	patents	on	the	technology,	I	control	its	design	and	manufacture,
and	I	sure	as	heck	don't	tell	anyone	else	how	it	works,	because	if	I	did,	someone
would	copy	me.

I	could	sell	interface	cards,	cables,	and	accessories	for	SooperDooperNet,	and
companies	that	wanted	to	use	it	could	install	the	cards	in	all	of	their	PCs	and	be
assured	that	those	computers	would	be	able	to	talk	to	each	other.	This	solves	the
interoperability	problem	for	this	company	by	creating	a	"SooperDooperNet
standard."	This	would	be	an	example	of	a	proprietary	standard—it's	owned	by
one	company	or	person.

The	problem	with	proprietary	standards	is	that	other	companies	are	excluded
from	the	standard	development	process,	and	therefore	have	little	incentive	to
cooperate	with	the	standard	owner.	In	fact,	just	the	opposite:	They	have	a	strong
motivation	to	develop	a	competing	proprietary	standard,	even	if	it	doesn't
improve	on	the	existing	one.

So	when	my	competition	sees	what	I	am	doing,	he	is	not	going	to	also	create



So	when	my	competition	sees	what	I	am	doing,	he	is	not	going	to	also	create
network	interface	cards	that	can	work	with	SooperDooperNet,	which	would
require	paying	me	a	royalty.	Instead,	he	is	going	to	develop	a	new	line	of
networking	hardware	called	MegaAwesomeNet,	which	is	very	similar	to
SooperDooperNet	in	operation	but	uses	different	connectors,	cable,	and	logic.
He,	too,	will	try	to	sell	bunches	of	cards	and	cables	to	my	customers.

The	problem	here	is	that	the	market	ends	up	with	different	companies	using
different	products	that	don't	work	together.	If	you	install	SooperDooperNet,	you
have	to	come	to	me	for	any	upgrades	or	changes—you	have	no	choice.	Worse,
what	happens	if	Acme	Manufacturing,	which	has	50	PCs	running
SooperDooperNet,	merges	with	Emca	Manufacturing,	which	has	40	PCs	running
MegaAwesomeNet?	The	IT	people	have	a	problem.	Sure,	there	would	be	ways
to	solve	it,	but	wouldn't	everyone	be	better	off	avoiding	these	difficulties	in	the
first	place?	And	how	could	you	create	something	like	the	Internet	if	everyone's
networks	use	different	"standards"?

Open	Standards
Eventually,	companies	learned	that	they	would	be	better	off	with	standards	that
everyone	agreed	on.	This	is	particularly	true	of	networking,	where	devices	need
to	talk	to	each	other.	If	many	companies	get	together	and	agree	to	cooperate,
they	can	create	an	open	standard	instead	of	a	bunch	of	proprietary	ones.	The
name	is	rather	self-explanatory;	rather	than	being	the	closely	guarded	secret	of
one	organization,	an	open	standard	is	available	to	anyone	who	is	interested	in
using	it.

One	key	to	the	success	of	an	open	standard	is	a	steering	organization	to	promote
it.	Usually,	a	neutral,	nonprofit	trade	association	or	working	group	is	established
to	develop	the	standard,	and	the	various	for-profit	hardware	and	software
companies	join	this	group	and	support	it	financially.	These	groups	also	work
with	standards	approval	bodies	like	the	International	Telecommunication	Union
(ITU)	and	International	Organization	for	Standardization	(ISO)	to	gain
acceptance	for	their	standards.	These	and	other	standards	organizations	are
described	in	the	"International	Networking	Standards	Organizations"	section
later	in	this	chapter.



Of	course,	the	companies	aren't	doing	this	just	to	be	nice	to	their	customers.	In
creating	open	standards,	they	split	the	market-share	pie	among	them,	but	they
make	the	pie	grow	much	larger	by	attracting	more	customers.	Customers	like
open	standards	more	than	proprietary	ones,	because	those	standards	give	them
more	choices	and	increase	their	ability	to	interact	with	other	companies,
troubleshoot	problems,	hire	skilled	workers,	and	expand	in	the	future.	As	for	the
companies,	they	still	compete	with	their	specific	offerings,	so	it's	not	like	they	all
end	up	making	the	same	products.	For	all	of	these	reasons,	open	standards	are
now	far	more	common	than	proprietary	ones.

However,	the	process	involved	in	creating	these	standards	is	often	a	difficult
one.	In	some	cases,	the	standards	organization	will	draft	the	standard	from	the
ground	up,	but	in	others,	it	may	select	one	technology	as	the	basis	for	the
standard	from	several	that	are	submitted	in	what	is	commonly	called	a
"technology	bake-off."	Thus,	many	different	companies	may	come	to	the	table
with	different	approaches,	each	of	them	vying	for	selection	as	the	standard	for
use	by	the	group.	Politics	can	cause	groups	to	get	bogged	down	for	years
fighting	over	various	options,	or	even	to	split	into	multiple	groups.	Good
examples	are	what	occurred	in	the	conflict	between	supporters	of	100VG-
AnyLAN	and	Fast	Ethernet,	and	the	problems	with	standards	politics	that	have
plagued	the	world	of	powerline	networking.

Furthermore,	there	are	still	some	companies	that	believe	strongly	in	proprietary
standards,	because	they	really	want	to	control	and	direct	the	market.	One	of	the
most	famous	(infamous)	in	this	regard	is	Sony,	a	company	that	makes	excellent
hardware	but	frequently	refuses	to	accept	established	standards.	For	this	reason,
some	people	avoid	Sony's	products,	even	though	they	are	good,	because	they
want	to	stick	to	industry	standards.

De	Facto	Standards
This	brings	me	to	the	third	type	of	standard	that	is	often	seen	in	the	computer
world:	the	de	facto	standard.	"De	facto"	is	Latin	for	"in	fact."	A	de	facto	standard
is	one	that	is	used	as	a	universal	standard	just	because,	over	time,	it	has	been
widely	used,	and	not	because	the	standard	was	developed	and	approved	by	a
standards	committee.

A	good	example	of	a	de	facto	standard	is	the	AT	command	set	used	by	modems.



A	good	example	of	a	de	facto	standard	is	the	AT	command	set	used	by	modems.
Virtually	all	modems	use	it,	but	this	acceptance	didn't	result	from	an	industry
group	agreeing	to	adopt	and	deploy	it.	Rather,	it	was	developed	unilaterally	by
Hayes,	the	pioneering	modem	company,	and	then	adopted	by	virtually	every
other	modem	maker	until	it	became	a	standard.

One	reason	why	proprietary	standards	are	still	sometimes	seen	is	that	some
companies	want	to	produce	a	standard	that	will	become	so	universally	used	that
it	becomes	the	de	facto	standard,	thus	giving	them	a	leadership	position	in	that
market.	Again,	in	my	estimation,	Sony	falls	into	this	category—the	developers
often	want	to	do	things	their	way	and	create	proprietary	standards	that	they	try	to
promote	using	their	powerful	market	presence.

Sometimes	this	succeeds,	but	often	it	does	not,	resulting	in	a	fragmented	market
of	incompatible	products.	An	excellent	example	is	when	Sony	created	a	new
format	for	a	digital	camera's	flash	memory	(the	Memory	Stick)	rather	than	using
the	CompactFlash	format	used	by	other	camera	manufacturers.	The	end	result
was	that	not	everyone	used	memory	sticks	as	Sony	had	hoped,	and	there	were
now	two	incompatible	standards	that	increased	confusion	and	yielded	no	real
benefit	to	the	customer.

TIP

KEY	CONCEPT	Networking	standards	can	be	classified	as	proprietary,	open,	or	de	facto.	Proprietary
standards	are	owned	by	one	particular	organization.	If	that	organization	has	sufficient	market	clout	and
the	industry	lacks	alternatives	to	its	standard,	it	may	be	adopted	by	the	whole	industry,	becoming	a	de
facto	standard.	Usually,	however,	differing	proprietary	standards	compete	with	each	other,	resulting	in	a
fragmented	market.	In	contrast,	open	standards	are	not	owned	by	anyone—they	are	created	by	neutral
organizations	to	ensure	that	compatible	products	can	be	designed	and	developed	by	many	different
companies.	This	makes	life	easier	for	the	customer	and	also	promotes	the	market	as	a	whole.



Networking	Standards
All	networking	technologies	have	standards	associated	with	them.	These	are
usually	highly	technical	documents,	and	they	often	presume	that	the	reader	has	a
fair	bit	of	knowledge	about	networking.	If	you	aren't	an	expert,	you	will
probably	have	some	difficulty	understanding	networking	standards.

In	fact,	many	technologies	have	quite	a	number	of	standards	associated	with
them.	A	networking	technology	may	have	more	than	one	standard	for	any	or	all
of	the	following	reasons:

The	original	standard	has	been	revised	or	updated.

The	technology	is	sufficiently	complex	that	it	needs	to	be	described	in	more
than	one	document.

The	technology	borrows	from	or	builds	on	documents	used	in	related
technologies.

More	than	one	organization	has	been	involved	in	developing	the	technology.

Standards	documents	created	in	the	United	States	are	usually	developed	in
English,	but	are	also	routinely	translated	into	other	languages.	European
standards	are	often	published	simultaneously	in	English,	French,	German,	and
perhaps	other	languages	as	well.

Today,	virtually	all	networking	standards	are	open	standards,	administered	by	a
standards	organization	or	industry	group.	As	I	explained	in	the	previous	section,
open	standards	are	more	popular	than	proprietary	ones	in	the	computer	industry,
and	that's	especially	true	when	it	comes	to	networking.	In	fact,	the	few
technologies	for	which	there	is	no	universally	accepted	open	standard	have	been
losing	ground	to	those	with	open	standards,	particularly	in	the	areas	of	wireless
LANs	and	home	networking.	This	pretty	much	proves	how	important	an	open
process	really	is.

NOTE

You'll	find	discussions	of	various	standards	throughout	this	book.	These	can	usually	be	found	in	an
overview	chapter	introducing	each	technology	type,	though	the	discussions	of	more	complex	protocols
include	a	section	discussing	relevant	standards.



International	Networking	Standards
Organizations
The	rise	of	open	standards	has	been	a	great	boon	to	customers	of	computer	and
networking	products,	as	well	as	to	the	manufacturers	that	sell	to	them.	In	order	to
facilitate	the	development	of	open	standards,	however,	we	need	organizations
that	will	coordinate	the	creation	and	publishing	of	these	documents.	Generally,
these	are	nonprofit	organizations	that	specifically	take	a	neutral	stance	regarding
technologies	and	work	for	the	betterment	of	the	industry	as	a	whole.

Here	is	a	selective	list	of	some	of	the	standards	organizations	that	you	are	likely
to	encounter	when	reading	about	networking	and	the	Internet:

International	Organization	for	Standardization	(ISO)	Probably	the	biggest
standards	organization	in	the	world,	the	ISO	is	really	a	federation	of	standards
organizations	from	dozens	of	nations.	In	the	networking	world,	the	ISO	is	best
known	for	its	OSI	Reference	Model,	which	is	discussed	in	Part	I-2	of	this	book.

NOTE

The	shortened	name	of	the	International	Organization	for	Standardization	is	indeed	ISO,	not	IOS,	as	you
might	imagine.	In	fact,	it	is	not	an	acronym	at	all.	Since	the	full	name	of	the	body	differs	from	one
language	the	next,	any	acronym	for	that	name	would	differ	as	well.	Instead,	the	organization	chose	the
name	ISO	from	the	Greek	word	isos,	meaning	equal.	Many	people,	especially	in	the	United	States,	think
ISO	is	short	for	International	Standards	Organization,	but	this	is	incorrect.

American	National	Standards	Institute	(ANSI)	ANSI	is	the	main	organization
responsible	for	coordinating	and	publishing	computer	and	information
technology	standards	in	the	United	States.	Although	many	people	think	that	this
organization	develops	and	maintains	standards,	it	does	neither.	Instead,	it
oversees	and	accredits	the	organizations	that	actually	create	the	standards,
qualifying	them	as	Standards	Developing	Organizations	or	SDOs.	ANSI	also
publishes	the	standards	documents	created	by	the	SDOs	and	serves	as	the	United
States'	representative	to	the	ISO.

Information	Technology	Industry	Council	(ITIC)	ITIC	is	a	group	of	several
dozen	companies	in	the	information	technology	(computer)	industry.	ITIC	is	the
SDO	approved	by	ANSI	to	develop	and	process	standards	related	to	many



computer-related	topics.	It	was	formerly	known	as	the	Computer	and	Business
Equipment	Manufacturers	Association	(CBEMA).

National	Committee	for	Information	Technology	(NCITS)	NCITS	is	a
committee	established	by	the	ITIC	to	develop	and	maintain	standards	related	to
the	information-technology	world.	NCITS	was	formerly	known	by	the	name
Accredited	Standards	Committee	X3,	Information	Technology,	or	more
commonly,	just	X3.	It	maintains	several	subcommittees	that	develop	and
maintain	standards	for	various	technical	subjects.

Institute	of	Electrical	and	Electronics	Engineers	(IEEE)	The	IEEE
(pronounced	"eye-triple-ee")	is	a	well-known	professional	organization	for	those
in	the	electrical	or	electronics	fields,	including	computers	and	networking.
IEEE's	main	claim	to	fame	in	the	networking	industry	is	the	IEEE	802	Project,
which	encompasses	many	popular	networking	technologies,	including	Ethernet.

Electronic	Industries	Alliance	(EIA)	The	EIA	is	an	international	industry
association	that	is	best	known	for	publishing	electrical	wiring	and	transmission
standards.

Telecommunications	Industry	Association	(TIA)	The	TIA	is	the
communications	sector	of	the	EIA,	and	it	is	responsible	for	developing
communications	standards.	Since	communications,	wiring,	and	transmission	are
all	related,	and	since	the	TIA	and	EIA	organizations	are	also	related,	standards
produced	by	the	EIA	or	TIA	are	often	labeled	with	the	combined	prefixes
EIA/TIA	or	TIA/EIA.
International	Telecommunication	Union—Telecommunication
Standardization	Sector	(ITU-T)	ITU-T	is	another	large	international	body	that
develops	standards	for	the	telecommunications	industry.	The	ITU-T	was
formerly	named	the	International	Telephone	and	Telegraph	Consultative
Committee	(CCITT;	the	abbreviation	comes	from	the	French	version	of	the
organization's	name:	Comité	Consultatif	International	Téléphonique	et
Télégraphique).

European	Telecommunications	Standards	Institute	(ETSI)	An	organization
with	members	from	dozens	of	countries	both	within	and	outside	Europe	that	is
dedicated	to	developing	telecommunications	standards	for	the	European	market



(and	elsewhere).	ETSI	is	known	for,	among	other	things,	regulating	the	use	of
radio	bandwidth	in	Europe	and	developing	standards	such	as	HiperLAN.

Many	of	these	organizations	do	not	actually	develop	the	various	standards.
Generally,	these	are	oversight	organizations—high-level	management,	if	you
will—that	work	with	many	other	smaller	groups	who	actually	develop	the
standards.	Also,	in	many	cases,	a	particular	standard	may	be	published	by	more
than	one	standards	organization,	so	it	may	be	labeled	with	more	than	one	name.

NOTE

The	set	of	related	organizations	responsible	for	creating	Internet	standards	is	not	shown	in	this	list
because	I	have	elected	to	cover	them	in	two	dedicated	sections	later	in	this	chapter,	on	Internet	standards
organizations	and	registration	authorities.

TIP

KEY	CONCEPT	There	are	a	number	of	well-known	international	organizations	that	play	important
roles	in	the	development	of	open	networking	standards.	Some	of	the	most	important	of	these	are	ISO,
ANSI,	ITIC,	IEEE,	EIA/TIA,	ITU-T,	and	ETSI.	These	are	oversight	organizations,	responsible	for
overall	management	of	the	standards	development	process,	rather	than	for	the	particulars	of	creating
individual	standards.



Networking	Industry	Groups
While	most	open	standards	are	coordinated	and	published	by	a	small	number	of
large,	often	international,	standards	organizations,	these	are	not	the	only	groups
involved	in	the	development	of	standards	for	networking	and	Internet
technologies.	Many	different	networking	industry	groups	play	an	important	role
in	the	standard	creation	process.

Networking	industry	groups	differ	in	a	few	ways	from	standards	organizations.
They	are	typically	dedicated	to	the	promotion	of	a	specific	technology,	whereas
standards	organizations	are	more	generic	and	oversee	hundreds	of	different	ones.
Industry	groups	are	also	generally	smaller	than	standards	organizations,	with
members	drawn	primarily	from	the	field	of	developers	and	manufacturers	that
create	products	for	the	particular	technology	the	group	promotes.

Perhaps	most	important,	industry	groups	often	actually	write	and	maintain	the
standards,	whereas	standards	organizations	generally	act	as	supervisors	who
ensure	that	the	standards	are	clear	enough	to	be	implemented.	Some	industry
groups,	however,	are	concerned	only	with	marketing	and	promotion	activities.

Obviously,	these	industry	groups	work	closely	together	with	the	standards
organizations.	In	some	cases,	they	may	even	be	part	of	the	same	overall
organization,	and	all	of	the	different	groups	are	related	in	some	way.	For
example,	the	IEEE	802	Project	consists	of	a	number	of	working	groups	charged
with	maintaining	and	developing	specific	technology	standards,	which	the	larger
IEEE	organization	approves	and	publishes.

One	of	these	working	groups	is	the	802.11	working	group,	which	develops
wireless	Ethernet	technology.	At	the	same	time	that	this	group	does	its	thing,
there	is	an	industry	group	called	the	Wireless	Ethernet	Compatibility	Alliance
(WECA).	This	group	works	to	ensure	the	cross-vendor	compatibility	of	802.11b
wireless	networking	hardware	and	software.

Other	industry	groups	are	formed	specifically	to	develop	independent	standards
that	are	not	approved	through	a	formal	standardization	process.	Examples
include	groups	such	as	HomePNA,	IrDA,	and	HomeRF.

One	of	the	problems	with	these	groups	is	that	they	usually	do	not	make	their
standards	open	to	the	public.	This	is	undoubtedly	due	to	some	sort	of	security



standards	open	to	the	public.	This	is	undoubtedly	due	to	some	sort	of	security
concern	or	desire	to	keep	the	inner	workings	of	their	technology	secret.
Unfortunately	for	these	groups,	this	policy	harms	the	ability	of	regular	people	to
learn	how	their	technologies	work.

NOTE

As	an	example	of	what	I	mean	about	these	closed	standards,	I	can	point	to	my	own	experience	in	writing
this	and	other	reference	works.	I	was	almost	always	unable	to	obtain	specifications	from	most	of	the
private	industry	groups.	They	either	refused	to	allow	me	to	get	the	document	at	all	or	wanted	to	charge
me	a	great	deal	of	money	for	the	privilege	(well	into	the	thousands	of	dollars	in	some	cases).	In	doing
this,	these	groups	harm	their	own	cause,	thereby	making	it	more	difficult	for	those	interested	in	their
technologies	to	learn	about	them.	This	is	another	key	advantage	of	having	open	standards	managed	by
public	organizations	such	as	ANSI	or	the	IEEE.



Internet	Standards	Organizations	(ISOC,	IAB,
IESG,	IETF,	IRSG,	and	IRTF)
High-quality,	widely	accepted	open	standards	become	more	important	as	the
number	of	people	that	use	a	network	grows.	The	largest	network	of	all	is	of
course	the	Internet,	which	connects	millions	of	people	on	thousands	of
individual	networks	into	a	globe-spanning	internetwork.	The	Internet	has
revolutionized	not	only	networking	and	computing,	but	also	communication,
business,	and	even	society	as	a	whole.	One	of	the	critical	factors	in	the	success
of	the	Internet	has	been	its	development	using	open	standards.

Of	course,	nobody	sat	down	one	day	and	said,	"Hey,	let's	create	the	Internet!"
(No,	not	even	Al	Gore.)	It	began	as	a	small	research	network,	and	was	developed
over	time	concurrently	with	the	technology	set	that	implemented	it:	TCP/IP.	At
first,	a	relatively	small	organization	was	sufficient	for	managing	the
development	of	Internet	standards	and	overseeing	its	activities,	but	as	the
Internet	continued	to	grow,	this	organization	became	inadequate.	Eventually,	a
more	formalized	structure	of	organizations	was	required	in	order	to	manage	the
Internet	development	process	and	other	activities.	This	ensured	the	continued
success	and	growth	of	the	Internet	and	the	TCP/IP	technologies	that	powered	it.

Today,	six	organizations	are	responsible	for	the	development	of	the	Internet's
architecture,	standards	and	policies,	and	related	activities.	They	are	closely
related,	with	certain	organizations	responsible	for	overseeing	others.	These
organizations	perform	many	tasks	and	can	be	somewhat	confusing	to	understand,
since	many	have	similar-sounding	names	and	responsibilities.	Therefore,	I	will
concentrate	mostly	on	their	role	in	the	development	of	Internet	standards,	since
that	is	the	primary	interest	in	this	discussion.

Here	are	brief	descriptions,	rather	simplified,	of	the	key	Internet	standards
organizations:

Internet	Society	(ISOC)	A	professional	society	responsible	for	general,	high-
level	activities	related	to	the	management,	development,	and	promotion	of	the
Internet.	ISOC	has	thousands	of	individual	and	organizational	members	that
engage	in	activities	such	as	research,	education,	public	policy	development,	and



standardization.	It	is	responsible	for	providing	financial	and	administrative
support	to	the	other	organizations	listed	in	this	chapter.	From	the	standpoint	of
standards	development,	ISOC's	key	role	is	its	responsibility	for	oversight	of	the
IAB.

Internet	Architecture	Board	(IAB)	Formerly	the	Internet	Activities	Board,	the
IAB	is	charged	with	the	overall	management	of	the	development	of	Internet
standards.	It	makes	"big-picture"	policy	decisions	related	to	how	Internet
technologies	and	structures	should	work.	This	ensures	that	various
standardization	efforts	are	coordinated	and	consistent	with	overall	development
of	the	Internet.	It	is	responsible	for	publishing	Internet	standards	(RFCs),	as
described	in	the	"Internet	Standards	and	the	Request	for	Comment	(RFC)
Process"	section	at	the	end	of	this	chapter.	It	advises	the	ISOC	and	oversees	the
IETF	and	IRTF;	it	also	acts	as	an	appeals	body	for	complaints	about	the
standardization	activities	performed	by	the	IETF.	The	charter	of	the	IAB	is
described	in	RFC	2850.

Internet	Engineering	Task	Force	(IETF)	The	IETF	focuses	on	issues	related
to	the	development	of	current	Internet	and	TCP/IP	technologies.	It	is	divided	into
a	number	of	working	groups,	each	of	which	is	responsible	for	developing
standards	and	technologies	in	a	particular	area,	such	as	routing	or	security.	Each
area	is	managed	by	an	area	director,	who	serves	on	the	IESG.	The	IETF	is
overseen	directly	by	the	IESG	and	in	turn	by	the	IAB;	it	is	described	in	RFC
3160.

Internet	Engineering	Steering	Group	(IESG)	The	IESG	is	directly	responsible
for	managing	the	IETF	and	the	Internet	standards	development	process.	It
consists	of	each	of	the	IETF	area	directors,	who	make	final	decisions	about	the
approval	of	proposed	standards,	and	works	to	resolve	any	issues	that	may	arise
in	the	standardization	process.	The	IESG	is	technically	considered	part	of	the
IETF	and	is	also	described	in	RFC	3160.

Internet	Research	Task	Force	(IRTF)	Where	the	IETF	is	focused	primarily	on
short-term	development	issues,	the	IRTF	is	responsible	for	longer-term	research
related	to	the	Internet	and	TCP/IP	technologies.	It	is	a	much	smaller	organization
than	the	IETF,	consisting	of	a	set	of	research	groups,	which	are	analogous	to	the
IETF's	working	groups.	The	IRTF	is	overseen	by	the	IRSG	and	IAB.	It	is



described	in	RFC	2014.

Internet	Research	Steering	Group	(IRSG)	The	IRSG	manages	the	IRTF	in	a
similar	way	to	how	the	IESG	manages	the	IETF.	It	consists	of	the	chairs	of	each
of	the	IRTF	research	groups	and	works	with	the	chair	of	the	whole	IRTF	to	make
appropriate	decisions	on	research	activities.	It	is	also	discussed	in	RFC	2014.

Figure	3-1	shows	the	relationship	between	the	Internet	standards	associations.
The	ISOC	oversees	the	IAB,	which	in	turn	directs	the	IETF	and	IRTF.	The	IETF
develops	current	Internet	and	TCP/IP	standards	and	is	headed	by	the	IESG,
which	manages	IETF	working	groups.	The	IRTF	is	the	IETF's	research
counterpart,	containing	research	groups	led	by	the	IRSG.

Figure	3-1.	Internet	standards	organizations	The	ISOC	is	responsible	for	overseeing	the	IAB,	which	in
turn	is	responsible	for	the	two	task	forces,	the	IETF	and	IRTF,	which	are	headed	by	the	IESG	and	IRSG,

respectively.

Of	these	organizations,	the	IETF	is	the	one	that	you	will	most	often	hear
referenced,	because	it	is	directly	responsible	for	the	development	of	the	majority
of	Internet	standards.	Thus,	whenever	I	mention	Internet	standards	development
efforts	in	this	book,	I'm	referring	to	the	IETF	as	the	organization	doing	the	work.
This	is,	of	course,	a	bit	of	an	oversimplification,	since	all	of	these	organizations
play	a	role	in	the	standards	development	process,	as	described	later	in	this
chapter,	in	the	discussion	of	the	RFC	process.



Many	of	these	organizations	are	responsible	for	a	great	deal	more	than	just
standards	development.	This	is	especially	true	of	the	ISOC,	for	which
standardization	is	just	one	of	many	activities.	The	IAB	also	performs	a	number
of	functions	not	strictly	associated	with	standards	development,	including
managing	the	assignment	of	protocol	values	done	by	the	Internet	Assigned
Numbers	Authority	and	acting	as	a	liaison	between	the	Internet	standards
organizations	and	other	standards	bodies.

TIP

KEY	CONCEPT	A	group	of	related	organizations	is	responsible	for	the	development	of	TCP/IP
standards	and	Internet	technologies.	The	Internet	Society	(ISOC)	has	overall	responsibility	for	many
Internet	activities,	including	standards	development.	It	oversees	the	Internet	Architecture	Board	(IAB),
which	makes	high-level	decisions	about	Internet	technology	development.	Most	of	the	actual	work	of
creating	current	Internet	standards	is	performed	by	the	Internet	Engineering	Task	Force	(IETF),	which	is
managed	by	the	Internet	Engineering	Steering	Group	(IESG).	Longer-term	research	is	done	by	the
IETF's	sibling	organization,	the	Internet	Research	Task	Force	(IRTF),	which	is	led	by	the	Internet
Research	Steering	Group	(IRSG).



Internet	Registration	Authorities	and	Registries
(IANA,	ICANN,	APNIC,	ARIN,	LACNIC,	and	RIPE
NCC)
The	success	of	the	global	Internet	relies	on	the	development	of	universally
accepted	standards	for	protocols	and	other	technologies.	Internet	standards
organizations	such	as	the	IETF	are	thus	critically	important.	They	manage	the
standards	development	process,	which	ensures	that	everyone	agrees	on	how	to
create	hardware	and	software	that	will	work	together	to	communicate
worldwide.

While	the	need	to	standardize	protocols	seems	obvious,	there	are	a	couple	of
other	aspects	to	Internet	standardization	that	are	equally	important	but	perhaps
not	quite	as	well	understood:

Parameter	Standardization	Most	protocols	rely	on	the	use	of	parameters	that
control	how	they	function.	As	just	two	of	many,	many	examples,	the	IP	has	a	set
of	numbers	that	define	different	IP	options,	and	the	Address	Resolution	Protocol
(ARP)	has	an	Operation	Code	field	that	can	take	on	many	different	values.	Just
as	it	is	essential	for	devices	to	agree	on	what	protocols	to	use,	so	they	must	also
agree	on	what	parameters	to	use	for	those	protocols,	if	communication	is	to	be
successful.

Global	Resource	Allocation	and	Identifier	Uniqueness	There	are	a	number	of
resources	that	are	used	on	the	Internet	that	must	be	allocated	from	a	fixed	set	of
values.	Uniqueness	in	assignment	is	essential	for	these	values.	The	most	obvious
example	is	that	each	TCP/IP	host	must	have	a	unique	IP	address.	Another
important	example	is	ensuring	that	only	one	organization	uses	a	given	Domain
Name	System	(DNS)	domain	name.	If	two	devices	have	the	same	IP	address	or
two	organizations	try	to	use	the	same	domain	name,	the	results	would	be
unpredictable,	but	almost	certainly	bad!

In	both	of	these	cases,	some	sort	of	centralized	organization	is	required.	We	need
a	group	to	take	responsibility	for	managing	parameters.	It	must	ensure	that
everyone	uses	the	same	parameters,	and	the	same	protocols.	We	also	need	to
coordinate	the	assignment	of	identifiers	such	as	addresses	and	names.	This



ensures	that	the	identifiers	are	created	and	allocated	in	a	way	that	is	acceptable	to
all.	In	the	world	of	the	Internet,	these	are	sometimes	called	management
authorities	or	registration	authorities.

Internet	Centralized	Registration	Authorities
The	organization	originally	responsible	for	managing	parameters	and	identifiers
was	the	Internet	Assigned	Numbers	Authority	(IANA).	Amazingly,	while	the
name	makes	it	sound	like	the	IANA	was	a	huge	bureaucracy,	it	was	effectively
one	man:	Jonathan	B.	(Jon)	Postel,	one	of	the	most	important	pioneers	of
Internet	and	TCP/IP	technologies.	Jon	Postel	ran	IANA	until	his	untimely	death
in	1998.

IANA	was	originally	charged	with	managing	which	IP	address	blocks	had	been
assigned	to	different	companies	and	groups,	and	it	maintained	lists	of
periodically	published	Internet	parameters	such	as	UDP	and	TCP	port	numbers.
It	also	was	in	charge	of	the	registrations	of	DNS	domain	names,	which	were
more	directly	handled	by	the	Internet	Network	Information	Center	(InterNIC),	a
service	managed	by	the	United	States	government.	Network	Solutions,	Inc.
(NSI)	was	later	granted	the	contract	to	manage	the	InterNIC	and	was	eventually
purchased	by	VeriSign.

As	the	Internet	continued	to	grow,	an	effort	commenced	in	the	mid-1990s	to
define	a	new	organization	that	would	be	responsible	for	the	central	registration
of	Internet	addresses	and	names.	This	took	the	form	of	a	new	private,	nonprofit
company	called	the	Internet	Corporation	for	Assigned	Names	and	Numbers
(ICANN).	ICANN	is	officially	charged	with	all	of	the	centralized	registration
tasks	I	have	mentioned	so	far,	including	IP	address	assignment,	DNS	domain
name	assignment,	and	protocol	parameters	management.

In	a	simpler	world,	this	development	would	have	meant	that	ICANN	would	have
replaced	IANA,	which	would	no	longer	exist.	Instead,	ICANN	kept	IANA
around,	leaving	that	organization	in	charge	of	overseeing	IP	address	registration
and	Internet	parameters.	ICANN	is	now	in	charge	of	IANA,	so	both
organizations	are	responsible	for	IP	addresses	and	parameters.	This	often	leads
to	confusion,	and	to	make	things	worse,	it	is	common	to	see	IANA	and	ICANN
mentioned	in	conjunction	as	IANA/ICANN	or	ICANN/IANA.



TIP

KEY	CONCEPT	Internet	registration	authorities	are	centralized	organizations	responsible	for
coordinating	protocol	parameters	and	globally	assigned	resources	such	as	IP	addresses.	The	first	such
organization	was	the	Internet	Assigned	Numbers	Authority	(IANA),	which	was	initially	in	charge	of	IP
address	assignment,	DNS	domain	name	management,	and	protocol	parameters.	Today,	the	Internet
Corporation	for	Assigned	Names	and	Numbers	(ICANN)	has	overall	responsibility	for	these	activities;
the	IANA	operates	under	the	auspices	of	ICANN	and	is	still	responsible	for	IP	address	assignment	and
parameter	coordination.

Modern	Hierarchy	of	Registration	Authorities
In	the	original	"classful"	IP	addressing	scheme,	addresses	were	assigned	to
organizations	directly	by	IANA	in	address	blocks:	Class	A,	Class	B,	and	Class
C.	Today,	a	hierarchical,	classless	addressing	system	called	Classless	Inter-
Domain	Routing	(CIDR)	is	used	instead.	Address	assignment	in	CIDR	involves
the	hierarchical	allocation	of	blocks	of	addresses,	starting	with	large	blocks	that
are	given	to	big	organizations,	which	split	them	to	assign	to	smaller	groups.
(Much	more	detail	on	these	methods	can	be	found	in	Chapters	Chapter	16
through	Chapter	20,	which	cover	IP	addressing.)

IANA,	as	the	organization	in	charge	of	all	IP	addresses,	assigns	the	largest
blocks	of	addresses	to	regional	Internet	registries	(RIRs)	that	are	responsible	for
further	allocation	activities.	Each	RIR	manages	IP	addresses	and	other	Internet
number	resources	(such	as	autonomous	system	numbers)	for	a	particular	region.
The	four	regional	registries	are	as	follows:

Asia	Pacific	Network	Information	Centre	(APNIC)	Covers	the	Asia/Pacific
region.

American	Registry	for	Internet	Numbers	(ARIN)	Manages	North	America,
part	of	the	Caribbean,	and	subequatorial	Africa.
Latin	American	and	Caribbean	Internet	Addresses	Registry	(LACNIC)
Responsible	for	Latin	America	and	part	of	the	Caribbean.

Réseaux	IP	Européens	Network	Coordination	Center	(RIPE	NCC)	Takes
care	of	Europe,	the	Middle	East,	Central	Asia,	and	Africa	north	of	the	equator.

Each	registry	may	assign	address	blocks	to	Internet	service	providers	(ISPs)
directly	or	further	delegate	them	to	national	Internet	registries	or	smaller	local



Internet	registries.	(See	Chapter	16,	which	covers	IP	address	allocation	issues,
for	more	details.)

Name	registration	has	changed	over	the	last	several	years.	It	is	no	longer	part	of
IANA's	responsibilities,	and	ICANN	has	opened	up	the	name	registration
business,	so	it	is	no	longer	the	province	of	a	single	organization	such	as
InterNIC/NSI/VeriSign.	Now,	many	different	accredited	registrars	can	be	used
for	name	registration	in	many	of	the	popular	top-level	domains.	This	is	discussed
in	Chapter	54,	which	covers	DNS	public	registration.	The	complete	list	of
documents	containing	Internet	and	TCP/IP	parameters	can	be	found	on	the
IANA's	website	at	http://www.iana.org/numbers.html.

http://www.iana.org/numbers.html


Internet	Standards	and	the	Request	for
Comment	(RFC)	Process
The	precursors	of	the	modern	Internet	were	diminutive	networks	developed	and
run	by	a	small	group	of	computer	scientists	and	engineers.	These	technologists
knew	that	developing	open,	widely	adopted	standards	would	be	essential	to	the
eventual	growth	of	the	Internet	and	the	TCP/IP	protocol	suite.	But	there	was	no
formalized	standards	development	mechanism	back	then.

Standardization	was	achieved	largely	through	building	consensus	through
discussion	about	new	technologies	and	protocols.	If	someone	had	a	proposal	for
a	new	protocol	or	technology,	or	an	idea	for	a	change	to	an	existing	one,	that
person	would	create	a	memorandum	describing	it	and	circulate	it	to	others.	Since
the	goal	was	to	solicit	comments	on	the	proposal,	these	memos	were	called
Requests	for	Comments	(RFCs).	Not	all	RFCs	described	formalized	standards;
many	were	just	descriptive	documents,	clarifications,	or	contained	miscellaneous
information.

NOTE

The	documents	defining	early	standards	were	originally	called	Internet	Engineering	Notes	(IENs)	before
they	were	called	RFCs.

Today,	of	course,	the	Internet	is	enormous,	and	there	is	an	official	structure	of
Internet	standards	organizations	that	is	responsible	for	creating	new	Internet	and
TCP/IP	standards.	Due	to	the	many	thousands	of	people	who	play	an	active	role
in	developing	Internet	technologies,	an	informal	system	where	anyone	could	just
write	an	RFC	would	lead	to	chaos.	Thus,	Internet	and	TCP/IP	standards	are	still
called	RFCs,	but	the	process	of	creating	one	is	much	more	formal	and	organized
today.

The	IETF	is	the	standards	body	that	is	most	directly	responsible	for	the	creation
of	Internet	standards.	The	IETF's	working	groups,	overseen	by	the	IESG	and	the
IAB,	develop	new	protocols	and	technologies	continuously,	and	these
developments	are	formalized	in	RFCs.

The	office	of	the	RFC	Editor	handles	the	publishing	of	RFCs.	For	nearly	30



years,	beginning	in	1969,	the	RFC	Editor	was	Internet	pioneer	Jon	Postel.	After
his	death	in	1998,	the	function	was	assigned	to	the	networking	division	of	the
USC	Information	Sciences	Institute	(ISI),	where	Jon	Postel	was	once	director.
The	function	of	the	RFC	Editor	is	to	publish	and	archive	RFCs,	and	to	maintain
an	online	repository	of	these	documents	so	that	they	can	be	accessed	and	used	by
the	Internet	community.

The	open	and	free	access	to	RFCs	has	greatly	contributed	to	the	Internet's
success.	Even	today,	if	you	consider	that	standards	bodies	charge	thousands	of
dollars	for	access	to	a	single	standard,	the	ability	to	log	on	and	immediately
retrieve	any	of	the	thousands	of	RFCs	is	noteworthy.

NOTE

An	up-to-date	list	of	RFCs	with	hyperlinks	to	each	document	(except	for	some	of	the	early	ones)	can	be
found	at	the	office	of	the	RFC	Editor.	Go	to	http://www.rfc-editor.org/rfc-index.html.

RFC	Categories
As	I	mentioned,	not	all	RFCs	are	official	Internet	standards.	This	is	important	to
remember.	Each	RFC	has	a	category	or	status	associated	with	it	that	indicates	its
disposition:

Proposed	Standard/Draft	Standard/Standard	These	documents	describe
technologies	that	are	on	the	standards	track.	That	means	they	are	either	already
formally	approved	as	standards,	or	they	are	likely	to	become	standards	in	the
future.	In	many	cases,	the	document	is	just	listed	as	"standards	track,"	rather	than
one	of	those	three	precise	labels.

Best	Current	Practice	A	document	providing	guideline	information	or
recommendations	from	the	IETF	that	is	not	a	formal	standard.

Informational	A	document	that	provides	general	information	or	commentary.

Experimental	A	proposal	for	an	experimental	standard	that	is	not	on	the
standards	track.	In	some	cases,	protocols	or	proposed	changes	to	existing
protocols	that	are	not	accepted	as	formal	standards	are	changed	to	experimental
status.

Historic	Former	standards	that	have	been	made	obsolete.

http://www.rfc-editor.org/rfc-index.html


The	Internet	Standardization	Process
Before	a	proposal	will	be	considered	for	the	Internet	standardization	process,	it
must	be	published	as	an	Internet	Draft	(ID).	The	IETF	publishes	a	set	of
guidelines	that	specify	how	IDs	must	be	created	and	submitted.	Members	of
working	groups	within	the	IETF	who	are	involved	in	specific	projects	write	most
IDs.	However,	because	the	standards	process	is	open,	any	member	of	the	public
can	independently	submit	a	standard	for	review	by	creating	an	ID	for
consideration	by	the	IETF	and	IESG.	IDs	are	usually	revised	many	times	based
on	feedback	from	other	working	groups	within	the	IETF.

If	an	ID	has	been	reviewed	and	is	considered	valuable,	well	understood,	and
stable	(meaning	that	it	is	not	being	rapidly	updated	with	new	revisions),	it	may
become	a	candidate	for	standardization.	The	IESG	can	place	the	ID	on	the
Internet	standards	track	by	changing	its	status	to	proposed	standard.	Documents
of	this	status	are	considered	mostly	complete,	but	may	still	be	revised	based	on
further	review,	testing,	and	experimentation	with	the	technology.

Once	the	specification	is	sufficiently	mature	and	widely	accepted,	it	may	be
elevated	from	proposed	standard	to	draft	standard.	A	key	requirement	for	such
advancement	is	that	the	technology	must	be	demonstrated	to	be	functional	on	at
least	two	independent	and	interoperable	implementations.	This	proves	that	the
standard	has	been	cleared	and	completed,	and	that	at	least	two	different	groups
have	been	able	to	implement	it	compatibly.

A	document	only	reaches	draft	standard	when	the	IETF	community	believes	it	is
technically	mature	and	the	specification	is	complete.	Changes	are	usually	only
made	to	draft	standards	to	correct	problems	encountered	in	testing	or	resolve
new	issues	that	arise.

The	final	station	on	the	Internet	standards	track	is	Internet	standard.	This
designation	is	applied	to	only	very	mature	specifications	that	are	popular	and
that	have	been	widely	implemented.	A	document	that	reaches	this	status	often
describes	a	technology	that	is	or	will	become	universally	implemented,	and	is
assigned	an	STD	(standard)	number.

The	RFC	development	process	can	take	months	or	even	years,	depending	on
how	complex	the	technology	is,	how	many	changes	are	required	to	the
documents,	and	whether	or	not	the	proposal	is	considered	important	or



documents,	and	whether	or	not	the	proposal	is	considered	important	or
interesting.	Many	RFCs	never	make	it	officially	to	Internet	standard	status;	draft
standard	status	is	generally	considered	stable	enough	that	the	technology	is	often
just	implemented	by	companies	when	that	level	is	reached.	Some	RFCs	never
even	make	it	to	draft	standard	status,	and	the	technologies	they	describe	are	still
used	in	products.

Once	an	RFC	is	published,	it	cannot	be	changed.	This	is	a	specific	policy
decision	intended	to	avoid	the	confusion	that	would	otherwise	result	from	the
fact	that	there	were	multiple	versions	of	the	same	RFC.	The	RFC	publication
process	incorporates	a	number	of	steps	at	which	RFC	authors	can	revise	their
documents	and	check	for	editorial	omissions	and	errors.

This	need	for	a	new	document	whenever	a	change	is	made	is	also	why	proposals
are	typically	published	with	a	category	designation	of	standards	track	rather	than
proposed	standard,	draft	standard,	and	Internet	standard.	This	eliminates	the	need
to	publish	a	new	RFC	when	a	proposal	advances	down	the	standards	track
without	requiring	any	real	changes	aside	from	a	different	category	designation.

I've	just	outlined	the	process	for	creating	and	publishing	an	Internet	standard
here.	The	full	details	of	the	standards	process	can	be	found	in	RFC	2026	(where
else	but	an	RFC?).

TIP

KEY	CONCEPT	Internet	standards	are	described	in	a	series	of	documents	called	Requests	for
Comments	(RFCs).	The	RFC	process	describes	how	an	Internet	standard	is	usually	created.	An	idea	for	a
new	technology	or	enhancement	begins	with	the	creation	of	an	Internet	Draft	(ID).	After	review	and
feedback,	if	the	proposal	has	support,	it	may	be	placed	on	the	Internet	standards	track,	and	its	status	will
be	changed	to	proposed	standard.	As	the	fledgling	standard	matures,	its	status	may	advance	to	draft
standard	and	eventually,	Internet	standard.	However,	many	RFCs	are	implemented	in	products	without
reaching	Internet	standard	status.	There	are	also	other	RFCs	that	define	experimental	technologies	or
provide	information	without	describing	official	Internet	standards.



Chapter	4.	A	REVIEW	OF	DATA
REPRESENTATION	AND	THE
MATHEMATICS	OF	COMPUTING

We	use	decimal	(base	10)	numbers	to	represent	numeric	information,	and	we	use
various	alphabets	and	symbol	systems	to	represent	other	types	of	information.	In
contrast,	computers	understand	only	one	basic	type	of	information:	ones	and
zeros,	which	themselves	are	representative	of	either	an	on	or	off	electrical	state
within	the	hardware	of	the	device.	These	ones	and	zeros	are	combined	in	various
ways	to	form	more	common	data	elements	that	we	are	used	to	finding	in
computers:	regular	numbers,	characters,	and	files.	However,	all	of	these	are
really	only	abstractions;	the	ones	and	zeros	are	always	underneath	whatever
logical	structures	are	used	within	the	computer.

This	same	basic	foundation	of	ones	and	zeros	applies	to	networking	as	well.
Even	though	most	of	the	information	in	a	network	is	exchanged	in	a	logical
fashion	between	higher-layer	protocols,	ones	and	zeros	sent	over	the	network
medium	underlie	all	networking	structures.	Understanding	how	data	is
represented	and	manipulated	in	computer	systems	is	important	because	it	will
help	you	comprehend	many	of	the	different	technologies.	Computer	data
representation	and	mathematics	are	important	for	explaining	how	low-level
physical	layer	modulation	and	encoding	techniques	work.	Those	two	elements
come	into	play	even	for	higher-level	concepts,	such	as	how	IP	addresses	are	set
up	and	used	on	the	Internet.

In	this	chapter,	I	provide	some	general	background	information	on	how
numerical	data	is	represented,	stored,	and	manipulated	within	computers	and
networking	hardware.	I	begin	with	a	description	of	binary	numbers	and	the



different	terms	used	to	refer	to	collections	of	binary	information	of	various	sizes.
I	describe	the	different	types	of	numbering	systems	used	in	computer	systems,
such	as	octal,	decimal,	and	hexadecimal,	and	how	data	can	be	converted	between
these	different	types.	I	explain	how	arithmetic	is	performed	on	binary	and
hexadecimal	numbers.	I	then	discuss	boolean	logic	and	how	logical	functions	are
used	to	manipulate	binary	data.

These	explanations	then	form	the	basis	for	a	discussion	of	how	logical	functions
are	used	for	setting,	clearing,	inverting,	and	masking	bits.	These	operations	are
employed	extensively	in	certain	networking	technologies	and	protocols.	Masking
operations	especially	are	often	used	in	IP	addressing,	so	even	though	this	section
seems	rather	low-level,	it	is	quite	relevant	to	the	world	of	TCP/IP.

NOTE

Needless	to	say,	you	may	know	most	or	all	of	the	information	in	this	chapter,	so	feel	free	to	skip	(or	just
skim)	those	topics	that	you	already	know.	I	provide	this	background	detail	for	the	sake	of	those	new	to
computing	or	those	needing	a	refresher.	However,	even	those	of	you	who	know	what	a	bit	and	a	byte	are,
and	know	the	difference	between	binary	and	decimal	numbers,	may	find	the	discussion	of	bit	masking
worth	perusing.

Binary	Information	and	Representation:	Bits,
Bytes,	Nibbles,	Octets,	and	Characters
The	essence	of	computing	is	information.	Computer	hardware	and	software	are
designed	to	allow	the	input,	storage,	transfer,	and	expression	of	various	types	of
information.	One	primary	way	by	which	types	of	information	are	differentiated
is	as	either	analog	or	digital.

Consider,	for	example,	a	light	switch	and	a	dimmer.	A	light	switch	allows	a	light
to	be	turned	on	or	off;	there	are	no	in-between	states.	These	discrete	states,	on	or
off,	represent	digital	information.	In	contrast,	a	dimmer	allows	you	to	fine-tune
the	light	output	from	fully	on	to	fully	off,	with	an	infinite	number	of	intermediate
states	in	between;	that's	analog	information.

Binary	Information
Modern	digital	computers	store	information	digitally.	In	the	same	way	a	light



bulb	has	only	an	on	or	off	value,	so	do	the	components	that	store	and	manipulate
information	within	computers.	Millions	of	transistors	compose	computer
processors	and	other	circuits,	and	are,	in	highly	simplified	form,	digital	switches.
Thus,	all	information	in	computers	is	manipulated	as	collections	of	information
pieces	that	can	be	only	on	or	off,	like	a	switch.

Since	there	are	only	two	possible	states—on	or	off—this	is	called	binary
information	(the	prefix	bi	means	two).	There	are	several	advantages	to	using
binary	representation	for	information.	It	is	a	simple	way	to	represent	many	types
of	information,	whether	a	light	switch	is	on	or	off	or	a	file	has	been	successfully
copied.	It	is	also	possible	to	combine	binary	values	to	represent	more	complex
information.

Perhaps	most	important,	binary	information	is	unambiguous:	On	is	always	on,
and	off	is	always	off.	This	property	is	important	because	it	allows	devices	to
detect	clearly	the	value	of	a	particular	piece	of	information.	Computers	like
black	and	white;	they	are	not	particularly	good	at	dealing	with	shades	of	gray.
(This	becomes	especially	important	in	the	field	of	networking,	in	which
transmission	of	data	can	cause	signals	to	become	polluted	by	noise.)

The	on	or	off	condition	of	a	binary	value	can	be	expressed	in	a	number	of
different	ways.	In	logical	expressions,	we	may	consider	the	value	to	be	true	or
false.	When	representing	mathematical	values,	the	most	common	representation
is	one	(on)	or	zero	(off).

Binary	Information	Representation	and	Groups
The	fundamental	building	block	of	computer	information	is	the	bit	(a	contraction
of	binary	digit).	Every	bit	can	be	either	0	or	1.	Making	the	value	of	a	bit	1	is
commonly	called	setting	the	bit;	changing	it	to	0	is	resetting	or	clearing	it.

Of	course,	bits	represent	only	a	very	small	amount	of	information:	a	single	fact
or	value.	We	must	make	collections	of	these	bits	so	that	we	can	use	them	to	store
large	amounts	of	information	and	more	complex	data	types.	The	most	common
grouping	is	to	take	8	bits	and	reference	them	as	a	single	unit.	A	collection	of	8
bits	is	technically	called	an	octet,	but	is	more	commonly	called	a	byte	(more	on
that	in	a	moment).



Byte	is	a	jocular	play	on	the	term	bit.	Over	time,	various	sizes	of	bit	collections
have	been	defined.	Some	geek	comedian	decided	that	if	8	bits	made	a	byte,	then
4	bits	must	be	a	nybble	(or	"nibble").	Hilarious,	no?	Larger	collections	have	also
been	defined	and	given	various	names.	Table	4-1	summarizes	the	most	common
representations	of	groups	of	bits	and	the	terms	used	for	them;	their	relative	sizes
are	also	shown	graphically	in	Figure	4-1.

Table	4-1.	Binary	Information	Group	Representations	and	Terms

Number	of	Bits Common	Representation	Terms

1 Bit/Digit/Flag

4 Nybble/Nibble

8 Byte/Octet/Character

16 Double	Byte/Word

32 Double	Word/Long	Word

64 Very	Long	Word

A	few	of	the	new	terms	that	appear	in	Table	4-1	are	worth	special	mention.	A	bit
is	also	sometimes	called	a	flag;	this	term	is	most	often	heard	when	a	bit	is	used
by	itself	to	represent	a	particular	information	state.	For	example,	a	computer
might	use	a	Changed	flag	to	represent	whether	a	particular	file	has	been
modified;	this	is	an	analogy	to	a	flag	either	being	raised	or	lowered	to	indicate	a
condition.	These	flags	are	often	seen	in	networking	message	formats.

The	term	character	is	also	used	to	express	a	set	of	8	bits.	This	use	comes	from
the	fact	that	computers	often	store	alphanumeric	characters,	such	as	letters	and
numbers,	one	to	a	byte.	The	16-bit	word	is	used	fairly	often,	but	not	nearly	as
much	as	byte.	The	larger	collections	of	bits,	such	as	double	word	and	so	on,	are
not	often	encountered	in	everyday	parlance;	they	are	used	to	represent	chunks	of
data	in	technical	fields	such	as	hardware	design	or	programming.



Figure	4-1.	Binary	Information	Representations	and	Terms	This	diagram	shows	the	relative	sizes	of	the
most	commonly	sized	collections	of	binary	information.

Notice	that	the	number	of	bits	used	for	each	of	these	terms	is	a	power	of	two.	As
you	will	see	later	in	this	section,	this	occurs	because	when	bits	come	in	sets	that
are	a	power	of	two	in	size,	they	are	easier	to	represent	and	manipulate.

TIP

KEY	CONCEPT	Computers	store	all	information	in	binary	digital	form.	This	means	that	all	data—
whether	it's	text,	photographs,	audio,	or	whatever	else—is	composed	of	only	collections	of	ones	and
zeros.	The	fundamental	building	block	of	digital	information	is	the	binary	digit	or	bit,	which	represents	a
single	zero	or	one	state.	To	represent	larger	amounts	of	information,	bits	can	be	collected	into	groups	of
4,	8,	16,	32,	or	64,	called	nybbles,	bytes,	words,	long	words,	and	very	long	words,	respectively.

Byte	Versus	Octet
There	has	been	some	disagreement,	and	even	controversy,	surrounding	the	use	of
the	words	byte	and	octet.	The	word	byte	has	traditionally	been	the	most
commonly	used	term	for	a	set	of	8	bits,	especially	in	North	America.	However,	it
is	technically	not	the	correct	term.

A	byte	is,	formally,	the	smallest	unit	of	data	that	can	be	read	from	or	written	to	at
one	time	in	a	computer	system.	In	almost	all	cases	today,	that	is	indeed	8	bits,
but	there	have	been	some	systems	in	which	a	byte	was	not	8	bits.	Some	older	36-
bit	computers	used	9-bit	bytes,	and	others	had	byte	sizes	of	6	or	7	bits,	or	even
variable-sized	bytes.	For	this	reason,	many	people,	especially	techie



professionals,	prefer	the	term	octet,	which	clearly	and	unambiguously	implies	8.
This	term	is	much	more	common	outside	North	America.

NOTE

This	matter	of	octets	and	bytes	is	the	kind	of	tempest	in	a	teapot	that	computer	people	love	so	much.	The
bottom	line	in	modern	computer	systems,	however,	is	that	an	octet	is	a	byte	and	a	byte	is	an	octet,	and
the	terms	can	generally	be	used	interchangeably	without	too	much	danger.	You	will	more	often	see
octets	used	in	technical	standards.	In	this	book,	I	use	the	term	bytes	because	it	is	the	term	that	most
people	are	familiar	with.

TIP

KEY	CONCEPT	Formally,	an	octet	is	the	correct	term	for	exactly	8	bits,	while	a	byte	is	the	smallest
number	of	bits	that	can	be	accessed	in	a	computer	system,	which	may	or	may	not	equal	8.	In	practice,
modern	computers	use	8-bit	bytes,	and	the	terms	are	used	interchangeably	(with	byte	being	more
common	in	North	America,	and	octet	often	being	preferred	in	Europe).



Decimal,	Binary,	Octal,	and	Hexadecimal
Numbers
The	numbers	we	are	accustomed	to	using	in	everyday	life	are	called	decimal
numbers.	The	word	decimal	refers	to	the	number	10.	Every	digit	can	take	on	one
of	ten	values:	0	to	9.	Arithmetic	performed	on	decimal	numbers	is	also	called
base	10	mathematics,	because	of	this	orientation	around	the	number	10.	(Why	is
the	number	10	the	foundation	of	our	normal	mathematical	system?	Hold	both
hands	up	and	count!)

Computer	systems,	however,	don't	have	fingers	or	toes;	they	deal	only	with
binary	numbers,	which	have	just	two	values.	Each	bit	can	represent	only	a	0	or	a
1.	A	single	0	or	1	value	is	sufficient	for	encoding	a	single	fact,	such	as	whether
something	is	true	or	false,	or	whether	the	answer	is	yes	or	no.	But	a	bit	is	not
enough	to	hold	more	complex	information,	such	as	your	bank	account	balance,	a
text	document,	or	a	picture	of	the	Yellowstone	Canyon.

Binary	Numbers	and	Their	Decimal	Equivalents
For	this	reason,	larger	collections	of	bits	have	been	created	by	computer
scientists,	such	as	bytes	(octets),	words,	and	so	forth.	When	individual	bits	are
collected	into	sets	in	this	way,	they	can	represent	larger	integers,	called	binary
numbers.	Since	there	are	only	two	possible	values	for	each	digit	in	a	binary
number	(0	or	1),	binary	numbers	are	also	called	base	2	numbers.

The	key	to	understanding	binary	numbers	is	to	realize	that	they	are	exactly	the
same	as	decimal	numbers,	except	that	each	digit	has	a	value	in	the	range	of	0	to
1,	instead	of	0	to	9.	For	example,	when	you	count	in	decimals,	you	go	up	to	9	in
the	ones	place,	and	then	you	need	a	second	place	for	tens.	If	you	go	above	99,
you	need	a	third	place	for	hundreds.	Each	additional	place	added	on	the	left	is	a
higher	power	of	ten.

Binary	is	the	same,	except	the	limit	for	each	place	is	1	instead	of	9.	So,	in	binary,
you	go	up	to	1	in	the	ones	place,	and	then	need	a	second	place	for	twos	(instead
of	tens).	If	you	go	above	3,	you	need	a	third	place	for	fours	(instead	of
hundreds).	Each	added	digit	is	a	subsequent	higher	power	of	two,	rather	than	ten.

Thus,	where	counting	in	decimal	goes	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,



Thus,	where	counting	in	decimal	goes	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,
and	so	on,	counting	in	binary	goes	0,	1,	10,	11,	100,	101,	110,	111,	1000,	1001,
1010,	1011,	1100,	1101.	For	example,	the	number	13	in	decimal	is	the	same	as
1101	in	binary.	How?	Well,	in	decimal,	we	have	a	3	in	the	ones	place,	plus	a	1	in
the	tens	place,	which	has	a	value	of	10.	This	is	3	+	10,	or	13.	In	binary,	we	start
with	a	1	in	the	ones	place,	add	a	1	in	the	fours	place	(for	a	value	of	4),	plus	a	1	in
the	eights	place,	for	a	value	of	8.	This	is	1	+	4	+	8,	or	13.

To	take	a	more	complex	example,	211	in	decimal	is	11010011	in	binary.
Table	4-2	shows	how	the	two	are	equivalent,	by	adding	the	values	for	each
binary	digit	place	where	there	is	a	1.	Read	it	from	left	to	right,	going	top	to
bottom.	Starting	in	the	leftmost	column,	you	can	see	that	the	example	number
has	a	1	in	the	128s	place.	So	you	start	with	a	sum	of	128.	In	the	next	column
there	is	a	1	in	the	64s	place,	so	you	add	64	for	a	running	sum	of	192.	But	in	the
32s	place,	the	binary	digit	value	is	0,	so	you	don't	add	32	to	the	sum.	If	you
continue	down	to	the	ones	place,	you'll	get	the	decimal	equivalent	of	the	binary
number.

Table	4-2.	Binary	and	Decimal	Number	Equivalents

Binary	Number 1 1 0 1 0 0 1 1

Power	of	Two 27 26 25 24 23 22 21 20

Value	of	Digit	Place 128 64 32 16 8 4 2 1

Value	for	This	Number 128 64 0 16 0 0 2 1

Running	Sum	(from	Left	to
Right)

128 128+64	=
192

192 192+16	=
208

208 208 208+2	=
210

210+1	=
211

As	you	can	see,	a	binary	number	with	N	digits	can	hold	up	to	2N	values.	So	a
byte	with	8	bits	can	hold	28,	or	256	different	values,	which	are	numbered	from	0
to	255.	A	16-bit	word	can	hold	216,	or	65,536	values.

Making	Binary	Numbers	Easier	to	Use	by
Grouping	Bits
One	problem	with	binary	numbers	is	that	although	computers	love	them,	people



have	trouble	with	them	because	they	quickly	become	long	and	cumbersome	to
deal	with.	For	example,	1,000,000	in	the	decimal	system	is
11110100001001000000	in	the	binary	system.	To	make	binary	numbers	easier	to
work	with,	two	different	shorthand	notations	have	been	defined.	In	both	of	these,
instead	of	working	with	each	bit	individually,	the	numbers	are	collected	into
subgroups,	each	of	which	is	assigned	a	single	digit	in	an	alternative	numbering
system.

Octal	Numbers
Consider	the	binary	number	11110100,	which	is	244	in	decimal.	Instead	of
looking	at	each	bit	individually,	chop	them	into	groups	of	three,	starting	from	the
right:	11110100	becomes	(11)(110)(100).	Each	of	those	groups	has	three	bits,	so
each	can	have	23	values:	from	0	to	7.	In	this	case,	(11)(110)(100)	=	(3)(6)(4),	or
364	in	the	octal	or	base	8	numbering	system	(see	Figure	4-2).	As	with	binary,
octal	numbers	are	the	same	as	decimal	numbers,	except	that	they	use	base	8
instead	of	base	10.	So	364	in	octal	is	just	3	x	64	+	6	x	8	+	4,	or	244.	As	you	can
see,	octal	is	a	lot	less	cumbersome	than	binary,	especially	when	dealing	with
larger	numbers.	In	the	decimal	system,	1,000,000	is	3641100	in	octal.	Compare
that	with	11110100001001000000	in	binary.

Figure	4-2.	Binary,	octal,	and	hexadecimal	number	representations	A	binary	number	can	be	represented
in	octal	form	by	grouping	its	bits	into	sets	of	three,	or	in	hexadecimal	by	using	sets	of	four	bits.	These
base	8	and	base	16	numbers	are	far	shorter	than	binary	numbers,	and	hence	much	easier	to	work	with.

Hexadecimal	Numbers
Octal	numbers	were	at	one	time	quite	commonly	used,	but	are	much	less	popular
today.	The	problem	with	octal	is	that	it	divides	bits	into	groups	of	three,	but	sets
of	binary	numbers	typically	use	a	number	of	bits	that	is	a	multiple	of	four.



Hexadecimal	or	the	base	16	numbering	system	is	an	alternative	method	that
works	like	octal,	but	uses	groups	of	four.	Since	there	are	4	bits	in	each	group,
each	can	have	one	of	16	values.	Hexadecimal	is	commonly	called	hex	for	short.

TIP

KEY	CONCEPT	Regular	numbers	are	called	decimal	numbers	because	they	are	built	upon	the	base	10
system	of	mathematics.	Computers	use	collections	of	one	or	zero	bits	called	binary	numbers,	which	can
be	treated	just	like	regular	numbers	except	that	each	digit	can	only	be	0	or	1	instead	of	0	to	9.	Bits	in	a
binary	number	can	be	expressed	as	octal	numbers	by	grouping	three	bits	into	an	octal	digit	that	ranges
from	0	to	7,	or	taking	sets	of	four	bits	to	create	a	single	hexadecimal	digit	from	0	to	15.	To	represent	the
values	10	through	15	in	hexadecimal	numbers	using	a	single	character,	you	use	the	letters	A	through	F.

NOTE

The	term	hexadecimal	was	not	the	first	name	used	for	base	16	numbers	in	computing.	Originally,	these
were	called	sexadecimal	numbers.	This	is	actually	the	correct	term,	since	Latin	prefixes	(sexa-)	are
normally	used	for	numbers,	not	Greek	ones	(hexa-).	However,	in	the	early	1950s,	IBM	decided	that	the
word	sexadecimal	was	just	a	little	too	provocative	for	their	tastes,	so	they	changed	it	to	hexadecimal.
IBM	being	IBM—especially	back	then—meant	everyone	else	followed	suit.

Now	back	to	the	previous	example:	11110100	in	binary,	244	in	decimal.	Next
you	divide	this	into	groups	of	four	to	get	(1111)(0100).	The	binary	value	1111	is
15,	and	0100	is	4,	so	you	have	(15)(4).	You	need	to	be	able	to	represent	15,	but
you	only	have	ten	numerals.	To	solve	this	problem,	the	values	10,	11,	12,	13,	14,
or	15	in	hexadecimal	are	represented	by	the	letters	A,	B,	C,	D,	E,	and	F,
respectively.	So	11110100	in	binary	is	(15)(4),	or	F4	in	hexadecimal	(also	shown
in	Figure	4-2).

Hexadecimal	numbers	are	in	some	ways	even	less	intuitive	than	binary	ones	(it
takes	some	practice	to	get	used	to	thinking	of	letters	as	numbers).	Still,
hexadecimal	is	particularly	useful	as	a	way	to	compactly	represent	binary
information.	Where	1,000,000	in	decimal	numbers	is	11110100001001000000	in
binary,	it	is	only	F4240	in	hexadecimal	numbers—even	shorter	than	the	decimal
number,	since	16	is	larger	than	10.	Also,	a	single	byte	has	8	bits,	so	it	can	be
represented	using	only	two	hexadecimal	digits.	This	is	why	hexadecimal
numbers	are	widely	used	in	computing	and	networking.	For	example,	you	will
often	see	hexadecimal	numbers	used	as	network	addresses	or	representing
different	types	of	information	in	frame	or	packet	formats.



NOTE

If	you	see	a	number	that	has	a	letter	from	A	to	F	in	it,	you	know	it	is	a	hex	number,	but	not	all	hex
numbers	use	these	letters.	Hex	numbers	are	usually	displayed	in	a	special	notation,	to	avoid	confusing
them	with	decimal	numbers.	That	notation	is	either	a	prefix	of	0x	or	a	suffix	of	h	(sometimes	both).
Thus,	the	number	54	is	just	54,	but	0x54	is	54	in	hexadecimal	numbers,	which	is	5	x	16	+	4,	or	84	in
decimal	numbers.	Be	sure	to	watch	for	these	representations.



Decimal,	Binary,	Octal,	and	Hexadecimal
Number	Conversion
Because	people	and	computers	speak	different	number	languages,	it	is	often
necessary	to	convert	numbers	from	one	system	to	another.	The	easiest	way	to
perform	the	conversion	is	with	a	scientific	calculator.	However,	there	will	be
cases	for	which	you	need	to	perform	the	conversion	by	hand.

NOTE

If	you	don't	have	a	scientific	calculator,	the	Windows	Calculator	program	is	a	reasonable	facsimile.	Open
it,	go	to	the	View	menu,	and	change	the	setting	from	Standard	to	Scientific.	Click	the	button	next	to	a
numbering	system.	Then	enter	a	number,	and	if	you	click	a	button	next	to	a	different	numbering	type,	the
number	will	be	converted	for	you.	There	are	similar	tools	for	UNIX	and	Mac	OS.

Binary,	Octal,	and	Hexadecimal	Conversions
To	convert	between	binary,	octal,	and	hex,	remember	that	each	octal	digit	is
three	binary	digits,	and	each	hexadecimal	digit	is	four	binary	digits.	To	perform
the	conversion,	group	the	digits,	and	convert	each	group	into	an	octal	or	hex
digit.	To	convert	from	hex	or	octal	to	binary,	convert	each	hex	or	octal	digit	into
a	set	of	bits.	Table	4-3	shows	the	conversions	from	each	of	the	octal	and
hexadecimal	single-digit	values	to	binary	(with	decimal	digits	thrown	in	for
convenience).

Table	4-3.	Binary,	Octal,	and	Hexadecimal	Digit	Conversion

Binary	Digits Octal	Digit Hexadecimal	Digit Decimal	Digit

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5



0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 - 8 8

1001 - 9 9

1010 - A -

1011 - B -

1100 - C -

1101 - D -

1110 - E -

1111 - F -

Here	are	some	examples:

Binary	to	Octal	Start	with	the	binary	number	110101001010.	Divide	this	into
groups	of	three:	(110)(101)(001)(010),	and	then	convert	each	group	to	a	number
from	0	to	7	(which	is	easy	to	do	in	your	head	if	you	practice	a	bit).	The	result	is
(6)(5)(1)(2),	or	6512	octal.

Hexadecimal	to	Binary	Start	with	the	hex	number	0x4D1B.	Convert	each	digit
as	given	in	Table	4-3.	Now	you	have	0x4D1B	=	(0100)(1101)(0001)(1011),	or
0100110100011011.

Conversion	from	Binary,	Octal,	or	Hexadecimal
to	Decimal
Conversions	to	and	from	decimal	are	more	complicated,	because	2,	8,	and	16	are
powers	of	two	but	ten	is	not.	Of	the	two	directions,	conversions	to	decimal	are
easier:	You	take	the	value	of	each	binary,	octal,	or	hexadecimal	digit,	convert	it
to	decimal,	and	then	multiply	it	by	the	power	of	2,	8,	or	16	represented	by	the
digit's	place	in	the	number.	Then	you	add	all	the	numbers	together.	I	did	this
with	the	example	of	the	decimal	number	211	(see	Table	4-2).

Table	4-4	shows	the	hexadecimal	number	0x830C	converted	to	decimal	(octal



uses	a	similar	process).	Read	the	table	from	left	to	right,	top	to	bottom;	each
digit's	value	is	multiplied	by	the	appropriate	power	of	16	and	added	together,
yielding	the	decimal	result	of	33,548.

Table	4-4.	Hexadecimal	to	Decimal	Number	Conversion

Hexadecimal	Number 8 3 0 C

Decimal	Value	of	Digit 8 3 0 12

Power	of	16 163 162 161 160

Value	of	Digit	Place 4096 256 16 1

Value	for	This	Number 8	x	4096	=
32768

3	x	256	=	768 0	x	16	=
0

12	x	1	=	12

Running	Sum	(from	left	to
right)

32768 32768+768	=
33536

33536 33536+12	=
33548

Conversion	from	Decimal	to	Binary,	Octal,	or
Hexadecimal
Conversions	from	decimal	requires	you	to	perform	the	opposite	of	the	previous
calculation:	You	divide	and	subtract	instead	of	multiply	and	add.

Conversion	from	Decimal	to	Binary
The	easiest	of	the	three	conversions	from	decimal	is	to	binary.	Because	the
maximum	value	of	each	digit	is	1,	there	is	no	dividing,	just	subtraction.	To
perform	the	conversion,	do	the	following:

1.	 Find	the	largest	power	of	two	that	is	smaller	than	the	number.

2.	 Put	a	1	in	the	digit	place	for	that	power	of	two	and	subtract	that	power	of
two	from	the	decimal	number.

3.	 Repeat	steps	1	and	2	until	you	are	reduced	to	zero.

This	is	easier	to	explain	using	an	example	and	a	table.	Let's	convert	the	decimal
number	689,	as	shown	in	Table	4-5.	Again,	read	the	table	starting	from	the	upper
left,	and	going	down	and	then	across.	You	start	by	noticing	that	1024	is	not	less



than	or	equal	to	689,	so	the	1024s	place	gets	a	0.	In	the	next	place,	512	is	less
than	689,	so	you	make	the	512s	place	a	1	and	subtract	512	from	689	to	leave
177.	The	calculation	continues,	before	it	eventually	shows	that	the	689	decimal
is	1010110001	binary.

Table	4-5.	Decimal	to	Binary	Number	Conversion

Decimal	Value	Before
Considering	This	Digit
Place

689 689 177 177 49 49 17 1 1 1 1

Power	of	Two 210 29 28 27 26 25 24 23 22 21 20

Value	of	Digit	Place 1024 512 256 128 64 32 16 8 4 2 1

Value	of	Digit	Place
Equal	to	or	Less	Than
Current	Decimal	Number?

No Yes No Yes No Yes Yes No No No Yes

Subtraction	Step Skip 689	-
512	=
177

Skip 177
-
128
=	49

Skip 49	-
32
=
17

17
-
16
=	1

Skip Skip Skip 1	-
1	=
0

Binary	Digits 0 1 0 1 0 1 1 0 0 0 1

Conversion	from	Decimal	to	Octal	or	Hexadecimal
The	process	for	octal	and	hexadecimal	is	almost	the	same,	except	that	you	must
divide	by	powers	of	two	instead	of	just	subtracting,	as	shown	here:

1.	 Start	with	the	highest	power	of	16	(hexadecimal)	or	8	(octal)	that	is	smaller
than	the	number.

2.	 Divide	the	decimal	number	by	that	power,	keeping	only	the	integer	part	of
the	result.

3.	 Keep	the	remainder	after	the	division	is	done.

4.	 Repeat	steps	1	through	3	until	you	get	to	the	ones	place,	and	then	enter
whatever	is	left	after	the	higher	digits	were	done.

Table	4-6	shows	the	same	example	as	Table	4-5,	but	goes	from	decimal	to
hexadecimal	instead	of	decimal	to	binary:	689	in	decimal	is	0x2B1	in



hexadecimal.

Table	4-6.	Decimal	to	Hexadecimal	Number	Conversion

Decimal	Value	Before	Considering
This	Digit	Place

689 689 177 1

Power	of	16 163 162 161 160

Value	of	Digit	Place 4096 256 16 1

Value	of	Digit	Place	Smaller	Than
Current	Decimal	Number?

No Yes No n/a

Division	Step Skip 689/256	=	2.691
(use	2	for	this	digit)

177/16	=	11.0625
(use	B	for	this	digit)

n/a

Remainder	After	Division Skip 177 1 n/a

Hexadecimal	Digits 0 2 B 1



Binary,	Octal,	and	Hexadecimal	Arithmetic
We	use	arithmetic	every	day	to	give	us	the	information	we	need	to	make
decisions.	Like	us,	computers	perform	arithmetic	operations	constantly	as	part	of
their	normal	operation,	except	that	computers	use	binary	numbers	to	perform
their	calculations	incredibly	fast.

Binary,	octal,	and	hexadecimal	numbers	are	essentially	different	representations
of	numbers,	and	as	such	they	are	not	really	much	different	than	decimal
numbers;	they	simply	have	a	different	number	of	values	per	digit.	In	a	similar
vein,	doing	arithmetic	with	binary,	octal,	or	hexadecimal	numbers	is	not	that
different	from	the	equivalent	operations	with	decimal	numbers.	You	just	have	to
keep	in	mind	that	you	are	working	with	powers	of	2,	8,	or	16,	instead	of	10,
which	isn't	always	easy.

As	with	number	system	conversions,	calculators	are	usually	the	way	to	go	if	you
need	to	do	math	with	binary,	octal,	or	hexadecimal	numbers.	If	your	calculator
does	math	with	only	decimal	numbers,	you	can	use	the	trick	of	converting	the
numbers	to	decimal,	and	then	performing	the	operation	and	converting	the	result.
However,	you	can	fairly	easily	do	the	same	addition,	subtraction,	multiplication,
and	division	on	binary,	octal,	or	hexadecimal	numbers	that	you	would	with
decimal	numbers	by	using	the	Windows	Calculator	program.

Computers	often	need	to	perform	multiplication	and	division	operations	on
binary	numbers,	but	people	working	with	computers	don't	often	perform	these
operations.	Addition	and	subtraction	are	much	more	common	operations
(especially	addition),	and	they	have	the	added	bonus	of	being	much	easier	to
explain.	You	probably	won't	need	to	do	this	type	of	arithmetic	that	often,	but	it's
good	to	understand	it.	I'll	provide	a	couple	of	examples	to	give	you	the	general
idea.

Binary	Arithmetic
Let's	start	with	binary.	Adding	binary	numbers	is	the	same	as	adding	decimal
ones,	except	that	you	end	up	doing	a	lot	of	the	carrying	of	ones	since	there	are	so
few	values	allowed	per	digit.	Table	4-7	shows	an	example,	with	one	digit	in	each
column;	read	it	from	right	to	left	and	top	to	bottom,	just	as	you	would	usually	do



with	a	manual	addition.	You	start	by	adding	the	1	in	the	ones	place	from	the	first
number	with	the	1	in	that	place	from	the	second	number,	thereby	yielding	a	raw
digit	sum	of	2.	This	means	the	result	for	the	ones	digit	is	1,	and	you	carry	a	1	to
the	twos	place.	You	continue	with	this	process	until	you	have	added	all	the
digits.

Table	4-7.	Binary	Addition

Carry 	 1 1 	 	 1 1 —

First	Binary	Number 1 0 1 1 0 0 1 1

Second	Binary	Number 0 0 1 1 1 0 0 1

Raw	Digit	Sum 1 1 3 2 1 1 2 2

Result 1 1 1 0 1 1 0 0

Carry	to	Next	Higher	Digit 	 	 1 1 	 	 1 1

Octal	and	Hexadecimal	Arithmetic
Octal	and	hexadecimal	are	pretty	much	the	same,	except	that	you	carry	the
number	if	the	sum	in	a	particular	digit	exceeds	either	8	or	16,	respectively.
Hexadecimal	is	more	common,	and	more	interesting,	so	let's	examine	how	to	add
two	hexadecimal	numbers.	While	performing	the	operation,	you	will	need	to
convert	single-digit	hexadecimal	numbers	to	decimal	and	back	again,	but	this
isn't	too	difficult.

The	example	shown	in	Table	4-8	should	be	read	from	right	to	left.	You	start	by
adding	8	(decimal	8)	to	A	(decimal	10)	in	the	ones	place.	This	yields	a	raw	sum
of	18,	from	which	you	carry	16	as	a	1	to	the	16s	place	and	leave	a	result	of	2.
You	add	this	1	to	the	D	(value	13)	and	E	(14	value)	of	the	16s	place.	This	is	a
total	of	28,	leaving	12	(C	in	hexadecimal),	and	you	carry	a	1	to	the	256s	place.
This	continues	until	you	are	left	with	a	sum	of	6DC2h.

Table	4-8.	Hexadecimal	Addition

Carry 	 1 1 	

First	Hex	Number 2 C D 8



First	Hex	Number 2 C D 8

Second	Hex	Number 4 0 E A

Raw	Digit	Sum 2+4	=	6 1+12+0	=	13 1+13+14	=	28 8+10	=	18

Result 6 D C 2

Carry	to	Next	Higher	Digit 	 	 1 1



Boolean	Logic	and	Logical	Functions
You'll	recall	that	every	bit	in	a	computer	system	can	hold	a	value	of	either	1	or	0,
representing	the	basic	on	or	off	states	inherent	in	a	binary	digital	system,	and	that
you	can	interpret	these	on	or	off	values	as	true	or	false	states,	respectively.	These
values	can	represent	various	logical	conditions	within	a	system,	and	you	can	use
various	logical	operations	to	manipulate	and	combine	these	values	to	represent
more	complex	logical	states.

British	mathematician	George	Boole	(1815–1864)	was	one	of	the	pioneering
users	of	binary	values	in	logical	equations,	and	in	recognition	of	his	contribution
we	call	this	boolean	logic.

Boolean	Logical	Functions
Boolean	logic	defines	a	number	of	boolean	logical	functions,	which	are
sometimes	called	operators.	Each	of	these	functions	uses	a	logical	algorithm	to
compute	an	output	value	based	on	the	value	of	one	or	more	inputs.	The
algorithm	determines	when	the	output	is	true,	based	on	the	combination	of	true
and	false	values	the	inputs	take.	Thus,	the	table	that	shows	the	inputs	and	outputs
for	a	logical	function	is	called	a	truth	table.	Each	of	the	logical	functions	is
analogous	to	a	real-world	logical	operation	that	you	can	use	to	define	various
logical	situations	(as	you	will	soon	see).

NOT
Consider	the	simplest	function:	NOT.	As	you	might	expect,	this	is	a	just	a
negation;	the	output	is	the	opposite	of	the	input.	The	NOT	function	takes	only
one	input,	so	it	is	called	a	unary	function	or	operator.	The	truth	table	for	NOT	is
shown	in	Table	4-9.	As	you	can	see,	the	output	is	true	when	the	input	is	false,
and	vice	versa.

Table	4-9.	NOT	Operator	Truth	Table

Input Output

False True

True False



True False

The	NOT	function	logically	represents	the	opposite	of	a	condition.	For	example,
suppose	you	have	a	bit	called	B1	whose	logical	meaning	is	that	when	the	bit	is
true,	a	particular	pixel	on	a	screen	is	lit	up.	Then	the	boolean	expression	NOT	B1
would	be	the	opposite:	It	would	be	false	when	the	pixel	is	lit	up,	and	thus	true
only	when	the	pixel	is	not	lit	up.

Since	true	and	false	values	are	represented	in	computers	by	1	or	0	values,
boolean	logic	is	often	expressed	in	terms	of	ones	and	zeros,	instead	of	true	and
false.	The	circuits	inside	computer	processors	and	other	devices	manipulate	one
and	zero	bits	directly	using	these	functions.	In	some	(but	not	all)	cases,	they
interpret	one	and	zero	as	true	and	false,	but	in	either	case,	the	two
representations	are	functionally	equivalent.

Table	4-10	shows	the	same	truth	table	as	Table	4-9,	but	using	bit	values.	Each
true	is	represented	as	a	1,	and	each	false	is	represented	as	a	0.

Table	4-10.	NOT	Operator	Truth	Table	(Using	Bit	Values)

Input Output

0 1

1 0

AND	and	OR
The	two	other	primary	boolean	functions	that	are	widely	used	are	AND	and	OR.
The	output	of	an	AND	function	is	true	only	if	its	first,	and	second,	and	third
inputs	and	so	on	are	true.	The	output	of	an	OR	function	is	true	if	the	first	input	is
true	or	the	second	input	is	true,	and	so	on.

Both	AND	and	OR	can	have	any	number	of	inputs,	with	a	minimum	of	two.
Table	4-11	shows	the	truth	table	for	the	AND	function,	with	two	inputs.	You	can
see	that	the	output	is	a	1	only	when	both	inputs	are	1,	but	it's	0	otherwise.

Table	4-11.	AND	Operator	Truth	Table

Input	1 Input	2 Output

0 0 0



0 0 0

0 1 0

1 0 0

1 1 1

Like	NOT,	AND	represents	a	logical	operation	similar	to	how	we	use	the	word
and	in	our	everyday	speech.	For	example,	at	lunchtime,	I	might	say	to	a
colleague,	"Let's	go	out	for	lunch	and	stop	at	the	post	office."

The	truth	table	for	the	OR	function	(again	with	two	inputs)	is	shown	in	Table	4-
12.	Here,	the	output	is	1	whenever	a	1	appears	in	at	least	one	input,	not
necessarily	both	as	in	the	previous	table.

Table	4-12.	OR	Operator	Truth	Table

Input	1 Input	2 Output

0 0 0

0 1 1

1 0 1

1 1 1

Interestingly,	unlike	AND,	the	OR	function	does	not	have	the	same	meaning	as
what	we	take	the	word	or	to	mean	in	everyday	English.	In	boolean,	the	word	OR
means	that	the	output	is	true	as	long	as	any	of	the	inputs	is	true.

Exclusive-OR	(XOR	or	EOR)
A	modification	of	OR	called	Exclusive-OR	(abbreviated	either	XOR	or	EOR)
represents	the	way	we	normally	use	or	in	the	real	world.	Its	output	is	only	true	if
one	input	or	the	other	is	true,	but	not	both.	The	truth	table	for	XOR	is	as	shown
in	Table	4-13.	Notice	the	difference	between	this	table	and	Table	4-12:	The
output	is	0	in	the	case	where	both	inputs	are	1.

Table	4-13.	Exclusive	OR	(XOR)	Operator	Truth	Table

Input	1 Input	2 Output



Input	1 Input	2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Combining	Boolean	Expressions
The	functions	described	earlier	can	also	be	combined	arbitrarily	to	produce	more
complex	logical	conditions.	For	example,	when	searching	the	Web,	you	might
enter	"cheese	AND	(cheddar	OR	swiss)	NOT	wisconsin"	into	a	search	engine.	In
response,	the	search	engine	might	return	pages	that	contain	the	word	cheese	and
the	word	cheddar	or	swiss	(or	both),	but	pages	that	do	not	contain	the	word
wisconsin.

Boolean	functions	are	important	because	they	are	the	building	blocks	of	much	of
the	circuitry	within	computer	hardware.	The	functions	are	implemented	as	tiny
gates	that	are	designed	to	allow	electrical	energy	to	flow	only	to	the	output	based
on	certain	combinations	of	inputs	as	described	by	the	truth	tables	for	functions
like	NOT,	AND,	OR,	and	others.	In	networking,	boolean	logic	is	important	for
describing	certain	conditions	and	functions	in	the	operation	of	networks.
Boolean	functions	are	also	very	important	because	they	are	used	to	set,	clear,	and
mask	strings	of	binary	digits,	which	I	will	explore	in	the	next	section.

TIP

KEY	CONCEPT	Boolean	logic	is	a	system	that	uses	boolean	functions	to	produce	output	based	on
varying	conditions	in	input	data.	The	most	common	boolean	functions	are	as	follows:	NOT,	which
produces	output	that	is	the	opposite	of	its	input;	AND,	which	is	true	only	if	all	of	its	inputs	are	true;	OR,
which	is	true	if	any	of	its	input	is	true;	and	XOR,	which	is	true	only	if	exactly	one	of	its	inputs	is	true
(that	is,	if	the	inputs	are	different).	These	functions	can	be	used	in	boolean	logic	expressions	that
represent	conditional	states	for	making	decisions,	and	they	can	also	be	used	for	bit	manipulation.



Bit	Masking	(Setting,	Clearing,	and	Inverting)
Using	Boolean	Logical	Functions
The	boolean	functions	NOT,	AND,	OR,	and	XOR	describe	different	ways	that
logical	expressions	can	be	used	to	manipulate	true	and	false	values	to	represent
both	simple	and	complex	decisions	or	conditions.	However,	these	functions	can
also	be	used	in	a	more	mundane	manner	to	allow	the	direct	manipulation	of
binary	data.	This	use	of	boolean	logic	is	very	important	in	a	number	of	different
applications	in	networking.

You	should	recall	that	when	you	give	a	bit	a	value	you	set	the	bit,	and	when	you
give	it	a	value	of	0,	you	reset	or	clear	it.	In	some	situations	bits	are	handled
individually	and	are	set	or	cleared	simply	by	assigning	a	0	or	1	value	to	each	bit.
However,	it	is	common	to	have	large	groups	of	bits	that	are	used	collectively	to
represent	a	great	deal	of	information,	whenever	many	bits	need	to	be	set	or
cleared	at	once.	In	this	situation,	the	boolean	functions	come	to	the	rescue.

Setting	Groups	of	Bits	with	OR
You	can	set	bits	en	masse	with	the	OR	function.	Recall	that	an	OR's	output	is
true	(equal	to	1)	if	any	of	its	inputs	are	true	(equal	to	1).	Thus,	if	you	OR	a	bit
with	a	value	known	to	be	1,	the	result	will	always	be	1,	no	matter	what	the	other
value	is.	In	contrast,	if	you	OR	with	a	0,	the	original	value,	1	or	0,	is	not
changed.

By	using	a	string	with	0s	and	1s	in	particular	spots,	you	can	set	certain	bits	to	1
while	leaving	others	unchanged.	This	procedure	is	comparable	to	how	a	painter
masks	areas	that	he	does	not	want	to	be	painted,	using	plastic	or	perhaps
masking	tape.	Thus,	the	process	is	called	masking.	The	string	of	digits	used	in
the	operation	is	called	the	bit	mask,	or	simply	the	mask.

For	example,	suppose	you	have	the	12-bit	binary	input	number	101001011010,
and	you	want	to	set	the	middle	six	bits	to	be	all	ones.	To	do	this,	you	OR	the
number	with	the	12-bit	mask	000111111000.	Table	4-14	shows	how	this	works
with	the	changed	bits	in	the	result	in	bold—you	simply	OR	each	bit	in	the	input
with	its	corresponding	bit	in	the	mask:



Table	4-14.	Setting	Bits	Using	an	OR	Bit	Mask

Input 1 0 1 0 0 1 0 1 1 0 1 0

Mask 0 0 0 1 1 1 1 1 1 0 0 0

Result	of	OR	Operation 1 0 1 1 1 1 1 1 1 0 1 0

Clearing	Bits	with	AND
To	clear	a	certain	pattern	of	bits,	you	perform	a	similar	masking	operation,	but
using	the	AND	function	instead.	If	you	AND	a	bit	with	0,	it	will	clear	it	to	0,
regardless	of	what	the	bit	was	before,	while	ANDing	with	1	will	leave	the	bit
unchanged.	For	example,	to	clear	the	middle	six	bits	in	Table	4-14,	you	AND
with	the	reverse	bit	mask,	111000000111.

Table	4-15	and	Figure	4-3	show	how	a	bit	mask	can	be	used	to	clear	certain	bits
in	a	binary	number	while	preserving	others.	Each	1	represents	a	"transparent"
area	that	keeps	the	corresponding	input	bit	value,	while	each	0	is	a	bit	where	the
original	value	is	to	be	cleared.	After	performing	an	AND	on	each	bit	pair,	the
first	three	and	last	three	bits	are	preserved,	while	the	middle	six,	since	they	were
each	ANDed	with	0,	are	forced	to	0	in	the	output.

Figure	4-3.	Clearing	Bits	Using	an	AND	Bit	Mask	Applying	a	bit	mask	to	an	input	binary	number	using
the	AND	function	clears	to	0	all	bits	where	the	mask	bit	was	0	and	leaves	alone	bits	where	the	mask	was

1.

Table	4-15.	Clearing	Bits	Using	an	AND	Bit	Mask



Input 1 0 1 0 0 1 0 1 1 0 1 0

Mask 1 1 1 0 0 0 0 0 0 1 1 1

Result	of	AND	Operation 1 0 1 0 0 0 0 0 0 0 1 0

You	can	also	look	at	this	clearing	function	a	different	way.	You	are	clearing	the
bits	where	the	mask	is	a	0,	and	in	so	doing	selecting	the	bits	where	the	mask	is	a
1.	Thus,	ANDing	with	a	bit	mask	essentially	means	that	you	keep	the	bits	where
the	mask	is	a	1	and	remove	the	bits	where	it	is	a	0.

Inverting	Bits	with	XOR
There	are	also	situations	in	which	you	want	to	invert	some	bits;	that	is,	change	a
1	value	to	a	0,	or	a	0	value	to	a	1.	To	do	this,	you	use	the	XOR	function.	While
this	is	not	as	intuitive	as	masking,	if	you	refer	to	the	XOR	truth	table	(Table	4-
13)	you	will	see	that	if	you	XOR	with	a	1,	the	input	value	is	flipped,	while
XORing	with	a	0	causes	the	input	to	be	unchanged.	To	see	how	this	works,	use
the	same	input	example	and	invert	the	middle	six	bits,	as	shown	in	Table	4-16.

Table	4-16.	Inverting	Bits	Using	an	XOR	Bit	Mask

Input 1 0 1 0 0 1 0 1 1 0 1 0

Mask 0 0 0 1 1 1 1 1 1 0 0 0

Result	of	XOR	Operation 1 0 1 1 1 0 1 0 0 0 1 0

In	the	world	of	networking,	bit	masking	is	most	commonly	used	to	manipulate
addresses.	In	particular,	masking	is	perhaps	best	known	for	its	use	in
differentiating	between	the	host	and	subnetwork	(subnet)	portions	of	Internet
Protocol	(IP)	addresses,	a	process	called	subnet	masking	(see	Chapter	18,	which
discusses	IP	subnet	addressing).

NOTE

Masks	are	often	expressed	in	either	hexadecimal	or	decimal	notation	for	simplicity,	as	shown	in	the	IP
subnetting	summary	tables	in	Chapter	18.	However,	the	masks	are	always	applied	in	binary,	as	described
previously.	You	should	convert	the	mask	to	binary	if	you	want	to	see	exactly	how	the	masking	operation
will	work.



TIP

KEY	CONCEPT	The	properties	of	the	OR	and	AND	boolean	functions	make	them	useful	when	certain
bits	of	a	data	item	need	to	be	set	(changed	to	1)	or	cleared	(changed	to	0).	This	process	is	called	bit
masking.	To	set	bits	to	1,	a	mask	is	created	and	used	in	a	bit-by-bit	OR	function	with	the	input.	When	the
mask	has	a	value	of	1,	the	bit	is	forced	to	a	1,	while	each	0	bit	leaves	the	corresponding	original	bit
unchanged.	Similarly,	a	mask	used	with	the	AND	function	clears	certain	bits;	each	1	bit	in	the	mask
leaves	the	original	bit	alone,	while	each	0	forces	the	output	to	0.	Finally,	XOR	can	be	used	to	invert
selected	bits	using	a	mask.



Part	I-2.	THE	OPEN	SYSTEMS
INTERCONNECTION	(OSI)	REFERENCE	MODEL
Chapter	5

Chapter	6

Chapter	7

Models	are	useful	because	they	help	us	understand	difficult	concepts	and
complicated	systems.	When	it	comes	to	networking,	there	are	several	models
that	are	used	to	explain	the	roles	played	by	various	technologies	and	how	they
interact.	Of	these,	the	most	popular	and	commonly	used	is	the	Open	Systems
Interconnection	(OSI)	Reference	Model.	The	OSI	Reference	Model	makes	it
easier	for	networks	to	be	analyzed,	designed,	built,	and	rearranged,	by	allowing
them	to	be	considered	as	modular	pieces	that	interact	in	predictable	ways,	rather
than	enormous,	complex	monoliths.

You'll	find	that	it's	nearly	impossible	to	read	a	lot	about	networking	without
encountering	discussions	that	presume	at	least	some	knowledge	of	how	the	OSI
Reference	Model	works.	This	is	why	I	strongly	advise	that	if	you	are	new	to	the
OSI	Reference	Model,	you	read	this	part	carefully.	While	it	is	all	arguably
background	material,	this	information	will	give	you	a	foundation	for
understanding	networks,	as	well	as	make	the	rest	of	the	book	easier	to	follow.	If
you	are	quite	familiar	with	the	OSI	Reference	Model,	you	may	wish	to	skip	this
part	or	just	skim	through	it.

This	part	is	geared	to	a	discussion	of	networks	and	internetworks	in	general,	and
not	specifically	to	the	TCP/IP	protocol	suite.	Therefore,	not	all	of	the	material	in
this	section	is	directly	relevant	to	learning	about	TCP/IP,	although	much	of	it	is.
You	may	also	wish	to	refer	to	Part	I-3,	which	includes	a	discussion	of	how	the
TCP/IP	and	OSI	models	compare.

In	this	part,	I	describe	the	OSI	Reference	Model	in	detail.	I	begin	with	a
discussion	of	some	general	concepts	related	to	the	OSI	Reference	Model	and
networking	models	overall.	I	then	describe	each	of	the	seven	layers	of	the	OSI
Reference	Model.	I	conclude	with	a	summary	chapter	that	includes	a	useful
analogy	to	help	you	understand	how	the	reference	model	works	to	explain	the
interaction	of	networks	on	multiple	levels.	That	chapter	also	presents	a	reference



interaction	of	networks	on	multiple	levels.	That	chapter	also	presents	a	reference
table	of	the	layers	and	their	respective	functions.



Chapter	5.	GENERAL	OSI
REFERENCE	MODEL	ISSUES
AND	CONCEPTS

The	idea	behind	the	OSI	Reference	Model	is	to	provide	a	framework	for	both
designing	networking	systems	and	explaining	how	they	work.	As	you	read	about
networking,	you	will	frequently	find	references	to	the	various	levels,	or	layers,	of
the	OSI	Reference	Model.	However,	before	I	can	properly	discuss	the	actual	OSI
model	layers,	you	need	to	understand	the	model	as	a	whole.

In	this	chapter,	I	introduce	the	OSI	Reference	Model	and	provide	some	useful
background	information	to	help	you	understand	it.	I	begin	with	a	brief	history	of
the	model,	including	a	look	at	its	development	and	goals.	I	then	introduce
networking	models	in	general	terms,	describing	why	they	are	beneficial	and	how
they	can	best	be	used.	The	bulk	of	the	chapter	contains	important	OSI	model
concepts,	which	will	help	you	begin	to	really	understand	the	way	model	works,
the	terminology	used	to	describe	it,	and	how	it	can	be	of	value	in	explaining	the
operation	of	networking	technologies.

History	of	the	OSI	Reference	Model
A	look	at	the	origins	of	the	OSI	Reference	Model	takes	us	back	to	several	issues
related	to	standards	and	standards	organizations	that	were	discussed	in
Chapter	3.	The	idea	behind	the	creation	of	networking	standards	is	to	define
widely	accepted	ways	of	setting	up	networks	and	connecting	them	together.	The
OSI	Reference	Model	represented	an	early	attempt	to	get	all	of	the	various
hardware	and	software	manufacturers	to	agree	on	a	framework	for	developing
various	networking	technologies.



In	the	late	1970s,	two	projects	began	independently	with	the	same	goal:	to	define
a	unifying	standard	for	the	architecture	of	networking	systems.	One	was
administered	by	the	International	Organization	for	Standardization	(ISO),	while
the	other	was	undertaken	by	the	International	Telegraph	and	Telephone
Consultative	Committee,	or	CCITT	(the	abbreviation	is	from	the	French	version
of	the	name).	These	two	international	standards	bodies	each	developed	a
document	that	defined	similar	networking	models.

In	1983,	these	two	documents	were	merged	to	form	a	standard	called	The	Basic
Reference	Model	for	Open	Systems	Interconnection.	That's	a	mouthful,	so	the
standard	is	usually	referred	to	as	the	Open	Systems	Interconnection	Reference
Model,	the	OSI	Reference	Model,	or	even	just	the	OSI	model.	It	was	published
in	1984	by	both	the	ISO,	as	standard	ISO	7498,	and	the	renamed	CCITT	(now
called	the	Telecommunications	Standardization	Sector	of	the	International
Telecommunication	Union	or	ITU-T)	as	standard	X.200.	(Incidentally,	isn't	the
new	name	for	the	CCITT	much	catchier	than	the	old	one?	Just	rolls	off	the	old
tongue,	doesn't	it?)

One	interesting	aspect	of	the	history	of	the	OSI	Reference	Model	is	that	the
original	objective	was	not	to	create	a	model	primarily	for	educational	purposes,
even	though	many	people	today	think	that	this	was	the	case.	It	was	intended	to
serve	as	the	foundation	for	the	establishment	of	a	widely	adopted	suite	of
protocols	that	would	be	used	by	international	internetworks—basically,	what	the
Internet	became.	This	was	called,	unsurprisingly,	the	OSI	protocol	suite.

However,	things	didn't	quite	work	out	as	planned.	The	rise	in	popularity	of	the
Internet	and	its	TCP/IP	protocols	met	the	OSI	protocol	suite	head	on,	and	in	a
nutshell,	TCP/IP	won.	Some	of	the	OSI	protocols	were	implemented,	but	as	a
whole,	the	OSI	protocols	lost	out	to	TCP/IP	when	the	Internet	started	to	grow.

The	OSI	model	itself,	however,	found	a	home	as	a	device	for	explaining	the
operation	of	not	just	the	OSI	protocols,	but	networking	in	general.	It's	used
widely	as	an	educational	tool—much	as	I	use	it	myself—and	it's	also	used	to
help	describe	interactions	between	the	components	of	other	protocol	suites	and
even	hardware	devices.	Although	most	technologies	were	not	designed
specifically	to	meet	the	dictates	of	the	OSI	model,	many	are	described	in	terms
of	how	they	fit	into	its	layers.	This	includes	networking	protocols,	software
applications,	and	even	different	types	of	hardware	devices,	such	as	switches	and



applications,	and	even	different	types	of	hardware	devices,	such	as	switches	and
routers.	The	model	is	also	useful	to	those	who	develop	software	and	hardware
products	because	it	clarifies	the	roles	performed	by	each	of	the	components	in	a
networking	system.

TIP

KEY	CONCEPT	The	Open	Systems	Interconnection	Reference	Model	(OSI	Reference	Model	or	OSI
model)	was	originally	created	as	the	basis	for	designing	a	universal	set	of	protocols	called	the	OSI
protocol	suite.	This	suite	never	achieved	widespread	success,	but	the	model	became	a	very	useful	tool	for
both	education	and	development.	The	model	defines	a	set	of	layers	and	a	number	of	concepts	for	their
use	that	make	understanding	networks	easier.



General	Reference	Model	Issues
Let's	discuss	some	of	the	basic	issues	related	to	reference	models.	In	part,	I	want
to	explain	why	I	place	so	much	emphasis	on	the	OSI	model,	even	going	so	far	as
to	build	much	of	this	book's	organization	around	this	model	and	its	layers.	I	also
want	you	to	understand	why	the	model	is	important,	and	how	it	benefits
networking	not	only	on	a	conceptual	level,	but	in	reality.

In	the	topics	that	follow,	I	describe	several	issues	that	relate	to	reference	models
in	general	terms,	and	of	course,	to	the	OSI	Reference	Model	specifically.	I	begin
with	an	overview	of	why	networking	models	are	beneficial	and	why	it	is
important	for	you	to	understand	how	the	OSI	model	works.	I	then	talk	about	how
best	to	use	the	model	and	contrast	it	with	some	"real-world"	network
architectures	and	protocol	stacks.

The	Benefits	of	Networking	Models
Networking	is	complicated,	and	special	pains	must	be	taken	to	try	to	simplify	it.
One	of	the	ways	in	which	networking	technology	is	made	easier	to	understand	is
by	splitting	it	into	pieces,	each	of	which	plays	a	particular	role	or	is	responsible
for	a	specific	job	or	function.

However,	if	this	is	to	be	done,	you	must	have	a	way	of	ensuring	that	these
various	pieces	can	interoperate;	that	is,	each	must	know	what	is	expected	of	it
and	also	what	it	can	expect	from	the	other	pieces.	This	is	one	of	the	important
roles	of	networking	models.	They	split	the	multitude	of	tasks	required	to
implement	modern	networks	into	smaller	chunks	that	can	be	more	easily
managed.	Just	as	importantly,	they	establish	"walls"	between	those	pieces	and
rules	for	passing	information	over	those	walls.

A	good	analogy	of	a	networking	model	is	that	of	an	assembly	line	at	a
manufacturer.	No	company	attempts	to	have	one	person	build	an	entire	car;	even
if	the	company	did,	it	wouldn't	expect	that	individual	to	be	able	to	learn	how	to
do	it	all	at	once.	The	division	of	labor	offers	several	advantages	to	a	company
that	builds	a	complex	product,	such	as	an	automobile.	Generally	speaking,	these
include	the	following:



Training	and	Documentation	It	is	easier	to	explain	how	to	build	a	complex
system	by	breaking	the	process	into	smaller	parts.	Training	can	be	done	for	a
specific	job	without	everyone	needing	to	know	how	everything	else	works.

Specialization	If	everyone	is	responsible	for	doing	every	job,	no	one	gets
enough	experience	to	become	an	expert	at	anything.	Through	specialization,
certain	individuals	develop	expertise	at	particular	jobs.

Easier	Design	Modification	and	Enhancement	By	separating	the	automobile
into	systems	as	well	as	the	particular	jobs	required	to	build	those	systems,	you
can	make	changes	in	the	future	more	easily.	Without	such	divisions,	it	would	be
much	more	difficult	to	determine	what	the	impact	might	be	of	a	change,	which
would	serve	as	a	disincentive	for	innovation.

Modularity	This	is	related	to	each	of	the	previous	items.	If	the	automobile's
systems	and	manufacturing	steps	are	broken	down	according	to	a	sensible
architecture	or	model,	it	becomes	easier	to	interchange	parts	and	procedures
between	vehicles.	This	saves	time	and	money.

Networking	models	yield	very	similar	benefits	to	the	networking	world.	They
represent	a	framework	for	dividing	up	the	tasks	needed	to	implement	a	network
by	splitting	the	work	into	different	levels,	or	layers.	Hardware	and	software
running	on	each	layer	are	responsible	for	interacting	with	corresponding
hardware	and	software	that	are	running	on	other	devices	on	the	same	layer.	The
responsibilities	of	each	hardware	or	software	element	are	defined	in	part	by
specifically	dividing	lines	between	the	layers.

As	a	result,	you	get	all	of	the	benefits	listed	in	the	previous	points:	easier
training,	specialized	capabilities	at	each	layer,	improved	capabilities	for
modification,	and	modularity.	Modularity	is	particularly	important,	because	it
allows	you	to	interchange	technologies	that	run	at	different	layers.	While	no	one
would	try	to	build	a	vehicle	that	is	partly	a	compact	sedan,	partly	an	SUV,	and
partly	a	motorcycle,	there	are	situations	in	networking	for	which	you	may	want
to	do	something	surprisingly	similar	to	this.	Networking	models	help	make	this
possible.

TIP

KEY	CONCEPT	Networking	models	such	as	the	OSI	Reference	Model	provide	a	framework	for



breaking	down	complex	internetworks	into	components	that	can	more	easily	be	understood	and	utilized.
The	model	defines	networking	functions	not	as	a	large,	complicated	whole,	but	as	a	set	of	layered,
modular	components,	each	of	which	is	responsible	for	a	particular	function.	The	result	is	better
comprehension	of	network	operations,	improved	performance	and	functionality,	easier	design	and
development,	and	the	ability	to	combine	different	components	in	a	way	that's	best	suited	to	the	needs	of
the	network.

Why	Understanding	the	OSI	Reference	Model	Is
Important	to	You
A	lot	of	networking	books	and	other	resources	gloss	over	the	OSI	Reference
Model	or	relegate	it	to	the	back	pages	of	a	hard-to-find	appendix.	The	reason
usually	stated	for	this	is	that	the	OSI	model	is	"too	theoretical"	and	"doesn't
apply	to	modern	networking	protocols	like	TCP/IP."

This	is	a	misguided	notion.	While	it	is	certainly	true	that	the	OSI	model	is
primarily	theoretical,	and	that	networking	protocols	aren't	always	designed	to	fit
strictly	within	the	confines	of	their	layers,	it's	not	true	that	the	OSI	model	has
little	applicability	to	the	real	world.	In	fact,	it	is	difficult	to	read	about
networking	technology	today	without	seeing	references	to	the	OSI	model	and	its
layers,	because	the	model's	structure	helps	to	frame	discussions	of	protocols	and
contrast	various	technologies.

For	example,	the	OSI	Reference	Model	provides	the	basis	for	understanding	how
technologies	like	Ethernet	and	HomePNA	are	similar;	it	explains	how	a	PC	can
communicate	using	any	of	several	different	sets	of	protocols,	even
simultaneously;	it	is	an	important	part	of	understanding	the	differences	between
interconnection	devices	such	as	repeaters,	hubs,	bridges,	switches,	and	routers;
and	it	also	explains	how	many	WAN	technologies	interoperate.

Far	from	being	obsolete,	the	OSI	model	layers	are	now	showing	up	more	than
ever	in	discussions	of	technology.	In	fact,	some	protocols	are	even	named
specifically	in	terms	of	their	place	in	the	OSI	Reference	Model!	For	an	example,
consider	the	Layer	Two	Tunneling	Protocol.	Also,	switches	are	now	commonly
categorized	as	layer	2,	layer	3,	or	even	higher-layer	switches.

In	theoretical	discussions,	the	OSI	Reference	Model	helps	you	to	understand
how	networks	and	network	protocols	function	in	the	real	world.	It	also	helps	you
to	figure	out	which	protocols	and	devices	can	interact	with	each	other.	So	I



to	figure	out	which	protocols	and	devices	can	interact	with	each	other.	So	I
encourage	you	to	read	on.	It's	time	well	spent.

TIP

KEY	CONCEPT	While	many	people	scoff	at	the	notion	of	studying	the	OSI	Reference	Model,
understanding	it	is	very	helpful	in	making	sense	of	networking	protocols	and	technologies.	The	model	is
theoretical,	but	its	concepts	are	employed	regularly	to	describe	the	operation	of	real-world	networks.

How	to	Use	the	OSI	Reference	Model
Although	some	people	tend	to	downplay	the	OSI	model	too	much,	others	go	to
the	opposite	extreme.	They	use	it	too	much,	overanalyzing	and	trying	to	use	it	in
a	way	that	was	never	intended.

The	most	common	mistake	is	made	when	attempting	to	try	to	"make	everything
fit"	into	the	layered	structure	of	the	OSI	model.	I	must	confess	to	falling	into	this
trap	myself	on	occasion.	When	I	first	started	laying	out	the	structure	of	this
book,	I	wanted	to	organize	everything	based	on	where	it	fell	in	terms	of	OSI
model	layers.	I	quickly	discovered	that	this	was	like	attempting	to	put	pegs	of
various	shapes	into	a	board	containing	only	round	holes.	I	had	to	change	my
approach.	I	ended	up	organizing	it	based	on	the	OSI	layers	where	it	made	sense
and	using	a	different	structure	where	it	did	not.

Learn	from	my	experience.	A	simple	rule	of	thumb	is	this:	Refer	to	the	OSI
Reference	Model	if	it	helps	you	make	sense	of	technologies	and	understand	how
they	work;	don't	use	it	if	it	makes	things	more	complicated.	In	particular,	bear
the	following	in	mind:

It	can	be	very	hard	to	figure	out	where	some	technologies	fall	within	the
model.	Many	protocols	were	designed	without	the	OSI	model	in	mind,	and
they	may	not	fall	neatly	into	one	layer	or	another.	Some	overlap	two	or	more
layers;	other	protocol	suites	may	have	two	protocols	that	share	a	layer.

The	boundaries	between	the	upper	layers	(session,	presentation,	and
application)	get	particularly	fuzzy.	Some	protocols	are	clearly	designed	to	fit
on	one	of	these	layers,	while	others	may	overlap	all	three.	This	is	one	reason
why	I	do	not	categorize	higher-level	protocols	by	layer.	(The	OSI	Reference
Model	was	designed	to	account	for	the	fact	that	differentiating	between	these



layers	might	not	make	sense.)

The	OSI	Reference	Model	was	designed	primarily	with	LANs	in	mind.	WAN
technologies	often	fit	very	poorly	into	the	model,	with	a	lot	of	overlapping
and	partial	layer	coverage.	However,	it's	still	useful	in	most	cases	to	look	at
these	protocols	in	terms	of	their	approximate	fit	in	the	OSI	model,	since	parts
of	WAN	technologies	are	sometimes	interchanged.

The	people	who	design	products	don't	generally	worry	about	ensuring	that
their	latest	inventions	implement	only	specific	layers	of	the	model.	Thus,
sometimes	new	products	come	out	that	break	the	rules	and	implement
functions	across	more	than	one	layer,	which	used	to	be	done	by	multiple
devices	at	the	individual	layers.	This	is	usually	progress—a	good	thing!

Finally,	an	observation:	I	have	noticed	that	people	learning	about	networking—
especially	those	trying	to	memorize	easy	answers	to	difficult	questions	so	they
can	pass	exams—often	ask,	"At	what	layer	does	this	piece	of	hardware	operate?"
The	problem	here	is	not	the	answer	but	rather	the	question,	which	is	simplistic.
With	the	exception	of	simple	physical	devices	such	as	connectors	and	cables,
pretty	much	all	networking	devices	operate	at	many	layers.	While	a	router,	for
example,	is	usually	associated	with	layer	3,	it	has	two	or	more	device	interfaces
that	implement	layers	2	and	1.	A	better	question	is	what	is	the	highest	layer	at
which	a	device	functions?

The	bottom	line	is	that	the	OSI	Reference	Model	is	a	tool.	If	you	use	it	wisely,	it
can	be	immensely	helpful	to	you.	Just	remember	not	to	be	too	inflexible	in	how
you	apply	it,	and	you'll	be	fine.

TIP

KEY	CONCEPT	It	is	just	as	much	a	mistake	to	assign	too	much	importance	to	the	OSI	Reference
Model	as	too	little.	While	the	model	defines	a	framework	for	understanding	networks,	not	all	networking
components,	protocols,	and	technologies	will	necessarily	fall	into	the	model's	strict	layering	architecture.
There	are	cases	in	which	trying	to	use	the	model	to	describe	certain	concepts	can	lead	to	less	clarity
rather	than	more.	You	should	remember	that	the	OSI	model	is	a	tool	and	should	be	used	accordingly.

Other	Network	Architectures	and	Protocol
Stacks



The	OSI	Reference	Model	is	not	the	only	model	used	to	describe	the	structure	of
networks;	several	other	models	and	systems	are	used	to	describe	various	sets	of
networking	technologies	that	work	together.	These	don't	generally	describe
theoretical	models,	but	rather	groupings	of	protocols	that	are	actively	used	in
actual	networks.	They	are,	therefore,	more	often	called	networking	architectures
and	protocol	suites	than	models.

As	you	just	saw,	many	technologies	and	protocols	don't	"fit"	well	into	the
specific	layers	used	in	the	OSI	model.	Similarly,	most	of	the	protocol	suites	used
in	the	real	world	don't	fit	the	OSI	model	exactly.	This	happens,	of	course,
because	they	were	developed	independently	of	the	OSI	model.	Still,	most	of
these	architectures	and	suites	still	use	layers—they	are	just	different	from	the
ones	that	the	OSI	model	uses.

Since	the	OSI	model	is	referenced	so	often,	it	can	be	very	helpful	in	making
sense	of	other	architectures	and	even	comparing	them.	Regardless	of	what	the
individual	layers	and	technologies	are	called,	networking	protocol	suites	all	try
to	accomplish	the	same	goals	in	implementing	a	network.	Thus,	even	though	the
layers	are	not	the	same,	they	are	often	comparable.

In	the	case	of	TCP/IP,	a	special	model	called	the	DoD	(Department	of	Defense)
model	or	TCP/IP	model	is	usually	used	in	discussions	of	the	suite	(see
Chapter	8).	This	model	has	many	similarities	to	the	OSI	model,	but	also	some
important	differences.	In	other	areas	in	the	field	of	networking,	still	other	models
are	used,	such	as	the	IEEE	802	networking	architecture	model.	These,	too,	are
similar	in	some	ways	to	the	OSI	model,	but	they	have	their	own	unique
characteristics.

Even	within	the	scope	of	some	individual	specific	technologies,	you	can	see	a
layered	structure	of	related	protocols.	There	are	technologies	that	are	generally
considered	to	implement	a	single	level	of	the	OSI	model,	even	though	they
actually	have	portions	that	overlap	several	OSI	layers;	examples	include
Ethernet	and	Asynchronous	Transfer	Mode	(ATM).	In	fact,	some	protocols	even
have	subprotocols	that	are	layered	within	the	confines	of	what	is	considered	a
single	layer	under	OSI.	A	good	example	is	the	TCP/IP	Point-to-Point	Protocol
(PPP),	which,	despite	the	name,	is	not	a	single	protocol	but	a	protocol	suite	unto
itself	(see	Part	II-1).



Key	OSI	Reference	Model	Concepts
The	OSI	Reference	Model	is	valuable	as	a	tool	for	explaining	how	networks
function,	and	for	describing	the	relationships	between	different	networking
technologies	and	protocols.	To	accomplish	this,	the	model	relies	on	a	number	of
important	concepts	and	terms,	which	I'll	discuss	in	the	following	sections.

I'll	begin	with	a	discussion	of	how	the	model	uses	layers.	This	is	perhaps	the
single	most	important	of	all	model	concepts.	I	then	talk	about	some	of	the
notation	and	jargon	you	are	likely	to	see	in	general	discussions	of	the	model.	I
define	in	more	detail	what	interfaces	and	protocols	are	in	the	context	of	the
model.	I	then	explain	the	important	concept	of	data	encapsulation	and	the
terminology	used	to	refer	to	messages	in	the	OSI	Reference	Model:	protocol	data
units	(PDUs)	and	service	data	units	(SDUs).	Finally,	I	connect	most	of	the
preceding	issues	by	describing	how	the	various	layers	work	to	handle	the	routing
of	messages	on	a	theoretical	basis.

OSI	Reference	Model	Networking	Layers,
Sublayers,	and	Layer	Groupings
The	most	important	OSI	Reference	Model	concept	is	that	of	networking	layers.
It's	not	an	exaggeration	to	say	that	layers	are	really	the	heart	of	the	OSI	model—
the	entire	point	of	the	model	is	to	separate	networking	into	distinct	functions	that
operate	at	different	levels.	Each	layer	is	responsible	for	performing	a	specific
task	or	set	of	tasks	and	dealing	with	the	layers	above	and	below	it.

The	OSI	Reference	Model	is	composed	of	seven	conceptual	layers,	each	of
which	is	assigned	a	number	from	1	to	7.	The	layer	number	represents	the
position	of	the	layer	in	the	model	as	a	whole,	and	indicates	how	close	the	layer	is
to	the	actual	hardware	used	to	implement	a	network.	The	first	and	lowest	layer	is
the	physical	layer,	which	is	where	low-level	signaling	and	hardware	are
implemented.	The	seventh	and	highest	layer	is	the	application	layer,	which	deals
with	high-level	applications	employed	by	users:	both	end	users	and	the	operating
system	software.

You	can	see	that	as	you	proceed	from	the	first	layer	to	the	seventh,	you	move	up



the	layer	stack	and,	in	so	doing,	increase	your	level	of	abstraction.	This	means
that	the	higher	a	layer	is	in	the	stack,	the	more	it	deals	with	logical	concepts	and
software,	and	the	less	it	deals	with	the	hardware	of	a	network	and	the	nuts	and
bolts	of	making	it	work.	The	first	layer	is	the	most	concrete,	because	it	deals
with	the	actual	hardware	of	networks	and	the	specific	methods	of	sending	bits
from	one	device	to	another.	It	is	the	domain	of	hardware	engineers	and	signaling
experts.	The	second	layer	is	a	bit	more	abstract	but	still	deals	with	signaling	and
hardware.	As	you	proceed	through	the	third,	fourth,	and	subsequent	layers,	the
technologies	at	those	layers	become	increasingly	abstract.	By	the	time	you	reach
the	seventh	layer,	you	are	no	longer	dealing	with	hardware	or	even	operating
system	concepts	very	much;	you	are	in	the	realm	of	the	user	and	high-level
programs	that	rely	on	lower	levels	to	do	the	"heavy	lifting"	for	them.

The	OSI	Reference	Model	does	not	formally	assign	any	relationship	between
groups	of	adjacent	layers.	However,	to	help	explain	how	the	layers	work,	it	is
common	to	categorize	them	into	two	layer	groupings:

Lower	Layers	(Layers	1,	2,	3,	and	4)	As	shown	in	Figure	5-1,	the	lower	layers
of	the	model—physical,	data	link,	network,	and	transport—are	primarily
concerned	with	the	formatting,	encoding,	and	transmission	of	data	over	the
network.	They	don't	care	that	much	about	what	the	data	is	or	what	it	is	being
used	for;	instead,	they	just	want	to	know	about	moving	it	around.	They	are
implemented	in	both	hardware	and	software,	with	the	transition	from	hardware
to	software	occurring	as	you	proceed	up	from	layer	1	to	layer	4.

Upper	Layers	(Layers	5,	6,	and	7)	The	higher	layers	of	the	model—session,
presentation,	and	application—are	concerned	primarily	with	interacting	with	the
user	and	implementing	the	applications	that	run	over	the	network.	The	protocols
that	run	at	higher	layers	are	less	concerned	with	the	low-level	details	of	how	data
gets	sent	from	one	place	to	another;	they	rely	on	the	lower	layers	to	deliver	the
data.	These	layers	are	almost	always	implemented	as	software	running	on	a
computer	or	other	hardware	device.

There	are	some	people	who	would	not	necessarily	agree	with	how	I	have	chosen
to	divide	the	layers	in	Figure	5-1.	In	particular,	valid	arguments	can	be	made	for
including	the	transport	layer	in	the	upper	layer	group,	since	it	is	usually
implemented	as	software	and	is	fairly	abstract.	I	place	it	in	the	lower	layer	group



because	its	primary	job	is	still	providing	services	to	higher	layers	for	moving
data.	Really,	layer	4	is	somewhat	of	a	transition	zone	and	is	hard	to	categorize.
Figure	5-1	indicates	the	special	position	of	layer	4	in	the	stack.

TIP

KEY	CONCEPT	The	most	fundamental	concept	in	the	OSI	Reference	Model	is	the	division	of
networking	functions	into	a	set	of	layers,	from	layer	1	at	the	bottom	to	layer	7	at	the	top.	As	you	go	up
the	layer	stack,	you	move	away	from	concrete,	hardware-specific	functions	to	ones	that	are	increasingly
abstract,	until	you	reach	the	realm	of	user	applications	at	layer	7.	The	seven	layers	are	sometimes	divided
into	groupings:	the	lower	layers	(1	through	3)	and	the	upper	layers	(4	through	7).	There	is	some
disagreement	on	whether	layer	4	is	a	lower	or	upper	layer.

Figure	5-1.	OSI	Reference	Model	layers	The	OSI	Reference	Model	divides	networking	functions	into	a
stack	of	seven	layers,	numbered	1	through	7	from	the	bottom	up,	and	sometimes	divided	into	two	layer

groupings—the	lower	layers	and	the	upper	layers.

There	are	also	certain	OSI	layers	that	have	natural	relationships	to	each	other.
The	physical	and	data	link	layers,	in	particular,	are	closely	related.	For	example,
most	people	talk	about	Ethernet	as	a	layer	2	technology,	but	Ethernet
specifications	really	deal	with	both	layer	2	and	layer	1.	Similarly,	layers	3	and	4
are	often	related;	protocol	suites	are	often	designed	so	that	layer	3	and	4
protocols	work	together.	Good	examples	are	TCP	and	IP	in	the	TCP/IP	protocol
suite,	and	IPX	and	SPX	in	the	Novell	suite.

In	some	areas,	the	layers	are	so	closely	related	that	the	lines	between	them
become	blurry.	This	is	particularly	the	case	when	looking	at	the	higher	layers;
many	technologies	implement	two	or	even	all	three	of	these	layers,	which	is
another	reason	why	I	feel	they	best	belong	in	a	group	together.	One	important



reason	why	the	distinctions	between	layers	5	through	7	are	blurry	is	that	the
TCP/IP	protocols	are	based	on	the	TCP/IP	model	(covered	in	Chapter	8),	which
combines	the	functions	of	layers	5	through	7	in	a	single,	thick	layer.

TIP

KEY	CONCEPT	The	four	lower	layers	of	the	OSI	model	are	most	often	discussed	individually,	because
the	boundaries	between	them	are	reasonably	clear-cut.	In	contrast,	the	lines	between	the	session,
presentation,	and	application	layers	are	somewhat	blurry.	As	a	result,	sometimes	protocols	span	two	or
even	all	three	of	these	layers;	this	is	especially	true	of	TCP/IP	application	protocols,	since	the	TCP/IP
model	treats	layers	5	through	7	as	a	single	layer.

Finally,	note	that	some	OSI	Reference	Model	layers	are	further	divided	into
sublayers	to	help	define	more	precisely	the	internal	details	of	protocols	and
technologies	at	those	layers.	This	is	commonly	done	at	the	lower	layers,
especially	at	the	physical	layer	and	the	data	link	layer.

"N"	Notation	and	Other	OSI	Model	Layer
Terminology
As	a	theoretical	model,	the	OSI	Reference	Model	comes	complete	with	a	set	of
terminology	that	is	used	to	describe	it	and	its	constituent	parts.	This	is	sort	of
both	good	news	and	bad	news.	The	good	news	is	that	if	you	understand	this
terminology,	it	can	help	you	comprehend	how	technologies	relate	to	the	model
as	well	as	most	OSI	model	discussions	in	general.	The	bad	news	is	that	the
terminology	can	also	increase	confusion—especially	since	it	isn't	always	used
consistently.

Here	are	a	few	terminology	concepts	you	will	often	see	used	to	refer	to	the	OSI
Reference	Model:

Layer	Names	and	Numbers	The	various	layers	of	the	OSI	Reference	Model	are
referred	to	in	a	variety	of	ways.	They	may	have	their	names	spelled	out	in	full,	or
they	may	be	abbreviated.	They	are	also	often	simply	referenced	by	their	layer
number.	So,	for	example,	all	of	these	refer	to	the	same	thing:	data	link	layer,
Data	Link	Layer,	DLL,	L2,	layer	two,	and	layer	2.	Similarly,	you	will	often	see
layer	names	being	used	as	adjectives	to	describe	protocols	and	technologies.	For
example,	a	layer	3	technology	is	one	that	operates	primarily	at	the	network	layer.



N	Notation	The	letter	N	is	often	used	to	generically	refer	to	a	number	within	the
computer	world.	With	respect	to	the	OSI	model,	it's	common	to	see	this	letter
used	in	discussions	that	relate	generically	to	individual	layers	without
mentioning	a	specific	layer.	You	will	hear	terms	like	N-functions	and	N-
services,	which	just	refer	to	the	functions	and	services	provided	within	a
particular	layer.	As	another	example,	you	might	hear	someone	say	that	a
particular	technology	"provides	a	useful	service	to	the	N+1	layer."	This	just
means	it	provides	a	function	to	the	layer	above	the	one	at	which	it	operates.
Conceptually,	every	layer	but	the	first	and	seventh	have	an	N-1	layer,	an	N+1
layer,	and	so	on.	If	you	are	looking	at	the	network	layer	(layer	3),	then	the	N+2
layer	is	the	session	layer	(layer	5).

Protocols	and	Interfaces	These	words	have	special	meaning	within	the	context
of	the	OSI	model.	A	protocol	represents	communication	between	logical	or
physical	devices	at	the	same	layer	of	the	model.	An	interface	represents
information	moving	between	adjacent	layers	within	the	same	device.	Thus,	in	N
notation,	protocols	represent	communication	between	layer	N	on	one	device	and
layer	N	on	another	device,	while	interfaces	deal	with	communication	between
layer	N	and	N+1	or	layer	N	and	N-1	on	the	same	device.

Network	Stacks	What	do	you	get	when	you	take	a	bunch	of	layers	and	pile	them
up	on	top	of	each	other?	You	get	a	stack.	This	term	is	used	to	refer	to	the	entire
set	of	layers	in	a	model	or	suite	of	technologies,	or	a	partial	set.	Since	each	layer
has	protocols	associated	with	it,	this	is	also	sometimes	called	the	protocol	stack.

Entities,	Functions,	Facilities,	and	Services	These	often	interchanged,
somewhat	vague	terms	refer	to	specific	tasks	or	jobs	performed	at	various	layers
in	the	model.	An	N-entity	is	a	term	that	refers	to	a	specific	operation	or	job	done
at	layer	N.	A	function	is	basically	the	same	thing.	Facilities	and	services	are
what	a	layer	provides	to	the	layers	above	it.	This	is	often	expressed	in	N-notation
as	well:	the	N+1	layer	often	uses	a	set	of	N	services	or	N	facilities	provided	by
the	N	layer.

Figure	5-2	serves	as	a	summary	of	the	previous	information	by	showing	the
relationships	between	OSI	model	layers	and	the	terminology	used	to	refer	to
adjacent	layers	in	the	context	of	any	particular	layer.	Each	layer	(except	layer	7)
provides	services	to	the	layer	above	it;	each	layer	(other	than	layer	1)	uses



services	provided	by	the	layer	below	it.	Another	way	of	saying	this	is	that	each
layer	N	provides	services	to	layer	N+1	and	uses	the	services	of	layer	N-1.	Taking
the	example	of	layer	3,	the	network	layer,	you	see	that	it	provides	services	to
layer	4	and	uses	services	of	layer	2.	From	the	standpoint	of	the	network	layer,
the	transport	layer	is	layer	N+1	and	the	data	link	layer	is	N-1.

Figure	5-2.	OSI	Reference	Model	layer	relationships	and	terminology	Each	layer	has	a	relationship	with
the	layer	above	and	below	it;	here,	if	the	network	layer	is	layer	N,	it	provides	services	to	the	transport

layer	(layer	N+1)	and	uses	services	of	the	data	link	layer	(layer	N-1).

You	may	have	just	read	all	of	that	and	said	to	yourself,	"Why	do	they	bother
making	this	so	complicated	anyway?"	Good	question.	Remember,	I	did	say	there
was	bad	news	here!	Now	that	you	know	what	all	of	this	stuff	is	about,	if	you	run
into	it,	you	won't	be	too	confused.

Fortunately,	the	use	of	the	previous	buzzwords	is	somewhat	limited.	Most
references	are	to	specific	layer	names	or	numbers,	and	in	particular,	the	N-1	and
N+1	stuff	is	rarely	used	in	discussions	of	real-world	technologies.	However,	it
can	be	very	useful	in	explaining	the	model	itself,	as	you	will	see	in	some	of	these
terms	when	you	read	the	rest	of	this	chapter.

Interfaces:	Vertical	(Adjacent	Layer)
Communication
The	seven	layers	of	the	OSI	Reference	Model	are	used	to	divide	the	various



functions	that	are	required	to	implement	a	networking	system.	On	any	given
device	in	a	network,	different	software	and	hardware	routines	and	devices	may
be	functioning	on	any	or	all	of	these	layers	simultaneously.	Because,	in	general,
all	of	these	are	supposed	to	be	working	together	to	implement	networking
functions,	there	is	a	need	for	layers	to	communicate	vertically	between	the	layers
within	a	particular	host.

In	OSI	Reference	Model	parlance,	the	mechanism	for	communication	between
adjacent	layers	in	the	model	is	called	an	interface.	Of	course,	the	term	interface
is	also	used	widely	in	other	contexts	in	the	computer	and	networking	worlds,
since	its	generic	meaning	refers	to	connecting	just	about	anything	together.
However,	when	someone	talks	about	an	interface	between	OSI	model	layers,	that
person	typically	refers	to	the	process	by	which	data	is	passed	between	layer	N	of
the	model	and	layer	N-1	or	layer	N+1.	These	relationships	are	demonstrated	in
Figure	5-3.	For	example,	the	layer	2/3	interface	is	used	by	a	layer	2	and	layer	3
protocol	to	pass	data	and	control	information;	the	layer	3/4	interface	connects
layers	3	and	4	together.

Figure	5-3.	OSI	Reference	Model	interfaces	for	vertical	communication	In	OSI	model	terminology,	an
interface	is	a	conduit	for	communication	between	adjacent	layers	in	the	layer	stack.

NOTE

Remember	that	not	all	layers	may	be	implemented	in	every	system	or	protocol	stack	in	the	real	world.	So
it's	possible	that	a	process	that	is	technically	running	at	layer	7	might	communicate	with	one	running	at



layer	5.	However,	I	am	talking	about	the	theoretical	model	here.

Vertical	communication	is	done	up	and	down	the	protocol	stack	every	time
anything	is	sent	across	the	network,	and	of	course,	whenever	anything	is
received.	This	occurs	because	the	higher	levels	are	implemented	as	logical
functions	in	software;	there	is	no	actual	physical	connection.	The	higher	layers
package	data	and	send	it	down	to	the	lower	layers	for	it	to	be	sent	across	the
network.	At	the	very	lowest	level,	the	data	is	sent	over	the	network.	On	the
receiving	end,	the	process	is	reversed,	with	the	data	traveling	back	up	to	the
higher	layers	on	the	receiving	device.	I'll	discuss	this	logical	interaction	between
corresponding	layers	momentarily.

One	of	the	primary	goals	of	the	OSI	Reference	Model	is	to	allow	the
interconnection	of	different	implementations	of	various	layers.	Thus,	the
intention	is	to	have	somewhat	autonomous	individual	layers	that	you	can	mix
and	match—to	a	point.	The	only	way	to	make	this	work	is	to	have	well-defined
ways	that	the	layers	connect	together,	and	that	brings	me	back	to	the	matter	of
interfaces.	Each	layer	must	present	a	consistent,	well-documented	interface	to
the	layers	above	it	so	that	any	upper	layer	implementation	can	use	the	lower
layer	properly.

I'll	provide	an	example	from	the	world	of	TCP/IP	to	illustrate	what	I	mean.	The
heart	of	the	TCP/IP	protocol	suite	is	the	Internet	Protocol	(IP).	Whenever	you
use	any	application	on	the	Internet—email,	websites,	FTP,	chat	rooms,	and	so	on
—you	are	indirectly	using	IP.

However,	you	never	use	IP	directly—you	generally	use	one	of	two	transport
layer	(layer	4)	protocols:	the	Transmission	Control	Protocol	(TCP)	or	the	User
Datagram	Protocol	(UDP)	(see	Part	II-8).	A	standard	interface	exists	between	the
network	layer	and	the	transport	layer	in	the	TCP/IP	protocol	stack,	which	defines
how	IP	is	to	be	used	by	upper	layer	protocols;	this	enables	TCP	and	UDP	to
interface	to	it.	Similarly,	both	TCP	and	UDP	present	a	particular	interface	to	the
hundreds	of	higher-layer	protocols	and	applications	that	use	them	at	higher
layers.

Many	different	types	of	communication	actually	take	place	between	layers.
Control	information	is	passed	to	enable	the	higher	layers	to	utilize	the	lower



ones,	and	for	the	lower	ones	to	pass	status	and	results	information	back	to	the
higher	ones.	Data	is	also	passed	in	both	directions	across	the	interface.	For
transmission,	it	flows	down	to	the	lower	layer,	which	normally	results	in	data
encapsulation.	Upon	reception,	the	process	is	reversed,	with	data	being	sent	back
up	across	the	interface	from	a	lower	to	higher	layer.

TIP

KEY	CONCEPT	In	the	OSI	Reference	Model,	an	interface	defines	the	mechanism	for	vertical
communication	between	adjacent	layers.	The	existence	of	well-defined	interfaces	between	layers	is	what
permits	a	higher	layer	to	use	the	services	of	any	of	a	number	of	lower	layers,	without	requiring
knowledge	of	how	those	layers	are	implemented.

Protocols:	Horizontal	(Corresponding	Layer)
Communication
Each	layer	in	the	OSI	Reference	Model	has	a	particular	role	(or	roles)—a	set	of
general	tasks	for	which	it	is	responsible.	On	each	system	on	the	network,
hardware	and	software	are	running	at	many	of	the	different	levels	in	the	model.
The	routines	doing	a	particular	job	on	Machine	A	are	designed	to	communicate
with	similar	or	complementary	ones	that	are	running	on	Machine	B.	This
horizontal	communication	is	the	very	heart	of	what	networking	is	about.	It	is
what	enables	web	browsers	and	web	servers	to	talk,	email	applications	to
exchange	messages,	and	so	much	more.

Of	course,	all	communication	types	function	only	if	everyone	agrees	to	the	same
methods	of	accomplishing	it.	Each	set	of	rules	describing	one	type	of
communication	is	called	a	protocol.	You	can	think	of	a	protocol	as	a	language	or
a	set	of	instructions.	Each	function	or	service	of	a	network	has	its	own	language;
like	human	languages,	some	are	similar	to	each	other	while	others	are	quite
unique.

If	you've	done	any	reading	at	all	about	networks,	you	have	probably	seen	the
term	protocol	many,	many	times.	Like	the	word	interface,	the	word	protocol	can
have	many	meanings.	In	fact,	it	is	so	fundamental	to	networking,	and	used	in	so
many	different	ways,	that	I	have	a	discussion	devoted	to	it	in	Chapter	1.

All	that	aside,	you	must	remember	that	the	OSI	Reference	Model	is	intended	to



be	a	formal	way	of	describing	networks.	As	such,	the	term	protocol	has	a	formal
meaning	in	the	context	of	the	model.	It	refers	specifically	to	a	set	of
communication	rules,	instructions,	and	procedures	that	describe	communication
between	specific	software	or	hardware	elements	running	at	the	same	layer	on
different	machines	within	a	network.

Let's	consider	how	these	corresponding	layers	communicate	using	protocols.
First,	you'll	recall	that	every	layer	in	the	model,	except	the	bottom	(physical)
layer,	is	really	a	program	or	algorithm	running	on	a	computer.	There	is	no	way
for,	say,	a	web	browser	and	a	web	server	to	actually	connect	together	directly—
they	are	just	software	programs,	after	all.	Instead,	the	software	running	at	various
layers	communicates	logically.	That	is	to	say,	through	the	use	of	software	and
procedures,	a	process	running	at	layer	5	on	one	machine	can	accomplish	logical
communication	with	a	similar	process	running	at	layer	5	on	another	machine.

Since	machines	are	only	physically	connected	at	layer	1,	the	data	on	the	sending
machine	must	pass	down	the	data	through	the	layers	between	layer	5	and	layer	1
in	order	for	a	protocol	at	layer	5	to	function.	The	data	is	then	transmitted	over	the
physical	connection	to	layer	1	of	the	other	machine	and	passed	up	on	the
protocol	stack	of	the	receiving	machine	to	layer	5.	This	is	how	the	two	machines
are	logically	linked	at	layer	5,	even	though	they	have	no	physical	connection	at
that	layer.

Thus,	with	the	exception	of	the	actual	physical	connection	at	layer	1,	all
horizontal	communication	also	requires	vertical	communication—down	the
stack	on	one	machine,	and	then	back	up	the	stack	on	the	other.	(The
communication	doesn't	always	go	all	the	way	back	up	the	stack	for	each
connection,	however,	as	in	the	case	of	routing,	as	discussed	in	the	"Indirect
Device	Connection	and	Message	Routing"	section	at	the	end	of	this	chapter.)

Figure	5-4	illustrates	how	horizontal	communication	works.	As	an	example,	IP	is
said	to	be	a	layer	3	protocol	because	each	device	uses	IP	software	to
communicate	at	layer	3.	The	actual	transmission	and	reception	of	data	occurs
only	at	the	lowest,	physical	layer;	higher-layer	protocols	communicate	logically
by	passing	data	down	interfaces	until	it	reaches	layer	1,	transmitting	at	layer	1,
and	then	passing	the	data	back	up	to	the	appropriate	layer	at	the	recipient.



Figure	5-4.	OSI	Reference	Model	protocols:	horizontal	communication	The	term	protocol	has	many
meanings;	in	the	context	of	the	OSI	Reference	Model,	it	refers	specifically	to	software	or	hardware
elements	that	accomplish	communication	between	corresponding	layers	on	two	or	more	devices.

TIP

KEY	CONCEPT	In	the	OSI	Reference	Model,	a	protocol	refers	specifically	to	a	set	of	rules	or
procedures	that	define	communication	between	software	or	hardware	elements	running	at	the	same	layer
on	network	devices.	Physical	layer	protocols	are	responsible	for	the	actual	transmission	and	reception	of
data	at	layer	1.	Protocols	at	higher	layers	pass	data	down	through	the	layers	below	them	to	layer	1	for
transmission,	then	across	the	network	and	back	up	to	the	corresponding	entity	at	the	same	layer	on	the
receiving	device.	The	result	is	that	software	processes	running	at	say,	layer	4	on	each	of	two	devices	can
communicate	logically	as	if	they	were	directly	connected	at	layer	4,	even	though	they	are	not.

Data	Encapsulation,	Protocol	Data	Units	(PDUs),
and	Service	Data	Units	(SDUs)
Protocols	are	what	describe	the	rules	that	control	horizontal	communication,	that
is,	conversations	between	processes	that	run	at	corresponding	layers	within	the
OSI	Reference	Model.	At	every	layer	(except	layer	1),	these	communications
ultimately	take	the	form	of	some	sort	of	message	that	is	sent	between
corresponding	software	elements	on	two	or	more	devices.	Since	these	messages
are	the	mechanism	for	communicating	information	between	protocols,	they	are



most	generally	called	protocol	data	units	(PDUs).	Each	PDU	has	a	specific
format	that	implements	the	features	and	requirements	of	the	protocol.

As	discussed	in	the	previous	section,	the	communication	between	layers	higher
than	layer	1	is	logical;	the	only	hardware	connection	is	at	the	physical	layer.
Thus,	in	order	for	a	protocol	to	communicate,	it	must	pass	down	its	PDU	to	the
next	lower	layer	for	transmission.	You've	also	already	seen	that,	using	OSI
terminology,	lower	layers	are	said	to	provide	services	to	the	layers	immediately
above	them.	One	of	the	services	each	layer	provides	is	this	function:	to	handle
and	manage	data	received	from	the	layer	above.

At	any	particular	layer	N,	a	PDU	is	a	complete	message	that	implements	the
protocol	at	that	layer.	However,	when	this	layer	N	PDU	is	passed	down	to	layer
N-1,	it	becomes	the	data	that	the	layer	N-1	protocol	is	supposed	to	service.	Thus,
the	layer	N	protocol	data	unit	(PDU)	is	called	the	layer	N-1	service	data	unit
(SDU).	The	job	of	layer	N-1	is	to	transport	this	SDU,	which	it	does	by	placing
the	layer	N	SDU	into	its	own	PDU	format,	preceding	the	SDU	with	its	own
headers	and	appending	footers	as	necessary.	This	process	is	called	data
encapsulation,	because	the	entire	contents	of	the	higher-layer	message	are
encapsulated	as	the	data	payload	of	the	message	at	the	lower	layer.

What	does	layer	N-1	do	with	its	PDU?	It	passes	it	down	to	the	next	lower	layer,
where	it	is	treated	as	a	layer	N-2	SDU.	Layer	N-2	creates	a	layer	N-2	PDU
containing	the	layer	N-1	SDU	and	layer	N-2's	headers	and	footers.	And	so	the
process	continues,	all	the	way	down	to	the	physical	layer.	In	the	theoretical
model,	what	you	end	up	with	is	a	message	at	layer	1	that	consists	of	application-
layer	data	that	is	encapsulated	with	headers	and	footers	from	layers	7	through	2.

Figure	5-5	shows	a	layer	7	PDU	consisting	of	a	layer	7	header	(labeled	L7H)	and
application	data.	When	this	is	passed	to	layer	6,	it	becomes	a	layer	6	SDU.	The
layer	6	protocol	prepends	to	it	a	layer	6	header	(labeled	L6H)	to	create	a	layer	6
PDU,	which	is	passed	to	layer	5.	The	encapsulation	process	continues	all	the
way	down	to	layer	2,	which	creates	a	layer	2	PDU—in	this	case,	shown	with
both	a	header	and	a	footer—that	is	converted	to	bits	and	sent	at	layer	1.



Figure	5-5.	OSI	Reference	Model	data	encapsulation	Each	protocol	creates	a	protocol	data	unit	(PDU)
for	transmission,	each	of	which	includes	headers	required	by	that	protocol	and	data	to	be	transmitted.

This	data	becomes	the	service	data	unit	(SDU)	of	the	next	layer	below	it.

TIP

KEY	CONCEPT	The	message	used	to	communicate	information	for	a	particular	protocol	is	called	its
protocol	data	unit	(PDU)	in	OSI	model	terminology.	That	PDU	is	passed	down	to	the	next	lower	layer
for	transmission;	since	that	layer	is	providing	the	service	of	handling	that	PDU,	it	is	called	the	lower
layer's	service	data	unit	(SDU).	The	SDU	is	encapsulated	into	that	layer's	own	PDU	and,	in	turn,	sent	to
the	next	lower	layer	in	the	stack,	proceeding	until	the	physical	layer	is	reached.	The	process	is	reversed
on	the	recipient	device.	In	summary,	a	layer	N	PDU	is	a	layer	N-1	SDU,	which	is	encapsulated	into	a
layer	N-1	PDU.

The	"N-1,	N-2"	stuff	makes	this	seem	more	difficult	than	it	really	is,	so	let's	use
a	real-world	(simplified)	example	instead.	TCP	operates	at	layer	4	of	the	OSI
model.	It	transmits	messages	called	segments	that	contain	data	encapsulated
from	higher-layer	protocols.	The	layer	below	TCP	is	IP	at	layer	3.	It	receives
data	from	TCP	and	encapsulates	it	for	transmission.

So,	in	the	formal	language	of	the	OSI	Reference	Model,	TCP	segments	are
created	as	layer	4	PDUs.	When	passed	to	IP,	they	are	treated	as	layer	3	SDUs.
The	IP	software	packages	these	SDUs	into	messages	called	IP	packets	or	IP
datagrams,	which	are	layer	3	PDUs.	These	are	passed	down	to	a	layer	2	protocol,



say	Ethernet,	which	treats	IP	datagrams	as	layer	2	SDUs,	and	packages	them	into
layer	2	PDUs	(Ethernet	frames),	which	are	sent	on	to	layer	1.	(Actually,	in	some
technologies,	further	encapsulation	even	occurs	at	layer	1	prior	to	transmission.)

On	the	receiving	device,	the	process	of	encapsulation	is	reversed.	The	Ethernet
software	inspects	the	layer	2	PDU	(Ethernet	frame)	and	removes	from	it	the
layer	2	SDU	(IP	datagram),	which	it	passes	up	to	IP	as	a	layer	3	PDU.	The	IP
layer	removes	the	layer	3	SDU	(TCP	segment)	and	passes	it	to	TCP	as	a	layer	4
PDU.	TCP	continues	the	process,	going	back	up	the	protocol	layer	stack.

Figure	5-6	shows	in	more	detail	how	OSI	PDUs	and	SDUs	are	created	and
encapsulated.	A	TCP	segment	(layer	4	PDU)	becomes	a	layer	3	SDU,	which	is
encapsulated	into	a	layer	3	PDU	through	the	addition	of	an	IP	header.	This
becomes	the	payload	of	an	Ethernet	frame,	which	is	a	layer	2	PDU	containing	an
Ethernet	header,	a	layer	2	SDU	(the	IP	datagram),	and	an	Ethernet	footer.	The
receiving	device	extracts	the	IP	datagram	from	the	Ethernet	header	and	passes	it
to	layer	3;	the	IP	software	extracts	the	TCP	segment	and	passes	it	up	to	the	TCP
software.

This	whole	matter	of	encapsulation,	passing	data	up	and	down	the	protocol
stack,	and	so	on	may	seem	needlessly	complex.	It	also	may	appear	to	be	rather
inefficient;	why	send	a	message	with	so	many	headers	and	footers?	However,	the
notion	of	data	encapsulation	is	critical	to	creating	modular,	flexible	networks.



Figure	5-6.	OSI	Reference	Model	PDU	and	SDU	encapsulation	Each	PDU	at	one	layer	of	the	OSI
model	becomes	an	SDU	at	the	next	lower	layer	and	is	encapsulated	into	that	layer's	PDU.

The	term	protocol	data	unit	or	PDU	is	rather	formal.	You	will	see	it	used	in
standards	and	sometimes	in	discussions,	but	more	often	than	not,	you'll
encounter	the	message	terms,	such	as	frame	and	datagram,	as	discussed	in
Chapter	1.	Similarly,	data	encapsulated	by	these	messages	is	not	normally	called
a	service	data	unit	or	SDU,	but	rather	simply	the	message	body	or	payload,	as
you	saw	when	you	looked	at	message	formatting	in	Chapter	1.	There	are	cases,
however,	for	which	knowing	the	difference	between	an	SDU	and	a	PDU	is
important	to	understanding	the	technology.	One	example	is	the	IEEE	802.11
physical	layer—the	802.11	standards	talk	about	SDUs	and	PDUs	constantly!

TIP

RELATED	INFORMATION	See	the	OSI	Reference	Model	analogy	in	the	"The	Benefits	of
Networking	Models"	section	earlier	in	this	chapter	for	an	example	that	compares	networking
encapsulation	to	something	done	in	a	real-world,	nonnetworking	context.

Indirect	Device	Connection	and	Message
Routing



Most	of	the	explanations	that	I	have	provided	in	the	other	sections	of	this	chapter
have	discussed	the	mechanisms	by	which	machines	connect	to	each	other	over	a
network	directly.	However,	one	of	the	most	powerful	aspects	of	networking	is
that	it	is	possible	to	create	internetworks—networks	of	networks—that	allow
devices	to	be	connected	indirectly.	For	example,	Machine	A	may	send	a	message
to	Machine	B	without	really	even	knowing	where	it	is	on	the	network.

If	a	message	is	being	sent	between	devices	that	are	not	on	the	same	network,
then	it	must	be	passed	between	directly	connected	networks	until	it	reaches	its
final	destination.	The	process	of	transmitting	a	message	from	one	network	to
another	is	called	forwarding,	and	the	collective	process	of	forwarding	from	one
device	to	another	is	routing.	These	concepts	are	fundamental	to	all
internetworking,	including	the	Internet	itself.	Every	time	you	access	an	Internet
resource	such	as	a	website,	you	are	sending	messages	that	get	routed	to	that	site,
and	the	responses	you	receive	get	routed	back.

NOTE

Even	though	the	technically	correct	term	for	moving	a	message	from	one	network	to	an	adjacent	network
is	forwarding,	over	time,	the	term	routing	has	come	to	be	used	both	for	a	single	network-to-network
transfer,	as	well	as	the	overall	process	of	transmitting	a	message	from	one	device	to	another.

In	the	context	of	the	OSI	Reference	Model,	routing	is	an	activity	that	generally
takes	place	at	the	network	layer,	layer	3.	You'll	recall	that	data	encapsulation
causes	a	higher-layer	message	to	be	surrounded	by	headers	and	footers	at	the
lower	layers.	When	a	message	is	routed,	here's	what	happens:

A	high-level	application	on	a	machine	decides	to	send	a	datagram	to	a	distant
computer.	The	datagram	is	packaged,	and	then	passed	down	vertically
through	the	protocol	stack	on	the	originating	machine.	Each	layer
encapsulates	the	data,	as	described	in	the	previous	section.	The	datagram	is
addressed	to	the	final	destination	device.	When	the	message	gets	to	the	lower
layers,	however,	it	is	not	packaged	for	local	delivery	directly	to	its	ultimate
destination,	but	rather	passed	to	an	intermediate	device.	This	is	the	device	that
is	responsible	for	routing	to	that	destination	network.	The	message	is	passed
down	to	the	data	link	and	physical	layers	for	transmission	to	that	intermediate
device.



The	intermediate	device	(often	called	a	router)	receives	the	message	at	the
physical	layer.	It	is	passed	up	to	the	data	link	layer,	where	it	is	processed,
checked	for	errors	and	so	on,	and	the	data	link	layer	headers	are	removed.
The	resulting	packet	is	passed	up	to	the	network	layer.	There,	the
intermediate	device	determines	if	the	destination	machine	is	on	its	local
network,	or	if	it	needs	to	be	forwarded	to	another	intermediate	device.	It	then
repackages	the	message	and	passes	it	back	down	to	the	data	link	layer	to	be
sent	on	the	next	leg	of	its	journey.

After	several	potential	intermediate	devices	handle	the	message,	it	eventually
reaches	its	destination.	Here,	it	travels	back	up	the	protocol	stack	until	it
reaches	the	same	layer	as	the	one	from	the	application	that	generated	the
message	on	the	originating	machine.

The	key	to	this	description	is	that	in	the	intermediate	devices,	the	message
travels	back	up	the	OSI	layers	only	to	the	network	layer.	It	is	then	repackaged
and	sent	back	along	its	way.	The	higher	layers	are	involved	only	on	the	source
and	destination	devices.	The	protocol	used	at	layer	3	must	be	common	across	the
internetwork,	but	each	individual	network	can	be	different.	This	demonstrates
some	of	the	power	of	layering	by	enabling	even	rather	dissimilar	physical
networks	to	be	connected	together.

Figure	5-7	shows	how	routing	is	accomplished	conceptually	in	the	OSI	model.
The	intermediate	device	connects	the	networks	of	the	message	transmitter	and
recipient.	When	data	is	sent,	it	is	passed	up	to	the	network	layer	on	the
intermediate	device,	where	it	is	repackaged	and	sent	back	down	the	stack	for	the
next	leg	of	its	transmission.	Note	that	the	intermediate	device	actually	has	two
different	layer	1	and	2	implementations—one	for	the	interface	to	each	network.
Also	note	that	while	the	layer	3	protocol	must	be	the	same	across	the
internetwork,	each	network	can	use	different	technologies	at	layers	1	and	2.



Figure	5-7.	Message	routing	in	the	OSI	Reference	Model	Routing	in	the	OSI	model	is	accomplished
using	an	intermediate	device	that	connects	networks	at	layer	3.	Data	passes	up	to	layer	3	in	that	device

on	one	network	and	then	passes	back	down	to	layer	1	on	another.

TIP

KEY	CONCEPT	In	the	OSI	model,	the	process	of	routing	occurs	when	data	is	sent	not	directly	from
transmitter	to	ultimate	recipient,	but	indirectly	through	the	use	of	an	intermediate	system.	That	device,
normally	called	a	router,	connects	to	two	or	more	physical	networks,	and	thus	has	multiple	interfaces	to
layer	2.	When	it	receives	data,	the	data	passes	up	only	to	the	network	layer,	where	it	is	repackaged	and
then	sent	on	the	next	leg	of	its	journey	over	the	appropriate	layer	2	interface.



Chapter	6.	OSI	REFERENCE
MODEL	LAYERS

In	this	chapter,	we	look	at	the	individual	layers	of	the	OSI	Reference	Model.
Each	layer	in	the	OSI	model	has	certain	characteristics	that	define	it,	and	also
various	protocols	normally	associated	with	it.	I'll	describe	how	each	layer
functions	in	the	OSI	layer	stack,	outline	the	specific	types	of	activities	for	which
each	is	normally	responsible,	and	provide	some	examples	of	the	technologies
and	protocols	that	reside	at	each	layer.	Understanding	the	nuances	of	each	layer
will	help	you	understand	all	the	technologies	that	use	them.

Keep	in	mind,	however,	that	the	descriptions	in	this	section	are	generic.	To
really	comprehend	the	details	of	the	various	layers	and	how	they	are	used,	read
the	details	of	the	individual	protocols	that	function	at	each	layer	later	in	this
book.

TIP

RELATED	INFORMATION	Chapter	7	contains	summary	information	that	may	be	helpful	to	you	in
understanding	the	OSI	model	layers.	This	includes	some	common	mnemonics	for	remembering	the	order
of	the	layers	and	a	summary	chart	for	quickly	comparing	the	layers'	key	characteristics.

Physical	Layer	(Layer	1)
The	lowest	layer	of	the	OSI	Reference	Model	is	layer	1,	the	physical	layer;	it	is
commonly	abbreviated	PHY.	This	layer	is	the	only	one	where	data	is	physically
moved	across	the	network	interface.	All	other	layers	perform	functions	to	create
messages	that	implement	various	protocols,	but	these	messages	must	all	be
transmitted	down	the	protocol	stack	to	the	physical	layer,	and	they	are	eventually
sent	out	over	the	network.



First,	a	bit	of	clarification.	The	name	physical	layer	can	be	a	bit	problematic
because	it	suggests	that	this	layer	relates	only	to	the	actual	network	hardware,
which	is	not	the	case.	While	some	people	say	that	the	physical	layer	is	the
network	interface	cards	and	cables,	this	is	not	actually	true.	The	physical	layer
defines	a	number	of	network	functions	in	addition	to	interfaces	with	hardware
cables	and	cards.

People	also	suggest	that	all	network	hardware	belongs	to	the	physical	layer.
Again,	this	isn't	strictly	accurate.	All	hardware	must	have	some	relation	to	the
physical	layer	in	order	to	send	data	over	the	network,	but	hardware	devices
generally	implement	multiple	layers	of	the	OSI	model	in	addition	to	the	physical
layer.	For	example,	an	Ethernet	network	interface	card	performs	functions	at
both	the	physical	layer	and	the	data	link	layer.

The	physical	layer	technologies	deal	with	the	actual	ones	and	zeros	that	are	sent
over	the	network.	For	example,	repeaters,	conventional	hubs,	and	transceivers	all
operate	at	the	physical	layer.	These	devices	have	no	knowledge	of	the	contents
of	a	message;	they	simply	take	input	bits	and	send	them	as	output.	The	physical
layer	is	responsible	for	the	following:

Hardware	Specifications	Definition	The	details	of	operation	of	cables,
connectors,	wireless	radio	transceivers,	network	interface	cards,	and	other
hardware	devices	are	generally	a	function	of	the	physical	layer	(although	also
partially	the	data	link	layer,	layer	2).

Encoding	and	Signaling	The	physical	layer	is	responsible	for	various	encoding
and	signaling	functions	that	transform	the	data	from	bits	that	reside	within	a
computer	or	another	device	into	signals	that	can	be	sent	over	the	network.

Data	Transmission	and	Reception	After	encoding	the	data	appropriately,	the
physical	layer	actually	transmits	the	data,	and	of	course,	receives	it.	(This	applies
equally	to	wired	and	wireless	networks,	even	if	there	is	no	tangible	cable	in	a
wireless	network.)

Topology	and	Physical	Network	Design	The	physical	layer	is	also	considered
the	domain	of	many	hardware-related	network	design	issues,	such	as	local	area
network	(LAN)	and	wide	area	network	(WAN)	topology.

While	the	physical	layer	of	a	network	primarily	defines	the	hardware	it	uses,	it	is



also	closely	related	to	the	data	link	layer.	Thus,	it	is	not	generally	possible	to
define	hardware	at	the	physical	layer	independently	from	the	technology	being
used	at	the	data	link	layer.	For	example,	Ethernet	is	a	technology	that	describes
specific	types	of	cables	and	network	hardware,	but	the	physical	layer	of	Ethernet
can	be	isolated	from	its	data	link	layer	aspects	only	to	a	point.	Though	Ethernet
cables	are	the	physical	layer,	the	cables'	maximum	length	is	related	closely	to
message	format	rules	that	exist	at	the	data	link	layer.

Furthermore,	some	technologies	perform	functions	at	the	physical	layer	that	are
normally	more	closely	associated	with	the	data	link	layer.	For	example,	it	is
common	to	have	the	physical	layer	perform	low-level	(bit-level)	repackaging	of
data	link	layer	frames	for	transmission.	Error	detection	and	correction	may	also
be	done	at	layer	1	in	some	cases,	though	most	people	would	consider	these	layer
2	functions.

In	many	technologies,	a	number	of	physical	layers	can	be	used	with	a	data	link
layer.	The	classic	example	is	Ethernet,	for	which	dozens	of	different	physical
layer	implementations	exist.	Each	implementation	uses	the	same	data	link	layer
(possibly	with	slight	variations).

TIP

KEY	CONCEPT	The	lowest	layer	in	the	OSI	Reference	Model	is	the	physical	layer.	It	is	the	realm	of
networking	hardware	specifications,	and	is	the	place	where	technologies	that	perform	data	encoding,
signaling,	transmission,	and	reception	functions	reside.	The	physical	layer	is	closely	related	to	the	data
link	layer.

Many	technologies	further	subdivide	the	physical	layer	into	sublayers	in	order	to
allow	different	network	media	to	be	supported	by	the	same	technology,	while
sharing	other	functions	at	the	physical	layer	that	are	common	between	the
various	media.	A	good	example	of	this	is	the	physical	layer	architecture	used	for
Fast	Ethernet,	Gigabit	Ethernet,	and	10-Gigabit	Ethernet.

NOTE

In	some	contexts,	the	physical	layer	technology	that's	used	to	convey	bits	across	a	network	or
communications	line	is	called	a	transport	method	(not	to	be	confused	with	the	OSI	transport	layer,	layer
4).



Data	Link	Layer	(Layer	2)
The	second-lowest	layer	(layer	2)	in	the	OSI	Reference	Model	stack	is	the	data
link	layer,	often	called	simply	the	link	layer,	or	abbreviated	DLL.	The	data	link
layer	is	where	many	wired	and	wireless	LAN	technologies	primarily	function.
For	example,	Ethernet,	Token	Ring,	FDDI,	and	802.11	(wireless	Ethernet	or	Wi-
Fi)	are	all	sometimes	called	data	link	layer	technologies.	The	set	of	devices
connected	at	the	data	link	layer	is	commonly	considered	a	simple	network	(as
opposed	to	an	internetwork,	which	is	a	collection	of	networks	connected	at	layer
3).

The	data	link	layer	is	often	conceptually	divided	into	two	sublayers:	logical	link
control	(LLC)	and	media	access	control	(MAC).	This	split	is	based	on	the
architecture	used	in	the	IEEE	802	Project,	which	is	the	IEEE	working	group
responsible	for	creating	the	standards	that	define	many	networking	technologies.
By	separating	LLC	and	MAC	functions,	interoperability	of	different	network
technologies	is	made	easier,	as	explained	in	the	discussion	of	networking	models
in	Chapter	5.

The	following	are	the	key	tasks	performed	at	the	data	link	layer:

Logical	Link	Control	(LLC)	Logical	link	control	refers	to	the	functions
required	for	the	establishment	and	control	of	logical	links	between	local	devices
on	a	network.	This	is	usually	considered	a	sublayer;	it	provides	services	to	the
network	layer	above	it	and	hides	the	rest	of	the	details	of	the	data	link	layer,
which	allows	different	technologies	to	work	seamlessly	with	the	higher	layers.
Most	LAN	technologies	use	the	IEEE	802.2	LLC	protocol	to	implement	this	part
of	the	data	link	layer.

Media	Access	Control	(MAC)	This	refers	to	the	procedures	used	by	devices	to
control	access	to	the	network	medium.	Since	many	networks	use	a	shared
medium	(such	as	a	single	network	cable,	or	a	series	of	cables	that	are	electrically
connected	into	a	single	virtual	medium),	it	is	necessary	to	have	rules	for
managing	the	medium	to	avoid	conflicts.	For	example,	Ethernet	uses	the
CSMA/CD	method	of	media	access	control,	while	Token	Ring	uses	token
passing.



Data	Framing	The	data	link	layer	is	responsible	for	data	framing,	which	is	the
final	encapsulation	of	higher-level	messages	into	frames	that	are	sent	over	the
network	at	the	physical	layer.

Addressing	The	data	link	layer	is	the	lowest	layer	in	the	OSI	model	that	is
concerned	with	addressing.	It	labels	information	with	a	particular	destination
location.	Each	device	on	a	network	has	a	unique	number	that	is	used	by	the	data
link	layer	protocol	to	ensure	that	data	intended	for	a	specific	machine	gets	to	it
properly.	This	is	usually	called	a	hardware	address	(since	it	is	intimately	related
with	low-level	hardware)	or	a	MAC	address	(after	the	MAC	function	described
earlier).

Error	Detection	and	Handling	The	data	link	layer	handles	errors	that	occur	at
the	lower	levels	of	the	network	stack.	For	example,	a	cyclic	redundancy	check
(CRC)	field	is	often	calculated	based	on	the	frame's	contents	and	then	included
in	it.	This	can	be	employed	to	allow	the	station	receiving	data	to	detect	if	it	was
received	correctly.

Physical	Layer	Standards	The	physical	layer	and	the	data	link	layer	are	very
closely	related.	The	requirements	for	the	physical	layer	of	a	network	are	often
part	of	the	data	link	layer	standard	that	describes	a	particular	technology.	Certain
physical-layer	hardware	and	encoding	aspects	are	specified	by	the	data	link	layer
technology	being	used.	The	best	example	of	this	is	the	Ethernet	standard,	IEEE
802.3,	which	specifies	not	just	how	Ethernet	works	at	the	data	link	layer,	but	also
its	various	physical	layers.

TIP

KEY	CONCEPT	The	second	OSI	Reference	Model	layer	is	the	data	link	layer.	This	is	where	most	LAN
and	wireless	LAN	technologies	are	defined.	Layer	2	is	responsible	for	logical	link	control	(LLC),	media
access	control	(MAC),	hardware	addressing,	error	detection	and	handling,	and	defining	physical	layer
standards.	It	is	often	divided	into	the	LLC	and	MAC	sublayers	based	on	the	IEEE	802	Project	that	uses
that	architecture.

Many	types	of	hardware	are	associated	with	the	data	link	layer.	Network
interface	cards	typically	implement	a	specific	data	link	layer	technology,	so	they
are	often	called	Ethernet	cards,	Token	Ring	cards,	and	so	on.	There	are	also	a
number	of	network	interconnection	devices	that	are	said	to	operate	at	layer	2	in
whole	or	in	part	because	they	make	decisions	about	what	to	do	with	data	they



whole	or	in	part	because	they	make	decisions	about	what	to	do	with	data	they
receive	by	looking	at	data	link	layer	frames.	These	devices	include	most	bridges,
switches,	and	brouters,	though	the	latter	two	also	encompass	functions
performed	by	layer	3.

Some	of	the	most	popular	technologies	and	protocols	generally	associated	with
layer	2	are	Ethernet,	Token	Ring,	FDDI	(plus	CDDI),	HomePNA,	IEEE	802.11,
Asynchronous	Transfer	Mode	(ATM),	TCP/IP's	Serial	Line	Interface	Protocol
(SLIP),	and	TCP/IP's	Point-to-Point	Protocol	(PPP).



Network	Layer	(Layer	3)
The	third-lowest	layer	of	the	OSI	Reference	Model	is	the	network	layer.	If	the
data	link	layer	defines	the	boundaries	of	what	is	considered	a	network,	the
network	layer	defines	how	internetworks	(interconnected	networks)	function.
The	network	layer	is	the	lowest	one	in	the	OSI	model	that	is	concerned	with
actually	getting	data	from	one	computer	to	another	even	if	it	is	on	a	remote
network;	in	contrast,	the	data	link	layer	only	deals	with	devices	that	are	local	to
each	other.

While	layers	2	through	6	all	act	as	fences	between	the	layers	above	and	below
them,	the	network	layer	is	particularly	important	in	terms	of	separating	higher
and	lower-layer	functions.	It	is	here	that	the	transition	really	begins	from	the
more	abstract	functions	of	the	higher	layers—which	don't	concern	themselves	as
much	with	data	delivery—into	the	specific	tasks	required	to	get	data	to	its
destination.	(The	transport	layer	continues	this	abstraction	transition	as	you	go
up	the	OSI	protocol	stack.)

Some	of	the	specific	jobs	normally	performed	by	the	network	layer	include	the
following:

Logical	Addressing	Every	device	that	communicates	over	a	network	has	a
logical	address	associated	with	it,	which	identifies	the	device	regardless	of	its
particular	location.	This	is	sometimes	called	a	layer	3	address.	For	example,	on
the	Internet,	the	Internet	Protocol	(IP)	is	the	network	layer	protocol	and	every
machine	has	an	IP	address.	Logical	addresses	are	independent	of	particular
hardware	and	must	be	unique	across	an	entire	internetwork.

NOTE

Addressing	is	done	at	the	data	link	layer	as	well,	but	those	addresses	refer	to	local	physical	devices.

Routing	The	defining	function	of	the	network	layer	is	routing—moving	data
across	a	series	of	interconnected	networks.	It	is	the	job	of	the	devices	and
software	routines	that	function	at	the	network	layer	to	handle	incoming	packets
from	various	sources,	determine	their	final	destination,	and	then	figure	out	where
they	need	to	be	sent	to	get	them	where	they	are	supposed	to	go.	(You'll	find	a



more	complete	discussion	of	routing	in	the	OSI	model	in	the	section	covering
indirect	device	connection	in	Chapter	5.)

Datagram	Encapsulation	The	network	layer	normally	encapsulates	messages
received	from	higher	layers	by	placing	them	into	datagrams	(also	called	packets)
with	a	network	layer	header	(the	previous	chapter	discusses	encapsulation).

Fragmentation	and	Reassembly	The	network	layer	must	send	messages	down
to	the	data	link	layer	for	transmission.	Some	data	link	layer	technologies	limit
the	length	of	any	message	that	can	be	sent.	If	the	packet	that	the	network	layer
wants	to	send	is	too	large,	the	network	layer	must	split	the	packet	up	(fragment
it),	send	each	piece	to	the	data	link	layer,	and	then	have	the	pieces	reassembled
once	they	arrive	at	the	network	layer	on	the	destination	machine.	The	IP	is	the
best-known	example	of	a	protocol	that	performs	these	functions;	see	Chapter	22
for	a	discussion	of	IP	datagram	fragmentation.

Error	Handling	and	Diagnostics	The	network	layer	uses	special	protocols	to
allow	devices	that	are	logically	connected	(or	that	are	trying	to	route	traffic)	to
exchange	information	about	the	status	of	hosts	on	the	network	or	the	devices
themselves.

Network	layer	protocols	offer	either	connection-oriented	or	connectionless
services	for	delivering	packets	across	the	network.	Connectionless	ones	are	far
more	common	at	the	network	layer.	In	many	protocol	suites,	the	network	layer
protocol	is	connectionless,	and	connection-oriented	services	are	provided	by	the
transport	layer.	For	example,	in	TCP/IP,	IP	is	connectionless,	while	the	layer	4
Transmission	Control	Protocol	(TCP)	is	connection-oriented.	Connection-
oriented	and	connectionless	protocols	are	discussed	thoroughly	in	Chapter	1.

The	most	common	network	layer	protocol	is	IP,	which	is	why	I	have	already
mentioned	it	a	couple	of	times.	IP	is	the	backbone	of	the	Internet	and	the
foundation	of	the	entire	TCP/IP	protocol	suite.	There	are	also	several	protocols
directly	related	to	IP	that	work	with	it	at	the	network	layer,	such	as	IPsec,	IP
NAT,	and	Mobile	IP.	The	Internet	Control	Message	Protocol	(ICMP)	is	the	main
error-handling	and	control	protocol	that	is	used	along	with	IP.	Another	notable
network	layer	protocol	outside	the	TCP/IP	world	is	the	Novell	Internetworking
Packet	Exchange	(IPX)	protocol.



TIP

KEY	CONCEPT	The	OSI	Reference	Model's	third	layer	is	the	network	layer.	This	is	one	of	the	most
important	layers	in	the	model;	it	is	responsible	for	the	tasks	that	link	together	individual	networks	into
internetworks.	Network	layer	functions	include	internetwork-level	addressing,	routing,	datagram
encapsulation,	fragmentation	and	reassembly,	and	certain	types	of	error	handling	and	diagnostics.	The
network	layer	and	transport	layer	are	closely	related	to	each	other.

The	network	interconnection	devices	that	operate	at	the	network	layer	are
usually	called	routers.	They	are	responsible	for	the	routing	functions	I	have
mentioned,	because	they	receive	packets	as	they	are	sent	along	each	"hop"	of	a
route	and	send	them	on	the	next	leg	of	their	trip.	They	communicate	with	each
other	using	routing	protocols	in	order	to	determine	the	best	routes	for	sending
traffic	efficiently.	So-called	brouters	also	reside,	at	least	in	part,	at	the	network
layer,	as	do	the	rather	obviously	named	layer	3	switches.



Transport	Layer	(Layer	4)
The	fourth	layer	of	the	OSI	Reference	Model	protocol	stack	is	the	transport
layer,	also	called	the	middle	layer.	The	transport	layer	is	in	some	ways	part	of
both	the	lower	and	upper	groups	of	layers	in	the	OSI	model.	It	is	more	often
associated	with	the	lower	layers,	because	it	concerns	itself	with	the	transport	of
data,	but	its	functions	are	also	somewhat	high	level,	resulting	in	its	having	a	fair
bit	in	common	with	layers	5	through	7	as	well.

You'll	recall	that	layers	1	through	3	are	concerned	with	the	actual	packaging,
addressing,	routing,	and	delivery	of	data.	The	physical	layer	handles	the	bits,	the
data	link	layer	deals	with	local	networks,	and	the	network	layer	handles	routing
between	networks.	The	transport	layer,	in	contrast,	is	sufficiently	conceptual	that
it	no	longer	concerns	itself	with	these	nuts-and-bolts	matters.	It	relies	on	the
lower	layers	to	move	data	between	devices.

The	transport	layer	acts	as	a	liaison	of	sorts	between	the	abstract	world	of
applications	at	the	higher	layers	and	the	concrete	functions	of	layers	1	to	3.	Its
overall	job	is	to	provide	the	necessary	functions	to	enable	communication
between	software	application	processes	on	different	computers,	which
encompasses	a	number	of	different	but	related	duties.

Because	modern	computers	are	multitasking,	many	different	software
applications	may	be	trying	to	send	and	receive	data	to	the	same	machine	at	any
given	point.	The	transport	layer	is	charged	with	providing	a	means	by	which
these	applications	can	all	send	and	receive	data	using	the	same	lower-layer
protocol	implementation.	Thus,	it	is	sometimes	said	to	be	responsible	for	end-to-
end	or	host-to-host	transport	(in	fact,	the	equivalent	layer	in	the	TCP/IP	model	is
called	the	host-to-host	transport	layer).

To	accomplish	this	communication	between	processes,	the	transport	layer	must
perform	several	different	but	related	jobs.	For	transmission,	it	must	track	the	data
from	each	application,	then	combine	it	into	a	single	flow	of	data	to	send	to	the
lower	layers.	The	device	receiving	information	must	reverse	these	operations,
fragment	the	data,	and	funnel	it	to	the	appropriate	recipient	processes.	The
transport	layer	is	also	responsible	for	defining	the	means	by	which	potentially
large	amounts	of	application	data	are	fragmented	for	transmission.



The	transport	layer	is	also	responsible	for	providing	connection	services	for	the
protocols	and	applications	that	run	at	the	levels	above	it.	These	can	be
categorized	as	either	connection-oriented	services	or	connectionless	services,
and	each	has	its	uses.	While	connection-oriented	services	can	be	handled	at	the
network	layer,	they	are	more	often	seen	in	the	transport	layer	in	the	real	world.
(Some	protocol	suites,	such	as	TCP/IP,	provide	both	a	connection-oriented	and	a
connectionless	transport	layer	protocol	that	suits	the	needs	of	different
applications.)

The	transport	layer	is	also	where	functions	are	normally	included	for	adding
features	to	end-to-end	data	transport.	Whereas	network	layer	protocols	are
normally	concerned	with	just	"best-effort"	communications	for	which	delivery	is
not	guaranteed,	transport	layer	protocols	are	given	intelligence	in	the	form	of
algorithms	that	ensure	the	reliable	and	efficient	communication	between	devices.
This	intelligence	encompasses	several	related	jobs,	including	lost	transmission
detection	and	handling,	and	managing	the	rate	at	which	data	is	sent	in	order	to
ensure	that	the	receiving	device	is	not	overwhelmed.

Transmission	quality—ensuring	that	transmissions	are	received	as	sent—is	so
important	that	some	networking	books	define	the	transport	layer	on	the	basis	of
reliability	and	flow-control	functions.	However,	not	all	transport	layer	protocols
provide	these	services.	Just	as	a	protocol	suite	may	have	a	connection-oriented
and	a	connectionless	transport	layer	protocol,	it	may	also	have	one	transport
layer	protocol	that	provides	reliability	and	data	management	services,	and	one
that	doesn't.	Again,	this	is	the	case	with	TCP/IP:	There	is	one	main	transport
layer	protocol,	TCP,	that	includes	reliability	and	flow-control	features,	and	a
second,	User	Datagram	Protocol	(UDP),	that	doesn't.

Let's	look	at	the	specific	functions	often	performed	at	the	transport	layer	in	more
detail:

Process-Level	Addressing	Addressing	at	the	transport	layer	is	used	to
differentiate	between	software	programs.	This	is	part	of	what	enables	many
different	software	programs	to	use	a	network	layer	protocol	simultaneously.	The
best	example	of	transport-layer	process-level	addressing	is	the	TCP	and	UDP
port	mechanism	that's	used	in	TCP/IP,	which	allows	applications	to	be
individually	referenced	on	any	TCP/IP	device.



Multiplexing	and	Demultiplexing	Using	the	process-level	addresses,	transport
layer	protocols	on	a	sending	device	multiplex	the	data	received	from	many
application	programs	for	transport,	combining	them	into	a	single	stream	of	data
to	be	sent.	The	same	protocols	receive	data	and	then	demultiplex	it	from	the
incoming	stream	of	datagrams,	and	direct	each	one	to	the	appropriate	recipient
application	processes.

Segmentation,	Packaging,	and	Reassembly	The	transport	layer	segments	the
large	amounts	of	data	it	sends	over	the	network	into	smaller	pieces	on	the	source
machine,	and	then	reassembles	them	on	the	destination	machine.	This	function	is
similar	to	the	fragmentation	function	of	the	network	layer.	Just	as	the	network
layer	fragments	messages	to	fit	the	limits	of	the	data	link	layer,	the	transport
layer	segments	messages	to	suit	the	requirements	of	the	underlying	network
layer.

Connection	Establishment,	Management,	and	Termination	Transport	layer
connection-oriented	protocols	are	responsible	for	the	series	of	communications
required	to	establish	a	connection,	maintain	it	as	data	is	sent	over	it,	and	then
terminate	the	connection	when	it	is	no	longer	required.

Acknowledgments	and	Retransmissions	As	mentioned	earlier,	the	transport
layer	is	where	many	protocols	that	guarantee	reliable	delivery	of	data	are
implemented.	This	is	done	using	a	variety	of	techniques,	most	commonly	by
combining	acknowledgment	and	retransmission	timers.	The	sending	device	starts
a	timer	on	each	occasion	that	data	is	sent;	if	the	data	is	received,	the	recipient
sends	back	an	acknowledgment	to	the	sender	to	indicate	successful	transmission.
If	no	acknowledgment	is	returned	before	the	timer	expires,	the	data	is
retransmitted.	Other	algorithms	and	techniques	are	usually	required	to	support
this	basic	process.

Flow	Control	Transport	layer	protocols	that	offer	reliable	delivery	also	often
implement	flow-control	features.	These	features	allow	one	device	in	a
communication	to	specify	to	another	that	it	must	throttle	back	the	rate	at	which	it
is	sending	data.	This	will	prevent	the	receiver	from	being	bogged	down	with
data.	These	features	allow	mismatches	in	speed	between	sender	and	receiver	to
be	detected	and	handled.



TIP

KEY	CONCEPT	The	fourth	and	middle	OSI	Reference	Model	layer	is	the	transport	layer.	This	layer
represents	the	transition	point	between	the	lower	layers	that	deal	with	data	delivery	issues,	and	the	higher
ones	that	work	with	application	software.	The	transport	layer	is	responsible	for	enabling	end-to-end
communication	between	application	processes,	which	it	accomplishes	in	part	through	the	use	of	process-
level	addressing	and	multiplexing	or	demultiplexing.	Transport	layer	protocols	are	responsible	for
segmenting	application	data	into	blocks	for	transmission	and	may	be	either	connection-oriented	or
connectionless.	Protocols	at	this	layer	also	often	provide	data	delivery	management	services	such	as
reliability	and	flow	control.

In	theory,	the	transport	and	network	layers	are	distinct,	but	in	practice,	they	are
often	very	closely	related	to	each	other.	You	can	see	this	easily	just	by	looking	at
the	names	of	common	protocol	stacks.	They	are	often	named	after	the	layer	3
and	4	protocols	in	the	suite,	thereby	implying	their	close	relationship.	For
example,	the	name	TCP/IP	comes	from	the	suite's	most	commonly	used
transport	layer	protocol	(TCP)	and	network	layer	protocol	(IP).	Similarly,	the
Novell	NetWare	suite	is	often	called	IPX/SPX	for	its	layer	3	(IPX)	and	layer	4
(Sequenced	Packet	Exchange,	or	SPX)	protocols.

Typically,	specific	transport	layer	protocols	use	the	network	layers	in	the	same
family.	You	won't	often	find	a	network	using	the	transport	layer	protocol	from
one	suite	and	the	network	layer	protocol	from	another.	The	most	commonly	used
transport	layer	protocols	are	TCP	and	UDP	in	the	TCP/IP	suite,	SPX	in	the
NetWare	protocol	suite,	and	NetBEUI	in	the	NetBIOS/NetBEUI/NBF	suite
(though	NetBEUI	is	more	difficult	to	categorize).



Session	Layer	(Layer	5)
The	fifth	layer	in	the	OSI	Reference	Model	is	the	session	layer.	As	you	proceed
up	the	OSI	layer	stack	from	the	bottom,	the	session	layer	is	the	first	one	where
essentially	all	practical	matters	related	to	the	addressing,	packaging,	and	delivery
of	data	are	left	behind;	they	are	functions	of	layers	4	and	below.	The	session
layer	is	the	lowest	of	the	three	upper	layers,	which,	as	a	group,	are	concerned
mainly	with	software	application	issues	and	not	with	the	details	of	network	and
internetwork	implementation.

The	name	session	layer	is	telling:	It	is	designed	to	allow	devices	to	establish	and
manage	sessions.	In	general	terms,	a	session	is	a	persistent	logical	linking	of	two
software	application	processes	that	allows	them	to	exchange	data	over	time.	In
some	discussions,	these	sessions	are	called	dialogs,	and,	in	fact,	they	are	roughly
analogous	to	a	telephone	call	made	between	two	people.

Session	layer	protocols	primarily	provide	the	necessary	means	for	setting	up,
managing,	and	ending	sessions.	In	fact,	in	some	ways,	session-layer	software
products	resemble	sets	of	tools	more	than	specific	protocols.	These	session-layer
tools	are	normally	provided	to	higher-layer	protocols	through	command	sets	that
are	often	called	application	program	interfaces	or	APIs.

Common	APIs	include	NetBIOS,	TCP/IP	Sockets,	and	Remote	Procedure	Calls
(RPCs).	APIs	allow	an	application	to	easily	accomplish	certain	high-level
communications	over	the	network	by	using	a	standardized	set	of	services.	Most
of	these	session-layer	tools	are	of	primary	interest	to	the	developers	of
application	software.	The	programmers	use	the	APIs	to	write	software	that	is
able	to	communicate	using	TCP/IP	without	developers	having	to	know	the
implementation	details	of	how	TCP/IP	works.

For	example,	the	Sockets	interface	lies	conceptually	at	layer	5	and	is	used	by
TCP/IP	application	programmers	to	create	sessions	between	software	programs
over	the	Internet	on	the	UNIX	operating	system.	Windows	Sockets	similarly	lets
programmers	create	Windows	software	that	is	Internet	capable	and	able	to
interact	easily	with	other	software	that	uses	that	interface.	(Strictly	speaking,
Sockets	is	not	a	protocol,	but	rather	a	programming	method.)



NOTE

The	boundaries	between	layers	start	to	blur	once	you	get	to	the	session	layer.	This	makes	it	hard	to
categorize	what	exactly	belongs	at	layer	5,	and	some	technologies	really	span	layers	5	through	7.	In	the
world	of	TCP/IP	in	particular,	it	is	not	common	to	identify	protocols	that	are	specific	to	the	OSI	session
layer.

TIP

KEY	CONCEPT	The	fifth	layer	in	the	OSI	Reference	Model	layer	is	the	session	layer.	As	its	name
suggests,	it	is	the	layer	intended	to	provide	functions	for	establishing	and	managing	sessions	between
software	processes.	Session	layer	technologies	are	often	implemented	as	sets	of	software	tools	called
application	program	interfaces	(APIs),	which	provide	a	consistent	set	of	services	that	allow	programmers
to	develop	networking	applications	without	needing	to	worry	about	lower-level	details	of	transport,
addressing,	and	delivery.

NOTE

The	term	"session"	is	somewhat	vague,	which	means	that	there	is	sometimes	disagreement	on	the
specific	functions	that	belong	at	the	session	layer,	or	about	whether	certain	protocols	belong	at	the
session	layer	or	not.	To	add	to	this	potential	confusion,	there	is	the	matter	of	differentiating	between	a
connection	and	a	session.	Connections	are	normally	the	province	of	layer	4	and	layer	3,	yet	a	TCP
connection,	for	example,	can	persist	for	a	long	time.	The	longevity	of	TCP	connections	makes	them	hard
to	distinguish	from	sessions	(and	there	are	some	people	who	feel	that	the	TCP/IP	host-to-host	transport
layer	really	straddles	OSI	layers	4	and	5).



Presentation	Layer	(Layer	6)
The	presentation	layer	is	the	sixth	layer	of	the	OSI	Reference	Model	protocol
stack	and	second	from	the	top.	It	differs	from	the	other	layers	in	two	key
respects.	First,	it	has	a	much	more	limited	and	specific	function	than	the	other
layers.	Second,	it	is	used	much	less	often	than	the	other	layers	and	is	not	required
by	many	types	of	communications.

This	layer	deals	with	the	presentation	of	data.	More	specifically,	it	is	charged
with	taking	care	of	any	issues	that	might	arise	when	data	sent	from	one	system
needs	to	be	viewed	in	a	different	way	by	the	receiving	system.	The	presentation
layer	also	handles	any	special	processing	that	must	be	done	to	data	from	the	time
an	application	tries	to	send	it	until	the	time	it	is	sent	over	the	network.

Here	are	some	of	the	specific	types	of	data-handling	issues	that	the	presentation
layer	handles:

Translation	Many	different	types	of	computers	can	exist	on	the	same	network,
such	as	PCs,	Macs,	UNIX	systems,	AS/400	servers,	and	mainframes.	Each	has
many	distinct	characteristics	and	represents	data	in	different	ways	(with	different
character	sets,	for	example).	The	presentation	layer	hides	the	differences
between	machines.

Compression	Compression	(and	decompression)	may	be	done	at	the
presentation	layer	to	improve	the	throughput	of	data.

Encryption	Some	types	of	encryption	(and	decryption)	are	performed	at	the
presentation	layer	to	ensure	the	security	of	the	data	as	it	travels	down	the
protocol	stack.	For	example,	one	of	the	most	popular	encryption	schemes	usually
associated	with	the	presentation	layer	is	the	Secure	Sockets	Layer	(SSL)
protocol.	(Some	encryption	is	done	at	lower	layers	in	the	protocol	stack	in
technologies	such	as	IPsec.)

The	presentation	layer	is	not	always	used	in	network	communications	because
these	functions	mentioned	are	simply	not	always	needed.	Compression	and
encryption	are	usually	considered	optional,	and	translation	features	are	needed
only	in	certain	circumstances.	Also,	the	presentation	layer's	functions	may	be
performed	at	the	application	layer.



NOTE

Since	its	translation	job	isn't	always	needed,	the	presentation	layer	is	commonly	skipped	by	actual
protocol	stack	implementations;	in	such	implementations	protocols	at	layer	7	may	talk	directly	with
those	at	layer	5.	This	is	part	of	the	reason	why	all	of	the	functions	at	layers	5	through	7	may	be	included
in	the	same	software	package,	as	described	in	the	overview	of	layers	and	layer	groupings	in	the	previous
chapter.

TIP

KEY	CONCEPT	The	sixth	OSI	model	layer	is	the	presentation	layer.	Protocols	at	this	layer	take	care	of
manipulation	tasks	that	transform	data	from	one	representation	to	another,	such	as	translation,
compression,	and	encryption.	In	many	cases,	no	such	functions	are	required	in	a	particular	networking
stack;	if	so,	there	may	not	be	any	protocol	active	at	layer	6,	so	layer	7	may	deal	with	layer	5.



Application	Layer	(Layer	7)
At	the	very	top	of	the	OSI	Reference	Model	stack	of	layers,	you	find	layer	7,	the
application	layer.	Continuing	the	trend	that	you	saw	in	layers	5	and	6,	this	one	is
also	named	very	appropriately.	The	application	layer	is	the	one	that	is	used	by
network	applications.	These	programs	are	what	actually	implement	the	functions
performed	by	users	to	accomplish	various	tasks	over	the	network.

It's	important	to	understand	that	what	the	OSI	model	calls	an	application	is	not
exactly	the	same	as	what	you	normally	think	of	as	an	application.	In	the	OSI
model,	the	application	layer	provides	services	for	user	applications	to	employ.

For	example,	when	you	use	your	web	browser,	that	actual	software	is	an
application	running	on	your	PC.	It	doesn't	really	reside	at	the	application	layer.
Rather,	it	makes	use	of	the	services	offered	by	a	protocol	that	operates	at	the
application	layer,	which	is	called	the	Hypertext	Transfer	Protocol	(HTTP).	The
distinction	between	the	browser	and	HTTP	is	subtle	but	important.

Not	all	user	applications	use	the	network's	application	layer	in	the	same	way.
Sure,	your	web	browser,	email	client,	and	Usenet	newsreader	do,	but	if	you	open
a	file	over	the	network	with	a	text	editor,	that	editor	is	not	using	the	application
layer—it	just	sees	a	file	addressed	with	a	name	that	has	been	mapped	to	a
network	somewhere	else.	The	operating	system	redirects	what	the	editor	does,
over	the	network.

Similarly,	not	all	uses	of	the	application	layer	are	by	applications.	The	operating
system	itself	can	(and	does)	use	services	directly	at	the	application	layer.

That	caveat	aside,	under	normal	circumstances,	whenever	you	interact	with	a
program	on	your	computer	that	is	designed	specifically	for	use	on	a	network,
you	are	dealing	directly	with	the	application	layer.	For	example,	sending	an
email	message,	firing	up	a	web	browser,	and	using	a	chat	program	involve
protocols	that	reside	at	the	application	layer.

NOTE

There	are	dozens	of	different	application	layer	protocols.	Some	of	the	most	popular	ones	include	HTTP,
FTP,	SMTP,	DHCP,	NFS,	Telnet,	SNMP,	POP3,	NNTP,	and	IRC.	I	describe	all	of	these	and	more	in
Section	III.



As	the	top-of-the-stack	layer,	the	application	layer	is	the	only	one	that	does	not
provide	any	services	to	the	layer	above	it	in	the	stack—there	isn't	one!	Instead,	it
provides	services	to	programs	that	want	to	use	the	network,	and	to	you,	the	user.
So	the	responsibilities	at	this	layer	are	simply	to	implement	the	functions	that	are
needed	by	users	of	the	network	and	to	issue	the	appropriate	commands	to	make
use	of	the	services	provided	by	the	lower	layers.

TIP

KEY	CONCEPT	The	application	layer	is	the	seventh	and	highest	layer	in	the	OSI	Reference	Model.
Application	protocols	that	implement	specific	user	applications	and	other	high-level	functions	are
defined	at	this	layer.	Since	they	are	at	the	top	of	the	stack,	application	protocols	are	the	only	ones	that	do
not	provide	services	to	a	higher	layer;	they	use	services	provided	by	the	layers	below.

As	you've	seen,	the	distinctions	between	the	top	three	layers	in	the	OSI	Model
are	not	very	clear.	In	the	case	of	TCP/IP,	this	is	exacerbated	by	the	decision	not
to	separate	out	the	session,	presentation,	and	application	layer	functions.	All	of
the	protocols	mentioned	earlier	are	from	the	TCP/IP	protocol	family,	and	some
may	cover	all	three	of	the	top	three	OSI	layers,	two	of	them,	or	one;	in	the
TCP/IP	model,	they	are	all	just	considered	applications.



Chapter	7.	OSI	REFERENCE
MODEL	SUMMARY

Many	students	of	networking	find	the	OSI	Reference	Model	challenging	to	deal
with.	One	main	reason	for	this	is	that	the	model	is	somewhat	abstract,	making	it
hard	to	understand	and	even	more	difficult	to	apply	to	real	networking	situations.
For	this	reason,	I	have	included	in	this	chapter	a	set	of	three	tools	that	I	hope	will
help	you	better	understand	and	remember	the	OSI	Reference	Model's	and
concepts:	an	analogy,	a	set	of	mnemonics,	and	a	summary	table	of	OSI	model
layers.

Understanding	the	OSI	Model:	An	Analogy
I	have	attempted	in	this	discussion	of	the	OSI	Reference	Model	to	provide	as
much	a	plain	English	explanation	of	how	it	works	as	possible.	However,	there
are	situations	in	which	a	good	analogy	can	accomplish	what	lots	of	descriptions
cannot.	So	I	am	going	to	illustrate	the	key	OSI	model	concepts	by	way	of	a	real-
life	analogy.	You	can	be	the	judge	of	whether	it	is	a	good	analogy	or	not.	Just
remember	that	no	analogy	is	perfect!

Our	scenario	seems	relatively	simple	and	common:	The	CEO	of	a	Fortune	500
company	needs	to	send	a	letter	to	the	CEO	of	another	company.	Simple,	right?
Just	like	firing	up	your	web	browser	and	connecting	to	your	favorite	website	is
simple.	However,	in	both	cases,	a	lot	goes	on	behind	the	scenes	to	make	the
communication	happen.	In	the	analogy	shown	in	Table	7-1,	I	compare	these	real-
world	and	cyber-world	communications.

Table	7-1.	OSI	Reference	Model	Real-World	Analogy

Phase OSI CEO	Letter Website	Connection



Phase OSI
Layer

CEO	Letter Website	Connection
(Simplified)

Transmission 7 The	CEO	of	a	company	in	Phoenix
decides	he	needs	to	send	a	letter	to
a	peer	in	Albany.	He	dictates	the
letter	to	his	administrative
assistant.

You	decide	you	want	to	connect	to
the	web	server	at	IP	address
10.0.12.34,	which	is	within	your
organization	but	not	on	your	local
network.	You	type	the	address	into
your	browser.

	 6 The	administrative	assistant
transcribes	the	dictation	into
writing.

With	a	website	connection,	nothing
usually	happens	here.	Format
translation	may	be	done	in	some
cases.

	 5 The	administrative	assistant	puts
the	letter	in	an	envelope	and	gives
it	to	the	mail	room.	The	assistant
doesn't	actually	know	how	the
letter	will	be	sent,	but	knows	it	is
urgent,	so	he	says,	"Get	this	to	its
destination	quickly."

The	request	is	sent	via	a	call	to	an
API,	which	issues	the	command
necessary	to	contact	the	server	at
that	address.

	 4 The	mail	room	must	decide	how	to
get	the	letter	where	it	needs	to	go.
Since	it	is	a	rush,	the	people	in	the
mail	room	decide	to	give	the
envelope	to	a	courier	company	to
send.

TCP	is	used	to	create	a	segment
that	will	be	sent	to	IP	address
10.0.12.34.

	 3 The	courier	company	receives	the
envelope,	but	it	needs	to	add	its
own	handling	information,	so	it
places	the	smaller	envelope	in	a
courier	envelope	(encapsulation).
The	courier	then	consults	its
airplane	route	information	and
determines	that	to	get	this
envelope	to	Albany,	it	must	be
flown	through	its	hub	in	Chicago.
It	hands	this	envelope	to	the
workers	who	load	packages	on	its
planes.

Your	computer	creates	an	IP
datagram	encapsulating	the	TCP
datagram	created	earlier.	It	then
addresses	the	packet	to	10.0.12.34,
but	discovers	that	it	is	not	on	its
local	network.	Instead,	it	realizes	it
needs	to	send	the	message	to	its
designated	routing	device	at	IP
address	10.0.43.21.	It	hands	the
packet	to	the	driver	for	your
Ethernet	card	(the	software	that
interfaces	to	the	Ethernet
hardware).

Routing 2 The	workers	take	the	courier
envelope	and	put	a	tag	on	it	with
the	code	for	Chicago.	They	then
put	it	in	a	handling	box	and	load	it
on	the	plane	to	Chicago.

The	Ethernet	card	driver	forms	a
frame	containing	the	IP	datagram
and	prepares	it	to	be	sent	over	the
network.	It	packages	the	message
and	puts	the	address	10.0.43.21



on	the	plane	to	Chicago. and	puts	the	address	10.0.43.21
(for	the	router)	in	the	frame.

	 1 The	plane	flies	to	Chicago. The	frame	is	sent	over	the	twisted-
pair	cable	that	connects	your	local
area	network.	(I'm	ignoring
overhead,	collisions,	and	so	on,
here,	but	then	I	also	ignored	the
possibility	of	collisions	with	the
plane.)

	 2 In	Chicago,	the	box	is	unloaded,
and	the	courier	envelope	is
removed	from	it	and	given	to	the
people	who	handle	routing	in
Chicago.

The	Ethernet	card	at	the	machine
with	IP	address	10.0.43.21	receives
the	frame,	strips	off	the	frame
headers,	and	hands	it	up	to	the
network	layer.

	 3 The	tag	marked	"Chicago"	is
removed	from	the	outside	of	the
courier	envelope.	The	envelope	is
then	given	back	to	the	airplane
workers	to	be	sent	to	Albany.

The	IP	datagram	is	processed	by
the	router,	which	realizes	the
destination	(10.0.12.34)	can	be
reached	directly.	It	passes	the
datagram	back	down	to	the
Ethernet	driver.

	 2 The	envelope	is	given	a	new	tag
with	the	code	for	Albany,	placed
in	another	box,	and	loaded	on	the
plane	to	Albany.

The	Ethernet	driver	creates	a	new
frame	and	prepares	to	send	it	to	the
device	that	uses	IP	address
10.0.12.34.

	 1 The	plane	flies	to	Albany. The	frame	is	sent	over	the	network.

	 2 The	box	is	unloaded,	and	the
courier	envelope	is	removed	from
the	box.	It	is	given	to	the	Albany
routing	office.

The	Ethernet	card	at	the	device
with	IP	address	10.0.12.34	receives
the	frame,	strips	off	the	headers,
and	passes	it	up	the	stack.

Reception 3 The	courier	company	in	Albany
sees	that	the	destination	is	in
Albany	and	delivers	the	envelope
to	the	destination	CEO's	company.

The	IP	headers	are	removed	from
the	datagram,	and	the	TCP
segments	are	handed	up	to	TCP.

	 4 The	mail	room	removes	the	inner
envelope	from	the	courier
envelope	and	delivers	it	to	the
destination	CEO's	assistant.

TCP	removes	its	headers	and	hands
the	data	up	to	the	drivers	on	the
destination	machine.

	 5 The	assistant	takes	the	letter	out	of
the	envelope.

The	request	is	sent	to	the	web-
server	software	for	processing.



	 6 The	assistant	reads	the	letter	and
decides	whether	to	give	the	letter
to	the	CEO,	transcribe	it	to	email,
call	the	CEO	on	her	cell	phone,	or
whatever.

Again,	in	this	example	nothing
probably	happens	at	the
presentation	layer.

	 7 The	second	CEO	receives	the
message	that	was	sent	by	the	first
one.

The	web	server	receives	and
processes	the	request.

As	you	can	see,	the	processes	have	a	fair	bit	in	common.	The	vertical
communication	and	encapsulation	are	pretty	obvious,	as	is	the	routing.	Also
implied	is	the	horizontal	communication	that	occurs	logically—the	two	CEOs
seem	to	be	"connected"	despite	all	that	happens	to	enable	this	to	occur.
Similarly,	in	a	way,	the	two	assistants	are	logically	connected	as	well,	even
though	they	never	actually	converse.	Of	course,	this	example	is	highly	simplified
in	just	about	every	way	imaginable,	so	please	don't	use	it	as	a	way	of	trying	to
learn	about	how	TCP/IP	works—or	courier	services,	for	that	matter!



Remembering	the	OSI	Model	Layers:	Some
Mnemonics
If	you	spend	any	amount	of	time	at	all	dealing	with	networking	design	or
implementation	issues,	or	learning	about	how	the	various	protocols	operate,	the
names	and	numbers	of	the	various	layers	will	eventually	become	second	nature.

Many	people,	however,	especially	those	just	learning	about	networks,	find	it
difficult	to	recall	the	names	of	all	the	layers,	and	especially,	their	exact	order.
For	these	people,	a	number	of	mnemonics	have	been	created	as	memory	aids.
You	probably	remember	mnemonics	from	elementary	school.	These	are	cute
phrases	in	which	each	word	starts	with	the	first	letter	of	an	OSI	model	layer,
arranged	in	the	correct	order.	Some	of	these	go	in	ascending	layer	number	order,
and	some	go	in	the	other	direction.

These	two	go	from	physical	layer	to	application	layer:

Please	Do	Not	Throw	Sausage	Pizza	Away

Please	Do	Not	Touch	Steve's	Pet	Alligator

And	these	go	the	other	direction,	from	application	to	physical:

All	People	Seem	To	Need	Data	Processing	(a	popular	one)

All	People	Standing	Totally	Naked	Don't	Perspire	(hmm,	that's	interesting!)

For	your	convenience,	I	have	illustrated	all	four	of	these	in	Figure	7-1.



Figure	7-1.	OSI	Reference	Model	mnemonics	These	mnemonics	may	help	you	to	remember	the	order	of
the	OSI	Reference	Model	layers.

Or	try	my	own	creation:	All	People	Should	Teach	Networking	Daily	Please.



Summarizing	the	OSI	Model	Layers:	A	Summary
Chart
To	assist	you	in	quickly	comparing	the	layers	of	the	OSI	Reference	Model,	and
understanding	where	they	are	different	and	how	they	relate	to	each	other,	I'm
offering	you	the	summary	chart	shown	in	Table	7-2.	It	shows	each	layer's	name
and	number,	describes	its	key	responsibilities,	talks	about	what	type	of	data	is
generally	handled	at	each	layer,	and	also	describes	the	scope	of	each	layer	in
approximate	terms.	I	also	show	some	of	the	more	common	protocols	that	are
associated	with	each	layer.

The	standard	disclaimers	still	apply	to	this	table.	Namely,	the	layers	aren't
always	hard-fast;	I	haven't	listed	every	single	protocol	here,	so	some	may	really
fit	into	more	than	one	layer,	and	so	on.	In	particular,	note	that	many	of	the
technologies	listed	as	being	in	the	data	link	layer	are	there	because	that	is	the
layer	where	their	primary	functionality	resides.	In	reality,	most	of	these
technologies	include	components	in	other	layers,	especially	the	physical	layer.

Table	7-2.	OSI	Reference	Model	Layer	Summary

Group # Layer
Name

Key	Responsibilities Data	Type
Handled

Scope Common
Protocols
and
Technologies

Lower
Layers

1 Physical Encoding	and	signaling;
physical	data	transmission;
hardware	specifications;
topology	and	design

Bits Electrical	or
light	signals
sent	between
local	devices

Physical	layers
of	most	of	the
technologies
listed	for	the
data	link	layer

	 2 Data	Link Logical	link	control;	media
access	control;	data	framing;
addressing;	error	detection
and	handling;	defining
requirements	of	physical
layer

Frames Low-level	data
messages
between	local
devices

IEEE	802.2
LLC,	Ethernet
family;	Token
Ring;	FDDI
and	CDDI;
IEEE	802.11
(WLAN,	Wi-
Fi);	HomePNA;
HomeRF;
ATM;	SLIP



ATM;	SLIP
and	PPP

	 3 Network Logical	addressing;	routing;
datagram	encapsulation;
fragmentation	and
reassembly;	error	handling
and	diagnostics

Datagrams/packets Messages
between	local
or	remote
devices

IP;	IPv6;	IP
NAT;	IPsec;
Mobile	IP;
ICMP;	IPX;
DLC;	PLP;
routing
protocols	such
as	RIP	and
BGP

	 4 Transport Process-level	addressing;
multiplexing/demultiplexing;
connections;	segmentation
and	reassembly;
acknowledgments	and
retransmissions;	flow	control

Datagrams/segments Communication
between
software
processes

TCP	and	UDP;
SPX;
NetBEUI/NBF

Upper
Layers

5 Session Session	establishment,
management,	and
termination

Sessions Sessions
between	local
or	remote
devices

NetBIOS,
Sockets,	named
pipes,	RPC

	 6 Presentation Data	translation;
compression	and	encryption

Encoded	user	data Application
data
representations

SSL;	shells	and
redirectors;
MIME

	 7 Application User	application	services User	data Application
data

DNS;	NFS;
BOOTP;
DHCP;	SNMP;
RMON;	FTP;
TFTP;	SMTP;
POP3;	IMAP;
NNTP;	HTTP;
Telnet



Part	I-3.	TCP/IP	PROTOCOL	SUITE	AND
ARCHITECTURE
Chapter	8

In	the	first	two	parts	of	this	"TCP/IP	Overview	and	Background	Information"
section,	I	have	laid	the	groundwork	for	understanding	how	networks	function	in
general	terms.	Now	we	can	begin	to	turn	our	attention	to	the	main	subject	of	this
book:	TCP/IP.	Just	as	Ethernet	rules	the	roost	when	it	comes	to	local	area
network	(LAN)	technologies,	and	IEEE	802.11	is	the	boss	of	the	wireless	LAN
(WLAN)	world,	TCP/IP	dominates	and	even	defines	the	world	of	modern
internetworking,	including	the	Internet.

Since	TCP/IP	is	the	subject	of	this	entire	book,	you	might	be	wondering	why	this
part	is	so	small,	containing	only	a	single	chapter.	The	reason	is	that	it	provides
only	a	high-level	overview	of	the	TCP/IP	protocol	suite.	TCP/IP	is	a	collection
of	several	dozen	constituent	protocols	and	technologies.	These	are	described	in
the	following	two	sections	of	the	book,	which	cover	lower-layer	and	application
protocols,	respectively.	These	protocols	are	summarized	in	the	TCP/IP
introduction	chapter	that	follows,	which	also	provides	a	brief	history	of	TCP/IP
and	describes	its	services	and	model.



Chapter	8.	TCP/IP	PROTOCOL
SUITE	AND	ARCHITECTURE

Named	for	two	of	its	key	protocols,	the	TCP/IP	protocol	suite	has	been	in
continual	use	and	development	for	about	three	decades.	In	that	time,	it	has
evolved	from	an	experimental	technology	that	was	used	to	hook	together	a
handful	of	research	computers	to	the	powerhouse	of	the	largest	and	most
complex	computer	network	in	history:	the	global	Internet,	connecting	together
millions	of	networks	and	end	devices.

In	this	chapter,	we	begin	a	magical	tour	through	the	mystical	world	of	TCP/IP
with	an	overview	and	a	brief	look	at	its	very	interesting	history.	I	discuss	the
services	provided	in	TCP/IP	networks	and	then	explain	the	architectural	model
used	under	TCP/IP.	I	then	provide	a	brief	description	of	each	of	the	most
important	TCP/IP	protocols	that	are	discussed	in	the	remainder	of	the	book.

TCP/IP	Overview	and	History
The	best	place	to	begin	an	examination	of	TCP/IP	is	probably	with	the	name
itself.	In	fact,	TCP/IP	consists	of	dozens	of	different	protocols,	of	which	two	are
usually	considered	the	most	important.	The	Internet	Protocol	(IP)	is	the	primary
OSI	model	network	layer	(layer	3)	protocol	that	provides	addressing,	datagram
routing,	and	other	functions	in	an	internetwork.	The	Transmission	Control
Protocol	(TCP)	is	the	primary	transport	layer	(layer	4)	protocol	and	is
responsible	for	connection	establishment	and	management,	and	reliable	data
transport	between	software	processes	on	devices.	Because	these	two	protocols
are	so	important,	their	abbreviations	have	come	to	represent	the	entire	suite:
TCP/IP.

IP	and	TCP	are	important	because	many	of	TCP/IP's	most	critical	functions	are
implemented	at	layers	3	and	4,	where	these	protocols	live.	However,	there	is



implemented	at	layers	3	and	4,	where	these	protocols	live.	However,	there	is
much	more	to	TCP/IP	than	just	TCP	and	IP.	The	protocol	suite	as	a	whole
requires	the	work	of	many	different	protocols	and	technologies	to	make	a
functional	network	that	can	properly	provide	users	with	the	applications	they
need.

TCP/IP	uses	its	own	four-layer	architecture	(which	corresponds	roughly	to	the
OSI	Reference	Model),	to	provide	a	framework	for	the	various	protocols	that
compose	it.	It	also	includes	numerous	high-level	applications,	some	of	which	are
well	known	by	Internet	users	who	may	not	realize	they	are	part	of	TCP/IP,	such
as	the	Hypertext	Transfer	Protocol	(HTTP,	which	powers	the	World	Wide	Web)
and	File	Transfer	Protocol	(FTP).	In	the	coming	discussions	on	TCP/IP
architecture	and	protocols,	we'll	look	at	most	of	the	important	TCP/IP	protocols
and	how	they	fit	together.

TCP/IP	History	and	Development
The	history	of	the	Internet	and	the	history	of	TCP/IP	are	so	closely	related	that	it
is	difficult	to	discuss	one	without	also	talking	about	the	other.	They	were
developed	together,	with	TCP/IP	providing	the	mechanism	for	implementing	the
Internet.	Over	the	years,	TCP/IP	has	continued	to	evolve	to	meet	the	needs	of	the
Internet	and	also	smaller,	private	networks	that	use	the	technology.	We'll	take	a
brief	look	at	that	history	here.

The	TCP/IP	protocols	were	initially	created	as	part	of	the	research	network
developed	by	the	United	States	Defense	Advanced	Research	Projects	Agency
(DARPA	or	ARPA).	Initially,	this	fledgling	network,	called	the	ARPAnet,	was
designed	to	use	a	number	of	protocols	that	had	been	adapted	from	existing
technologies.	However,	they	all	had	flaws	or	limitations	either	in	concept	or	in
practical	matters,	such	as	capacity	when	used	on	the	ARPAnet.	The	developers
of	the	new	network	recognized	that	trying	to	use	these	existing	protocols	might
eventually	lead	to	problems	as	the	ARPAnet	increased	in	size	and	was	adapted
for	newer	uses	and	applications.

In	1973,	the	development	of	a	full-fledged	system	of	internetworking	protocols
for	the	ARPAnet	began.	Interestingly,	early	versions	of	this	technology	included
only	one	core	protocol:	TCP.	And	in	fact,	these	letters	didn't	even	stand	for	what



they	do	today;	they	stood	for	the	Transmission	Control	Program.	The	first
version	of	this	predecessor	of	modern	TCP	was	written	in	1973,	then	revised	and
formally	documented	in	RFC	675,	Specification	of	Internet	Transmission
Control	Program,	published	in	December	1974.

NOTE

Internet	standards	are	defined	in	documents	called	Requests	for	Comments	(RFCs).	These	documents,
and	the	process	used	to	create	them,	are	described	in	Chapter	3.

Testing	and	development	of	TCP	continued	for	several	years.	In	March	1977,
version	2	of	TCP	was	documented.	In	August	1977,	a	significant	turning	point
came	in	TCP/IP's	development.	Jon	Postel,	one	of	the	most	important	pioneers	of
the	Internet	and	TCP/IP,	published	a	set	of	comments	on	the	state	of	TCP.	In	that
document	(known	as	Internet	Engineering	Note	number	2,	or	IEN	2),	he
provided	an	excellent	example	of	how	reference	models	and	layers	aren't	just	for
textbooks:
We	are	screwing	up	in	our	design	of	internet	protocols	by	violating	the	principle	of	layering.	Specifically
we	are	trying	to	use	TCP	to	do	two	things:	serve	as	a	host	level	end	to	end	protocol,	and	to	serve	as	an
internet	packaging	and	routing	protocol.	These	two	things	should	be	provided	in	a	layered	and	modular
way.	I	suggest	that	a	new	distinct	internetwork	protocol	is	needed,	and	that	TCP	be	used	strictly	as	a	host
level	end	to	end	protocol.

—Jon	Postel,	IEN	2,	1977

Postel	was	essentially	saying	that	the	version	of	TCP	created	in	the	mid-1970s
was	trying	to	do	too	much.	Specifically,	it	was	encompassing	both	OSI	layer	3
and	layer	4	activities.	His	vision	was	prophetic,	because	we	now	know	that
having	TCP	handle	all	of	these	activities	would	have	indeed	led	to	problems
down	the	road.

Postel's	observation	led	to	the	definition	of	TCP/IP	architecture,	and	the	splitting
of	TCP	into	TCP	at	the	transport	layer	and	IP	at	the	network	layer.	The	process
of	dividing	TCP	into	two	portions	began	in	1978	with	version	3	of	TCP.	The
first	formal	standard	for	the	versions	of	IP	and	TCP	used	in	modern	networks
(version	4)	was	created	in	1980.

TCP/IP	quickly	became	the	standard	protocol	set	for	running	the	ARPAnet.	In
the	1980s,	more	and	more	machines	and	networks	were	connected	to	the
evolving	ARPAnet	using	TCP/IP	protocols,	and	the	TCP/IP	Internet	was	born.



evolving	ARPAnet	using	TCP/IP	protocols,	and	the	TCP/IP	Internet	was	born.

TIP

KEY	CONCEPT	TCP/IP	was	initially	developed	in	the	1970s	as	part	of	an	effort	to	define	a	set	of
technologies	to	operate	the	fledgling	Internet.	The	name	TCP/IP	came	about	when	the	original
Transmission	Control	Program	(TCP)	was	split	into	the	Transmission	Control	Protocol	(TCP)	and
Internet	Protocol	(IP).	The	first	modern	versions	of	these	two	key	protocols	were	documented	in	1980	as
TCP	version	4	and	IP	version	4,	respectively.

Important	Factors	in	the	Success	of	TCP/IP
TCP/IP	was	at	one	time	just	one	of	many	different	sets	of	protocols	that	could	be
used	to	provide	network-layer	and	transport-layer	functionality.	Today	there	are
still	other	options	for	internetworking	protocols,	such	as	Novell's	IPX/SPX,	but
TCP/IP	is	the	universally	accepted	worldwide	standard.

TCP/IP's	growth	in	popularity	has	been	due	to	a	number	of	important	factors.
Some	of	these	are	historical,	such	as	the	fact	that	it	is	tied	to	the	Internet	as
described	earlier,	while	others	are	related	to	the	characteristics	of	the	protocol
suite	itself.

Integrated	Addressing	System	TCP/IP	includes	within	it	(as	part	of	IP
primarily)	a	system	for	identifying	and	addressing	devices	on	both	small	and
large	networks.	The	addressing	system	is	designed	to	allow	devices	to	be
addressed	regardless	of	the	lower-level	details	of	how	each	constituent	network
is	constructed.	Over	time,	the	mechanisms	for	addressing	in	TCP/IP	have
improved	to	meet	the	needs	of	growing	networks,	especially	the	Internet.	The
addressing	system	also	includes	a	centralized	administration	capability	for	the
Internet	to	ensure	that	each	device	has	a	unique	address.

Design	for	Routing	TCP/IP	is	specifically	designed	to	facilitate	the	routing	of
information	over	a	network	of	arbitrary	complexity.	In	fact,	TCP/IP	is
conceptually	concerned	more	with	connecting	networks	than	with	connecting
devices.	TCP/IP	routers	enable	data	to	be	delivered	between	devices	on	different
networks	by	moving	it	one	step	at	a	time	from	one	network	to	the	next.	A
number	of	support	protocols	in	TCP/IP	are	designed	to	allow	routers	to	exchange
critical	information	and	manage	the	efficient	flow	of	information	from	one
network	to	another.



Underlying	Network	Independence	TCP/IP	operates	primarily	at	layers	3	and
above,	and	includes	provisions	to	allow	it	to	function	on	almost	any	lower-layer
technology,	including	local	area	networks	(LANs),	wireless	LANs,	and	wide
area	networks	(WANs)	of	various	sorts.	This	flexibility	means	that	you	can	mix
and	match	a	variety	of	different	underlying	networks	and	connect	them	all	using
TCP/IP.

Scalability	One	of	the	most	amazing	characteristics	of	TCP/IP	is	the	scalability
of	its	protocols.	Over	the	decades,	it	has	proven	its	mettle	as	the	Internet	has
grown	from	a	small	network	with	just	a	few	machines	to	a	huge	internetwork
with	millions	of	hosts.	While	some	changes	have	been	required	periodically	to
support	this	growth,	these	changes	have	taken	place	as	part	of	the	TCP/IP
development	process,	yet	the	core	of	TCP/IP	is	basically	the	same	as	it	was	25
years	ago.

Open	Standards	and	Development	Process	The	TCP/IP	standards,	rather	than
being	proprietary,	are	open	ones,	freely	available	to	the	public.	Furthermore,	the
process	used	to	develop	the	TCP/IP	standards	is	also	completely	open.	The
TCP/IP	standards	and	protocols	are	developed	and	modified	using	the	unique,
democratic	Request	for	Comments	(RFC)	process	(described	in	Chapter	3),	with
all	interested	parties	invited	to	participate.	This	ensures	that	anyone	with	an
interest	in	the	TCP/IP	protocols	is	given	a	chance	to	provide	input	into	their
development	and	also	ensures	the	worldwide	acceptance	of	the	protocol	suite.

Universality	Everyone	uses	TCP/IP	because	everyone	uses	it!	This	last	point	is,
perhaps	ironically,	arguably	the	most	important.	Not	only	is	TCP/IP	the
underlying	language	of	the	Internet,	it	is	also	used	in	most	private	networks
today.	Even	former	competitors	to	TCP/IP,	such	as	Novell's	NetWare,	now	use
TCP/IP	to	carry	traffic.

TIP

KEY	CONCEPT	While	TCP/IP	is	not	the	only	internetworking	protocol	suite,	it	is	definitely	the	most
important	one.	Its	unparalleled	success	is	due	to	a	wide	variety	of	factors.	These	include	its	technical
features,	such	as	its	routing-friendly	design	and	scalability,	its	historical	role	as	the	protocol	suite	of	the
Internet,	and	its	open	standards	and	development	process,	which	reduce	barriers	to	acceptance	of	TCP/IP
protocols.



TCP/IP	Services
TCP/IP	is	most	often	studied	in	terms	of	its	layer-based	architecture	and	the
protocols	that	it	provides	at	those	different	layers.	These	protocols,	however,
represent	the	technical	details	of	how	TCP/IP	works.	They	are	of	interest	to	us	as
students	of	technology,	but	are	normally	hidden	from	users	who	do	not	need	to
see	the	guts	of	TCP/IP	to	know	that	it	works.	Before	proceeding	to	these	details,
let's	take	a	bigger	picture	look	at	what	TCP/IP	does.

In	the	discussion	of	the	OSI	Reference	Model	concepts	(in	Chapter	5),	I
mentioned	that	the	theoretical	operation	of	the	model	is	based	on	the	idea	of	one
layer	providing	services	to	the	layers	above	it.	TCP/IP	covers	many	layers	of	the
OSI	model,	and	so	it	collectively	provides	services	of	this	sort	as	well	in	many
ways.	Conceptually,	we	can	divide	TCP/IP	services	into	two	groups:

Services	Provided	to	Other	Protocols	The	first	group	of	services	consists	of
the	core	functions	implemented	by	the	main	TCP/IP	protocols	such	as	IP,	TCP,
and	User	Datagram	Protocol	(UDP).	These	services	are	designed	to	actually
accomplish	the	internetworking	functions	of	the	protocol	suite.	For	example,	at
the	network	layer,	IP	provides	functions	such	as	addressing,	delivery,	datagram
packaging,	fragmentation,	and	reassembly.	At	the	transport	layer,	TCP	and	UDP
are	concerned	with	encapsulating	user	data	and	managing	connections	between
devices.	Other	protocols	provide	routing	and	management	functionality.	Higher-
layer	protocols	use	these	services,	allowing	them	to	concentrate	on	what	they	are
intended	to	accomplish.

End-User	Services	The	second	group	of	services	provided	by	TCP/IP	is	the	set
of	end-user	services.	These	facilitate	the	operation	of	the	applications	that	users
run	to	make	use	of	the	power	of	the	Internet	and	other	TCP/IP	networks.	For
example,	the	Web	is	arguably	the	most	important	Internet	application.	Web
services	are	provided	through	HTTP,	a	TCP/IP	application	layer	protocol.	HTTP
in	turn	uses	services	provided	by	lower-level	protocols.	All	of	these	details	are
hidden	from	end	users,	entirely	on	purpose.



The	TCP/IP	Client/Server	Structural	Model
TCP/IP	services	primarily	operate	in	the	client/server	model.	It's	a	system	in
which	a	relatively	small	number	of	server	machines	provides	services	to	a	much
larger	number	of	client	hosts	(see	Chapter	1).

Just	as	client/server	networking	applies	to	hardware,	this	same	concept	underlies
the	design	of	the	TCP/IP	protocols	and	software	applications,	as	shown	in
Figure	8-1.

TCP/IP	protocols	are	not	set	up	so	that	two	machines	that	want	to	communicate
use	identical	software.	Instead,	a	conscious	decision	was	made	to	make
communication	function	using	matched,	complementary	pairs	of	client	and
server	software.	The	client	initiates	communication	by	sending	a	request	to	a
server	for	data	or	other	information.	The	server	then	responds	with	a	reply	to	the
client,	giving	the	client	what	it	requested,	or	else	it	replies	with	an	alternative
response,	such	as	an	error	message	or	information	about	where	else	it	might	find
the	data.	Most	(but	not	all)	TCP/IP	functions	work	in	this	manner.

Figure	8-1.	TCP/IP	client/server	operation	Most	TCP/IP	protocols	involve	communication	between	two
devices,	typically	as	client	and	server,	such	as	this	web	(HTTP)	transaction	over	the	Internet.

Figure	8-1	is	a	simplified	illustration	that	shows	a	common	example—a	web
transaction	using	HTTP.	The	web	browser	is	an	HTTP	client	and	initiates	the
communication	with	a	request	for	a	file	or	other	resource	sent	over	the	Internet



to	a	website,	which	is	an	HTTP	server.	The	server	responds	to	the	client	with	the
information	requested.	(Servers	generally	respond	to	many	clients
simultaneously.)

There	are	numerous	advantages	to	client/server	operation	in	TCP/IP.	Just	as
client	hardware	and	server	hardware	can	be	tailored	to	their	very	different	jobs,
client	software	and	server	software	can	also	be	optimized	to	perform	their	jobs	as
efficiently	as	possible.	For	example,	to	get	information	from	the	Web,	web-client
software	(usually	called	a	browser)	sends	requests	to	a	web	server.	The	web
server	then	responds	with	the	requested	content.	(There's	more	to	it	than	that,	of
course,	but	that's	how	it	appears	to	the	user.)	Among	other	things,	the	web
browser	allows	the	user	to	communicate	with	web	servers;	the	web-server
software	is	designed	to	receive	and	respond	to	requests.

The	terms	client	and	server	can	be	confusing	in	TCP/IP	because	they	are	used	in
several	different	ways,	sometimes	simultaneously.

TIP

KEY	CONCEPT	The	TCP/IP	protocol	suite	is	oriented	around	the	notion	of	client/server	network
communication.	Rather	than	all	devices	and	protocol	software	elements	being	designed	as	peers,	they	are
constructed	as	matched	sets.	Clients	normally	initiate	communications	by	sending	requests,	and	servers
respond	to	such	requests,	providing	the	client	with	the	desired	data	or	an	informative	reply.

Hardware	and	Software	Roles
The	terms	client	and	server	usually	refer	to	the	primary	roles	played	by
networked	hardware.	A	client	computer	is	usually	something	like	a	PC	or
Macintosh	used	by	an	individual;	it	primarily	initiates	conversations	by	sending
requests.	A	server	is	usually	a	high-powered	machine	dedicated	to	responding	to
client	requests,	sitting	in	a	computer	room	somewhere	that	no	one	but	its
administrator	ever	sees.

As	mentioned	earlier,	TCP/IP	uses	different	software	for	many	protocols	to
implement	client	and	server	roles.	For	example,	a	web	browser	is	a	piece	of
client	software,	while	web-server	software	is	completely	different.	Client
software	is	usually	found	on	client	hardware	and	server	software	on	server
hardware,	but	some	devices	may	run	both	client	and	server	software.



Transactional	Roles
In	any	exchange	of	information,	the	client	is	normally	the	device	that	initiates
communication	or	sends	a	query,	and	then	the	server	responds,	usually	by
providing	information.	Again,	the	client	software	on	a	client	device	usually
initiates	the	transaction.

In	a	typical	organization	there	will	be	many	smaller	individual	computers
designated	as	clients	and	a	few	larger	ones	that	are	servers.	The	servers	normally
run	server	software,	and	the	clients	run	client	software.	But	servers	can	also	be
set	up	with	client	software,	and	clients	can	be	set	up	with	server	software.

For	example,	suppose	you	are	an	administrator	working	in	the	computer	room	on
server	1	and	need	to	transfer	a	file	to	server	2.	You	start	an	FTP	session	to
initiate	the	file	transfer	with	server	2.	In	this	transaction,	server	1	is	the	client,
since	it	is	initiating	communication.	Theoretically,	you	could	even	start	an	FTP
transfer	from	server	1	to	a	particular	client,	if	that	client	had	FTP	server	software
to	answer	the	server's	request.	(This	is	less	common,	because	server	software	is
often	not	installed	on	client	machines.)

Transactional	roles	come	into	play	when	communication	occurs	between	servers
in	certain	protocols.	For	example,	when	two	Simple	Mail	Transfer	Protocol
(SMTP)	servers	communicate	to	exchange	email	(even	though	they	are	both
server	programs	running	on	server	hardware),	during	any	transaction,	one	device
acts	as	the	client	while	the	other	acts	as	the	server.	In	some	cases,	devices	can
even	swap	client	and	server	roles	in	the	middle	of	a	session.

TIP

KEY	CONCEPT	Understanding	client/server	computing	concepts	in	TCP/IP	is	made	more	complex
due	to	the	very	different	meanings	that	the	terms	client	and	server	can	have	in	various	contexts.	The	two
terms	can	refer	to	hardware	roles—designations	given	to	hardware	devices	based	on	whether	they
usually	function	as	clients	or	as	servers.	The	terms	can	also	refer	to	software	roles,	meaning	whether
protocol	software	components	function	as	clients	or	servers.	And	they	can	refer	to	transactional	roles,
meaning	whether	a	device	and	program	functions	as	a	client	or	server	in	any	given	exchange	of	data.

NOTE

The	client	and	server	roles	I	have	discussed	are	the	traditional	ones.	The	rise	of	powerful	personal
computers	and	widespread	Internet	access	(especially	always-on	broadband	connectivity)	has	led	to	a



significant	blurring	of	client	and	server	hardware	and	software.	Many	client	machines	now	include
server	software	that	allows	them	to,	for	example,	respond	to	World	Wide	Web	queries	from	other	clients.
Also,	many	file-sharing	programs	allow	clients	to	communicate	using	the	peer-to-peer	structural	model.
However,	most	TCP/IP	communication	is	still	client/server	in	nature,	so	it's	important	to	keep	these	roles
in	mind.



TCP/IP	Architecture	and	the	TCP/IP	Model
The	OSI	Reference	Model's	seven	layers	divide	up	the	tasks	required	to
implement	a	network,	as	described	in	Part	I-2	of	this	book.	However,	it	is	not	the
only	such	model.	In	fact,	the	TCP/IP	protocol	suite	was	developed	before	the
OSI	Reference	Model;	as	such,	its	inventors	didn't	use	the	OSI	model	to	explain
TCP/IP	architecture	(even	though	the	OSI	model	is	often	used	in	TCP/IP
discussions	today).	The	developers	of	TCP/IP	created	their	own	architectural
model,	which	goes	by	different	names	including	the	TCP/IP	model,	the	DARPA
model	(after	the	agency	that	was	largely	responsible	for	developing	TCP/IP)	and
the	DoD	model	(after	the	United	States	Department	of	Defense).	Most	people
call	it	the	TCP/IP	model.

Regardless	of	the	model	you	use	to	represent	the	function	of	a	network,	the
model's	functions	are	pretty	much	the	same.	The	TCP/IP	and	the	OSI	models	are
really	quite	similar,	even	if	they	don't	carve	up	the	network	functionality
precisely	the	same	way.

Since	the	OSI	model	is	so	widely	used,	it	is	common	to	explain	the	TCP/IP
architecture	both	in	terms	of	the	TCP/IP	layers	and	the	corresponding	OSI
layers.	Figure	8-2	shows	the	relationship	between	the	two	models.	The	TCP/IP
model	does	not	address	the	physical	layer,	where	hardware	devices	reside.	The
next	three	layers—network	interface,	internet,	and	host-to-host	transport—
correspond	to	layers	2,	3,	and	4	of	the	OSI	model.	The	TCP/IP	application	layer
conceptually	blurs	the	top	three	OSI	layers.	Note,	too,	that	some	people	consider
certain	aspects	of	the	OSI	session	layer	to	be	part	of	the	TCP/IP	host-to-host
transport	layer.

As	shown	in	Figure	8-2,	the	TCP/IP	model	uses	four	layers	that	logically	span
the	equivalent	of	the	top	six	layers	of	the	OSI	model.	(The	physical	layer	is	not
covered	by	the	TCP/IP	model	because	the	data	link	layer	is	considered	the	point
at	which	the	interface	occurs	between	the	TCP/IP	stack	and	the	underlying
networking	hardware.)	Starting	from	the	bottom,	the	TCP/IP	layers	are	described
in	the	following	sections.

Network	Interface	Layer



As	its	name	suggests,	the	network	interface	layer	is	where	the	actual	TCP/IP
protocols	running	at	higher	layers	interface	to	the	local	network.	This	layer	is
somewhat	controversial	in	that	some	people	don't	even	consider	it	a	legitimate
part	of	TCP/IP,	usually	because	none	of	the	core	IP	protocols	run	at	this	layer.
Despite	this,	the	network	interface	layer	is	part	of	the	architecture.	It	is
equivalent	to	the	data	link	layer	(layer	2)	in	the	OSI	Reference	Model	(see
Chapter	6)	and	is	also	sometimes	called	the	link	layer.	You	may	also	see	the
name	network	access	layer	used.

Figure	8-2.	OSI	Reference	Model	and	TCP/IP	model	layers	The	TCP/IP	architectural	model	has	four
layers	that	approximately	match	six	of	the	seven	layers	in	the	OSI	Reference	Model.

On	many	TCP/IP	networks,	there	is	no	TCP/IP	protocol	running	at	all	on	this
layer,	because	it	is	simply	not	needed.	For	example,	if	you	run	TCP/IP	over
Ethernet,	then	Ethernet	handles	layer	2	(and	layer	1)	functions.	However,	the
TCP/IP	standards	do	define	protocols	for	TCP/IP	networks	that	do	not	have	their
own	layer	2	implementation.	These	protocols,	the	Serial	Line	Internet	Protocol
(SLIP)	and	the	Point-to-Point	Protocol	(PPP),	fill	the	gap	between	the	network
layer	and	the	physical	layer.	They	are	commonly	used	to	facilitate	TCP/IP	over
direct	serial	line	connections	(such	as	dial-up	telephone	networking)	and	other
technologies	that	operate	directly	at	the	physical	layer.

Internet	Layer
The	Internet	layer	corresponds	to	the	network	layer	in	the	OSI	Reference	Model



(thus	it	is	sometimes	called	the	network	layer	even	in	TCP/IP	model
discussions).	It	is	responsible	for	typical	layer	3	jobs,	such	as	logical	device
addressing,	data	packaging,	manipulation	and	delivery,	and	routing.	At	this
layer,	you	find	IP,	which	is	arguably	the	heart	of	TCP/IP,	as	well	as	support
protocols	such	as	the	Internet	Control	Message	Protocol	(ICMP)	and	the	routing
protocols	(RIP,	OSFP,	BGP,	and	so	on).	IP	version	6,	the	next-generation	IP,	is
also	at	this	layer.

Host-to-Host	Transport	Layer
This	primary	job	of	the	host-to-host	transport	layer	is	to	facilitate	end-to-end
communication	over	an	internetwork.	It	is	in	charge	of	allowing	logical
connections	to	be	made	between	devices	that	allow	data	to	be	sent	either
unreliably	(with	no	guarantee	that	it	gets	there)	or	reliably	(where	the	protocol
keeps	track	of	the	data	sent	and	received	in	order	to	make	sure	it	arrives,	and
resends	it	if	necessary).	It	is	also	here	that	identification	of	the	specific	source
and	destination	application	process	is	accomplished.

The	formal	name	of	this	layer	is	often	shortened	to	just	the	transport	layer.	The
key	TCP/IP	protocols	at	this	layer	are	TCP	and	UDP.	The	TCP/IP	transport	layer
corresponds	to	the	layer	of	the	same	name	in	the	OSI	model	(layer	4)	but
includes	certain	elements	that	are	arguably	part	of	the	OSI	session	layer.	For
example,	TCP	establishes	a	connection	that	can	persist	for	a	long	period	of	time,
which	some	people	say	makes	a	TCP	connection	more	like	a	session.

Application	Layer
The	application	layer	is	the	highest	layer	in	the	TCP/IP	model.	It	is	a	rather
broad	layer,	encompassing	layers	5	through	7	in	the	OSI	model.	While	this
seems	to	represent	a	loss	of	detail	compared	to	the	OSI	model,	that's	probably	a
good	thing.	The	TCP/IP	model	better	reflects	the	somewhat	fuzzy	nature	of	the
divisions	between	the	functions	of	the	higher	layers	in	the	OSI	model,	which	in
practical	terms	often	seem	rather	arbitrary.	It	really	is	hard	to	separate	some
protocols	in	terms	of	which	portions	of	layers	5,	6,	or	7	they	encompass.

Numerous	protocols	reside	at	the	application	layer.	These	include	application
protocols	such	as	HTTP,	FTP,	and	SMTP	for	providing	end-user	services	as	well
as	administrative	protocols	like	Simple	Network	Management	Protocol	(SNMP),



as	administrative	protocols	like	Simple	Network	Management	Protocol	(SNMP),
Dynamic	Host	Configuration	Protocol	(DHCP),	and	Domain	Name	System
(DNS).

NOTE

The	Internet	and	host-to-host	transport	layers	are	usually	considered	the	core	of	TCP/IP	architecture,
because	they	contain	most	of	the	key	protocols	that	implement	TCP/IP	internetworks.

In	the	following	section,	I	provide	a	brief	look	at	each	of	the	TCP/IP	protocols
covered	in	detail	in	this	book	and	offer	more	detail	on	where	they	all	fit	into	the
TCP/IP	architecture.	I	also	discuss	a	couple	of	protocols	that,	interestingly,	don't
really	fit	into	the	TCP/IP	layer	model	very	well	at	all.

TIP

KEY	CONCEPT	The	architecture	of	the	TCP/IP	protocol	suite	is	often	described	in	terms	of	a	layered
reference	model	called	the	TCP/IP	model,	DARPA	model,	or	DoD	model.	The	TCP/IP	model	includes
four	layers:	the	network	interface	layer	(responsible	for	interfacing	the	suite	to	the	physical	hardware	on
which	it	runs),	the	Internet	layer	(where	device	addressing,	basic	datagram	communication,	and	routing
take	place),	the	host-to-host	transport	layer	(where	connections	are	managed	and	reliable	communication
is	ensured),	and	the	application	layer	(where	end-user	applications	and	services	reside).	The	first	three
layers	correspond	to	layers	2	through	4	of	the	OSI	Reference	Model	respectively;	the	application	layer	is
equivalent	to	OSI	layers	5	to	7.



TCP/IP	Protocols
Since	TCP/IP	is	a	protocol	suite,	it	is	most	often	discussed	in	terms	of	the
protocols	that	compose	it.	Each	protocol	resides	in	a	particular	layer	of	the
TCP/IP	architectural	model	that	I	just	discussed	and	is	charged	with	performing
a	certain	subset	of	the	total	functionality	required	to	implement	a	TCP/IP
network	or	application.	The	protocols	work	together	to	allow	TCP/IP	as	a	whole
to	operate.

NOTE

You	will	sometimes	hear	TCP/IP	called	just	a	protocol	instead	of	a	protocol	suite.	This	is	a	simplification
that,	while	technically	incorrect,	is	widely	used.	I	believe	it	arises	in	large	part	due	to	Microsoft	referring
to	protocol	suites	as	protocols	in	its	operating	systems.	I	discuss	this	issue	in	more	detail	in	Chapter	1.

As	mentioned	earlier,	a	few	TCP/IP	protocols	are	usually	called	the	core	of	the
suite,	because	they	are	responsible	for	its	basic	operation.	In	this	core,	most
people	would	include	the	main	protocols	at	the	Internet	and	transport	layers:	IP,
TCP,	and	UDP.	These	core	protocols	support	many	other	protocols	in	order	to
perform	a	variety	of	functions	at	each	of	the	TCP/IP	model	layers.

NOTE

On	the	whole,	there	are	many	hundreds	of	TCP/IP	protocols	and	applications,	and	I	could	not	begin	to
cover	each	and	every	one	in	this	book.	I	do	include	chapters	in	which	I	discuss	several	dozen	of	the
protocols	that	I	consider	important	for	one	reason	or	another.	Full	coverage	of	each	of	these	protocols	(to
varying	levels	of	detail)	can	be	found	in	Section	II	and	Section	III	of	this	book.

Table	8-1	contains	a	summary	of	each	of	the	TCP/IP	protocols	discussed	in	this
book.	I	have	organized	them	by	layer,	and	I	have	provided	cross-references	to
the	chapters	where	each	is	discussed.	The	organization	of	protocols	in	the
TCP/IP	protocol	suite	can	also	be	seen	at	a	glance	in	Figure	8-3.	I	have	also
shown	in	the	network	interface	layer	where	TCP/IP	hardware	drivers
conceptually	reside;	these	are	used	at	layer	2	when	TCP/IP	is	implemented	on	a
LAN	or	WAN	technology,	rather	than	using	SLIP	or	PPP.

Table	8-1.	TCP/IP	Protocols



TCP/IP	Layer Protocol	Name Protocol
Abbr.

Description

Network
Interface	(Layer
2)

Serial	Line	Internet	Protocol SLIP Provides	basic	TCP/IP
functionality	by	creating	a
layer	2	connection	between
two	devices	over	a	serial
line.	See	Chapter	9.

	 Point-to-Point	Protocol PPP Provides	layer	2
connectivity	like	SLIP,	but
is	much	more	sophisticated
and	capable.	PPP	is	itself	a
suite	of	protocols
(subprotocols,	if	you	will)
that	allow	for	functions	such
as	authentication,	data
encapsulation,	encryption,
and	aggregation,	thereby
facilitating	TCP/IP
operation	over	WAN	links.
See	Chapters	Chapter	9-
Chapter	12.

Network
Interface/Internet
(Layer	2/3)

Address	Resolution
Protocol

ARP Used	to	map	layer	3	IP
addresses	to	layer	2	physical
network	addresses.	See
Chapter	13.

	 Reverse	Address	Resolution
Protocol

RARP Determines	the	layer	3
address	of	a	machine	from
its	layer	2	address.	Now
mostly	superseded	by
BOOTP	and	DHCP.	See
Chapter	14.

Internet	Layer
(Layer	3)

Internet	Protocol,	Internet
Protocol	Version	6

IP,	IPv6 Provides	encapsulation	and
connectionless	delivery	of
transport	layer	messages
over	a	TCP/IP	network.
Also	responsible	for
addressing	and	routing
functions.	See	Part	II-3	and
Part	II-4.

	 IP	Network	Address
Translation

IP	NAT Allows	addresses	on	a
private	network	to	be
automatically	translated	to



automatically	translated	to
different	addresses	on	a
public	network,	thereby

providing	address	sharing
and	security	benefits.	(Note
that	some	people	don't
consider	IP	NAT	to	be	a
protocol	in	the	strict	sense	of
that	word.)	See	Chapter	28.

	 IP	Security IPsec A	set	of	IP-related	protocols
that	improve	the	security	of
IP	transmissions.	See
Chapter	29.

	 Internet	Protocol	Mobility
Support

Mobile	IP Resolves	certain	problems
with	IP	associated	with
mobile	devices.	See
Chapter	30.

	 Internet	Control	Message
Protocol

ICMP/ICMPv4,
ICMPv6

A	support	protocol	for	IP
and	IPv6	that	provides	error
reporting	and	information
request-and-reply
capabilities	to	hosts.	See
Part	II-6.

	 Neighbor	Discovery
Protocol

NDP A	new	support	protocol	for
IPv6	that	includes	several
functions	performed	by	ARP
and	ICMP	in	conventional
IP.	See	Chapter	36.

	 Routing	Information
Protocol,	Open	Shortest
Path	First,	Gateway-to-
Gateway	Protocol,	HELLO
Protocol,	Interior	Gateway
Routing	Protocol,	Enhanced
Interior	Gateway	Routing
Protocol,	Border	Gateway
Protocol,	Exterior	Gateway
Protocol

RIP,	OSPF,
GGP,	HELLO,
IGRP,	EIGRP,
BGP,	EGP

Protocols	used	to	support
the	routing	of	IP	datagrams
and	the	exchange	of	routing
information.	See	Part	II-7.

Host-to-Host
Transport	Layer
(Layer	4)

Transmission	Control
Protocol

TCP The	main	transport	layer
protocol	for	TCP/IP.
Establishes	and	manages
connections	between



connections	between
devices	and	ensures	reliable
and	flow-controlled	delivery

of	data	using	IP.	See	Part	II-
8.

	 User	Datagram	Protocol UDP A	transport	protocol	that	can
be	considered	a	severely
stripped-down	version	of
TCP.	It	is	used	to	send	data
in	a	simple	way	between
application	processes,
without	the	many	reliability
and	flow-management
features	of	TCP,	but	often
with	greater	efficiency.	See
Chapter	44.

Application
Layer	(Layer
5/6/7)

Domain	Name	System DNS Provides	the	ability	to	refer
to	IP	devices	using	names
instead	of	just	numerical	IP
addresses.	Allows	machines
to	resolve	these	names	into
their	corresponding	IP
addresses.	See	Part	III-1.

	 Network	File	System NFS Allows	files	to	be	shared
seamlessly	across	TCP/IP
networks.	See	Chapter	58.

	 Bootstrap	Protocol BOOTP Developed	to	address	some
of	the	issues	with	RARP	and
used	in	a	similar	manner:	to
allow	the	configuration	of	a
TCP/IP	device	at	startup.
Generally	superseded	by
DHCP.	See	Chapter	60.

	 Dynamic	Host
Configuration	Protocol

DHCP A	complete	protocol	for
configuring	TCP/IP	devices
and	managing	IP	addresses.
The	successor	to	RARP	and
BOOTP,	it	includes
numerous	features	and
capabilities.	See	Part	III-3.

	 Simple	Network
Management	Protocol

SNMP A	full-featured	protocol	for
remote	management	of



Management	Protocol remote	management	of
networks	and	devices.	See
Part	III-4.

	 Remote	Monitoring RMON A	diagnostic	"protocol"
(really	a	part	of	SNMP)	used
for	remote	monitoring	of
network	devices.	See
Chapter	69.

	 File	Transfer	Protocol,
Trivial	File	Transfer
Protocol

FTP,	TFTP Protocols	designed	to	permit
the	transfer	of	all	types	of
files	from	one	device	to
another.	See	Part	III-6.

	 RFC	822,	Multipurpose
Internet	Mail	Extensions,
Simple	Mail	Transfer
Protocol,	Post	Office
Protocol,	Internet	Message
Access	Protocol

RFC	822,
MIME,	SMTP,
POP,	IMAP

Protocols	that	define	the
formatting,	delivery,	and
storage	of	email	messages
on	TCP/IP	networks.	See
Part	III-7.

	 Network	News	Transfer
Protocol

NNTP Enables	the	operation	of	the
Usenet	online	community	by
transferring	Usenet	news
messages	between	hosts.
See	Chapter	85.

	 Hypertext	Transfer	Protocol HTTP Transfers	hypertext
documents	between	hosts;
implements	the	World	Wide
Web.	See	Part	III-8.

	 Gopher	Protocol Gopher An	older	document-retrieval
protocol,	now	largely
replaced	by	the	World	Wide
Web.	See	Chapter	86.

	 Telnet	Protocol Telnet Allows	a	user	on	one
machine	to	establish	a
remote	terminal	session	on
another.	See	Chapter	87.

	 Berkeley	"r"	Commands — Permit	commands	and
operations	on	one	machine
to	be	performed	on	another.
See	Chapter	87.

	 Internet	Relay	Chat IRC Allows	real-time	chatting



	 Internet	Relay	Chat IRC Allows	real-time	chatting
between	TCP/IP	users.	See
Chapter	87.

	 Administration	and
Troubleshooting	Utilities
and	Protocols

— A	collection	of	software
tools	that	allows
administrators	to	manage,
configure,	and	troubleshoot
TCP/IP	internetworks.	See
Chapter	88.

Figure	8-3.	TCP/IP	protocols	This	diagram	shows	all	the	TCP/IP	protocols	covered	in	this	book,
arranged	by	TCP/IP	and	OSI	Reference	Model	layer	(with	the	exception	of	the	administration	utilities).

You	can	see	in	the	previous	table	and	figure	that	ARP	and	RARP	are	the
oddballs.	In	some	ways	they	belong	in	both	layer	2	and	layer	3,	and	in	other
ways	they	belong	in	neither.	They	really	serve	to	link	together	the	network
interface	layer	and	the	Internet	layer.	For	this	reason,	I	believe	they	belong
between	these	two	and	call	them	"layer	connection"	protocols.	See	Chapters
Chapter	13	and	Chapter	14	for	more	on	this	issue.



Part	II-1.	TCP/IP	NETWORK	INTERFACE	LAYER
PROTOCOLS
TCP/IP	LOWER-LAYER	CORE	PROTOCOLS

The	TCP/IP	protocol	suite	is	largely	defined	in	terms	of	the	protocols	that
constitute	it,	and	several	dozen	are	covered	in	this	book.	Most	of	the	critical
protocols	of	the	suite	function	at	the	lower	layers	of	the	OSI	Reference	Model
(covered	in	Part	I-2):	layers	2,	3	and	4,	which	correspond	to	the	network
interface,	Internet,	and	transport	layers	in	the	TCP/IP	model	architecture
(described	in	Part	I-3).	Included	here	are	the	all-important	Internet	Protocol	(IP)
at	layer	3	and	Transmission	Control	Protocol	(TCP)	at	layer	4,	which	combine	to
give	TCP/IP	its	name.

Due	to	the	importance	of	these	and	other	TCP/IP	protocols	at	the	lower	layers,
this	is	the	largest	of	the	three	sections	of	this	book.	It	contains	eight	parts.	The
first	describes	the	two	TCP/IP	protocols	that	reside	at	the	network	interface	layer
(layer	2	of	the	OSI	Reference	Model):	the	Point-to-Point	Protocol	(PPP)	and	the
Serial	Line	Interface	Protocol	(SLIP).	The	second	part	describes	a	couple	of
special	protocols	that	reside	architecturally	between	layers	2	and	3:	the	Address
Resolution	Protocol	(ARP)	and	the	Reverse	Address	Resolution	Protocol
(RARP).	The	third	and	fourth	parts	describe	the	IP	versions	4	and	6	(IPv4	and
IPv6).	The	fifth	and	sixth	parts	discuss	IP-related	feature	and	support	protocols,
and	the	seventh	part	describes	IP	routing	protocols.	Finally,	the	eighth	part
covers	the	two	TCP/IP	transport	layer	protocols,	the	Transmission	Control
Protocol	(TCP)	and	the	User	Datagram	Protocol	(UDP),	and	related	topics	such
as	the	use	of	TCP/IP	ports.

Chapter	9

Chapter	10

Chapter	12

The	lowest	layer	of	the	OSI	Reference	Model	is	the	physical	layer,	which	is
responsible	for	the	nitty-gritty	details	of	transmitting	information	from	one	place
to	another	on	a	network.	The	layer	just	above	the	physical	layer	is	the	data	link
layer,	called	the	network	interface	layer,	or	just	the	link	layer,	in	the	TCP/IP



architectural	model.	Its	primary	jobs	are	to	implement	networks	at	the	local	level
and	to	interface	between	the	hardware-oriented	physical	layer	and	the	more
abstract,	software-oriented	functions	of	the	network	layer	and	the	layers	above	it.

In	the	case	of	TCP/IP,	the	Internet	Protocol	(IP)	is	the	main	protocol	at	layer	3,
and	it	serves	as	the	foundation	of	the	whole	TCP/IP	protocol	suite.	IP	is	designed
to	be	layered	on	top	of	any	number	of	layer	2	technologies.	However,	some
types	of	connections	do	not	include	a	layer	2	protocol	over	which	IP	can	run.	To
enable	TCP/IP	to	operate	on	these	kinds	of	links,	two	special	TCP/IP	protocols
operate	at	the	network	interface	layer,	connecting	IP	to	the	physical	layer	below.

In	this	part,	I	provide	a	description	of	the	two	protocols	that	reside	at	the	data
link,	or	network	interface	layer,	in	the	TCP/IP	protocol	suite.	These	are	the	older,
simple	Serial	Line	Interface	Protocol	(SLIP)	and	the	newer,	more	capable	Point-
to-Point	Protocol	(PPP).	I	begin	with	a	chapter	that	provides	a	brief	overview	of
SLIP	and	PPP,	showing	how	they	fit	into	the	TCP/IP	protocol	suite	as	a	whole
and	describing	them	in	general	terms.

The	rest	of	this	part	contains	three	chapters	that	describe	the	more	important	of
the	two	protocols,	PPP,	in	more	detail.	The	first	of	these	three	explains	the	core
protocols	that	are	responsible	for	setting	up	PPP	links	and	basic	operation.	The
second	covers	the	protocols	used	to	implement	various	special	features	in	PPP,
such	as	compression	and	encryption.	The	last	chapter	on	PPP	provides	detailed
information	about	the	various	frame	formats	used	by	PPP	protocols.



Chapter	9.	TCP/IP	SERIAL	LINE
INTERNET	PROTOCOL	(SLIP)
AND	POINT-TO-POINT
PROTOCOL	(PPP)	OVERVIEW
AND	FUNDAMENTALS

TCP/IP's	core	protocols	operate	at	layers	3	and	4	of	the	OSI	model,
corresponding	to	the	Internet	layer	and	host-to-host	transport	layer	of	the	TCP/IP
architectural	model	(introduced	in	Chapter	8).	That	model	also	defines	the
network	interface	layer,	which	corresponds	to	the	data	link	layer.	However,	in
most	network	implementations,	TCP/IP	doesn't	define	any	protocols	operating	at
this	layer.	Instead,	TCP/IP	assumes	that	layer	2	functionality	is	provided	by	a
wide	area	network	(WAN)	or	local	area	network	(LAN)	technology	like
Ethernet,	Token	Ring,	or	IEEE	802.11.	These	technologies	are	responsible	for
the	classic	layer	2	functions:	physical	layer	addressing,	media	access	control,	and
especially,	layer	2	framing	of	datagrams	received	from	layer	3.

There's	a	problem	with	the	assumption	that	Internet	Protocol	(IP)	can	run	on	top
of	an	existing	layer	2	protocol	because	sometimes	there	isn't	one.	Certain
technologies,	such	as	a	simple	serial	connection	between	two	devices,	establish
only	a	basic,	low-level	connection	at	the	physical	layer.	And,	of	course,	one	type
of	serial	connection	is	still	very	popular:	serial	dial-up	networking.	When	you
connect	with	a	dial-up	modem	to	your	ISP,	the	modems	negotiate	a	connection
that	architecturally	exists	only	at	the	physical	layer.

Since	IP	assumes	certain	services	will	be	provided	at	layer	2,	there	is	no	way	to
make	it	operate	directly	over	a	serial	line	or	other	physical	layer	connection.	At	a



make	it	operate	directly	over	a	serial	line	or	other	physical	layer	connection.	At	a
minimum,	the	most	important	layer	2	function	that	is	required	is	some
mechanism	for	framing	the	IP	datagram	for	transmission;	that	is,	a	mechanism
that	provides	the	necessary	data	packaging	to	let	datagrams	be	transmitted	over
the	physical	layer	network.	Without	this,	IP	datagrams	cannot	be	sent	over	the
link.

SLIP	versus	PPP
To	fill	the	gap	between	IP	at	layer	3	and	the	physical	connection	at	layer	1,	two
protocols	operate	at	layer	2	and	provide	the	services	that	IP	requires	to	function.
One	protocol	is	Serial	Line	Internet	Protocol	(SLIP),	a	very	simple	layer	2
protocol	that	provides	only	basic	framing	for	IP.	The	other	is	Point-to-Point
Protocol	(PPP),	a	more	complex,	full-featured	data	link	layer	protocol	that
provides	framing	as	well	as	many	additional	features	that	improve	security	and
performance.

SLIP	is	extremely	simple	and	easy	to	implement	but	lacks	certain	features	of
PPP	(like	authentication,	compression,	and	error	detection),	which	is	full
featured	but	more	complicated.	To	draw	an	analogy,	SLIP	is	a	mostly	sturdy,
ten-year-old	compact	sedan,	while	PPP	is	a	shiny,	new	luxury	SUV.	Both	will
get	you	from	here	to	grandma's	house,	but	the	SUV	is	going	to	be	safer,	more
comfortable,	and	better	able	to	deal	with	problems	that	might	crop	up	on	the
road.	If	they	cost	the	same	to	buy	and	operate,	you'd	probably	choose	the	SUV.
Both	SLIP	and	PPP	cost	about	the	same,	and	unlike	an	SUV,	PPP	causes	no	air
pollution	and	doesn't	guzzle	gas.	For	this	reason,	PPP	is	the	choice	of	most	serial
line	connections	today	and	has	all	but	replaced	SLIP.

TIP

KEY	CONCEPT	SLIP	and	PPP	provide	layer	2	connectivity	for	TCP/IP	implementations	that	run
directly	over	a	physical	layer	link	without	a	layer	2	technology.	While	SLIP	is	simpler,	PPP	is	favored
due	to	its	many	features	and	capabilities.

Both	SLIP	and	PPP	are	designed	for	connections	between	just	two	devices;	thus,
the	name	point-to-point	protocol.	Since	there	are	only	two	devices,	A	and	B,
communication	is	straightforward:	A	sends	to	B	and	B	sends	to	A,	and	since
both	deal	only	with	simple	two-device	connections,	they	do	not	have	to	manage
complexities	like	media	access	control,	collisions,	and	unique	addressing



complexities	like	media	access	control,	collisions,	and	unique	addressing
schemes	in	the	way	that	technologies	like	Ethernet	must.

NOTE

Some	people	don't	consider	SLIP	and	PPP	to	be	part	of	the	true	TCP/IP	protocol	suite.	They	argue	that
TCP/IP	is	defined	at	layers	3	and	higher	on	the	OSI	model,	that	IP	is	the	basis	of	TCP/IP	at	layer	3,	and
that	SLIP	and	PPP	are	just	extra	protocols	that	can	be	used	under	TCP/IP.	To	support	their	argument,
they	note	that	PPP	can	be	used	for	protocols	other	than	IP,	which	is	true.



Serial	Line	Internet	Protocol	(SLIP)
The	need	for	a	data	link	layer	protocol	to	allow	IP	to	operate	over	serial	links
was	identified	very	early	on	in	the	development	of	TCP/IP.	Engineers	working
on	IP	needed	a	way	to	send	IP	datagrams	over	serial	links.	To	solve	the	problem,
they	created	the	very	simple	protocol	SLIP	to	frame	IP	messages	for
transmission	across	the	serial	line.

Unlike	most	TCP/IP	protocols,	SLIP	has	never	been	defined	as	a	formalized
standard.	It	was	created	informally	in	the	early	1980s,	and	it	became	the	de	facto
standard	before	it	was	ever	described	in	a	Request	for	Comment	(RFC).	When	it
was	published	in	1988	(RFC	1055,	"A	Nonstandard	for	Transmission	of	IP
Datagrams	over	Serial	Lines:	SLIP"),	the	decision	was	made	to	designate	it	a
"nonstandard	protocol."

SLIP	was	designated	nonstandard	because	it	was	developed	as	a	very
rudimentary,	stopgap	measure	to	provide	layer	2	framing	when	needed.	SLIP	is
so	simple	that	there	really	isn't	much	to	standardize.	Too,	it	has	so	many
deficiencies	that	the	Internet	Engineering	Task	Force	(IETF)	apparently	didn't
want	to	formalize	it	as	a	standard.	RFC	1055	specifically	mentions	various
problems	with	SLIP	(as	I'll	discuss	later	in	this	chapter)	and	the	fact	that	work
was	already	under	way	to	define	PPP	as	a	more	capable	successor	to	SLIP.

TIP

KEY	CONCEPT	SLIP	provides	a	layer	2	framing	service	for	IP	datagrams	but	no	other	features	or
capabilities.

SLIP	Data	Framing	Method	and	General
Operation
SLIP	performs	only	one	function:	the	framing	of	data	for	transmission.	Here's
how	SLIP	framing	works.	An	IP	datagram	is	passed	down	to	SLIP,	which	breaks
it	into	bytes	and	sends	those	bytes	one	at	a	time	over	the	link.	After	the	last	byte
of	the	datagram	is	sent,	a	special	byte	value	is	sent	that	tells	the	receiving	device
that	the	datagram	has	ended.	This	is	called	the	SLIP	END	character,	and	it	has	a



byte	value	of	192	in	decimal	numbers	(C0	in	hexadecimal	and	11000000	binary).
That's	basically	SLIP	framing	in	a	nutshell:	Take	the	whole	datagram,	send	it
one	byte	at	a	time,	and	then	send	the	byte	192	to	delimit	the	end	of	the	datagram.

One	minor	enhancement	to	SLIP's	basic	operation	is	to	precede	the	datagram
with	an	END	character	as	well,	thus	clearly	separating	the	start	of	the	datagram
from	anything	that	precedes	it.	To	see	why	this	might	be	needed,	you	can
imagine	that	at	a	particular	time	you	have	only	one	datagram	to	send:	datagram
1.	You	send	1,	and	then	send	the	END	character	to	delimit	it.	Now,	suppose
there	is	a	pause	before	the	next	datagram	shows	up.	During	that	time,	you	aren't
transmitting,	but	if	there	is	line	noise,	the	other	device	might	pick	up	spurious
bytes	here	and	there.	If	you	later	receive	datagram	2	and	just	start	sending	it,	the
receiving	device	might	think	the	noise	bytes	were	part	of	datagram	2.

Starting	datagram	2	off	with	an	END	character	tells	the	recipient	that	anything
received	between	this	END	character	and	the	previous	one	is	a	separate
datagram.	If	that's	just	noise,	then	this	"noise	datagram"	is	just	gibberish	that	will
be	rejected	at	the	IP	layer.	Meanwhile,	it	doesn't	corrupt	the	real	datagram	you
wish	to	send.	If	no	noise	occurred	on	the	line	between	datagrams,	then	the
recipient	will	just	see	the	END	at	the	start	of	datagram	2	right	after	the	one	at	the
end	of	datagram	1	and	will	ignore	the	"null	datagram"	between	the	two.

But	what	if	the	END	character	is	192	in	decimal	numbers;	what	happens	if	the
byte	value	192	appears	in	the	datagram	itself?	Transmitting	it	as	is	would	fool
the	recipient	into	thinking	that	the	datagram	ended	prematurely.	To	avoid	this,	an
Escape	character	(ESC)	is	defined,	which	has	a	decimal	value	of	219	(DB	in	hex,
11011011	in	binary).	This	symbol	means	that	"this	byte	and	the	next	are
special."	When	a	value	of	192	appears	in	the	datagram,	the	sending	device
replaces	it	with	the	ESC	character	followed	by	the	value	220	decimal.	Thus,	a
single	192	becomes	219	220	(or	DB	DC	in	hexadecimal).	The	recipient
translates	back	from	219	220	to	192.

NOTE

The	SLIP	ESC	character	is	not	the	same	as	the	ASCII	ESC	character.	They	both	perform	an	"escaping"
operation	but	are	otherwise	unrelated.	If	the	ESC	character	itself	is	in	the	original	datagram—that	is,	if
there's	a	byte	value	of	219	in	the	IP	datagram	to	be	sent—the	device	uses	219	221	instead	of	just	219.

To	summarize,	SLIP	does	the	following:



To	summarize,	SLIP	does	the	following:

Breaks	an	IP	datagram	into	bytes

Sends	the	END	character	(value	192)	after	the	last	byte	of	the	datagram;	in
better	implementations,	it	sends	the	END	character	before	the	first	byte	as
well

Replaces	any	byte	to	be	sent	in	the	datagram	that	is	192	with	219	220

Replaces	any	byte	to	be	sent	that	is	219	with	219	221

Figure	9-1	shows	an	example	of	how	this	is	done	with	a	sample	IP	datagram.	IP
datagrams	are	passed	down	to	the	SLIP	software	at	layer	2	(a	simplified	one	with
only	five	bytes	is	shown	here).	There,	they	are	framed	by	surrounding	them	with
END	characters	(hexadecimal	value	C0h,	shown	with	diagonal	hatching).
Special	characters	with	hexadecimal	values	DBh	and	C0h	are	replaced	by	two-
byte	sequences.	Note	that	the	presence	of	the	bracketing	END	characters	forces
the	receiving	device	to	see	the	noise	byte	(03h,	in	black)	as	a	separate	IP
datagram,	rather	than	part	of	either	of	the	real	ones.	It	will	be	rejected	when
passed	up	to	the	IP	layer.

Problems	and	Limitations	of	SLIP
SLIP's	simplicity	does	not	come	without	costs.	SLIP	simply	doesn't	provide
many	of	the	features	and	capabilities	you	really	need	on	modern	serial	links.
SLIP	is	most	deficient	in	the	following	areas:

Standardized	Datagram	Size	Specification	SLIP's	maximum	supported
datagram	size	is	not	standardized	and	depends	on	each	implementation.	The
usual	default	is	1,006	bytes,	which	becomes	the	maximum	transmission	unit
(MTU)	for	the	link	(see	Chapter	27).	If	a	different	size	is	used,	you	must
program	this	into	the	IP	layer.



Figure	9-1.	Operation	of	the	Serial	Line	Internet	Protocol	(SLIP)	SLIP's	only	function	is	to	frame	data
from	layer	3	(usually	IP	datagrams)	by	surrounding	them	with	END	characters	and	replacing	special

characters	as	needed.

Error	Detection	and	Correction	Mechanism	SLIP	doesn't	provide	any	way	of
detecting	or	correcting	errors	in	transmissions.	While	such	protection	is	provided
at	higher	layers	through	IP	header	checksums	and	other	mechanisms,	it	is	a	job
traditionally	also	done	at	layer	2.	The	reason	is	that	relying	on	those	higher
layers	means	that	errors	are	detected	only	after	an	entire	datagram	has	been	sent
and	passed	back	up	the	stack	at	the	recipient.	Error	correction	can	come	only	in
the	form	of	resending	any	datagrams	that	were	corrupted.	This	is	inefficient,
especially	because	serial	links	are	generally	much	slower	than	normal	LAN
links.

Control	Messaging	SLIP	offers	no	way	for	the	two	devices	to	communicate
control	information	that	may	be	required	to	manage	the	link.

Type	Identification	Since	SLIP	includes	no	headers	of	its	own,	it	is	not	possible
to	identify	that	SLIP	is	being	used.	While	developed	for	IP,	there	is	no	reason
why	other	layer	3	protocols	could	not	be	sent	using	SLIP	(if	you	were	running
more	than	one	internetworking	protocol	at	the	higher	layers).	However,	without
type	identification,	there	is	no	way	to	mix	datagrams	from	two	or	more	layer	3
protocols	on	the	same	link.

Address	Discovery	Method	Addressing	isn't	needed	at	layer	2	because	there	are
only	two	devices	in	a	point-to-point	connection,	so	each	device	is	obviously	only



sending	to	the	other	one.	However,	devices	do	need	some	way	of	learning	each
other's	IP	addresses	for	routing	at	layer	3.	SLIP	provides	no	method	for	this.

Support	for	Compression	Compression	would	improve	performance	over	serial
lines	that	are	otherwise	slow	compared	to	other	technologies.	SLIP	provides	no
compression	features.	(Note,	however,	that	modems	usually	do	support
compression	at	layer	1	for	serial	connections	that	use	them.)	A	variant	on	SLIP
called	Compressed	SLIP	or	CSLIP	was	created	in	the	late	1980s,	but	it	was	not
as	widely	deployed	as	regular	SLIP.

Security	Features	SLIP	lacks	even	basic	security	features,	with	no	means	for
authenticating	connections	or	encrypting	data.

SLIP's	many	shortcomings	have	led	most	implementations	to	move	from	SLIP	to
the	PPP,	which	is	a	much	richer	data	link	protocol	for	direct	connections	that
resolves	SLIP's	problems.	SLIP	is	now	outdated.	Still,	SLIP	continues	to	be	used
in	many	places.	Simplicity	is	attractive,	and	people	are	famous	for	their	inertia:
If	something	is	implemented	and	is	working	well,	many	will	refuse	to	change
unless	they	are	forced	to	do	so.



Point-to-Point	Protocol	(PPP)	Overview	and
Fundamentals
Even	as	SLIP	was	being	documented,	work	was	underway	on	a	newer	protocol
that	would	provide	full-featured	IP	transmission	over	direct	links	between	pairs
of	devices.	The	result	is	PPP,	which	defines	a	complete	method	for	robust	data
link	connectivity	between	devices	using	serial	lines	or	other	physical	layers.	It
includes	numerous	capabilities	and	features,	including	error	detection,
compression,	authentication,	and	encryption.

The	proliferation	of	serial	links,	especially	for	dial-up	Internet	access,	has	led	to
the	widespread	use	of	PPP.	PPP	is	now	one	of	the	most	popular	layer	2	WAN
technologies	in	the	networking	world,	and	has	replaced	SLIP	as	the	standard	for
serial	connections	on	all	but	legacy	implementations.	While	most	often
associated	with	dial-up	modem	use,	PPP	can	run	across	any	similar	type	of
physical	layer	link.	For	example,	it	is	often	used	to	provide	layer	2	functionality
on	Integrated	Services	Digital	Network	(ISDN).

NOTE

Although	PPP	is	called	a	protocol	and	is	usually	considered	part	of	TCP/IP,	it	is	really	more	a	protocol
suite,	since	its	operation	is	based	on	procedures	defined	in	many	individual	protocols.	Alternatively,	its
components	can	be	viewed	as	subprotocols	within	PPP,	even	though	they	are	not	usually	called	that	in
the	standards.

Development	and	Standardization
Unlike	SLIP,	PPP	was	developed	to	be	a	complete	protocol	suite	that	would
enable	fully	functional	layer	2	connectivity	to	support	not	just	IP,	but	the
transmission	of	other	network	layer	protocols	as	well.

PPP's	history	goes	back	to	the	late	1980s,	when	SLIP	was	the	de	facto	standard
for	serial	IP	implementations.	The	first	formal	IETF	document	related	to	PPP
was	RFC	1134	(1989).	This	RFC	was	not	the	standard	itself,	but	a	proposal	for
what	would	eventually	be	defined	as	the	first	main	PPP	standard,	RFC	1171
(1990).	RFC	1171	was	revised	several	times,	and	several	other	documents	were
added	to	it	to	define	the	various	protocols	that	compose	the	entire	PPP	suite.



NOTE

Rather	than	try	to	develop	PPP	from	scratch,	the	IETF	decided	to	base	it	on	the	ISO	High-Level	Data
Link	Control	(HDLC)	protocol,	which	was	initially	developed	by	IBM.	HDLC	is	a	derivative	of	the
Synchronous	Data	Link	Control	(SDLC)	Protocol.	PPP's	developers	adapted	its	framing	structure	and
some	of	its	general	operation	from	HDLC.

Function	and	Architecture
PPP	is	a	connection-oriented	protocol	that	enables	layer	2	links	over	a	variety	of
different	physical	layer	connections.	It	is	supported	on	both	synchronous	and
asynchronous	lines	and	can	operate	in	half-duplex	or	full-duplex	mode.	It	was
designed	to	carry	IP	traffic,	but	is	general	enough	to	allow	any	type	of	network
layer	datagram	to	be	sent	over	a	PPP	connection.	As	its	name	implies,	PPP	is
designed	for	point-to-point	connections	between	two	devices,	and	it	assumes	that
frames	are	sent	and	received	in	the	same	order.

PPP	fits	into	TCP/IP	in	the	network	interface	layer	(link	layer),	as	shown	in
Figure	9-2.	PPP's	operation	follows	a	specific	sequence,	including	a	multistep
Link	Establishment	phase	that	may	include	optional	authentication.

Figure	9-2.	PPP	location	in	the	TCP/IP	architecture	PPP	is	the	interface	between	the	IP	and	a	physical
link	such	as	a	serial	line	or	dial-up	networking	connection.	This	corresponds	to	layer	2	in	the	OSI

Reference	Model.



Advantages	and	Benefits
A	list	of	PPP's	strengths	reads	very	much	like	a	list	of	SLIP's	weaknesses,	as
explained	earlier	in	this	chapter.	Some	of	PPP's	specific	benefits	include	the
following:

A	more	comprehensive	framing	mechanism	compared	to	the	single	END
character	in	SLIP

Specification	of	the	encapsulated	protocol	to	allow	multiple	layer	3	protocols
to	be	multiplexed	on	a	single	link

Error	detection	for	each	transmitted	frame	through	the	use	of	a	cyclic
redundancy	check	(CRC)	code	in	each	frame	header

A	robust	mechanism	for	negotiating	link	parameters,	including	the	maximum
frame	size	permitted

A	method	for	testing	links	before	datagram	transmission	takes	place	and	for
monitoring	link	quality

Support	for	authentication	of	the	connection	using	multiple	authentication
protocols

Support	for	additional	optional	features,	including	compression,	encryption,
and	link	aggregation	(allowing	two	devices	to	use	multiple	physical	links	as	if
they	were	a	single,	higher-performance	link)

The	proliferation	of	serial	links,	especially	for	dial-up	Internet	access,	has	led	to
widespread	use	of	PPP.	It	is	now	one	of	the	most	popular	layer	2	WAN
technologies	in	the	networking	world,	and	it	has	replaced	SLIP	as	the	standard
for	serial	connections	on	all	but	legacy	implementations.	While	most	often
associated	with	dial-up	modem	use,	PPP	can	run	across	any	similar	type	of
physical	layer	link.	For	example,	it	is	often	used	to	provide	layer	2	functionality
on	ISDN.

TIP

KEY	CONCEPT	PPP	is	a	complete	link	layer	protocol	suite	for	devices	using	TCP/IP.	It	provides
framing,	encapsulation,	authentication,	quality	monitoring,	and	other	features	that	enable	robust
operation	of	TCP/IP	over	a	variety	of	physical	layer	connections.



One	key	advantage	of	PPP	is	that	it	is	extensible.	Over	the	years,	new	protocols
have	been	added	to	the	suite	in	order	to	provide	additional	features	or
capabilities.	For	example,	PPP	is	designed	not	to	use	just	a	single	authentication
protocol,	but	to	allow	a	choice.

PPP's	success	has	even	led	to	the	development	of	derivative	protocols	like	PPP
over	Ethernet	(PPPoE)	and	PPP	over	ATM	(PPPoA).	These	derivatives	actually
layer	PPP	over	existing	data	link	layer	technologies,	which	demonstrates	how
valued	PPP's	features	are.	Even	when	a	layer	2	technology	is	already	in	use,	you
can	apply	PPP	on	top	to	provide	authentication	and	management	benefits	for
services	like	Digital	Subscriber	Line	(DSL).

PPP	Main	Components
At	the	highest	level,	PPP's	functions	can	be	broken	down	into	several
components.	Each	encompasses	a	general	class	of	PPP	functionality	and	is
represented	by	either	one	protocol	in	the	suite	or	a	set	of	protocols.	The	PPP
standard	describes	three	main	components	of	PPP:

PPP	Encapsulation	Method	The	primary	job	of	PPP	is	to	take	higher-layer
messages,	such	as	IP	datagrams,	and	encapsulate	them	for	transmission	over	the
underlying	physical	layer	link.	To	this	end,	PPP	defines	a	special	frame	format
for	encapsulating	data	for	transmission,	based	on	the	framing	used	in	HDLC.
The	PPP	frame	was	designed	to	be	small	and	contain	only	simple	fields	in	order
to	maximize	bandwidth	efficiency	and	speed	in	processing.

Link	Control	Protocol	(LCP)	LCP	is	responsible	for	setting	up,	maintaining,
and	terminating	the	link	between	devices.	It	is	a	flexible,	extensible	protocol	that
allows	many	configuration	parameters	to	be	exchanged	to	ensure	that	both
devices	agree	on	how	the	link	will	be	used.

Network	Control	Protocols	(NCPs)	PPP	supports	the	encapsulation	of	many
different	layer	3	datagram	types.	Some	of	these	require	additional	setup	before
the	link	can	be	activated.	Once	the	general	link	setup	is	completed	with	LCP,
control	is	passed	to	the	NCP	that	is	specific	to	the	layer	3	protocol	being	carried
on	the	PPP	link.	For	example,	when	IP	is	carried	over	PPP,	the	NCP	used	is	the
PPP	Internet	Protocol	Control	Protocol	(IPCP).	Other	NCPs	are	defined	for



supporting	the	Internetworking	Packet	Exchange	(IPX)	protocol,	the	NetBIOS
Frames	(NBF)	protocol,	and	so	forth.

The	PPP	encapsulation	method	and	LCP	are	defined	in	the	main	PPP	standard
and	some	support	standards;	the	NCPs	are	described	in	separate	standard
documents,	one	per	NCP.

PPP	Functional	Groups
While	PPP's	main	components	constitute	much	of	the	total	package,	I	would	add
two	additional	functional	groups.	These	represent	some	of	the	many	extra
protocols	that	have	been	added	to	the	suite	over	time	to	support	or	enhance	its
basic	operation:

LCP	Support	Protocols	Several	protocols	in	the	PPP	suite	are	used	during	the
link	negotiation	process,	either	to	manage	it	or	to	configure	options.	Examples
include	the	authentication	protocols	Challenge	Handshake	Authentication
Protocol	(CHAP)	and	Password	Authentication	Protocol	(PAP),	which	are	used
by	LCP	during	the	optional	Authentication	phase.	These	are	discussed	in
Chapter	10.

LCP	Optional	Feature	Protocols	A	number	of	protocols	have	been	added	to
the	basic	PPP	suite	over	the	years	to	enhance	its	operation	once	a	link	has	been
set	up	and	datagrams	are	being	passed	between	devices.	For	example,	the	PPP
Compression	Control	Protocol	(CCP)	allows	compression	of	PPP	data;	the	PPP
Encryption	Control	Protocol	(ECP)	enables	datagrams	to	be	encrypted	for
security;	and	the	PPP	Multilink	Protocol	(PPP	MP)	allows	a	single	PPP	link	to
be	operated	over	multiple	physical	links.	These	protocols	often	also	require
additional	setup	during	link	negotiation,	so	many	of	them	define	extensions
(such	as	extra	configuration	options)	that	are	negotiated	as	part	of	LCP.

NOTE

Each	optional	protocol	is	defined	by	a	specific	standards	document,	as	you	will	see	later	in	this	chapter.

General	Operation
Although	the	PPP	suite	includes	dozens	of	protocols,	its	general	operation	is



really	quite	straightforward.	Essentially,	PPP	involves	the	following	three	basic
steps	(see	Figure	9-3):

1.	 Link	Setup	and	Configuration	Before	the	two	devices	can	exchange
information,	they	must	make	contact	and	set	up	a	link	between	them.
During	link	setup,	the	devices	agree	on	all	the	parameters	needed	to
manage	the	operation	of	the	link.	LCP	begins	this	process	and	invokes	the
help	of	support	protocols	as	needed,	for	options	like	authentication.	Once
the	link	is	set	up,	in	order	to	complete	link	setup,	the	appropriate	NCP	is
called	for	whatever	layer	3	technology	is	being	carried	on	the	link.

2.	 Link	Operation	The	devices	use	the	link	to	send	datagrams.	Each	device
transmits	by	encapsulating	layer	3	datagrams	and	sending	them	down	to
layer	1	to	be	transmitted.	Each	device	receives	by	taking	PPP	frames	sent
up	from	its	own	physical	layer,	stripping	off	the	PPP	header	and	passing
the	datagram	up	to	layer	3.	Where	appropriate,	optional	protocols	are	used
at	this	stage	to	offer	features	such	as	compression	(CCP).

3.	 Link	Termination	When	either	device	decides	that	it	no	longer	wants	to
communicate,	it	terminates	the	link.

Figure	9-3.	Overview	of	PPP	operation	In	simplest	terms,	PPP	consists	of	only	three	basic	steps:	link
setup,	link	operation,	and	link	termination.

Link	setup	is	by	far	the	most	complicated	of	these	general	steps,	because	it
involves	several	substeps	used	to	negotiate	link	parameters	and	options.

PPP	Link	Setup	and	Phases
Before	data	can	be	exchanged	on	a	PPP	connection,	a	link	must	be	set	up



between	the	two	devices.	As	part	of	this	setup	task,	a	configuration	process	is
undertaken	whereby	the	devices	configure	the	link	and	agree	on	the	parameters
for	how	data	should	be	passed	between	them.	Only	when	this	is	completed	can
frames	actually	pass	over	the	link.

LCP	is	generally	in	charge	of	setting	up	and	maintaining	PPP	links.	LCP	may
invoke	an	authentication	protocol	(PAP	or	CHAP)	when	PPP	is	configured	to
use	authentication.	Once	an	LCP	link	has	been	opened,	PPP	invokes	one	or	more
NCPs	for	the	layer	3	protocol	being	carried	on	the	link.	These	perform	any
network-layer-specific	configuration	needed	before	the	link	can	carry	that
particular	network	layer	protocol.

The	operation	of	a	PPP	link	can	be	described	as	having	a	life	of	sorts:	A	PPP	link
is	established,	configured,	used,	and	eventually	terminated.	The	process	of
setting	up,	using,	and	closing	a	PPP	link	is	described	in	the	PPP	standard	as	a
series	of	phases	or	states.	This	is	a	type	of	finite	state	machine	(FSM),	which	is	a
tool	used	to	explain	the	operation	of	protocols.	The	general	concept	behind	an
FSM	is	described	in	the	section	discussing	the	finite	state	machine	of	the
Transmission	Control	Protocol	(TCP),	in	Chapter	47.

To	better	understand	how	PPP	works,	let's	look	at	these	phases	and	how	the
transition	is	made	from	one	to	the	next	during	the	lifetime	of	the	link.	For	the
sake	of	clarity,	this	description	is	based	on	an	example	for	which	Device	A	is	a
PC	connecting	via	dial-up	networking	to	Remote	Host	B	(see	Figure	9-4).

NOTE

When	we	talk	about	a	PPP	link	overall,	we	are	talking	about	the	status	of	the	LCP	connection	between
the	two	devices.	Once	an	LCP	link	has	been	opened,	each	of	the	NCPs	used	on	the	link	can	be	opened	or
closed	independently	of	the	overall	PPP	(LCP)	link.	You'll	see	how	this	works	momentarily.

Link	Dead	Phase
By	design,	the	PPP	link	always	begins	and	ends	in	the	Link	Dead	phase.	This
phase	represents	the	situation	in	which	there	is	no	physical	layer	link	established
between	the	two	devices.	The	link	remains	here	until	the	physical	layer	link	is	set
up,	at	which	point	it	proceeds	to	the	Link	Establishment	phase.

In	this	example,	when	Device	A	is	first	turned	on,	there	is	no	physical	layer
connection	(modem	connection)	between	it	and	Device	B.	Once	the	connection



connection	(modem	connection)	between	it	and	Device	B.	Once	the	connection
is	made,	the	link	can	proceed	to	phase	2.

NOTE

In	a	direct	connection,	such	as	a	serial	cable	linking	two	PCs,	the	link	may	stay	in	the	Link	Dead	phase
for	only	a	fraction	of	a	second,	until	the	physical	layer	connection	is	detected.

Link	Establishment	Phase
The	physical	layer	is	now	connected	and	LCP	performs	the	basic	setup	of	the
link.	Device	A	sends	an	LCP	configuration	request	message	to	Device	B	over
the	physical	link,	specifying	the	parameters	it	wishes	to	use.	If	Device	B	agrees,
it	replies	with	an	acknowledgment.	If	Device	B	doesn't	agree,	it	returns	a
negative	acknowledgment	or	rejection,	telling	Device	A	what	it	won't	accept.
Device	A	can	then	try	a	different	configuration	request	with	new	parameters	that
Device	B	may	accept.	(This	process	is	described	in	more	detail	in	Chapter	10.)

If	Device	A	and	Device	B	eventually	come	to	agreement,	the	link	status	is
considered	LCP	open	and	will	proceed	to	the	Authentication	phase.	If	they
cannot	agree,	the	physical	link	is	terminated,	and	it	returns	to	the	Link	Dead
phase.

Authentication	Phase
In	many	cases,	a	device	may	require	authentication	before	it	will	permit	another
device	to	connect.	(This	is	usually	the	case	when	PPP	is	used	for	dial-up.)
Authentication	is	not	mandatory	in	PPP,	however.	When	it	is	used,	the
appropriate	authentication	protocol	(CHAP	or	PAP)	is	employed.

After	successful	authentication,	the	link	proceeds	to	the	Network	Layer	Protocol
phase.	If	authentication	is	not	successful,	the	link	fails	and	transitions	to	the	Link
Termination	phase.

Network	Layer	Protocol	Phase
Once	the	basic	link	has	been	configured	and	authentication	has	completed,	the
general	setup	of	the	LCP	link	is	complete.	Now,	the	specific	configuration	of	the
appropriate	network	layer	protocol	is	performed	by	invoking	the	appropriate
NCP,	such	as	IPCP,	IPXCP,	and	so	forth.



Each	particular	network	layer	protocol	whose	NCP	is	successfully	configured	is
considered	to	be	open	on	the	LCP	link.	More	than	one	NCP	can	be	open	on	a
particular	PPP	link,	and	each	can	be	closed	independently	when	it	is	no	longer
needed.	Once	all	necessary	NCPs	have	been	invoked,	the	link	proceeds	to	the
Link	Open	state,	even	if	none	of	the	NCPs	were	successfully	opened.

NOTE

Some	PPP	features	require	the	negotiation	of	additional	options	between	the	two	devices,	which	may
perform	their	own	link	establishment	process	during	the	Network	Layer	Protocol	phase.	The	PPP
Compression	Control	Protocol	(CCP)	sets	up	data	compression	in	this	manner.

Link	Open	Phase
In	the	Link	Open	state,	the	LCP	link	and	one	or	more	NCP	links	are	open	and
operational.	Data	can	be	passed	for	each	NCP	that	has	been	successfully	set	up.

The	link	can	be	terminated	at	any	time	by	either	device	for	a	variety	of	reasons.
These	may	include	a	user	request	(you	click	Disconnect	when	you	want	to	log
off	your	dial-up	session);	link	quality	problems	(the	modem	hangs	up	on	you	due
to	line	noise);	or	some	other	cause	(you	spend	too	much	time	in	the	bathroom
and	your	ISP's	idle	timer	logs	you	out).	When	any	of	these	occur,	the	LCP	link	is
broken,	and	the	link	transitions	to	the	Link	Termination	phase.

Link	Termination	Phase
The	device	terminating	the	link	sends	a	special	LCP	termination	frame,	and	the
other	device	acknowledges	it.	The	link	then	returns	to	the	Link	Dead	phase.	If
the	termination	was	by	request	and	the	physical	layer	connection	is	still	active,
the	PPP	implementation	should	specifically	signal	the	physical	layer	to	terminate
the	layer	1	connection.

You	should	remember	that	the	basic	link	is	established	by	LCP,	and	NCP	links
are	set	up	within	the	LCP	link.	Closing	an	NCP	link	does	not	cause	the	LCP	link
to	be	closed.	Even	if	all	NCPs	are	closed,	the	LCP	link	remains	open.	(Of	course,
no	data	can	be	passed	until	an	appropriate	NCP	link	is	reestablished;	a	device	is
required	to	discard	frames	received	that	contain	any	layer	3	protocol	that	does
not	have	an	open	NCP.)	To	terminate	a	PPP	connection,	only	the	LCP	link	needs
to	be	terminated	in	the	Link	Termination	phase;	the	NCPs	do	not	need	to	be



explicitly	closed.

Figure	9-4	shows	the	PPP	phases	and	the	circumstances	under	which	transitions
occur	between	them.	The	PPP	connection	between	two	devices	begins	in	the
Link	Dead	state	and	proceeds	through	three	intermediate	phases	until	the	link	is
fully	opened.	It	remains	in	the	stable	Link	Open	phase	until	terminated.	The
lighter	boxes	show	the	corresponding	change	in	the	status	of	the	PPP	link	as
transitions	are	made	between	phases.

Figure	9-4.	PPP	phases	A	PPP	connection	follows	a	mainly	linear	sequence	of	transitions	from	the	Link
Dead	Phase	through	the	Link	Open	Phase.

Table	9-1	summarizes	the	PPP	phases;	the	LCP	Link	Status	and	NCP	Link
Status	columns	show	the	status	of	the	link	as	the	phase	starts.

PPP	Standards
While	it	makes	sense	for	different	parts	of	PPP	to	be	covered	in	different
standards,	this	does	make	it	much	harder	to	learn	how	PPP	works.	Also,	literally
dozens	of	RFCs	cover	PPP's	main	operation,	its	various	protocols,	and	other
related	issues.	You	can	find	most	of	them	by	consulting	a	master	list	of	RFCs
and	searching	for	the	string	"PPP,"	but	you	will	find	them	in	numerical	(RFC



number)	order,	which	isn't	very	meaningful	in	terms	of	how	the	protocols	are
used.	You	also	have	to	differentiate	between	the	ones	that	are	current	and	those
that	are	obsolete.

Table	9-1.	PPP	Phases

Phase/State Phase	Summary LCP	Link
Status
Upon
Entry	to
Phase

NCP
Link
Status
Upon
Entry	to
Phase

Transition
Requirement

Transition
to	Phase

Link	Dead Default	state;
physical	layer	not
connected.

Closed Closed Successful
physical	layer
connection

Link
establishment

Link
Establishment

Physical	layer
connected,	basic
configuration	of
link	performed	by
LCP.

Closed Closed Successful
negotiation

Authentication

	 	 	 	 Unsuccessful
negotiation

Link	dead

Authentication Basic	link	is	now
opened,	and
optional
authentication	of
device	is
performed.

Open Closed Successful
authentication
or	no
authentication
required

Network	layer
protocol

	 	 	 	 Unsuccessful
authentication

Link
termination

Network
Layer
Protocol

One	or	more	NCPs
open	an	NCP	link
within	the	LCP
link.

Open Closed All	NCPs
opened

Link	open

Link	Open Link	is	open	and
operating	normally.

Open Open Link	failure	or
close	request

Link
termination

Link
Termination

LCP	link	is	shut
down.

Open Open 	 Link	dead



Termination down.

Table	9-2	lists	the	most	important	and	interesting	PPP-related	RFCs.	To	make	it
easier	to	see	what	the	RFCs	are	about,	I	have	organized	them	into	five	groups,	as
follows:

Core	These	are	PPP's	main	documents.	They	cover	the	basic	operation	of	PPP
including	the	PPP	LCP	and	encapsulation	of	datagrams.

LCP	Support	These	protocols	support	the	basic	operation	of	LCP.	I've	only
included	the	ones	that	provide	authentication	services	during	link	startup.

NCPs	These	protocols	negotiate	parameters	specific	to	various	layer	3	protocols
carried	over	PPP.

Features	These	protocols	define	optional	features	used	with	PPP,	such	as
compression	and	encryption.

Applications	and	Miscellaneous	These	are	the	protocols	that	describe	how	PPP
can	be	adapted	to	run	over	particular	types	of	links	or	that	don't	really	fit	into	any
of	the	previous	groups.

Within	each	group,	the	RFCs	are	listed	in	numerical	order,	which	is	also	date
order.	Only	the	most	recent	RFC	is	listed,	not	earlier	ones	that	were	made
obsolete	(with	the	exception	of	RFC	1334,	which,	despite	being	made	obsolete,
is	still	important).

Table	9-2.	PPP	Standards

Group RFC
Number

Standard
Name

Description

Core 1570 PPP	LCP
Extensions

Defines	two	features	for	LCP	that	allow	devices
to	identify	each	other	and	for	each	device	to	tell
the	other	how	much	time	remains	in	the	current
session.

	 1661 The	Point-to-
Point	Protocol
(PPP)

Base	standard	for	PPP.	Describes	PPP
architecture,	general	operation	(including	the
process	of	link	establishment,	maintenance,	and
termination),	and	details	of	LCP.

	 1662 PPP	in	HDLC-
like	Framing

Defines	the	specific	framing	method	for	PPP
frames,	based	on	that	used	in	HDLC.	This



like	Framing frames,	based	on	that	used	in	HDLC.	This
standard	can	be	considered	a	companion	to	the
main	PPP	standard,	RFC	1661.

LCP	Support 1334 PPP
Authentication
Protocols

Defines	the	two	PPP	authentication	protocols:
PAP	and	CHAP.	Note	that	RFC	1994	obsoletes
RFC	1334,	but	does	not	discuss	the	PAP.	(That
tells	you	that	the	IETF	doesn't	think	highly	of
PAP;	see	Chapter	10	for	more	on	this.)

	 1994 PPP	Challenge
Handshake
Authentication
Protocol	(CHAP)

Updates	the	information	about	CHAP	provided
in	RFC	1334.

NCPs 1332 The	PPP	Internet
Protocol	Control
Protocol	(IPCP)

The	NCP	for	IP.

	 1377 The	PPP	OSI
Network	Layer
Control	Protocol
(OSINLCP)

The	NCP	for	OSI	protocol	suite	network	layer
protocols,	such	as	CNLP,	ES-IS,	and	IS-IS.

	 1378 The	PPP
AppleTalk
Control	Protocol
(ATCP)

The	NCP	for	the	AppleTalk	protocol.

	 1552 The	PPP
Internetworking
Packet	Exchange
Control	Protocol
(IPXCP)

The	NCP	for	the	Novell	IPX	protocol.

	 2043 The	PPP	SNA
Control	Protocol
(SNACP)

The	NCP	for	IBM's	Systems	Network
Architecture	(SNA).

	 2097 The	PPP
NetBIOS	Frames
Control	Protocol
(NBFCP)

The	NCP	for	NetBIOS	Frames	(NBF,	also
commonly	called	NetBEUI).

	 2472 IP	Version	6
over	PPP

The	NCP	for	IPv6:	the	IPv6	Control	Protocol
(IPv6CP).

Features 1962 The	PPP
Compression

Defines	a	mechanism	for	compressing	data	sent
over	PPP	links	to	improve	performance.	This



Compression
Control	Protocol
(CCP)

over	PPP	links	to	improve	performance.	This
standard	describes	how	compression	is
negotiated	between	two	devices	on	a	PPP	link.	It
is	used	in	conjunction	with	several	compression
algorithms	that	actually	do	the	compression	of
data.

	 1968 The	PPP
Encryption
Control	Protocol
(ECP)

Defines	a	mechanism	for	encrypting	data	sent
over	PPP	links	to	improve	performance.	This
standard	describes	how	encryption	is	negotiated
between	two	devices.	It	is	used	with	several
encryption	algorithms.

	 1989 PPP	Link	Quality
Monitoring

Defines	a	protocol	that	lets	PPP	devices	generate
reports	to	each	other	about	the	quality	of	the	link.

	 1990 The	PPP
Multilink
Protocol	(MP)

Defines	a	method	for	running	PPP	over	a	set	of
aggregated	links,	thereby	allowing	two	devices
to	use	multiple	low-bandwidth	links	as	a	single,
high-bandwidth	virtual	link.

	 2125 The	PPP
Bandwidth
Allocation
Protocol
(BAP)/The	PPP
Bandwidth
Allocation
Control	Protocol
(BACP)

Defines	two	support	protocols	that	manage	the
allocation	of	bandwidth	in	links	aggregated	using
PPP	MP.

Applications
and
Miscellaneous

1618 PPP	over	ISDN Describes	application	particulars	for	running
PPP	over	ISDN	links.

	 1973 PPP	in	Frame
Relay

Describes	how	PPP	may	be	modified	to	run	over
Frame	Relay	at	layer	2.

	 2290 Mobile-IPv4
Configuration
Option	for	PPP
IPCP

Defines	changes	to	the	PPP	Internet	Protocol
Control	Protocol	(IPCP)	to	support	Mobile	IP.

	 2364 PPP	over	AAL5 Defines	a	method	for	sending	PPP	frames	over
AAL5	(ATM),	commonly	called	PPPoA.

	 2516 A	Method	for
Transmitting
PPP	over

Defines	a	technique	for	encapsulating	PPP
frames	over	Ethernet	(PPPoE).



PPP	over
Ethernet
(PPPoE)

	 2615 PPP	over
SONET/SDH

Discusses	how	to	encapsulate	PPP	frames	over
SONET/SDH	links.



Chapter	10.	PPP	CORE
PROTOCOLS:	LINK	CONTROL,
NETWORK	CONTROL,	AND
AUTHENTICATION

This	chapter	describes	the	protocols	responsible	for	PPP	link	setup	and	basic
operation,	including	Link	Control	Protocol	(LCP)	and	the	Network	Control
Protocols	(NCPs)	used	to	configure	PPP	for	different	layer	3	protocols.	I	also
discuss	the	two	PPP	authentication	protocols,	Password	Authentication	Protocol
(PAP)	and	Challenge	Handshake	Authentication	Protocol	(CHAP),	which	are
used	to	provide	authentication	during	link	setup.

Link	Control	Protocol	(LCP)
Of	all	the	PPP	suite	protocols,	LCP	is	the	most	important.	It	is	responsible	for
PPP's	overall	successful	operation,	and	plays	a	key	role	in	each	PPP	link	stage:
configuration,	maintenance,	and	termination	(as	discussed	in	Chapter	9).	Link
configuration	is	performed	during	the	initial	link	establishment	phase;	link
maintenance	occurs	while	the	link	is	open,	and	link	termination	happens	in	the
link	termination	phase.

Figure	10-1	provides	an	overview	of	many	of	the	message	exchanges	performed
by	LCP	during	different	phases	of	a	PPP	connection.	Link	configuration	is
shown	here	as	a	simple	exchange	of	a	Configure-Request	and	Configure-Ack.
After	subsequent	exchanges	using	other	PPP	protocols	to	authenticate	and
configure	one	or	more	NCPs,	the	link	enters	the	link	open	phase.	In	this
example,	Echo-Request	and	Echo-Reply	messages	are	first	used	to	test	the	link,



followed	by	the	sending	and	receiving	of	data	by	both	devices.	One	Data
message	is	shown	being	rejected	due	to	an	invalid	Code	field.	Finally,	the	link	is
terminated	using	Terminate-Request	and	Terminate-Ack	messages.

Figure	10-1.	PPP	Link	Control	Protocol	(LCP)	message	exchanges	This	diagram	shows	the	different
message	exchanges	performed	by	LCP	during	link	configuration,	maintenance,	and	termination.

LCP	Packets
Devices	use	LCP	to	control	the	PPP	link	by	sending	LCP	messages	across	the
physical	link	between	them.	These	messages	are	called	both	LCP	packets	and
LCP	frames.	Although	the	standard	uses	packet,	the	term	frame	is	preferred
because	layer	2	messages	are	normally	called	frames.	The	main	PPP	document
defines	11	different	LCP	frames,	which	are	divided	into	three	groups	that
correspond	to	the	three	link	stages.	Four	LCP	frame	types	are	used	for	link
configuration,	five	for	maintenance,	and	two	for	termination.

In	the	following	section	I'll	discuss	each	of	the	three	major	functions	of	LCP	and
how	the	frames	are	used	in	each.	(Chapter	12	describes	the	frame	formats	for	the



packets	themselves.)

LCP	Link	Configuration
Link	configuration	is	arguably	LCP's	most	important	job	in	PPP.	During	the	link
establishment	phase,	the	two	physically	connected	devices	exchange	LCP	frames
that	help	them	negotiate	the	conditions	under	which	the	link	will	operate.
Figure	10-2	shows	the	entire	procedure.

The	process	begins	with	the	initiating	device	(Device	A)	creating	a	Configure-
Request	frame	that	contains	a	variable	number	of	configuration	options	that	it
wants	to	see	set	up	on	the	link.	This	is	basically	Device	A's	"wish	list"	for	how	it
wants	the	link	created.

Figure	10-2.	PPP	LCP	link	configuration	process	The	negotiation	process	undertaken	to	configure	the
link	by	LCP.	This	process	begins	when	the	PPP	link	enters	the	link	establishment	phase.	After

successful	configuration,	the	connection	transitions	to	the	authentication	phase.

RFC	1661,	the	main	PPP	document,	defines	a	number	of	different	configuration
options	that	the	initiator	can	specify	in	this	request.	Any	one	of	these	can	be



included	and	if	so,	filled	in	with	the	value	corresponding	to	what	Device	A	wants
for	that	option.	If	absent,	Device	A	isn't	requesting	that	option.	The	six	options
are	as	follows:

Maximum	Receive	Unit	(MRU)	Lets	Device	A	specify	the	maximum	size
datagram	it	wants	the	link	to	be	able	to	carry.

Authentication	Protocol	Device	A	can	indicate	the	type	of	authentication
protocol	it	wishes	to	use	(if	any).

Quality	Protocol	If	Device	A	wants	to	enable	quality	monitoring	on	the	link,
what	quality	monitoring	protocol	to	use	(though	there	is	only	one	currently
defined:	LQR).

Magic	Number	Used	to	detect	looped-back	links	or	other	anomalies	in	the
connection.

Protocol	Field	Compression	Allows	Device	A	to	specify	that	it	wants	to	use
"compressed"	(8-bit)	Protocol	fields	in	PPP	data	frames	instead	of	the	normal
16-bit	Protocol	field.	This	provides	a	small	(one	byte)	but	free	savings	on	each
PPP	frame.	(Note	that	this	has	nothing	to	do	with	the	compression	feature
offered	by	Compression	Control	Protocol,	or	CCP;	see	the	PPP	general	frame
format	discussion	in	Chapter	12	for	more	on	this	feature.)

Address	and	Control	Field	Compression	(ACFC)	The	same	as	Protocol	Field
Compression,	but	used	to	compress	the	Address	and	Control	fields	for	small
bandwidth	savings.	(See	the	PPP	general	frame	format	topic	in	Chapter	12	for
more.)

Other	options	may	also	be	added	to	this	list	by	optional	feature	protocols.	For
example,	Multilink	PPP	(Chapter	11)	adds	several	options	that	must	be
negotiated	during	link	setup.

The	other	device	(Device	B)	receives	the	Configure-Request	and	processes	it.	It
then	has	the	following	three	choices	of	how	to	respond:

If	every	option	in	it	is	acceptable,	Device	B	sends	back	a	Configure-Ack
(acknowledge)	frame.	The	negotiation	is	complete.

If	Device	B	recognizes	all	the	options	that	Device	A	sent	as	valid	and	is
capable	of	negotiating,	but	it	doesn't	accept	the	values,	Device	B	returns	a



Configure-Nak	(negative	acknowledge)	frame.	This	message	includes	a	copy
of	each	configuration	option	that	Device	B	found	unacceptable.

If	any	of	the	options	that	Device	A	sent	were	either	unrecognized	by	Device
B	or	represent	ways	of	using	the	link	that	Device	B	considers	not	only
unacceptable,	but	not	even	subject	to	negotiation,	it	returns	a	Configure-
Reject	containing	each	of	the	objectionable	options.

The	difference	between	a	Configure-Nak	and	a	Configure-Reject	is	that	the
former	is	like	Device	B	saying,	"I	don't	accept	your	terms,	but	I'll	discuss,"	while
the	latter	is	Device	B	basically	saying,	"No	way	Jose!"	For	example,	if	Device	A
tries	to	request	PAP	as	the	authentication	protocol,	but	Device	B	wants	to	use
CHAP,	it	will	send	a	Configure-Nak.	If	Device	B	doesn't	support	authentication
at	all,	it	will	send	a	Configure-Reject.

NOTE

Even	after	receiving	a	rejection,	Device	A	can	retry	the	negotiation	with	a	new	Configure-Request.

LCP	Link	Maintenance
Once	the	link	has	been	negotiated,	LCP	passes	control	to	the	appropriate
authentication	and	NCP	protocols	(as	discussed	below).	Eventually	the	link	setup
will	complete	and	go	into	the	open	state,	at	which	point,	LCP	messages	can	then
be	used	by	either	device	to	manage	or	debug	the	link,	as	follows:

Code-Reject	and	Protocol-Reject	These	frame	types	are	used	to	provide
feedback	when	one	device	receives	an	invalid	frame	due	to	either	an
unrecognized	LCP	code	(LCP	frame	type)	or	a	bad	protocol	identifier.

Echo-Request,	Echo-Reply,	and	Discard-Request	These	frames	can	be	used
for	testing	the	link.

LCP	Link	Termination
When	the	link	is	ready	to	be	shut	down,	LCP	terminates	it.	The	device	initiating
the	shutdown	(which	may	not	be	the	one	that	initiated	the	link	in	the	first	place)
sends	a	Terminate-Request	message.	The	other	device	replies	with	a	Terminate-
Ack	message.	A	termination	request	indicates	that	the	device	sending	it	needs	to



close	the	link.	This	is	a	request	that	cannot	be	denied.

Other	LCP	Messages
The	standard	RFC	1570,	"PPP	LCP	Extensions,"	also	defines	two	new	LCP
message	types.	The	Identification	message	is	used	to	allow	a	device	to	identify
itself	to	its	peer	on	the	link.	The	Time-Remaining	message	lets	one	device	tell
the	other	how	much	time	remains	in	the	current	session.

Many	of	the	other	protocols	used	in	PPP	are	modeled	after	LCP.	They	use	the
same	basic	techniques	for	establishing	protocol	connections,	and	send	and
receive	a	subset	of	LCP	message	types.	They	also	exchange	configuration
options	in	a	similar	manner.



The	Network	Control	Protocols	(IPCP,	IPXCP,
NBFCP,	and	Others)
Although	PPP	was	originally	created	to	carry	IP	datagrams,	its	designers	realized
that	it	could	easily	carry	data	from	many	types	of	network	layer	protocols,	and
that,	on	some	networks,	it	might	even	be	advantageous	to	let	it	carry	datagrams
from	different	layer	3	protocols	simultaneously.

Allowing	PPP	to	support	multiple	network	layer	protocols	would	require	it	to
have	knowledge	of	each	one's	idiosyncrasies.	If	you	used	only	LCP	for	link
configuration,	the	device	would	need	to	know	all	the	unique	requirements	of
each	layer	3	protocol.	This	would	also	require	you	to	update	LCP	constantly	as
new	layer	3	protocols	were	defined	and	as	new	parameters	were	defined	for
existing	ones.

To	eliminate	this	potential	issue,	PPP	takes	a	modular	approach	to	link
establishment.	LCP	performs	the	basic	link	setup,	and	after	(optional)
authentication,	invokes	an	NCP	that	is	specific	to	each	layer	3	protocol	that	is	to
be	carried	over	the	link.	The	NCP	negotiates	any	parameters	that	are	unique	to
the	particular	network	layer	protocol,	and	more	than	one	NCP	can	be	run	for
each	LCP	link	(see	the	discussion	of	PPP	link	setup	and	phases	in	Chapter	9).

Each	of	the	common	network	layer	technologies	has	a	PPP	NCP	defined	for	it	in
a	separate	RFC.	The	most	common	ones,	"The	PPP	Internet	Protocol	Control
Protocol	(IPCP),"	"The	PPP	Internetworking	Packet	Exchange	Control	Protocol
(IPXCP),"	and	"The	PPP	NetBIOS	Frames	Control	Protocol	(NBFCP),"	are
NCPs	for	IP,	IPX,	and	NBF	(also	called	NetBEUI),	respectively.	A	separate
NCP	is	also	defined	for	IP	version	6,	the	"PPP	IP	Version	6	Control	Protocol
(IPv6CP)."

Operation	of	NCPs
Each	NCP	operates	very	much	like	a	light	version	of	LCP,	as	you	can	see	in
Figure	10-3.	(To	see	the	similarities,	you	should	compare	Figure	10-3	to
Figure	10-1,	which	shows	the	messaging	for	LCP.)	Like	LCP,	each	NCP
performs	functions	for	link	setup,	maintenance,	and	termination,	except	that	it



deals	only	with	its	particular	type	of	NCP	link	and	not	the	overall	LCP	link.
Each	NCP	uses	a	subset	of	the	following	seven	of	the	message	types	defined	in
LCP	in	very	much	the	same	way	that	LCP	uses	each	message	type	of	the	same
name,	as	shown	for	each	of	these	three	main	link	activities:

Link	Configuration	The	process	of	setting	up	and	negotiating	the	parameters	of
a	particular	NCP	link	(once	an	LCP	link	is	established)	is	accomplished	using
Configure-Request,	Configure-Ack,	Configure-Nak,	and	Configure-Reject
messages	as	discussed	for	LCP	(except	that	these	are	particular	to	each	NCP).
The	configuration	options	are	the	network	layer	protocol	parameters	being
negotiated.

Link	Maintenance	Code-Reject	messages	can	be	sent	to	indicate	invalid	code
values	(NCP	frame	types).

Link	Termination	An	NCP	link	can	be	terminated	using	Terminate-Request
and	Terminate-Ack	messages.	But	remember	that	NCP	links	are	set	up	within	an
LCP	link,	and	that	there	can	be	more	than	one	NCP	link	open.	Closing	NCP
links	doesn't	terminate	the	LCP	link.	(NCP	links	do	not	need	to	be	closed	when
an	LCP	link	is	terminated.)

Figure	10-3	shows	how	the	overall	operation	of	the	NCPs,	such	as	IPCP,	is	very
similar	to	that	of	LCP.	Once	LCP	configuration	(including	authentication)	is
complete,	IPCP	Configure-Request	and	Configure-Ack	messages	are	used	to
establish	an	IPCP	link.	IP	data	can	then	be	sent	over	the	link.	If	the	IPCP
connection	is	no	longer	needed,	it	may	be	terminated,	after	which	the	LCP	link
remains	open	for	other	types	of	data	to	be	transmitted.	It	is	not	necessary,
however,	to	explicitly	terminate	the	IPCP	link	before	terminating	the	LCP
connection.



Figure	10-3.	PPP	IP	Control	Protocol	(IPCP)	message	exchanges	The	message	exchanges,	performed	to
configure	and	terminate	IPCP,	are	quite	similar	to	those	used	for	LCP.

TIP

KEY	CONCEPT	Once	the	primary	PPP	link	is	established	using	LCP,	each	network	layer	protocol	to
be	carried	over	the	link	requires	the	establishment	of	the	appropriate	NCP	link.	The	most	important	of
these	is	the	PPP	Internet	Protocol	Control	Protocol	(IPCP),	which	allows	IP	datagrams	to	be	carried	over
PPP.

The	Internet	Protocol	Control	Protocol	(IPCP):
An	Example	NCP
Let's	look	at	the	NCP	for	IP:	IPCP.	When	PPP	is	set	up	to	carry	IP	datagrams,
IPCP	is	invoked	in	the	network	layer	protocol	phase	to	set	up	an	IP	NCP	link
between	the	two	devices.	The	setup	is	carried	out	using	the	four	Configure-
messages.	For	IP,	two	configuration	options	can	be	specified	in	an	IPCP
Configure-Request	message:



IP	Compression	Protocol	Allows	devices	to	negotiate	the	use	of	Van	Jacobson
TCP/IP	header	compression,	which	shrinks	the	size	of	TCP	and	IP	headers	to
save	bandwidth.	This	is	similar	in	concept	to	the	Protocol-Field-Compression
and	ACFC	options	in	LCP.

IP	Address	Allows	the	device	sending	the	Configure-Request	message	either	to
specify	an	IP	address	it	wants	to	use	for	routing	IP	over	the	PPP	link	or	to
request	that	the	other	device	supply	it	with	one.	This	is	most	commonly	used	for
dial-up	networking	links.

Once	configuration	is	complete,	data	can	be	sent	for	the	layer	3	protocol
corresponding	to	the	NCP	negotiated.	This	is	indicated	by	using	the	appropriate
value	for	the	Protocol	field	in	PPP	data	frames	containing	that	layer	3	data.



PPP	Authentication	Protocols:	PAP	and	CHAP
PPP	was	designed	to	provide	layer	2	connectivity	over	a	variety	of	serial	links
and	other	physical	layer	technologies,	some	of	which	introduce	more	security
concerns	than	others.	For	example,	suppose	you	connect	two	machines	in	your
office	with	a	serial	cable	and	want	to	run	PPP	between	them.	When	one	of	these
initiates	a	PPP	link	with	the	other,	you	don't	really	need	to	worry	about	who's
calling.	On	the	other	hand,	consider	an	Internet	service	provider	(ISP)	using	PPP
for	remote	dial-in	users.	They	generally	want	to	allow	only	their	customers	to
connect.

The	PPP	protocol	suite	allows	for	the	use	of	an	optional	authentication	protocol
when	devices	negotiate	the	basic	link	setup.	The	PPP	suite	initially	defined	two
such	protocols:	PAP	and	CHAP.	Once	an	LCP	link	is	set	up	between	two
devices,	a	series	of	authentication	messages	are	sent	using	these	protocols	to
verify	the	identity	of	the	device	initiating	the	link.	Only	if	authentication	is
successful	can	the	link	configuration	proceed.

PAP
PAP	is	a	very	straightforward	authentication	scheme,	consisting	of	only	two
basic	steps,	as	shown	in	Figure	10-4.

Authentication	Request	The	initiating	device	sends	an	Authenticate-Request
message	that	contains	a	name	and	a	password.

Authentication	Reply	The	responding	device	looks	at	the	name	and	password
and	decides	whether	to	accept	the	initiating	device	and	continue	setting	up	the
link.	If	so,	it	sends	back	an	Authenticate-Ack	message.	Otherwise,	it	sends	an
Authenticate-Nak	message.

PAP	is	another	example	of	something	that	is	just	too	simple	for	its	own	good.
Chief	among	its	flaws	is	that	it	transmits	the	user	name	and	password	in	clear
text	across	the	link.	This	is	a	big	"no-no"	because	eavesdroppers	can	get	the
password.

PAP	also	provides	no	protection	against	various	security	attacks.	For	example,
an	unauthorized	user	could	try	different	passwords	indefinitely	until	he
discovered	the	correct	one.	PAP	also	puts	control	of	the	authentication	squarely



discovered	the	correct	one.	PAP	also	puts	control	of	the	authentication	squarely
on	the	shoulders	of	the	initiating	device	(usually	a	client	machine),	which	is	not
considered	desirable,	because	this	is	normally	a	server	function	that
administrators	prefer	to	manage.

Figure	10-4.	PAP	authentication	PAP	uses	a	simple	exchange	of	a	request	containing	name	and
password	information	and	a	reply	indicating	whether	or	not	authentication	was	successful.

CHAP
The	most	important	difference	between	PAP	and	CHAP	is	that	CHAP	doesn't
transmit	the	password	across	the	link.	When	using	PAP,	the	initiator	(calling
client)	sends	the	authenticator	(generally	the	server	that	is	deciding	whether	to
grant	authentication)	a	message	saying	essentially,	"Here's	the	password	I	know;
see	if	it	matches	yours."	Each	device	uses	the	password	to	perform	a
cryptographic	computation,	and	then	checks	to	see	if	it	gets	the	same	result.	If
so,	they	know	they	have	the	same	password.

In	CHAP,	a	basic	LCP	link	is	first	set	up	between	the	initiator	and	authenticator.
The	authenticator	then	takes	charge	of	the	authentication	process,	using	a
technique	called	a	three-way	handshake.

NOTE

Three-way	handshakes	are	a	fairly	common	general	authentication	procedure.	The	same	basic	technique
is	used,	for	example,	in	shared	key	authentication	on	IEEE	802.11	wireless	networking.



The	three-way	handshake	steps	are	as	follows	(see	Figure	10-5):

Challenge	The	authenticator	generates	a	frame	called	a	Challenge	and	sends	it	to
the	initiator.	This	frame	contains	a	simple	text	message	(sometimes	called	the
challenge	text).	The	message	has	no	inherent	special	meaning,	so	it	doesn't
matter	if	anyone	intercepts	it.	The	important	thing	is	that	after	receipt	of	the
Challenge,	both	devices	have	the	same	Challenge	message.

Response	The	initiator	uses	its	password	(or	some	other	shared	secret	that	the
authenticators	also	know)	to	encrypt	the	challenge	text.	It	then	sends	the
encrypted	challenge	text	as	a	Response	back	to	the	authenticator.

Success	or	Failure	The	authenticator	performs	the	same	encryption	on	the
challenge	text	that	the	initiator	did.	If	the	authenticator	gets	the	same	result	that
the	initiator	sent	it	in	the	Response,	it	knows	that	the	initiator	had	the	right
password	when	it	did	its	encryption,	so	the	authenticator	returns	a	Success
message.	Otherwise,	it	sends	a	Failure	message.

Figure	10-5.	PPP	Challenge	Handshake	Authentication	Protocol	(CHAP)	authentication	CHAP	uses	a
three-way	handshake	beginning	with	a	Challenge	from	the	authenticating	device.	This	message	is
encrypted	and	returned	to	the	authenticating	device,	which	checks	to	see	if	the	device	trying	to

authenticate	used	the	correct	password	(or	other	shared	secret).

The	beauty	of	this	is	that	it	verifies	that	the	two	devices	have	the	same	shared



secret,	but	it	doesn't	require	them	to	send	the	secret	over	the	link.	The	Response
is	calculated	based	on	the	password,	but	the	content	of	the	Response	is
encrypted,	and	thus	it's	much	harder	to	derive	the	password	from.	CHAP	also
provides	protection	against	replay	attacks,	whereby	an	unauthorized	user
captures	a	message	and	tries	to	send	it	again	later	on.	This	is	done	by	changing
an	identifier	in	each	message	and	varying	the	challenge	text.	Also,	in	CHAP,	the
server	controls	the	authentication	process,	not	the	client	that	is	initiating	the	link.

TIP

KEY	CONCEPT	PPP	supports	two	authentication	protocols:	PAP	and	CHAP.	PAP	is	a	simple	request-
and-reply	authentication	protocol	that	is	widely	considered	to	be	inadequate	because	it	sends	the	user
name	and	password	in	clear	text	and	provides	little	protection	against	many	security	concerns.	CHAP
uses	a	three-way	handshake	procedure	and	is	preferred	over	PAP	in	most	implementations.

CHAP	is	not	perfect,	but	it's	much	better	than	PAP.	In	fact,	the	IETF	made	a
rather	strong	statement	in	this	regard	when	it	revised	the	original	RFC	that
described	PAP	and	CHAP	to	include	only	CHAP	in	the	new	standard.	Despite
this,	PAP	is	still	used	in	some	applications	because	it	is	simple.	PAP	can	suffice
in	situations	where	security	is	not	a	big	deal,	but	CHAP	is	a	much	better	choice.

NOTE

Incidentally,	in	addition	to	PAP	and	CHAP,	it	is	possible	to	use	proprietary	authentication	schemes.	This
requires	that	the	appropriate	configuration	option	values	be	programmed	into	LCP	for	placement	in	the
Authentication	Protocol	configuration	option.



Chapter	11.	PPP	FEATURE
PROTOCOLS

Point-to-Point	Protocol	(PPP)	is	the	standard	for	data	link	layer	connectivity	over
serial	links	because	its	core	protocols	provide	a	solid	operational	foundation,	as
you	saw	in	Chapter	10.	However,	PPP's	popularity	is	based	not	just	on	its	highly
capable	link	establishment	and	management	features,	but	it	also	has	a	number	of
very	useful	features	that	provide	important	security	and	performance	benefits	to
network	users.

In	this	chapter,	I	describe	the	protocols	that	implement	several	of	the	most
common	extra	features	in	PPP.	I	begin	with	a	discussion	of	PPP	link	quality
monitoring.	I	describe	the	sets	of	protocols	used	to	configure	and	implement	data
compression	and	data	encryption.	I	then	discuss	the	PPP	Multilink	Protocol	(MP,
MLPPP),	which	allows	PPP	to	bundle	multiple	low-speed	links	into	a	single
high-speed	link.	I	also	cover	the	Bandwidth	Allocation	Protocol	(BAP)	and
Bandwidth	Allocation	Control	Protocol	(BACP),	which	are	used	to	manage	the
operation	of	MLPPP.

PPP	Link	Quality	Monitoring	and	Reporting
(LQM,	LQR)
PPP	includes	optional	authentication	in	recognition	of	the	varying	security	needs
of	the	many	different	kinds	of	links	over	which	PPP	may	operate.	These	links
also	differ	greatly	in	terms	of	their	quality.	Just	as	you	don't	need	to	worry	about
authentication	much	when	two	machines	are	linked	with	a	short	cable,	you	also
can	feel	pretty	confident	that	data	sent	between	them	is	going	to	arrive	intact.
Now	contrast	that	with	a	PPP	session	established	over	a	long-distance	telephone
call.	For	that	matter,	how	about	PPP	over	a	dial-up	call	using	an	analog	cellular



phone?

PPP	includes	in	its	basic	package	a	provision	for	detecting	errors	in	sent	frames,
and	higher-layer	protocols	like	TCP	also	include	methods	of	providing
robustness	on	noisy	lines.	These	techniques	allow	a	link	to	tolerate	problems,	but
provide	little	in	the	way	of	useful	information	about	what	the	status	of	the	link	is.
In	some	situations,	devices	may	want	to	be	able	to	keep	track	of	how	well	the
link	is	working,	and	perhaps	take	action	on	it.	For	example,	a	device
experiencing	too	many	errors	on	a	dial-up	connection	might	want	to	cut	off	and
retry	a	new	call.	In	some	cases,	a	device	might	want	to	try	an	alternate	method	of
attachment	if	the	current	physical	link	is	not	working	well.

Recognizing	this	need,	the	PPP	suite	includes	a	feature	that	allows	devices	to
analyze	the	quality	of	the	link	between	them.	This	is	called	PPP	Link	Quality
Monitoring	or	LQM.	PPP	is	set	up	generically	to	allow	any	number	of	different
monitoring	functions	to	be	used,	but	at	present,	there	is	only	one,	called	Link
Quality	Reporting	(LQR).	LQR	allows	a	device	to	request	that	its	peer	(the	other
device	on	the	link)	keep	track	of	statistics	about	the	link	and	send	periodic
reports	about	them.

LQR	Setup
Before	LQR	can	be	used,	it	must	be	set	up,	which	is	done	by	LCP	as	part	of	the
negotiation	of	basic	link	parameters	in	the	Link	Establishment	phase	(see
Chapter	10).	The	device	opening	the	link	requests	link	monitoring	by	including
the	Quality	Protocol	configuration	option	in	its	Configure-Request	frame.	The
configuration	option	also	specifies	a	reporting	period	that	indicates	the	longest
period	of	time	that	the	requesting	device	wants	to	go	between	receiving	reports.

Assuming	that	the	negotiation	is	successful,	LQR	will	be	enabled.	A	number	of
counters	are	set	up	that	keep	track	of	various	link	statistics,	and	a	timer	is	used	to
regulate	the	sending	of	quality	reports	over	the	link.	Each	time	the	timer	expires,
a	link	quality	report	is	generated	and	sent	in	a	PPP	frame	over	the	link	using	the
special	PPP	Protocol	field	hexadecimal	value	0xC025.

Each	counter	holds	information	about	a	different	statistic	regarding	the	use	of	the
link.	Each	counter	is	reset	to	zero	when	LQR	is	set	up	and	then	incremented	each
time	a	transmission	is	made	or	an	event	occurs	that	is	relevant	to	the	counter.
The	statistics	tracked	include	the	following:



The	statistics	tracked	include	the	following:

The	number	of	frames	sent	or	received

The	number	of	octets	(bytes)	in	all	frames	sent	or	received

The	number	of	errors	that	have	occurred

The	number	of	frames	that	had	to	be	discarded

The	number	of	link	quality	reports	generated

These	counters	are	reset	only	at	the	start	of	the	link,	so	they	contain	figures	that
are	kept	cumulatively	over	the	life	of	the	connection.	The	counters	can	be	used
in	the	absolute	sense,	meaning	that	the	counter	value	itself	is	reported.
Alternatively,	they	can	be	expressed	as	relative	(or	delta)	values,	which	represent
the	change	since	the	last	report.	This	is	done	when	a	report	is	received,	simply	by
subtracting	the	previous	report's	numbers	from	the	ones	in	the	current	report.

Using	Link	Quality	Reports
LQR	specifies	the	quality	reporting	mechanism,	but	not	specific	standards	for
link	quality,	since	these	are	so	implementation-dependent.	Based	on	the	numbers
in	these	reports,	a	device	can	decide	for	itself	what	conclusions	to	draw	about
link	quality	and	what	action	to	take,	if	any.	Here	are	some	possible	behaviors:

Some	devices	might	decide	to	shut	down	a	link	if	the	absolute	number	of
errors	seen	in	any	report	reaches	a	certain	threshold.

Some	might	look	at	the	trend	in	successive	reporting	periods	and	take	action
if	they	detect	certain	trends,	such	as	an	increase	in	the	rate	of	discarded
frames.

Some	devices	might	just	log	the	information	and	take	no	action	at	all.

NOTE

LQR	aggregates	its	statistics	for	all	higher-layer	protocols	transmitted	over	a	particular	link.	It	doesn't
keep	track	of	statistics	for	different	higher-layer	protocols	separately,	which	makes	sense,	since	the
quality	of	the	link	shouldn't	vary	from	one	higher-layer	protocol	to	the	next.



PPP	Compression	Control	Protocol	(CCP)	and
Compression	Algorithms
PPP	is	primarily	used	to	provide	data	link	layer	connectivity	to	physical	serial
links.	One	of	the	biggest	problems	with	serial	links	compared	to	many	other
types	of	layer	1	connections	is	that	they	are	relatively	slow.	Consider	that	while
10	Mbps	regular	Ethernet	is	considered	sluggish	by	modern	LAN	standards,	it	is
actually	much	faster	than	most	serial	lines	used	for	WAN	connectivity,	which
can	be	ten,	one	hundred,	or	even	one	thousand	times	slower.

One	way	to	improve	performance	over	serial	links	is	to	compress	the	data	sent
over	the	line.	Depending	on	the	data	transferred,	this	can	double	the	performance
compared	to	uncompressed	transmissions,	and	can,	in	some	cases,	do	even	better
than	that.	For	this	reason,	many	hardware	devices	include	the	ability	to	compress
the	data	stream	at	the	physical	layer.	The	best	example	of	this	is	probably	the	set
of	compression	protocols	used	on	analog	modems.

Some	physical	links	don't	provide	any	compression	capabilities,	but	could	still
benefit	from	it.	To	this	end,	an	optional	compression	feature	was	created	for
PPP.	It	is	implemented	using	the	following	two	distinct	protocol	components:

PPP	Compression	Control	Protocol	(CCP)	This	protocol	is	responsible	for
negotiating	and	managing	the	use	of	compression	on	a	PPP	link.

PPP	Compression	Algorithms	A	set	of	compression	algorithms	that	perform
the	actual	compression	and	decompression	of	data.	Several	of	these	are	defined
in	RFCs.	In	addition,	it	is	possible	for	two	devices	to	negotiate	the	use	of	a
proprietary	compression	method	if	they	want	to	use	one	that	isn't	defined	by	a
public	standard.

TIP

KEY	CONCEPT	PPP	includes	an	optional	compression	feature	that	can	improve	performance	over
slow	physical	links.	A	variety	of	different	compression	algorithms	are	supported.	To	enable
compression,	both	devices	on	a	PPP	link	use	the	PPP	Compression	Control	Protocol	(CCP)	to	negotiate	a
compression	algorithm	to	use.	The	compression	algorithm	is	then	used	to	compress	and	decompress	PPP
data	frames.



CCP	Operation:	Compression	Setup
When	most	people	talk	about	compression	in	PPP,	they	mention	CCP,	which	is
considered	"the"	compression	protocol	for	PPP.	However,	CCP	is	actually	used
only	to	configure	and	control	the	use	of	compression;	in	fact,	the	algorithms	do
the	real	work	of	compressing	and	decompressing.	This	separation	of	powers
provides	flexibility,	because	it	allows	each	implementation	to	choose	what	type
of	compression	it	wants	to	use.

CCP	is	analogous	to	the	Network	Control	Protocols	(NCPs)	that	negotiate
parameters	specific	to	a	network	layer	protocol	sent	on	the	link.	An	NCP	lets	two
devices	decide	how	they	will	carry	layer	3	traffic,	such	as	how	Internet	Protocol
Control	Protocol	(IPCP)	lets	the	devices	determine	how	to	carry	IP.	CCP	lets
two	devices	decide	how	they	will	compress	data,	in	the	same	basic	way.

Similarly,	just	as	each	NCP	is	like	a	"light"	version	of	LCP,	CCP	is	like	a	light
version	of	LCP.	It	is	used	to	set	up	a	compression	connection	called	a	CCP	link
within	an	LCP	link	between	two	devices.	Once	established,	compressed	frames
can	be	sent	between	the	two	devices.	CCP	also	provides	messaging	capabilities
for	managing	and	eventually	terminating	a	CCP	link.	Again,	this	is	very	similar
to	how	each	network	layer	protocol	sets	up	an	NCP	link	within	LCP.	A	CCP	link
is	maintained	independently	of	any	NCP	links.

CCP	uses	the	same	subset	of	seven	LCP	message	types	that	the	NCPs	use,	and	it
adds	two	additional	ones.	The	use	of	these	messages	for	each	of	the	life	stages	of
a	CCP	link	is	as	follows	(this	should	look	familiar	if	you've	read	about	how	the
NCPs	and	LCP	work	in	Chapter	10):

Link	Configuration	Like	the	NCPs,	compression	configuration	is	done	once
CCP	reaches	the	network	layer	protocol	phase.	The	process	of	setting	up
compression	and	negotiating	parameters	is	accomplished	using	Configure-
Request,	Configure-Ack,	Configure-Nak,	and	Configure-Reject	messages,	just	as
it	is	for	LCP,	except	the	configuration	options	are	particular	to	CCP.

Link	Maintenance	Code-Reject	messages	can	be	sent	to	indicate	invalid	code
values	in	CCP	frames.	The	two	new	message	types	are	Reset-Request	and	Reset-
Ack,	which	are	used	to	reset	the	compression	(the	CCP	link)	in	the	event	of	a
detected	failure	in	decompression.



Link	Termination	A	CCP	link	can	be	terminated	using	Terminate-Request	and
Terminate-Ack.	Again,	remember	that,	like	the	NCP	links,	the	CCP	link	is	set	up
within	an	LCP	link,	and	closing	it	doesn't	terminate	the	LCP	link,	which	controls
PPP	overall.

CCP	Configuration	Options	and	Compression
Algorithms
CCP	configuration	options	are	used	only	to	negotiate	the	type	of	compression	to
be	used	by	the	two	devices,	and	to	acquire	the	specifics	of	how	that	algorithm	is
to	be	employed.	The	device	initiating	the	negotiation	sends	a	Configure-Request
with	one	option	for	each	of	the	compression	algorithms	it	supports.	The	other
device	compares	this	list	of	options	to	the	algorithms	it	understands.	It	also
checks	for	any	specific	details	relevant	to	the	option	to	see	if	it	agrees	on	how
that	algorithm	should	be	used.	It	then	sends	back	the	appropriate	reply	(Ack,
Nak,	or	Reject),	and	a	negotiation	ensues	until	the	two	devices	come	up	with	a
common	algorithm	that	both	understand.	If	so,	compression	is	turned	on;
otherwise,	it	is	not	enabled.

The	CCP	configuration	options	begin	with	a	Type	value	that	indicates	the
compression	algorithm.	When	the	Type	value	is	0,	this	indicates	that	the	option
contains	information	about	a	special,	proprietary	compression	algorithm	that	isn't
covered	by	any	RFC	standards.	This	information	can	be	used	if	both	devices
understand	it.	Values	from	1	to	254	indicate	compression	algorithms	that	have
been	defined	for	use	with	CCP.	Table	11-1	shows	the	most	common	values	of
the	Type	field,	including	the	compression	algorithm	each	corresponds	to	and	the
number	of	the	RFC	that	defines	it.

Table	11-1.	PPP	Compression	Control	Protocol	(CCP)	Compression
Algorithms

CCP	Option	Type
Value

Defining
RFC

Compression	Algorithm	(As	Given	in	RFC
Title)

0 — Proprietary

1	and	2 1978 PPP	Predictor	Compression	Protocol

17 1974 PPP	Stac	LZS	Compression	Protocol



17 1974 PPP	Stac	LZS	Compression	Protocol

18 2118 Microsoft	Point-to-Point	Compression	(MPPC)
Protocol

19 1993 PPP	Gandalf	FZA	Compression	Protocol

21 1977 PPP	BSD	Compression	Protocol

23 1967 PPP	LZS-DCP	Compression	Protocol	(LZS-DCP)

26 1979 PPP	Deflate	Protocol

Compression	Algorithm	Operation:
Compressing	and	Decompressing	Data
Once	an	algorithm	has	been	successfully	negotiated,	the	compression	algorithm
is	used	to	compress	data	before	transmission	and	to	decompress	it	once	received.
To	compress,	the	transmitting	device	takes	the	data	that	would	normally	be	put
in	the	Information	field	of	an	uncompressed	PPP	frame	and	runs	it	through	the
compression	algorithm.	To	indicate	that	a	frame	has	been	compressed,	the
special	value	0x00FD	(hexadecimal)	is	placed	in	the	PPP	Protocol	field.	When
compression	is	used	with	multiple	links	and	the	links	are	compressed
independently,	a	different	value	is	used:	0x00FB.

You'll	recall	that	in	a	regular	uncompressed	frame,	the	Protocol	field	indicates
which	layer	3	protocol	the	data	comes	from.	Since	you	still	need	to	know	this,
the	original	Protocol	value	is	actually	prepended	to	the	data	before	compression.
When	the	data	is	decompressed,	this	value	is	used	to	restore	the	original	Protocol
field,	so	the	receiving	device	knows	to	which	higher	layer	the	data	belongs.

For	example,	if	you	use	IPCP	to	encapsulate	IP	data	in	PPP,	the	uncompressed
frame	would	have	a	value	of	0x8021	in	the	Protocol	field.	This	value	(0x8021)
would	be	placed	at	the	start	of	the	data	to	be	compressed.	The	compressed	data
would	be	put	in	a	PPP	frame	with	a	Protocol	value	of	0x00FD.	The	receiving
device	would	see	the	value	0x00FD	in	the	Protocol	field,	recognize	the	frame	as
compressed,	decompress	it,	and	restore	the	original	frame	with	0x8021	as	the
Protocol	value.	The	discussion	of	the	PPP	general	frame	format	in	Chapter	12
covers	this	in	more	detail.

In	theory,	a	compression	algorithm	can	put	more	than	one	PPP	data	frame	into	a



In	theory,	a	compression	algorithm	can	put	more	than	one	PPP	data	frame	into	a
compressed	PPP	data	frame.	Despite	this,	many,	if	not	most,	of	the	algorithms
maintain	a	one-to-one	correspondence,	putting	each	PPP	data	frame	into	one
compressed	frame.	Note	that	LCP	frames	are	not	compressed,	nor	are	the	control
frames	used	for	other	protocols.	For	example,	a	data	frame	carrying	IP	traffic
would	be	compressed,	but	a	control	frame	for	IPCP	(the	NCP	for	IP)	would	not
be.

Compression	can	be	combined	with	encryption.	In	this	case,	compression	is	done
before	encryption.

NOTE

The	compression	performed	by	CCP	has	nothing	to	do	with	the	header	compression	options	that	can	be
negotiated	as	part	of	LCP.	That	type	of	compression	doesn't	involve	compressing	a	data	stream	using	a
compression	algorithm,	but	rather	a	simple	way	of	saving	space	in	headers	when	both	ends	of	a	link
agree	to	do	so.



PPP	Encryption	Control	Protocol	(ECP)	and
Encryption	Algorithms
The	PPP	authentication	protocols	Password	Authentication	Protocol	(PAP)	and
Challenge	Handshake	Authentication	Protocol	(CHAP)	can	be	used	to	ensure
that	only	authorized	devices	can	establish	a	PPP	connection.	Once	that	is	done,
PPP	normally	provides	no	other	security	to	the	data	being	transmitted.	In
particular,	all	data	is	normally	sent	in	the	clear	(unencrypted),	thereby	making	it
easy	for	someone	who	intercepts	it	to	read.

For	important	data	that	must	be	kept	secure,	encryption	prior	to	transmission	is	a
good	idea.	This	can	be	done	at	higher	layers	using	something	like	IPsec,	but	PPP
also	provides	an	optional	feature	that	allows	data	to	be	encrypted	and	decrypted
at	the	data	link	layer	itself	using	two	protocol	components:

PPP	Encryption	Control	Protocol	(ECP)	This	protocol	is	responsible	for
negotiating	and	managing	the	use	of	encryption	on	a	PPP	link.

PPP	Encryption	Algorithms	A	family	of	encryption	algorithms	that	perform
the	actual	encryption	and	decryption	of	data.	Several	of	these	are	defined	in
RFCs,	and	two	devices	can	also	negotiate	a	proprietary	encryption	method	if
they	want	to	use	one	that	isn't	defined	by	a	public	standard.

TIP

KEY	CONCEPT	PPP	includes	an	optional	encryption	feature	that	provides	privacy	for	data	transported
over	PPP.	A	number	of	encryption	algorithms	are	supported.	To	enable	encryption,	both	devices	on	a
PPP	link	use	the	PPP	Encryption	Control	Protocol	(ECP)	to	negotiate	which	algorithm	to	use.	The
selected	algorithm	is	then	used	to	encrypt	and	decrypt	PPP	data	frames.

ECP	Operation:	Encryption	Setup
ECP	is	usually	the	only	part	mentioned	when	encryption	in	PPP	is	discussed,	but
it	is	actually	used	only	to	configure	and	control	the	use	of	encryption;	the
algorithms	do	the	real	work.	This	technique	allows	each	implementation	to
choose	which	type	of	encryption	it	wishes	to	use.

The	original	ECP	defined	only	a	single	encryption	method,	and	a	couple	of
others	have	since	been	added.	Like	CCP,	ECP	is	analogous	to	the	NCPs	that



others	have	since	been	added.	Like	CCP,	ECP	is	analogous	to	the	NCPs	that
negotiate	parameters	specific	to	a	network	layer	protocol	sent	on	the	link,	but	it
deals	with	how	devices	encrypt	data,	rather	than	how	they	transport	layer	3
traffic.	This	also	means	that	like	the	NCPs,	ECP	is	a	light	version	of	LCP	and
works	in	the	same	basic	way.	Once	an	ECP	link	is	negotiated,	devices	can	send
encrypted	frames	between	each	other.	When	no	longer	needed,	the	ECP	link	can
be	terminated.

ECP	uses	the	same	subset	of	seven	LCP	message	types	that	the	NCPs	use,	and	it
adds	two	more.	The	use	of	these	messages	for	each	of	the	life	stages	of	an	ECP
link	is	as	follows:

Link	Configuration	Like	the	NCPs	(and	also	like	CCP,	of	course),	encryption
configuration	is	done	once	ECP	reaches	the	network	layer	protocol	phase.	The
process	of	setting	up	encryption	and	negotiating	parameters	is	accomplished
using	Configure-Request,	Configure-Ack,	Configure-Nak,	and	Configure-Reject
messages,	as	I	explained	in	the	description	of	LCP	in	Chapter	10,	except	the
configuration	options	are	particular	to	ECP.

Link	Maintenance	Code-Reject	messages	can	be	sent	to	indicate	invalid	code
values	in	ECP	frames.	The	two	new	message	types	are	Reset-Request	and	Reset-
Ack,	which	are	used	to	reset	the	encryption	(the	ECP	link)	in	the	event	of	a
detected	failure	in	decryption.

Link	Termination	An	ECP	link	can	be	terminated	using	Terminate-Request	and
Terminate-Ack.	Again,	remember	that	like	the	NCP	links,	the	ECP	link	is	set	up
within	an	LCP	link,	so	closing	it	doesn't	terminate	the	LCP	link.

ECP	Configuration	Options	and	Encryption
Algorithms
ECP	configuration	options	are	used	solely	to	negotiate	the	type	of	encryption
algorithm	that	will	be	used	by	the	two	devices	and	the	specifics	of	how	that
algorithm	will	be	employed.	The	device	initiating	the	negotiation	sends	a
Configure-Request	with	one	option	for	each	of	the	encryption	algorithms	it
supports.	The	other	device	compares	this	list	of	options	to	the	algorithms	it
understands.	It	also	checks	for	any	details	relevant	to	the	option	to	see	if	it	agrees
on	how	that	algorithm	should	be	used.	It	then	sends	back	the	appropriate	reply



(Ack,	Nak,	or	Reject),	and	a	negotiation	ensues	until	the	two	devices	come	up
with	a	common	algorithm	that	they	both	understand.	If	so,	encryption	is	enabled;
otherwise,	it	is	turned	off.

The	ECP	configuration	options	begin	with	a	Type	value	that	indicates	the
encryption	algorithm.	When	the	Type	value	is	0,	this	indicates	that	the	option
contains	information	about	a	special,	proprietary	encryption	method	that	isn't
covered	by	any	RFC	standards,	which	can	be	used	if	both	devices	understand	it.
Values	in	the	range	from	1	to	254	indicate	encryption	algorithms	that	have	been
defined	for	use	with	ECP;	at	present,	only	two	are	defined.	Table	11-2	shows	the
values	of	the	Type	field,	including	the	encryption	algorithm	each	corresponds	to
and	the	number	of	the	RFC	that	defines	it.

Table	11-2.	PPP	Encryption	Control	Protocol	(ECP)	Compression
Algorithms

ECP	Option	Type
Value

Defining
RFC

Encryption	Algorithm	(As	Given	in	RFC
Title)

0 — Proprietary

2 2420 The	PPP	Triple-DES	Encryption	Protocol	(3DESE)

3 2419 The	PPP	DES	Encryption	Protocol,	Version	2
(DESE-bis)

NOTE

Type	value	1	was	for	the	original	DES	algorithm,	which	was	defined	in	RFC	1969.	It	was	superseded	by
DES	version	2	in	RFC	2419.

Encryption	Algorithm	Operation:	Encrypting	and
Decrypting	Data
Once	an	encryption	algorithm	has	been	successfully	negotiated,	it	is	used	to
encrypt	data	before	transmission	and	to	decrypt	data	that	has	been	received.	To
encrypt,	the	transmitting	device	takes	the	data	that	would	normally	be	put	in	the
Information	field	of	an	unencrypted	PPP	frame	and	runs	it	through	the
encryption	algorithm.	To	indicate	that	a	frame	has	been	encrypted,	the	special



value	0x0053	(hexadecimal)	is	placed	in	the	PPP	Protocol	field.	When
encryption	is	used	with	multiple	links	and	the	links	are	encrypted	independently,
a	different	value	is	used:	0x0055.

You'll	recall	that	in	a	regular	unencrypted	frame,	the	Protocol	field	indicates
which	layer	3	protocol	the	data	comes	from.	Since	you	still	need	to	know	this,
the	original	Protocol	value	is	actually	prepended	to	the	data	before	encryption.
When	the	data	is	decrypted,	this	value	is	used	to	restore	the	original	Protocol
field,	so	the	receiving	device	knows	which	higher	layer	the	data	belongs	to.

For	example,	if	you	use	IPCP	to	encapsulate	IP	data	in	PPP,	the	unencrypted
frame	would	have	a	value	of	0x8021	(hex)	in	the	Protocol	field.	This	value
(0x8021)	would	be	placed	at	the	start	of	the	data	to	be	encrypted.	The	encrypted
data	would	be	put	in	a	PPP	frame	with	a	Protocol	value	of	0x0053.	The	receiving
device	would	see	the	value	0x0053	in	the	Protocol	field,	recognize	the	frame	as
encrypted,	decrypt	it,	and	restore	the	original	frame	with	0x8021	as	the	Protocol
value.	The	discussion	of	the	PPP	general	frame	format	in	Chapter	12	covers	this
more	completely.

Each	encrypted	PPP	data	frame	carries	exactly	one	PPP	data	frame.	Note	that,
unlike	what	you	saw	in	compression,	LCP	frames	and	the	control	frames	used
for	other	protocols	can	be	encrypted.	Compression	can	be	combined	with
encryption;	in	this	case,	compression	is	done	before	encryption.



PPP	Multilink	Protocol	(MP,	MLP,	MLPPP)
Most	of	the	time,	there	is	only	a	single	physical	layer	link	between	two	devices.
However,	there	are	some	situations	for	which	there	may	actually	be	two	layer	1
connections	between	the	same	pair	of	devices.	This	may	seem	strange.	Why
would	there	be	more	than	one	link	between	any	pair	of	machines?

There	are	a	number	of	situations	in	which	this	can	occur.	A	common	one	is	when
two	links	are	intentionally	placed	between	a	pair	of	devices.	This	is	often	done	to
increase	performance	by	widening	the	pipe	between	two	devices,	without	going
to	a	newer,	more	expensive	technology.	For	example,	if	two	machines	are
connected	to	each	other	using	a	regular	analog	modem	that's	too	slow,	a
relatively	simple	solution	is	to	use	two	analog	modem	pairs	connecting	the
machines	to	double	bandwidth.

A	slightly	different	situation	occurs	when	multiplexing	creates	the	equivalent	of
several	physical	layer	channels	between	two	devices,	even	if	they	have	only	one
hardware	link	between	them.	Consider	ISDN,	for	example.	The	most	common
form	of	ISDN	service	(ISDN	basic	rate	interface	or	BRI)	creates	two	64,000	bps
B	channels	between	a	pair	of	devices.	These	B	channels	are	time	division
multiplexed	and	carried	along	with	a	D	channel	on	a	single	pair	of	copper	wire,
but	to	the	devices,	they	appear	as	if	there	were	two	physical	layer	links	between
devices,	each	of	which	carries	64	Kbps	of	data.	And	the	ISDN	primary	rate
interface	(PRI)	actually	creates	23	or	more	channels,	all	between	the	same	pair
of	hardware	devices.

In	a	situation	where	you	have	multiple	links,	you	could	just	establish	PPP	over
each	connection	independently.	However,	this	is	far	from	an	ideal	solution,
because	you	would	then	have	to	manually	distribute	the	traffic	over	the	two	(or
more)	channels	or	links	that	connect	them.	If	you	wanted	to	connect	to	the
Internet,	you	would	need	to	make	separate	connections	and	then	choose	which
one	to	use	for	each	action.	That	isn't	exactly	a	recipe	for	fun,	and	what's	worse	is
that	you	could	never	use	all	the	bandwidth	for	a	single	purpose,	such	as
downloading	the	latest	100	MB	Microsoft	security	patch.

What	you	really	want	is	a	solution	that	will	let	you	combine	multiple	links	and
use	them	as	if	they	were	one	high-performance	link.	Some	hardware	devices



actually	allow	thisto	be	done	at	the	hardware	level	itself.	In	ISDN,	this
technology	is	sometimes	called	bonding	when	done	at	layer	1.	For	those
hardware	units	that	don't	provide	this	capability,	PPP	makes	it	available	in	the
form	of	the	PPP	Multilink	Protocol	(MP).	This	protocol	was	originally	described
in	RFC	1717	and	was	updated	in	RFC	1990.

NOTE

The	PPP	Multilink	Protocol	is	properly	abbreviated	MP,	but	it	is	common	to	see	any	of	a	multitude	of
other	abbreviations	used	for	it.	Many	of	these	are	actually	derived	from	changing	the	order	of	the	words
in	the	name	into	Multilink	PPP,	so	you	will	frequently	see	this	called	ML	PPP,	MLPPP,	MPPP,	MLP,
and	so	forth.	These	are	technically	incorrect,	but	widely	used,	especially	MLPPP.	I	use	the	correct
abbreviation	in	this	book.

PPP	Multilink	Protocol	Architecture
MP	is	an	optional	feature	of	PPP,	so	it	must	be	designed	to	integrate	seamlessly
into	regular	PPP	operation.	To	accomplish	this,	MP	is	implemented	as	a	new
architectural	sublayer	within	PPP.	In	essence,	an	MP	sublayer	is	inserted
between	the	regular	PPP	mechanism	and	any	network	layer	protocols	using	PPP,
as	shown	in	Figure	11-1.	This	allows	MP	to	take	all	network	layer	data	to	be	sent
over	the	PPP	link	and	spread	it	over	multiple	physical	connections,	without
causing	either	the	normal	PPP	mechanisms	or	the	network	layer	protocol
interfaces	to	PPP	to	break.

The	column	on	the	left	in	Figure	11-1	shows	the	TCP/IP	model	architecture	with
corresponding	OSI	Reference	Model	layer	numbers.	The	center	column	shows
the	normal	PPP	layer	architecture.	When	MP	is	used,	there	are	separate	PPP
implementations	running	over	each	of	two	or	more	physical	links.	MP	sits,
architecturally,	between	these	links	and	any	network	layer	protocols	that	will	be
transported	over	those	links.	(In	this	diagram,	only	IP	is	shown	because	it	is	most
common,	but	MP	can	work	with	multiple	network	layer	protocols,	each	of	which
are	being	sent	over	each	physical	link.)



Figure	11-1.	Multilink	PPP	architecture	When	Multilink	PPP	is	used	to	combine	two	or	more	physical
links,	it	sits	architecturally	above	the	PPP	layers	that	operate	on	each	physical	link.

TIP

KEY	CONCEPT	The	PPP	Multilink	Protocol	(MP)	allows	PPP	to	bundle	multiple	physical	links	and
use	them	like	a	single,	high-capacity	link.	It	must	be	enabled	during	link	configuration.	Once
operational,	it	works	by	fragmenting	whole	PPP	frames	and	sending	the	fragments	over	different
physical	links.

PPP	Multilink	Protocol	Setup	and	Configuration
To	use	MP,	both	devices	must	have	it	implemented	as	part	of	their	PPP	software
and	must	negotiate	its	use.	This	is	done	by	LCP	as	part	of	the	negotiation	of
basic	link	parameters	in	the	link	establishment	phase	(just	like	LQR,	as	described
earlier	in	this	chapter).	Three	new	configuration	options	are	defined	to	be
negotiated	to	enable	MP:

Multilink	Maximum	Received	Reconstructed	Unit	Provides	the	basic
indication	that	the	device	starting	the	negotiation	supports	MP	and	wants	to	use
it.	The	option	contains	a	value	specifying	the	maximum	size	of	the	PPP	frame	it
supports.	If	the	device	receiving	this	option	does	not	support	MP,	it	must
respond	with	a	Configure-Reject	LCP	message.



Multilink	Short	Sequence	Number	Header	Format	Allows	devices	to
negotiate	the	use	of	a	shorter	sequence	number	field	for	MP	frames,	for
efficiency.	(See	the	section	on	MP	frames	in	Chapter	12	for	a	full	discussion.)

Endpoint	Discriminator	Uniquely	identifies	the	system.	It	is	used	to	allow
devices	to	determine	which	links	go	to	which	other	devices.

Before	MP	can	be	used,	a	successful	negotiation	of	at	least	the	Multilink
Maximum	Received	Reconstructed	Unit	option	must	be	performed	on	each	of
the	links	between	the	two	devices.	Once	this	is	done	and	an	LCP	link	exists	for
each	of	the	physical	links,	a	virtual	bundle	is	made	of	the	LCP	links,	and	MP	is
enabled.

PPP	Multilink	Protocol	Operation
As	mentioned	previously,	MP	basically	sits	between	the	network	layer	and	the
regular	PPP	links	and	acts	as	a	middleman.	Here	is	what	it	does	for	each
direction	of	communication:

Transmission	MP	accepts	datagrams	received	from	any	of	the	network	layer
protocols	configured	using	appropriate	NCPs.	It	first	encapsulates	them	into	a
modified	version	of	the	regular	PPP	frame,	and	then	takes	that	frame	and	decides
how	to	transmit	it	over	the	multiple	physical	links.	Typically,	this	is	done	by
dividing	the	frame	into	fragments	that	are	evenly	spread	out	over	the	set	of	links.
These	are	then	encapsulated	and	sent	over	the	physical	links.	However,	you	can
also	implement	an	alternative	strategy	as	well,	such	as	alternating	full-sized
frames	between	the	links.	Also,	smaller	frames	typically	aren't	fragmented,	and
neither	are	control	frames	such	as	the	ones	used	for	link	configuration.

Reception	MP	takes	the	fragments	received	from	all	physical	links	and
reassembles	them	into	the	original	PPP	frame.	That	frame	is	then	processed	like
any	PPP	frame	by	looking	at	its	Protocol	field	and	passing	it	to	the	appropriate
network	layer	protocol.

The	fragments	used	in	MP	are	similar	in	concept	to	IP	fragments,	but	of	course
these	are	different	protocols	running	at	different	layers.	To	PPP	or	MP,	an	IP
fragment	is	just	an	IP	datagram	like	any	other.

The	fragmenting	of	data	in	MP	introduces	a	number	of	complexities	that	the



protocol	must	handle.	For	example,	since	fragments	are	being	sent	roughly
concurrently,	you	need	to	identify	them	with	a	sequence	number	to	facilitate
reassembly.	You	also	need	some	control	information	to	identify	the	first	and	last
fragments.	A	special	frame	format	is	used	for	MP	fragments	to	carry	this	extra
information.	I	describe	this	in	Chapter	12,	which	also	contains	more	information
about	how	fragmenting	is	accomplished,	as	well	as	an	illustration	that
demonstrates	how	it	works.



PPP	Bandwidth	Allocation	Protocol	(BAP)	and
Bandwidth	Allocation	Control	Protocol	(BACP)
The	PPP	MP	allows	multiple	links	between	a	pair	of	devices,	whether	physical
or	in	the	form	of	virtual	channels,	to	be	combined	into	a	fat	pipe	(high-capacity
channel).	This	offers	tremendous	advantages	to	many	PPP	users,	because	it	lets
them	make	optimal	use	of	all	their	bandwidth,	especially	for	applications	such	as
Internet	connectivity.	It's	no	surprise,	then,	that	MP	has	become	one	of	the	most
popular	features	of	PPP.

The	original	standard	defining	MP	basically	assumed	that	multiple	links	would
be	combined	into	a	single	bundle.	For	example,	if	you	had	two	modem	links,
they	would	both	be	connected	and	then	combined,	or	two	B	channels	in	an	ISDN
link	would	be	combined.	After	MP	was	set	up,	the	bundle	would	be	available	for
either	device	to	use	in	its	entirety.

There's	one	drawback	to	this	system:	The	fat	pipe	is	always	enabled,	and	in
many	cases,	it	is	expensive	to	have	this	set	up	all	the	time.	It	often	costs	more	to
connect	two	or	more	layer	1	links	than	a	single	one,	and	it's	not	always	needed.
For	example,	some	ISDN	services	charge	per	minute	for	calls	on	either	of	the	B
channels.	In	the	case	of	modem	dial-up,	there	are	per-minute	charges	in	some
parts	of	the	world.	Even	where	regular	phone	calls	are	free,	there	is	a	cost	in	the
form	of	tying	up	a	phone	line.	Consider	that	in	many	applications,	the	amount	of
bandwidth	needed	varies	over	time.

It	would	be	better	if	you	could	set	up	MP	so	that	it	could	dynamically	add	links
to	the	bundle	when	needed	(such	as	when	you	decided	to	download	some	large
files),	and	then	automatically	drop	them	when	no	longer	required.	This
enhancement	to	the	basic	MP	package	was	provided	in	the	form	of	a	pair	of	new
protocols	described	in	RFC	2125:

Bandwidth	Allocation	Protocol	(BAP)	Describes	a	mechanism	where	either
device	communicating	over	an	MP	bundle	of	layer	1	links	may	request	that	a
link	be	added	to	the	bundle	or	removed	from	it.

Bandwidth	Allocation	Control	Protocol	(BACP)	Allows	devices	to	configure
how	they	want	to	use	BAP.



TIP

KEY	CONCEPT	BAP	and	BACP	are	used	to	provide	dynamic	control	over	how	PPP	MP	functions.

BACP	Operation:	Configuring	the	Use	of	BAP
Let's	start	with	BACP,	since	it	is	the	protocol	used	for	the	initial	setup	of	the
feature.	BACP	is	very	similar	conceptually	to	all	those	other	PPP	protocols	with
"Control"	in	their	names,	such	as	LCP,	the	NCP	family,	CCP,	and	ECP,	but	is
actually	even	simpler.	It	is	used	only	during	link	configuration	to	set	up	BAP.
This	is	done	using	Configure-Request,	Configure-Ack,	Configure-Nak,	and
Configure-Reject	messages,	just	as	described	in	the	LCP	topic.

The	only	configuration	option	that	is	negotiated	in	BACP	is	one	called	Favored-
Peer,	which	is	used	to	ensure	that	a	problem	does	not	occur	if	the	two	devices	on
the	link	try	to	send	the	same	request	at	the	same	time.	If	both	devices	support
BAP,	then	the	BACP	negotiation	will	succeed	and	BAP	will	be	activated.

BAP	Operation:	Adding	and	Removing	Links
BAP	defines	a	set	of	messages	that	can	be	sent	between	devices	to	add	or	drop
links	to	and	from	the	current	PPP	bundle.	What's	particularly	interesting	about
BAP	is	that	it	includes	the	tools	necessary	to	have	a	device	actually	initiate
different	types	of	physical	layer	connections	(such	as	dialing	a	modem	for
bundled	analog	links	or	enabling	an	extra	ISDN	channel)	when	more	bandwidth
is	required.	It	then	shuts	them	down	when	they're	no	longer	needed.

Here's	a	brief	description	of	the	BAP	message	types:

Call-Request	and	Call-Response	When	one	device	on	the	link	wants	to	add	a
link	to	the	bundle	and	initiate	the	new	physical	layer	link	itself,	it	sends	a	Call-
Request	frame	to	tell	the	other	device,	which	replies	with	a	Call-Response.

Callback-Request	and	Callback-Response	These	are	just	like	the	two	previous
message	types,	except	that	they're	used	when	a	device	wants	its	peer	(the	other
device	on	the	link)	to	initiate	the	call	to	add	a	new	link.	So,	if	Device	A	says,	"I
need	more	bandwidth	but	I	want	you	to	call	me,	instead	of	me	calling	you,"	it
sends	Device	B	a	Callback-Request.



Call-Status-Indication	and	Call-Status-Response	After	a	device	attempts	to
add	a	new	link	to	the	bundle	(after	sending	a	Call-Request	or	receiving	a
Callback-Request),	it	reports	the	status	of	the	new	link	using	the	Call-Status-
Indication	frame.	The	other	device	then	replies	with	a	Call-Status-Response.

Link-Drop-Query-Request	and	Link-Drop-Query-Response	One	device	uses
these	messages	to	request	that	a	link	be	dropped,	and	the	other	uses	them	to
respond	to	that	request.

Note	that	the	decision	of	when	to	add	or	remove	links	is	not	made	by	these
protocols.	It	is	left	up	to	the	particular	implementation.



Chapter	12.	PPP	PROTOCOL
FRAME	FORMATS

The	Point-to-Point	Protocol	(PPP)	protocol	suite	includes	a	number	of	different
protocols	used	to	send	both	data	and	control	information	in	different	ways.	Each
of	these	packages	information	into	messages	called	frames,	each	of	which
follows	a	particular	frame	format.	PPP	starts	with	a	general	frame	format	that
encompasses	all	frames	sent	on	the	link	and	then	includes	more	specific	formats
for	different	purposes.	Understanding	these	formats	not	only	makes	diagnosing
PPP	issues	easier,	but	also	helps	make	more	clear	how	the	key	PPP	protocols
function.

In	this	chapter,	I	illustrate	the	most	common	frame	formats	used	for	sending	both
data	and	control	information	over	PPP.	I	begin	with	an	explanation	of	the	overall
format	used	for	all	PPP	frames.	I	also	describe	the	general	format	used	for	the
various	control	protocols	and	the	option	format	that	most	of	them	use.	(One	of
the	nice	things	about	PPP	is	that	so	many	of	the	protocols	use	control	frames
with	a	common	format.)

I	then	specifically	list	the	frames	used	for	Link	Control	Protocol	(LCP)	and	the
authentication	protocols	(PAP	and	CHAP).	I	also	describe	the	special	format
used	by	the	PPP	Multilink	Protocol	(MP)	to	transport	fragments	of	data	over
bundled	links.

NOTE

Due	to	the	sheer	number	of	different	protocols	in	PPP	(dozens)	and	the	fact	that	many	have	their	own
unique	options,	I	won't	describe	all	the	specific	frame	formats	and	option	formats	for	every	protocol	in
detail	here.	Please	refer	to	the	appropriate	RFCs	(listed	in	Chapter	9	for	more	detail).



PPP	General	Frame	Format
All	messages	sent	using	PPP	can	be	considered	either	data	or	control
information.	The	word	data	describes	the	higher-layer	datagrams	you	are	trying
to	transport	here	at	layer	2.	This	is	what	our	"customers"	are	giving	us	to	send.
Control	information	is	used	to	manage	the	operation	of	the	various	protocols
within	PPP	itself.	Even	though	different	protocols	in	the	PPP	suite	use	many
types	of	frames,	at	the	highest	level,	they	all	fit	into	a	single,	general	frame
format.

You'll	recall	that	the	basic	operation	of	the	PPP	suite	is	based	on	the	ISO	High-
Level	Data	Link	Control	(HDLC)	protocol.	This	becomes	very	apparent	when
you	look	at	the	structure	of	PPP	frames	overall—they	use	the	same	basic	format
as	HDLC,	even	to	the	point	of	including	certain	fields	that	aren't	strictly
necessary	for	PPP	itself.	The	only	major	change	is	the	addition	of	a	new	field	to
specify	the	protocol	of	the	encapsulated	data.	The	general	structure	of	PPP
frames	is	defined	in	RFC	1662,	a	companion	to	the	main	PPP	standard	RFC
1661.

The	general	frame	format	for	PPP,	showing	how	the	HDLC	framing	is	applied	to
PPP,	is	described	in	Table	12-1	and	illustrated	in	Figure	12-1.

Table	12-1.	PPP	General	Frame	Format

Field
Name

Size
(Bytes)

Description

Flag 1 Indicates	the	start	of	a	PPP	frame.	Always	has	the	value	01111110
binary	(0x7E	hexadecimal,	or	126	decimal).

Address 1 In	HDLC	this	is	the	address	of	the	destination	of	the	frame.	But	in	PPP
you	are	dealing	with	a	direct	link	between	two	devices,	so	this	field	has
no	real	meaning.	It	is	thus	always	set	to	11111111	(0xFF	or	255
decimal),	which	is	equivalent	to	a	broadcast	(it	means	"all	stations").

Control 1 This	field	is	used	in	HDLC	for	various	control	purposes,	but	in	PPP	it	is
set	to	00000011	(3	decimal).

Protocol 2 Identifies	the	protocol	of	the	datagram	encapsulated	in	the	Information
field	of	the	frame.	See	the	"Protocol	Field	Ranges"	section	for	more
information	on	the	Protocol	field.



Information Variable Zero	or	more	bytes	of	payload	that	contain	either	data	or	control
information,	depending	on	the	frame	type.	For	regular	PPP	data	frames,
the	network	layer	datagram	is	encapsulated	here.	For	control	frames,
the	control	information	fields	are	placed	here	instead.

Padding Variable In	some	cases,	additional	dummy	bytes	may	be	added	to	pad	out	the
size	of	the	PPP	frame.

Frame
Check
Sequence

2	(or	4) A	checksum	computed	over	the	frame	to	provide	basic	protection
against	errors	in	transmission.	This	is	a	CRC	similar	to	the	one	used	for
other	layer	2	protocol	error-protection	schemes	such	as	the	one	used	in
Ethernet.	It	can	be	either	16	bits	or	32	bits	in	size	(the	default	is	16
bits).	The	FCS	is	calculated	over	the	Address,	Control,	Protocol,
Information,	and	Padding	fields.

Flag 1 Indicates	the	end	of	a	PPP	frame.	Always	has	the	value	01111110
binary	(0x7E	hexadecimal,	or	126	decimal).

Figure	12-1.	PPP	general	frame	format

Protocol	Field	Ranges
The	Protocol	field	is	the	main	frame	type	indicator	for	the	device	receiving	the
frame.	For	data	frames,	this	is	normally	the	network	layer	protocol	that	created
the	datagram;	for	control	frames,	it	is	usually	the	PPP	protocol	that	created	the
control	message.	In	the	case	of	protocols	that	modify	data	such	as	when
compression	(CCP)	or	encryption	(ECP)	are	used	(as	explained	in	the	previous
chapter),	this	field	identifies	the	data	as	being	either	compressed	or	encrypted,
and	the	original	Protocol	value	is	extracted	after	the	Information	field	is
decompressed/decrypted.

All	PPP	frames	are	built	on	the	general	format	shown	in	Figure	12-1.	The	first



three	bytes	are	fixed	in	value,	followed	by	a	two-byte	Protocol	field	that
indicates	the	frame	type.	The	variable-length	Information	field	is	formatted	in	a
variety	of	ways,	depending	on	the	PPP	frame	type.	Padding	may	be	applied	to
the	frame,	which	concludes	with	an	FCS	field	of	either	two	or	four	bytes	(two
bytes	shown	here)	and	a	trailing	Flag	value	of	0x7E.	(See	Figure	12-2	for	an
example	of	how	this	format	is	applied.)

There	are	dozens	of	network	layer	protocols	and	PPP	control	protocols,	and	a
correspondingly	large	number	of	Protocol	values.	The	main	PPP	standard
defines	four	ranges	for	organizing	these	values,	as	shown	in	Table	12-2.

The	standard	also	specifies	that	the	Protocol	value	must	be	assigned	so	that	the
first	octet	is	even	and	the	second	octet	is	odd.	So,	for	example,	0x0021	is	a	valid
value,	but	0x0121	and	0x0120	are	not.	(The	reason	for	this	will	become	apparent
shortly.)	There	are	also	certain	blocks	that	are	reserved	and	not	used.

Figure	12-2	shows	one	common	application	of	the	PPP	general	frame	format:
carrying	data.	The	value	0x0021	in	the	Protocol	field	marks	this	as	an	IPv4
datagram.	This	sample	has	1	byte	of	Padding	and	a	2-byte	FCS	as	well.
(Obviously	real	IP	datagrams	are	longer	than	the	23	bytes	shown	here!	These
bytes	are	arbitrary	and	don't	represent	a	real	datagram.)	See	Figure	12-12	for	an
illustration	of	how	this	same	data	frame	is	formatted	and	then	fragmented	for
transmission	over	multiple	links	using	the	PPP	Multilink	Protocol	(MP).

Table	12-2.	PPP	Protocol	Field	Ranges

Protocol	Field
Range
(Hexadecimal)

Description

0000–3FFF Encapsulated	network	layer	datagrams	that	have	an	associated	NCP	(see
Chapter	10).	In	this	case,	control	frames	from	the	corresponding	NCP	use	a
Protocol	field	value	that	is	computed	by	adding	8	to	the	first	octet	of	the
network	layer	Protocol	value.	For	example,	for	IP	the	Protocol	value	is	0021,
and	control	frames	from	the	IP	Control	Protocol	(IPCP)	use	Protocol	value
8021.	This	range	also	includes	several	values	used	for	specially	processed
encapsulated	datagrams,	such	as	when	compression	or	encryption	is
employed.

4000–7FFF Encapsulated	datagrams	from	"low-volume"	protocols.	These	are	protocols
that	do	not	have	an	associated	NCP.



that	do	not	have	an	associated	NCP.

8000–BFFF NCP	control	frames	that	correspond	to	the	network	layer	Protocol	values	in
the	0000–3FFF	range.

C000–FFFF Control	frames	used	by	LCP	and	LCP	support	protocols	such	as	PAP	and
CHAP.	Some	miscellaneous	protocol	values	are	included	here	as	well.

Figure	12-2.	Sample	PPP	data	frame	An	example	of	a	PPP	data	frame	containing	an	abbreviated	23-byte
IP	datagram.

Protocol	Field	Values
The	full	list	of	PPP	Protocol	values	is	maintained	by	the	Internet	Assigned
Numbers	Authority	(IANA),	along	with	all	the	other	different	reserved	numbers
for	Internet	standards.	Table	12-3	shows	some	of	the	more	common	values.

Table	12-3.	Common	Protocols	Carried	in	PPP	Frames	and	Protocol	Field
Values

Protocol	Type Protocol	Field
Value	(Hex)

Protocol

Encapsulated	Network	Layer
Datagrams

0021 Internet	Protocol	version	4	(IPv4)

	 0023 OSI	Network	Layer

	 0029 AppleTalk

	 002B Novell	Internetworking	Packet	Exchange
(IPX)



(IPX)

	 003D PPP	Multilink	Protocol	(MP)	fragment

	 003F NetBIOS	Frames	(NBF/NetBEUI)

	 004D IBM	Systems	Network	Architecture
(SNA)

	 0053 Encrypted	Data	(using	ECP	and	a	PPP
encryption	algorithm)

	 0055 Individual	Link	Encrypted	Data	under
PPP	Multilink

	 0057 Internet	Protocol	version	6	(IPv6)

	 00FB Individual	Link	Compressed	Data	under
PPP	Multilink

	 00FD Compressed	Data	(using	CCP	and	a	PPP
compression	algorithm)

Low-Volume	Encapsulated
Protocols

4003 CDPD	Mobile	Network	Registration
Protocol

	 4025 Fibre	Channel

Network	Control	Protocol
(NCP)	Control	Frames

8021 PPP	Internet	Protocol	Control	Protocol

	 8023 PPP	OSI	Network	Layer	Control
Protocol

	 8029 PPP	AppleTalk	Control	Protocol

	 802B PPP	IPX	Control	Protocol

	 803F PPP	NetBIOS	Frames	Control	Protocol

	 804D PPP	SNA	Control	Protocol

	 8057 PPP	IPv6	Control	Protocol

LCP	and	Other	Control	Frames C021 PPP	Link	Control	Protocol	(LCP)

	 C023 PPP	Password	Authentication	Protocol
(PAP)

	 C025 PPP	Link	Quality	Report	(LQR)



	 C025 PPP	Link	Quality	Report	(LQR)

	 C02B PPP	Bandwidth	Allocation	Control
Protocol	(BACP)

	 C02D PPP	Bandwidth	Allocation	Protocol
(BAP)

	 C223 PPP	Challenge	Handshake
Authentication	Protocol	(CHAP)

PPP	Field	Compression
PPP	uses	the	HDLC	basic	framing	structure,	which	includes	two	fields	that	are
needed	in	HDLC	but	aren't	in	PPP	due	to	how	the	latter	operates.	The	fields	are
the	Address	and	Control	fields.	Why	bother	sending	two	bytes	that	have	the
same	value	for	every	frame	and	aren't	used	for	anything?	Originally,	they	were
maintained	for	compatibility,	but	this	reduces	efficiency.

To	avoid	wasting	two	bytes	in	every	frame,	it	is	possible	during	initial	link	setup
using	the	Link	Control	Protocol	(LCP)	for	the	two	devices	on	the	link	to
negotiate	a	feature	called	Address	and	Control	Field	Compression	(ACFC)	using
the	LCP	option	by	that	same	name.	When	enabled,	this	feature	simply	causes
these	two	fields	not	to	be	sent	for	most	PPP	frames	(but	not	for	LCP	control
frames).	In	fact,	the	feature	would	be	better	named	Address	and	Control	Field
Suppression,	because	the	fields	are	just	suppressed	and	compressed	down	to
nothing.

Even	when	devices	agree	to	use	field	compression,	they	must	still	be	capable	of
receiving	both	compressed	and	uncompressed	frames.	They	differentiate	one
from	the	other	by	looking	at	the	first	two	bytes	after	the	initial	Flag	field.	If	they
contain	the	value	0xFF03,	they	must	be	the	Address	and	Control	fields;
otherwise,	those	fields	were	suppressed.	(The	value	0xFF03	is	not	a	valid
Protocol	field	value,	so	there	is	no	chance	of	ambiguity.)

Similarly,	it	is	also	possible	for	the	two	devices	on	the	link	to	negotiate
compression	of	the	Protocol	field,	so	it	takes	only	one	byte	instead	of	two.	This
is	done	generally	by	dropping	the	first	byte	if	it	is	zero,	a	process	called	Protocol
Field	Compression	(PFC).	Recall	that	the	first	byte	must	be	even	and	the	second
odd.	Thus,	a	receiving	device	examines	the	evenness	of	the	first	byte	of	the



Protocol	field	in	each	frame.	If	it	is	odd,	this	means	that	a	leading	byte	of	zeros
in	the	Protocol	field	has	been	suppressed,	because	the	first	byte	of	a	full	two-byte
Protocol	value	must	be	even.

NOTE

This	field	compression	(really	suppression)	has	nothing	to	do	with	data	compression	using	PPP's
Compression	Control	Protocol	(CCP)	and	compression	algorithms.



PPP	General	Control	Protocol	Frame	Format	and
Option	Format
The	general	frame	format	you	just	saw	is	used	for	all	of	the	many	frame	types
defined	in	the	PPP	protocol	suite.	Within	that	format,	the	Information	field
carries	either	encapsulated	layer	3	user	data	or	encapsulated	control	messages.
These	control	messages	contain	specific	information	that	is	used	to	configure,
manage,	and	discontinue	PPP	links,	and	to	implement	the	various	features	that
comprise	PPP.

There	are	many	different	PPP	control	protocols	that	usually	can	be	distinguished
by	the	word	Control	appearing	their	names.	These	include	the	main	PPP	Link
Control	Protocol	(LCP);	a	family	of	Network	Control	Protocols	(NCPs)	such	as
IPCP,	IPXCP,	and	so	forth;	and	also	control	protocols	for	implementing	features,
such	as	the	Compression	Control	Protocol	(CCP)	and	the	Encryption	Control
Protocol	(ECP).	The	authentication	protocols	Password	Authentication	Protocol
(PAP)	and	Challenge	Handshake	Authentication	Protocol	(CHAP)	lack	Control
in	the	name	but	also	fall	into	this	category.

The	control	protocols	each	use	control	messages	in	a	slightly	different	way,	but
there	is	also	a	great	deal	of	commonality	between	the	messages.	This	is	because,
as	I	explained	in	my	discussions	of	the	PPP	protocols,	most	of	the	control
protocols—such	as	the	NCP	family,	CCP,	and	ECP—are	implemented	as	subsets
of	the	functionality	of	the	LCP.	They	perform	many	of	the	same	functions,	so	the
PPP	designers	wisely	adapted	the	LCP	messaging	system	for	these	other	control
protocols.

This	all	means	that	control	protocol	frames	have	a	common	format	that	fits
within	the	overall	general	frame	format	in	PPP.	Even	protocols	like	PAP	and
CHAP,	which	aren't	based	on	LCP,	use	this	general	control	frame	format,	which
is	described	in	Table	12-4.

Table	12-4.	PPP	Control	Message	Format

Field
Name

Size
(Bytes)

Description

Code 1 A	single	byte	value	that	indicates	what	type	of	control	message	is	in	this



Code
(Type)

1 A	single	byte	value	that	indicates	what	type	of	control	message	is	in	this
control	frame.	It	is	sometimes	instead	called	Type	in	certain	PPP
standards.

Identifier 1 This	is	a	label	field	that's	used	to	match	up	requests	with	replies.	When	a
request	is	sent,	a	new	Identifier	is	generated.	When	a	reply	is	created,	the
value	from	the	Identifier	field	in	the	request	that	prompted	the	reply	is
used	for	the	reply's	Identifier	field.

Length 2 Specifies	the	length	of	the	control	frame.	This	is	needed	because	the	Data
field	is	variable	in	length.	The	Length	field	is	specified	in	bytes	and
includes	all	the	fields	in	the	control	frame	including	the	Code,	Identifier,
Length,	and	Data	fields.

Data Variable Contains	information	specific	to	the	message	type.	The	different	uses	of
this	field	are	described	later	in	this	chapter.

This	entire	structure	becomes	the	payload	of	a	PPP	frame,	meaning	that	it	fits
into	the	Information	field	of	a	PPP	frame,	as	shown	in	Figure	12-3.	The	four
fields	of	the	PPP	control	message	format	fit	within	the	Information	field	of	the
PPP	general	frame	format.	The	Data	field	is	subsequently	filled	in	with	data
specific	to	the	control	message	type.	Thus,	the	Length	field	is	equal	in	size	to
that	of	the	Information	field	in	the	PPP	frame.	The	Protocol	field	of	a	control
frame	is	set	to	match	the	protocol	that	generated	the	control	frame.	For	example,
it	would	be	0xC021	for	an	LCP	frame.

Figure	12-3.	PPP	control	message	format

PPP	Control	Messages	and	Code	Values
The	Code	field	indicates	the	type	of	control	frame	within	the	particular	control
protocol.	Some	protocols	have	a	unique	set	of	codes	used	only	by	that	particular



protocol;	examples	include	the	authentication	protocols	(PAP	and	CHAP)	and
the	Bandwidth	Allocation	Protocol	(BAP).	Since	the	NCPs	and	many	of	the
feature	control	protocols	like	CCP	and	ECP	are	based	on	LCP,	they	use	a
common	set	of	message	codes	and	types.	Table	12-5	shows	these	common
message	codes	and	indicates	which	control	protocols	use	them.

Table	12-5.	PPP	Control	Messages,	Code	Values,	and	PPP	Protocol	Usage

Code	Value Control	Message LCP NCPs CCP	and	ECP

1 Configure-Request ⅳ ⅳ ⅳ

2 Configure-Ack ⅳ ⅳ ⅳ

3 Configure-Nak ⅳ ⅳ ⅳ

4 Configure-Reject ⅳ ⅳ ⅳ

5 Terminate-Request ⅳ ⅳ ⅳ

6 Terminate-Ack ⅳ ⅳ ⅳ

7 Code-Reject ⅳ ⅳ ⅳ

8 Protocol-Reject ⅳ 	 	

9 Echo-Request ⅳ 	 	

10 Echo-Reply ⅳ 	 	

11 Discard-Request ⅳ 	 	

12 Identification ⅳ 	 	

13 Time-Remaining ⅳ 	 	

14 Reset-Request 	 	 ⅳ

15 Reset-Ack 	 	 ⅳ

NOTE

I	describe	the	specific	ways	these	frame	types	are	used	in	the	individual	topics	on	LCP,	the	NCPs,	CCP,
and	ECP	in	Chapters	Chapter	10	and	Chapter	11.



The	contents	of	the	Data	field	depend	entirely	on	the	type	of	control	message.	In
some	cases,	no	extra	data	needs	to	be	sent	at	all,	in	which	case	the	Data	field
may	be	omitted.	In	other	control	messages,	it	carries	information	relevant	to	the
message	type.	For	example,	a	Code-Reject	message	carries	in	the	Data	field	a
copy	of	the	frame	that	was	rejected.

PPP	Control	Message	Option	Format
The	various	Configure-	messages	are	used	to	negotiate	configuration	options	in
LCP	and	the	other	control	protocols.	In	their	Data	fields,	they	carry	one	or	more
options	that	are,	again,	specific	to	the	protocol	using	them.	For	example,	LCP
uses	one	set	of	configuration	options	for	the	link	as	a	whole,	CCP	uses	options	to
negotiate	a	compression	algorithm,	MP	uses	it	to	set	up	multilink	bundles,	and	so
on.	Figure	12-4	shows	how	these	options,	which	can	vary	in	length,	are	placed	in
the	Data	field	of	a	PPP	control	message	(which	is	nested	inside	the	general	PPP
frame	format).	This	diagram	shows	a	sample	PPP	control	message	carrying
options	in	its	Data	field.	Any	number	of	options	can	be	included	and	mixed	with
other	data,	depending	on	the	needs	of	the	message.

Figure	12-4.	PPP	control	message	carrying	options

Again,	there	is	commonality	here.	While	every	option	is	different,	they	all	use
the	same	basic	format.	Each	option	that	appears	in	any	of	the	many	PPP	control
message	types	consists	of	the	triplet	of	Type,	Length,	and	Data,	as	shown	in
Table	12-6	and	illustrated	in	Figure	12-5.



Table	12-6.	PPP	Control	Message	Option	Format

Field
Name

Size
(Bytes)

Description

Type 1 A	type	value	that	indicates	the	option	type.	The	set	of	Type	values	is	unique
to	each	protocol.	So,	for	example,	LCP	has	one	set	of	Type	values
corresponding	to	its	configuration	options,	each	NCP	has	a	different	set,
CCP	has	its	own	set,	and	so	on.

Length 1 Specifies	the	length	of	the	option	in	bytes.

Data Variable Contains	the	specific	data	for	the	configuration	option.

The	configuration	options	are	described	briefly	in	the	individual	protocol	topics.
I	am	not	showing	the	specific	contents	of	each	option	because	there	are	just	too
many	of	them.	These	are	in	the	RFCs.

Figure	12-5.	PPP	control	message	option	format

Summary	of	PPP	Control	Message	Formatting
My	intention	here	has	been	to	show	you	the	general	format	used	for	the	different
control	protocols	because	they	are	so	similar	and	I	don't	have	the	time	or	space	to
describe	each	protocol's	frames	individually.	Here's	a	quick	summary:

The	PPP	general	frame	format	is	used	for	all	frames,	including	all	control
frames.	Its	Information	field	contains	the	payload,	which	carries	the	entire
control	message	within	it	for	control	frames.

The	control	frame	is	structured	using	the	general	format	I	gave	at	the	start	of
this	topic.	The	Code	value	indicates	the	type	of	control	frame	for	each	control
protocol.	The	Data	field	is	variable	in	length,	and	contains	data	for	that
control	frame,	which	in	some	cases	may	include	one	or	more	configuration
options.

For	configuration	control	frames	like	Configure-Request	and	Configure-Ack,



the	Data	field	contains	an	encapsulated	set	of	options	using	the	general
structure	in	the	second	table	in	this	topic.	Each	option	has	its	own	Data
subfield	that	contains	data	specific	to	that	option.

To	help	make	this	more	clear,	the	next	two	sections	provide	more	specific
examples	of	frame	formats	for	LCP	and	the	authentication	protocols.



PPP	Link	Control	Protocol	(LCP)	Frame	Formats
You	just	explored	the	general	format	used	by	the	various	protocols	in	PPP	that
exchange	control	messages.	Of	the	many	control	protocols	in	PPP,	LCP	is	the
most	important,	because	it	is	responsible	for	basic	PPP	link	setup	and	operation.
It	is	also	the	protocol	used	as	a	template	for	many	of	the	other	control	protocols.

Since	it	is	so	central	to	PPP,	and	since	many	of	the	other	protocols	use	a	similar
messaging	system,	let's	make	the	general	frame	format	(shown	in	Figure	12-5)
more	concrete	by	showing	the	specific	frame	formats	used	for	each	of	the	LCP
control	frames.	There	are	13	different	frame	formats,	however,	and	since	they
have	many	fields	in	common	I've	combined	them	into	a	single	large	summary
table.	Table	12-7	shows	the	contents	and	meaning	for	each	of	the	fields	in	the	13
LCP	frame	types.

NOTE

LCP	frame	types	5,	6,	9,	10,	11,	12,	and	13	allow	an	additional	amount	of	data	to	be	included	in	the	Data
field	in	a	manner	not	strictly	described	by	the	protocol.	The	PPP	standard	says	that	there	may	be	zero	or
more	octets	that	"contain	uninterpreted	data	for	use	by	the	sender"	and	"may	consist	of	any	binary	value"
(RFC	1661).	The	inclusion	of	this	uninterpreted	data	is	left	as	an	implementation-dependent	option.

All	LCP	control	frames	are	encapsulated	into	a	PPP	frame	by	placing	the	frame
structure	into	its	Information	field,	as	you	saw	earlier.	The	Protocol	field	is	set	to
0xC021	for	LCP.	(For	an	explanation	of	how	the	frames	are	used,	see	the
operational	description	of	LCP	in	Chapter	10.)

Table	12-7.	PPP	Link	Control	Protocol	(LCP)	Frame	Types	and	Fields

Frame
Type

Code
Field

Identifier
Field

Length
Field

Data	Field

Configure-
Request

1 New	value
generated
for	each
frame

4	+	length	of
all	included
configuration
options

Configuration	options	to	be	negotiated	by
the	two	peers	on	a	link.	(The	previous
section	in	this	chapter	describes	the	general
format	of	configuration	options.)

Configure-
Ack

2 Copied
from	the
Identifier

4	+	length	of
all	included
configuration

Configuration	options	being	positively
acknowledged	(accepted	during	negotiation
of	the	link).



Identifier
field	of	the
Configure-
Request
frame	for
which	this
Configure-
Ack	is	a
reply

configuration
options

of	the	link).

Configure-
Nak

3 Copied
from	the
Identifier
field	of	the
Configure-
Request
frame	for
which	this
Configure-
Nak	is	a
reply

4	+	length	of
all	included
configuration
options

Configuration	options	being	negatively
acknowledged	(renegotiation	requested).

Configure-
Reject

4 Copied
from	the
Identifier
field	of	the
Configure-
Request
frame	for
which	this
Configure-
Reject	is	a
reply

4	+	length	of
all	included
configuration
options

Configuration	options	being	rejected	(since
the	device	cannot	negotiate	them).

Terminate-
Request

5 New	value
generated
for	each
frame

4	(or	more	if
extra	data	is
included)

Not	required.	See	note	preceding	this	table.

Terminate-
Ack

6 Copied
from	the
Identifier
field	of	the
matching
Terminate-
Request

4	(or	more	if
extra	data	is
included)

Not	required.	See	note	preceding	this	table.

Code-Reject 7 New	value
generated

4	+	length	of
rejected

A	copy	of	the	LCP	frame	that	was	rejected.
This	is	not	the	complete	PPP	frame,	just	the



generated
for	each
frame

rejected
frame

This	is	not	the	complete	PPP	frame,	just	the
LCP	control	portion	from	its	Information
field.

Protocol-
Reject

8 New	value
generated
for	each
frame

6	+	length	of
rejected
frame

The	first	two	bytes	contain	the	Protocol
value	of	the	frame	rejected.	The	rest
contains	a	copy	of	the	Information	field
from	the	frame	rejected.

Echo-
Request

9 New	value
generated
for	each
frame

8	(or	more	if
extra	data	is
included)

Contains	a	four-byte	"magic	number"	used
to	detect	looped-back	links,	if	the
appropriate	configuration	option	has	been
negotiated;	otherwise,	set	to	zero.	May	also
contain	additional	uninterpreted	data;	see
note	preceding	this	table.

Echo-Reply 10 Copied
from	the
Identifier
field	of	the
matching
Echo-
Request

8	(or	more	if
extra	data	is
included)

Contains	a	four-byte	"magic	number"	used
to	detect	looped-back	links,	if	the
appropriate	configuration	option	has	been
negotiated;	otherwise,	set	to	zero.	May	also
contain	additional	uninterpreted	data;	see
note	preceding	this	table.

Discard-
Request

11 New	value
generated
for	each
frame

8	(or	more	if
extra	data	is
included)

Contains	a	four-byte	"magic	number"	used
to	detect	looped-back	links,	if	the
appropriate	configuration	option	has	been
negotiated;	otherwise,	set	to	zero.	May	also
contain	additional	uninterpreted	data;	see
note	preceding	this	table.

Identification 12 New	value
generated
for	each
frame

8	(or	more	if
extra	data	is
included)

Contains	a	four-byte	"magic	number"	used
to	detect	looped-back	links,	if	the
appropriate	configuration	option	has	been
negotiated;	otherwise,	set	to	zero.	May	also
contain	additional	uninterpreted	data;	see
note	preceding	this	table.

Time-
Remaining

13 New	value
generated
for	each
frame

12	(or	more
if	extra	data
is	included)

Contains	a	four-byte	"magic	number"	used
to	detect	looped-back	links,	if	the
appropriate	configuration	option	has	been
negotiated;	otherwise,	set	to	zero.	Also
contains	a	four-byte	value	indicating	the
number	of	seconds	remaining	in	the	current
session.	A	value	of	all	ones	in	this	field	is
interpreted	as	forever,	meaning	the	session
will	not	expire.	May	also	contain	additional
uninterpreted	data;	see	note	preceding	this
table.



table.



PAP	and	CHAP	Frame	Formats
For	links	where	security	is	important,	PPP	provides	two	optional	authentication
protocols,	PAP	and	CHAP.	These	are	used	during	initial	link	setup	by	the	LCP
to	deny	PPP	connections	to	unauthorized	devices.

PAP	and	CHAP	are	control	protocols	and	thus	use	the	same	basic	control
protocol	frame	format	described	earlier	in	this	section.	However,	since	they	have
a	very	different	purpose	than	LCP	and	many	of	the	other	control	protocols,	they
use	a	distinct	set	of	frames	with	their	own	unique	set	of	Code	values.	PAP	uses
three	different	control	frame	types,	and	CHAP	uses	four.	Let's	look	at	how	PAP
and	CHAP	frames	are	constructed.

PPP	PAP	Control	Frame	Formats
PAP's	three	control	frames	are	constructed	as	shown	in	Tables	Table	12-8	and
Table	12-9.	The	Authenticate-Request	uses	one	format,	as	illustrated	in
Figure	12-6,	while	the	other	two	frame	types	use	a	different	format,	as	shown	in
Figure	12-7.

Table	12-8.	PPP	Password	Authentication	Protocol	(PAP)	Frame	Formats

Frame
Type

Code
Field

Identifier
Field

Length
Field

Data	Field

Authenticate-
Request

1 New	value
generated	for
each	frame

6	+
length	of
Peer-ID
+	length
of
password

Contains	the	user	name	and	password	for
authentication.	This	is	carried	in	four
subfields	and	arranged	as	shown	in	Table	12-
9.

Authenticate-
Ack

2 Copied	from
the	Identifier
field	of	the
Authenticate-
Request
frame	for
which	this	is
a	reply

5	+
length	of
included
Message

Contains	a	one-byte	Msg-Length	subfield	that
specifies	the	length	of	the	Message	subfield
that	follows	it.	The	Message	subfield	contains
an	arbitrary	string	of	data	whose	use	is
implementation-	dependent.	It	may	be	used	to
provide	an	indication	of	authentication
success	or	failure	to	the	user.	If	not	used,	the
Msg-Length	field	is	still	included,	but	its
value	is	set	to	zero.



Authenticate-
Nak

3 	 	 	

Figure	12-6.	PPP	PAP	Authenticate-Request	frame	format

Figure	12-7.	PPP	PAP	Authenticate-Ack	and	Authenticate-Nak	frame	format

Table	12-9.	PPP	PAP	Authenticate-Request	Frame	Subfields

Subfield
Name

Size
(Bytes)

Description

Peer-ID
Length

1 Length	of	the	Peer-ID	field,	in	bytes

Peer-ID Variable Name	of	the	device	to	be	authenticated;	equivalent	in	concept	to
a	user	name

Passwd-
Length

1 Length	of	the	Password	field,	in	bytes

Password Variable Password	corresponding	to	the	name	being	authenticated



Password Variable Password	corresponding	to	the	name	being	authenticated

PPP	CHAP	Control	Frame	Formats
The	four	CHAP	frame	types	are	formatted	as	shown	in	Tables	Table	12-10	and
Table	12-11.	The	Challenge	and	Response	frames	use	one	message	format,	as
illustrated	in	Figure	12-8,	while	the	Success	and	Failure	frames	use	a	different
one,	as	shown	in	Figure	12-9.

Table	12-10.	PPP	Challenge	Handshake	Authentication	Protocol	(CHAP)
Formats

Frame
Type

Code
Field

Identifier	Field Length
Field

Data	Field

Challenge 1 New	value	generated
for	each	frame

5	+	length
of
challenge
text	+
length	of
Name

Carries	the	challenge	text	or	response
text	and	a	system	identifier.	This
information	is	carried	in	three
subfields,	as	shown	in	Table	12-11.

Response 2 Copied	from	the
Identifier	field	of	the
Challenge	frame	for
which	this	is	a	reply

5	+	length
of	Value	+
length	of
Name

	

Success 3 Copied	from	the
Identifier	field	of	the
Response	frame	for
which	this	is	a	reply

4	(or	more
if	extra	data
is	included)

May	contain	an	arbitrary,
implementation-dependent	Message
field	to	indicate	to	the	user	whether
authentication	was	successful	or
failed.

Failure 4 	 	 	

Table	12-11.	CHAP	Challenge	and	Response	Frame	Subfields

Subfield
Name

Size
(Bytes)

Description

Value-
Size

1 Length	of	the	Value	subfield	that	follows,	in	bytes

Value Variable For	a	Challenge	frame,	contains	the	challenge	text	used	in	the	initial
challenge;	for	a	Response	frame,	contains	the	encrypted	challenge	text



challenge;	for	a	Response	frame,	contains	the	encrypted	challenge	text
being	returned	to	the	authenticator

Name Variable One	or	more	bytes	of	text	used	to	identify	the	device	that	sent	the	frame

Figure	12-8.	PPP	CHAP	Challenge	and	Response	frame	format

Figure	12-9.	PPP	CHAP	Success	and	Failure	frame	format



PPP	Multilink	Protocol	(MP)	Frame	Format
Some	devices	are	connected	not	by	a	single	physical	layer	link	but	by	two	or
more.	These	may	be	either	multiple	physical	connections,	such	as	two	connected
pairs	of	modems,	or	multiplexed	virtual	layer	1	connections	like	ISDN	B
channels.	In	either	case,	PPP	MP	can	be	used	to	aggregate	the	bandwidth	of
these	physical	links	to	create	a	single,	high-speed	bundle.	I	describe	how	this	is
done	in	Chapter	11.

After	MP	is	configured	and	starts	working,	it	operates	by	employing	a	strategy
for	dividing	up	regular	PPP	frames	among	the	many	individual	physical	links
that	compose	the	MP	bundle.	This	is	usually	accomplished	by	chopping	up	the
PPP	frames	into	pieces	called	fragments	and	spreading	them	across	the	physical
links.	This	allows	the	traffic	on	the	physical	links	to	be	easily	balanced.

PPP	MP	Frame	Fragmentation	Process
To	accomplish	this	fragmentation	process,	the	device	must	follow	this	three-step
process:

1.	 Original	PPP	Frame	Creation	The	data	or	other	information	to	be	sent	is
first	formatted	as	a	whole	PPP	frame,	but	in	a	modified	form,	as	we	will
see	momentarily.

2.	 Fragmentation	The	full-sized	PPP	frame	is	chopped	into	fragments	by
MP.

3.	 Encapsulation	Each	fragment	is	encapsulated	in	the	Information	field	of	a
new	PPP	MP	fragment	frame,	along	with	control	information	that	allows
the	fragments	to	be	reassembled	by	the	recipient.

Several	of	the	fields	that	normally	appear	in	a	whole	PPP	frame	aren't	needed	if
that	frame	is	going	to	then	be	divided	and	placed	into	other	PPP	MP	frames,	so
when	fragmentation	is	to	occur,	they	are	omitted	when	the	original	PPP	frame	is
constructed	for	efficiency's	sake.	These	are	fields	that	are	not	used	when	MP	is
employed:

The	Flag	fields	at	the	start	and	end	are	used	only	for	framing	for	transmission
and	aren't	needed	in	the	logical	frame	being	fragmented.



The	FCS	field	is	not	needed,	because	each	fragment	has	its	own	FCS	field.

The	special	compression	options	that	are	possible	for	any	PPP	frame	are	used
when	creating	this	original	frame—that	is,	the	Address	and	Control	Field
Compression	(APCP)	and	Protocol	Field	Compression	(PFC).	This	means
that	there	are	no	Address	or	Control	fields	in	the	frame,	and	the	Protocol	field
is	only	one	byte	in	size.	Note	that	this	inherently	restricts	fragments	to
carrying	only	certain	types	of	information.

TIP

KEY	CONCEPT	The	PPP	Multilink	Protocol	(MP)	normally	divides	data	among	physical	links	by
creating	an	original	PPP	frame	with	unnecessary	headers	removed,	and	then	dividing	it	into	fragment
frames.	Each	fragment	includes	special	headers	that	allow	for	the	reassembly	of	the	original	frame	by	the
recipient	device.

These	changes	save	a	full	eight	bytes	on	each	PPP	frame	that	will	be	fragmented.
As	a	result,	the	original	PPP	frame	has	a	very	small	header,	consisting	of	only	a
one-byte	Protocol	field.	The	Protocol	value	of	each	fragment	is	set	to	0x003D	to
indicate	a	MP	fragment,	while	the	Protocol	field	of	the	original	frame	becomes
the	first	byte	of	data	in	the	first	fragment.

PPP	MP	Fragment	Frame	Format
The	Information	field	of	each	fragment	uses	a	substructure	that	contains	a	four-
field	MP	header	along	with	one	fragment	of	the	original	PPP	frame,	as	shown	in
Table	12-12.

Table	12-12.	PPP	Multilink	Protocol	Fragment	Frame	Format

Field
Name

Size
(Bytes)

Description

B 1/8	(1	bit) Beginning	Fragment	Flag:	When	set	to	1,	flags	this	fragment	as	the
first	of	the	split-up	PPP	frame.	It	is	set	to	0	for	other	fragments.

E 1/8	(1	bit) Ending	Fragment	Flag:	When	set	to	1,	flags	this	fragment	as	the	last
of	the	split-up	PPP	frame.	It	is	set	to	0	for	other	fragments.

Reserved 2/8	(2	bits)
or	6/8	(6
bits)

Not	used;	set	to	0.



bits)

Sequence
Number

1	1/2	(12
bits)	or	3	(24
bits)

When	a	frame	is	split	up,	the	fragments	are	given	consecutive
sequence	numbers	so	the	receiving	device	can	properly	reassemble
them.

Fragment
Data

Variable The	actual	fragment	from	the	original	PPP	frame.

As	you	can	see,	the	MP	frame	format	comes	in	two	versions:	the	long	format
uses	a	four-byte	header,	while	the	short	format	requires	only	four	bytes.	The
default	MP	header	format	uses	a	24-bit	Sequence	Number	and	has	6	reserved
bits,	as	shown	in	Figure	12-10.	When	MP	is	set	up,	it	is	possible	for	devices	to
negotiate	the	Multilink	Short	Sequence	Number	Header	Format	configuration
option.	If	this	is	done	successfully,	shorter	12-bit	Sequence	Numbers	are	used
instead.	Four	of	the	reserved	bits	are	also	truncated,	to	save	two	bytes	on	each
frame,	as	illustrated	in	Figure	12-11.	(Considering	that	12	bits	still	allows	for
over	4,000	fragments	per	PPP	frame,	this	is	usually	more	than	enough!)

Figure	12-10.	PPP	MP	long	fragment	frame	format	The	long	PPP	MP	frame	format	uses	a	full	byte	for
flags	and	a	24-bit	Sequence	Number.



Figure	12-11.	PPP	MP	short	fragment	frame	format	The	short	version	of	the	PPP	MP	format	uses	4	bits
for	flags	and	a	12-bit	Sequence	Number.

The	Fragment	Data	field	contains	the	actual	fragment	to	be	sent.	Since	the
original	PPP	header	(including	the	Protocol	field)	is	at	the	start	of	the	original
PPP	frame,	this	will	appear	at	the	start	of	the	first	fragment.	The	remaining
fragments	will	have	just	portions	of	the	Information	field	of	the	original	PPP
frame.	The	last	fragment	will	end	with	the	last	bytes	of	the	original	PPP	frame.

The	receiving	device	will	collect	all	the	fragments	for	each	PPP	frame	and
extract	the	fragment	data	and	MP	headers	from	each.	It	will	use	the	Sequence
Numbers	to	reassemble	the	fragments	and	then	process	the	resulting	PPP	frame.

PPP	MP	Fragmentation	Demonstration
Figure	12-12	shows	a	demonstration	of	fragmenting	a	PPP	data	frame.	At	the	top
is	the	same	PPP	data	frame	shown	in	Figure	12-2	earlier	in	the	chapter.

The	eight	grayed-out	bytes	are	the	ones	not	used	when	a	frame	is	to	be
fragmented.	Thus,	the	PPP	frame	used	for	MP	is	24	bytes	long.	This	frame	is
split	into	eight-byte	chunks,	each	of	which	is	carried	in	the	Fragment	Data	fields
of	an	MP	fragment.	Note	the	consecutive	Sequence	Number	values	in	the
fragment	frames.	Also	note	that	the	Beginning	Fragment	field	is	set	only	for	the
first	fragment,	and	the	Ending	Fragment	is	set	only	for	the	last	one.



Figure	12-12.	PPP	MP	fragmentation	This	diagram	shows	how	a	single	PPP	frame	is	fragmented	into
three	smaller	ones.



Part	II-2.	TCP/IP	NETWORK
INTERFACE/INTERNET	LAYER	CONNECTION
PROTOCOLS
Chapter	13

Chapter	14

The	second	layer	of	the	OSI	Reference	Model	is	the	data	link	layer;	it
corresponds	to	the	TCP/IP	network	interface	layer.	At	this	layer,	most	local	area
network	(LAN),	wide	area	network	(WAN),	and	wireless	LAN	(WLAN)
technologies	are	defined,	such	as	Ethernet	and	IEEE	802.11.

The	third	layer	of	the	OSI	Reference	Model	is	the	network	layer,	also	called	the
internet	layer	in	the	TCP/IP	model.	At	this	layer,	internetworking	protocols	are
defined,	the	most	notable	being	the	Internet	Protocol	(IP).

The	second	and	third	layers	are	intimately	related,	because	messages	sent	at	the
network	layer	must	be	carried	over	individual	physical	networks	at	the	data	link
layer.	They	perform	different	tasks,	but	as	neighbors	in	the	protocol	stack,	they
must	cooperate	with	each	other.

A	set	of	protocols	serves	the	important	task	of	linking	together	these	two	layers
and	allowing	them	to	work	together.	The	problem	is	deciding	where	exactly
these	protocols	should	live.	They	are	sort	of	the	black	sheep	of	the	networking
world.	Nobody	denies	their	importance,	but	they	always	think	they	belong	in
"the	other	guy's"	layer.	For	example,	since	these	protocols	pass	data	on	layer	2
networks,	the	folks	who	deal	with	layer	2	technologies	say	the	protocols	belong
at	layer	3.	But	those	who	work	with	layer	3	protocols	consider	these	low-level
protocols	that	provide	services	to	layer	3,	and	hence	put	them	as	part	of	layer	2.

So	where	do	these	protocols	go?	Well,	to	some	extent,	it	doesn't	really	matter.	I
consider	them	somewhat	special,	so	I	gave	them	their	own	home.	Welcome	to
networking	layer	limbo,	also	known	as	OSI	model	layer	2.5.	This	is	where	I	put
a	couple	of	protocols	that	serve	as	glue	between	the	data	link	and	network	layers.
The	main	job	performed	here	is	address	resolution,	or	providing	mappings
between	layer	2	and	layer	3	addresses.	This	resolution	can	be	done	in	either
direction,	and	is	represented	by	the	two	TCP/IP	protocols	described	in	this	part:



direction,	and	is	represented	by	the	two	TCP/IP	protocols	described	in	this	part:
the	Address	Resolution	Protocol	(ARP)	and	the	Reverse	Address	Resolution
Protocol	(RARP),	which,	despite	their	similarities,	are	used	for	rather	different
purposes.

I	suggest	familiarity	with	the	basics	of	layer	2	and	layer	3	(described	in	Parts	I-2
and	I-3)	before	proceeding	here.	In	particular,	some	understanding	of	IP
addressing	is	helpful,	though	not	strictly	necessary.



Chapter	13.	ADDRESS
RESOLUTION	AND	THE	TCP/IP
ADDRESS	RESOLUTION
PROTOCOL	(ARP)

Communication	on	an	internetwork	is	accomplished	by	sending	data	at	layer	3
using	a	network	layer	address,	but	the	actual	transmission	of	that	data	occurs	at
layer	2	using	a	data	link	layer	address.	This	means	that	every	device	with	a	fully
specified	networking	protocol	stack	will	have	both	a	layer	2	and	a	layer	3
address.	It	is	necessary	to	define	some	way	of	being	able	to	link	these	addresses
together.	Usually,	this	is	done	by	taking	a	network	layer	address	and	determining
what	data	link	layer	address	goes	with	it.	This	process	is	called	address
resolution.

In	this	chapter,	I	look	at	the	problem	of	address	resolution	at	both	a	conceptual
and	practical	level,	with,	of	course,	a	focus	on	how	it	is	done	in	the	TCP/IP
protocol	suite.	I	begin	with	an	overview	of	address	resolution	in	gen-eral	terms,
which	describes	the	issues	involved	in	the	process.	I	then	fully	describe	the
TCP/IP	Address	Resolution	Protocol	(ARP),	probably	the	best-known	and	most
commonly	used	address	resolution	technique.	I	then	provide	a	brief	look	at	how
address	resolution	is	done	for	multicast	addresses	in	the	Internet	Protocol	(IP),
and	finally,	the	method	used	in	the	new	IP	version	6	(IPv6).

Address	Resolution	Concepts	and	Issues
Due	to	the	prominence	of	TCP/IP	in	the	world	of	networking,	most	discussions
of	address	resolution	jump	straight	to	TCP/IP's	ARP.	This	protocol	is	indeed
important,	and	we	will	take	a	look	at	it	later	in	this	chapter.	However,	the	basic



important,	and	we	will	take	a	look	at	it	later	in	this	chapter.	However,	the	basic
problem	of	address	resolution	is	not	unique	to	any	given	implementation	that
deals	with	it,	such	as	ARP.	To	provide	better	understanding	of	resolving
addresses	between	the	data	link	layer	and	the	network	layer	and	to	support	our
examination	of	ARP,	we'll	begin	by	looking	at	the	matter	in	more	general	terms.

I	start	by	discussing	the	need	for	address	resolution	in	general	terms.	I	then
describe	the	two	main	methods	for	solving	the	address	resolution	problem:	direct
mapping	and	dynamic	resolution.	I	also	explore	some	of	the	efficiency	issues
involved	in	practical	dynamic	address	resolution,	with	a	focus	on	the	importance
of	caching.

The	Need	for	Address	Resolution
Some	people	may	balk	at	the	notion	of	address	resolution	and	the	need	for
protocols	that	perform	this	function.	In	Chapter	5's	discussion	of	the	OSI
Reference	Model,	I	talked	extensively	about	how	the	whole	point	of	having
conceptual	layers	was	to	separate	logical	functions	and	allow	higher-layer
protocols	to	be	hidden	from	lower-layer	details.	Given	this,	why	do	you	need
address	resolution	protocols	that	tie	protocols	and	layers	together?

This	is	true.	However,	the	OSI	Reference	Model	is	exactly	that—a	model.	There
are	often	practicalities	that	arise	that	require	solutions	that	don't	strictly	fit	the
layer	model.	When	the	model	doesn't	fit	reality,	the	model	must	yield.	And	so	it
is	in	dealing	with	the	problem	of	address	resolution.

Addressing	at	Layer	2	and	Layer	3
When	you	consider	the	seven	layers	of	the	OSI	Reference	Model,	there	are	two
that	deal	with	addressing:	the	data	link	layer	and	the	network	layer.	The	physical
layer	is	not	strictly	concerned	with	addressing	at	all,	but	rather,	only	with
sending	at	the	bit	level.	The	layers	above	the	network	layer	all	work	with
network	layer	addresses.

But	why	is	addressing	done	at	two	different	layers?	The	answer	is	that	they	are
very	different	types	of	addresses	that	are	used	for	different	purposes.	The	layer	2
addresses	(such	as	IEEE	802	MAC	addresses)	are	used	for	local	transmissions
between	hardware	devices	that	can	communicate	directly.	They	are	used	to
implement	basic	local	area	network	(LAN),	wireless	LAN	(WLAN),	and	wide
area	network	(WAN)	technologies.	In	contrast,	layer	3	addresses	(most



area	network	(WAN)	technologies.	In	contrast,	layer	3	addresses	(most
commonly,	IP	addresses)	are	used	in	internetworking	to	create	the	equivalent	of
a	massive	virtual	network	at	the	network	layer.

The	most	important	distinction	between	these	types	of	addresses	is	between
layers	2	and	3:	Layer	2	deals	with	directly	connected	devices	(on	the	same
network),	while	layer	3	deals	with	indirectly	connected	devices	(as	well	as
directly	connected	ones).	Say,	for	example,	you	want	to	connect	to	the	web
server	at	http://www.tcpipguide.com.	This	is	a	website	that	runs	on	a	server	that
has	an	Ethernet	card	in	it	that's	used	for	connecting	it	to	its	Internet	service
provider	site.	However,	even	if	you	know	its	MAC	address,	you	cannot	use	it	to
talk	directly	to	this	server	using	the	Ethernet	card	in	your	home	PC,	because	the
devices	are	on	different	networks—in	fact,	they	may	be	on	different	continents!

Instead,	you	communicate	at	layer	3,	using	the	IP	and	higher-layer	protocols
such	as	the	Transmission	Control	Protocol	(TCP)	and	Hypertext	Transfer
Protocol	(HTTP).	Your	request	is	routed	from	your	home	machine,	through	a
sequence	of	routers	to	the	server	at	The	TCP/IP	Guide,	and	the	response	is
routed	back	to	you.	The	communication	is,	logically,	at	layers	3	and	above;	you
send	the	request	not	to	the	MAC	address	of	the	server's	network	card,	but	rather
to	the	server's	IP	address.

However,	though	you	can	virtually	connect	devices	at	layer	3,	these	connections
are	really	conceptual	only.	When	you	send	a	request	using	IP,	it	is	sent	one	hop
at	a	time,	from	one	physical	network	to	the	next.	At	each	of	these	hops,	an	actual
transmission	occurs	at	the	physical	and	data	link	layers.	When	your	request	is
sent	to	your	local	router	at	layer	3,	the	actual	request	is	encapsulated	in	a	frame
using	whatever	method	you	physically	connect	to	the	router,	and	then	passed	to
the	router	using	its	data	link	layer	address.	The	same	happens	for	each
subsequent	step,	until	finally,	the	router	nearest	the	destination	sends	to	the
destination	using	its	data	link	(MAC)	address.	This	is	illustrated	in	Figure	13-1.

http://www.tcpipguide.com


Figure	13-1.	Why	address	resolution	is	necessary	Even	though	conceptually	the	client	and	server	are
directly	connected	at	layer	3,	in	reality,	information	passing	between	them	goes	over	multiple	layer	2
links.	In	this	example,	a	client	on	the	local	network	is	accessing	a	server	somewhere	on	the	Internet.
Logically,	this	connection	can	be	made	directly	between	the	client	and	server,	but	in	reality,	it	is	a

sequence	of	physical	links	at	layer	2.	In	this	case,	there	are	six	such	links,	most	of	them	between	routers
that	lie	between	the	client	and	server.	At	each	step,	the	decision	of	where	to	send	the	data	is	made	based
on	a	layer	3	address,	but	the	actual	transmission	must	be	performed	using	the	layer	2	address	of	the	next

intended	recipient	in	the	route.

The	basic	problem	is	that	IP	addresses	are	at	too	high	of	a	level	for	the	physical
hardware	on	networks	to	deal	with;	they	don't	understand	what	they	are.	When
your	request	shows	up	at	the	router	that	connects	to	The	TCP/IP	Guide,	it	can
see	the	http://www.tcpipguide.com	server's	IP	address,	but	that	isn't	helpful:	It
needs	to	send	to	server's	MAC	address.

The	identical	issue	exists	even	with	communication	between	devices	on	a	LAN.
Even	if	the	web	server	is	sitting	on	the	same	desk	as	the	client,	the
communication	is	logically	at	the	IP	layer,	but	must	also	be	accomplished	at	the
data	link	layer.	This	means	you	need	a	way	of	translating	between	the	addresses
at	these	two	layers.	This	process	is	called	address	resolution.

TIP

KEY	CONCEPT	Address	resolution	is	required	because	internetworked	devices	communicate	logically
using	layer	3	addresses,	but	the	actual	transmissions	between	devices	take	place	using	layer	2	(hardware)
addresses.

http://www.tcpipguide.com


General	Address	Resolution	Methods
In	fact,	not	only	do	you	need	to	have	a	way	of	making	this	translation,	but	you
need	to	be	concerned	with	the	manner	in	which	it	is	done.	Since	the	translation
occurs	for	each	hop	of	every	datagram	sent	over	an	internetwork,	the	efficiency
of	the	process	is	extremely	important.	You	don't	want	to	use	a	resolution	method
that	takes	a	lot	of	network	resources.

Address	resolution	can	be	accomplished	in	two	basic	ways:	direct	mapping	and
dynamic	resolution.

NOTE

By	necessity,	it	is	not	possible	to	have	a	fully	general	address	resolution	method	that	works
automatically.	Since	it	deals	with	linking	data	link	layer	addresses	to	network	layer	addresses,	the
implementation	must	be	specific	to	the	technologies	used	in	each	of	these	layers.	The	only	method	that
could	really	be	considered	generic	would	be	the	use	of	static,	manually	updated	tables	that	say,	link	this
layer	3	address	to	this	layer	2	address."	This,	of	course,	is	not	automatic	and	brings	with	it	all	the
limitations	of	manual	configuration.

Address	Resolution	Through	Direct	Mapping
Network	layer	addresses	must	be	resolved	into	data	link	layer	addresses
numerous	times	during	the	travel	of	each	datagram	across	an	internetwork.	You
therefore	want	the	process	to	be	as	simple	and	efficient	as	possible.	The	easiest
method	of	accomplishing	this	is	to	do	direct	mapping	between	the	two	types	of
addresses.

How	Direct	Mapping	Works
In	the	direct	mapping	technique,	a	formula	is	used	to	map	the	higher-layer
address	into	the	lower-layer	address.	This	is	the	simpler	and	more	efficient
technique,	but	it	has	some	limitations,	especially	regarding	the	size	of	the	data
link	layer	address	compared	to	the	network	layer	address.

The	basic	idea	behind	direct	mapping	is	to	choose	a	scheme	for	layer	2	and	layer
3	addresses	so	that	you	can	determine	one	from	the	other	using	a	simple
algorithm.	This	enables	you	to	take	the	layer	3	address	and	follow	a	short
procedure	to	convert	it	into	a	layer	2	address.	In	essence,	whenever	you	have	the
layer	3	address,	you	already	have	the	layer	2	address.



The	simplest	example	of	direct	mapping	would	be	if	you	used	the	same	structure
and	semantics	for	both	data	link	and	network	layer	addresses.	This	is	generally
impractical,	because	the	two	types	of	addresses	serve	different	purposes,	and	are
therefore	based	on	incompatible	standards.	However,	you	can	still	perform	direct
mapping	if	you	have	the	flexibility	of	creating	layer	3	addresses	that	are	large
enough	to	encode	a	complete	data	link	layer	address	within	them.	Then
determining	the	layer	2	address	is	a	simply	matter	of	selecting	a	certain	portion
of	the	layer	3	address.

As	an	example,	consider	a	simple	LAN	technology	like	ARCNet.	It	uses	a	short,
8-bit	data	link	layer	address,	with	valid	values	of	1	to	255,	which	can	be	assigned
by	an	administrator.	You	could	easily	set	up	an	IP	network	on	such	a	LAN	by
taking	a	Class	C	network	and	using	the	ARCNet	data	link	layer	as	the	last	octet.
So,	if	the	network	was,	for	example,	222.101.33.0,	you	could	assign	the	IP
address	222.101.33.1	to	the	device	with	ARCNet	address	#1,	the	IP	address
222.101.33.29	to	the	device	with	ARCNet	address	#29,	and	so	forth,	as	shown	in
Figure	13-2.

Figure	13-2.	Address	resolution	through	direct	mapping	With	a	small	hardware	address	size,	you	can
easily	map	each	hardware	address	to	a	layer	3	address.	As	you	can	see	in	this	figure,	when	the	hardware
address	is	small,	it	is	easy	to	define	a	mapping	that	directly	corresponds	to	a	portion	of	a	layer	3	address.
In	this	example,	an	8-bit	MAC	address,	such	as	the	one	used	for	ARCNet,	is	mapped	to	the	last	byte	of

the	device's	IP	address,	thereby	making	address	resolution	a	trivial	matter.

The	appeal	of	this	system	is	obvious.	Conceptually,	it	is	trivial	to	understand—to
get	the	hardware	address	for	a	device,	you	just	use	the	final	eight	bits	of	the	IP
address.	It's	also	very	simple	to	program	devices	to	perform,	and	highly	efficient,
requiring	no	exchange	of	data	on	the	network	at	all.



TIP

KEY	CONCEPT	When	the	layer	2	address	is	smaller	than	the	layer	3	address,	it	is	possible	to	define	a
direct	mapping	between	them	so	that	the	hardware	address	can	be	determined	directly	from	the	network
layer	address.	This	makes	address	resolution	extremely	simple,	but	reduces	flexibility	in	how	addresses
are	assigned.

Problems	with	Direct	Mapping
Unfortunately,	direct	mapping	works	only	when	it	is	possible	to	express	the	data
link	layer	address	as	a	function	of	the	network	layer	address.	Consider	instead
the	same	IP	address,	222.101.33.29,	which	is	running	on	an	Ethernet	network.
Here,	the	data	link	layer	addresses	are	hardwired	into	the	hardware	itself	(they
can	sometimes	be	overridden,	but	usually	this	is	not	done).	More	important,	the
MAC	address	is	48	bits	wide,	not	8.	This	means	the	layer	2	address	is	bigger
than	the	layer	3	address,	and	there	is	no	way	to	do	direct	mapping,	as	Figure	13-
3	illustrates.	As	you	can	see,	when	the	layer	2	address	is	larger	in	size	than	the
layer	3	address,	it	is	not	possible	to	define	a	mapping	between	them	that	can	be
used	for	address	resolution.

Figure	13-3.	Address	resolution	problems	with	large	hardware	address	size	Direct	mapping	is
impossible	when	the	layer	2	address	is	larger	in	size	than	the	layer	3	address.

NOTE

When	the	hardware	address	size	exceeds	the	network	layer	address	size,	you	could	do	a	partial	mapping.
For	example,	you	could	use	the	IP	address	to	get	part	of	the	MAC	address	and	hope	you	don't	have	any
duplication	in	the	bits	you	didn't	use.	This	method	is	not	well	suited	to	regular	transmissions,	but	is	used
for	resolving	multicast	addresses	in	IPv4	to	Ethernet	addresses.	You'll	see	how	this	is	done	near	the	end



of	the	chapter.

In	general,	then,	direct	mapping	is	not	possible	when	the	layer	3	address	is
smaller	than	the	layer	2	address.	Consider	that	Ethernet	is	the	most	popular
technology	at	layer	2	and	uses	a	48-bit	address,	and	IP	is	the	most	popular
technology	at	layer	3	and	uses	a	32-bit	address.	This	is	one	reason	why	direct
mapping	is	a	technique	that	is	not	widely	used.

What	about	the	next	generation	of	IP?	IPv6	supports	massive	128-bit	addresses
(see	Chapter	25).	Furthermore,	regular	(unicast)	addresses	are	even	defined
using	a	method	that	creates	them	from	data	link	layer	addresses	using	a	special
mapping.	This	would,	in	theory,	allow	IPv6	to	use	direct	mapping	for	address
resolution.

However,	the	decision	was	made	to	have	IPv6	use	dynamic	resolution	just	as
IPv4	does.	One	reason	might	be	historical,	since	IPv4	uses	dynamic	resolution.
However,	the	bigger	reason	is	probably	due	to	a	disadvantage	of	direct	mapping:
its	inflexibility.	Dynamic	resolution	is	a	more	generalized	solution,	because	it
allows	data	link	layer	and	network	layer	addresses	to	be	independent,	and	its
disadvantages	can	be	mostly	neutralized	through	careful	implementation,	as	you
will	see.

In	fact,	evidence	for	this	can	be	seen	in	the	fact	that	dynamic	resolution	of	IP	is
defined	on	ARCNet,	the	example	I	just	used.	You	could	do	direct	mapping	there,
but	it	restricts	you	to	a	certain	pattern	of	IP	addressing	that	reduces	flexibility.

Dynamic	Address	Resolution
You	just	saw	that	direct	mapping	provides	a	simple	and	highly	efficient	means	of
resolving	network	layer	addresses	into	data	link	layer	addresses.	Unfortunately,
it	is	a	technique	that	you	either	cannot	or	should	not	use	in	a	majority	of	cases.
You	cannot	use	it	when	the	size	of	the	data	link	layer	address	is	larger	than	that
of	the	network	layer	address.	You	shouldn't	use	it	when	you	need	flexibility,
because	direct	mapping	requires	you	to	make	layer	3	and	layer	2	addresses
correspond.

The	alternative	to	direct	mapping	is	a	technique	called	dynamic	address
resolution.	This	uses	a	special	protocol	that	allows	a	device	with	only	an	IP



address	to	determine	the	corresponding	data	link	layer	address,	even	if	the	two
address	types	take	completely	different	forms.	This	is	normally	done	by
interrogating	one	or	more	other	devices	on	a	local	network	to	determine	what
data	link	layer	address	corresponds	to	a	given	IP	address.	This	is	more	complex
and	less	efficient	than	direct	mapping,	but	it's	more	flexible.

How	Dynamic	Addressing	Works
To	understand	how	dynamic	addressing	works,	you	can	consider	a	simple
analogy.	I'm	sure	you've	seen	a	limousine	driver	who	is	waiting	to	pick	up	a
person	at	the	airport.	(Well,	you've	seen	it	in	a	movie,	haven't	you?)	This	is
similar	to	the	problem	here:	The	driver	knows	the	name	of	the	person	who	will
be	transported,	but	not	the	person's	face	(a	type	of	"local	address"	in	a	manner	of
speaking!).	To	find	the	person,	the	driver	holds	up	a	card	bearing	that	person's
name.	Everyone	other	than	that	person	ignores	the	card,	but	the	named
individual	should	recognize	it	and	approach	the	driver.

You	do	the	same	thing	with	dynamic	address	resolution	in	a	network.	Let's	say
that	Device	A	wants	to	send	to	Device	B	but	knows	only	Device	B's	network
layer	address	(its	"name")	and	not	its	data	link	layer	address	(its	"face").	It
broadcasts	a	layer	2	frame	containing	the	layer	3	address	of	Device	B—this	is
like	holding	up	the	card	with	someone's	name	on	it.	The	devices	other	than
Device	B	don't	recognize	this	layer	3	address	and	ignore	it.	Device	B,	however,
knows	its	own	network	layer	address.	It	recognizes	this	in	the	broadcast	frame
and	sends	a	direct	response	back	to	Device	A.	This	tells	Device	A	what	Device
B's	layer	2	address	is,	and	the	resolution	is	complete.	Figure	13-4	illustrates	the
process.

TIP

KEY	CONCEPT	Dynamic	address	resolution	is	usually	implemented	using	a	special	protocol.	A	device
that	knows	only	the	network	layer	address	of	another	device	can	use	this	protocol	to	request	the	other
device's	hardware	address.



Figure	13-4.	Dynamic	address	resolution	The	device	that	wants	to	send	data	broadcasts	a	request	asking
for	a	response	with	a	hardware	address	from	the	other	device.	Device	A	needs	to	send	data	to	Device	B,
but	knows	only	its	IP	address	(IPB)	and	not	its	hardware	address.	Device	A	broadcasts	a	request	asking
to	be	sent	the	hardware	address	of	the	device	using	the	IP	address	IPB.	Device	B	responds	back	to

Device	A	directly	with	the	hardware	address.

Direct	mapping	is	very	simple,	but	as	you	can	see,	dynamic	resolution	isn't
exactly	rocket	science	either!	It's	a	simple	technique	that	is	easily	implemented.
Furthermore,	it	removes	the	restrictions	associated	with	direct	mapping.	There	is
no	need	for	any	specific	relationship	between	the	network	layer	address	and	the
data	link	layer	address;	they	can	have	a	completely	different	structure	and	size.

There	is	one	nagging	issue	though:	the	efficiency	problem.	Where	direct
mapping	involves	a	quick	calculation,	dynamic	resolution	requires	you	to	use	a
protocol	to	send	a	message	over	the	network.	Fortunately,	there	are	techniques
that	you	can	employ	to	remove	some	of	the	sting	of	this	cost	through	careful
implementation.

Dynamic	Address	Resolution	Caching	and	Efficiency
Issues
You've	now	seen	how	dynamic	address	resolution	removes	the	restrictions	that
you	saw	in	direct	mapping,	thereby	allowing	you	to	easily	associate	layer	2	and
layer	3	addresses	of	any	size	or	structure.	The	only	problem	with	it	is	that	each
address	resolution	requires	you	to	send	an	extra	message	that	would	not	be
required	in	direct	mapping.	Worse	yet,	since	you	don't	know	the	layer	2	identity
of	the	recipient,	you	must	use	a	broadcast	message	(or	at	least	a	multicast),



which	means	that	many	devices	on	the	local	network	must	take	resources	to
examine	the	data	frame	and	check	which	IP	address	is	being	resolved.

Sure,	sending	one	extra	message	may	not	seem	like	that	big	of	a	deal,	and	the
frame	doesn't	have	to	be	very	large	since	it	contains	only	a	network	layer	address
and	some	control	information.	However,	when	you	have	to	do	this	for	every	hop
of	every	datagram	transmission,	the	overhead	really	adds	up.	For	this	reason,
while	basic	dynamic	address	resolution	is	simple	and	functional,	it's	usually	not
enough.	You	must	add	some	intelligence	to	the	implementation	of	address
resolution	in	order	to	reduce	the	impact	on	the	performance	of	continual	address
resolutions.

Consider	that	most	devices	on	a	local	network	send	to	only	a	small	handful	of
other	physical	devices	and	tend	to	do	so	over	and	over	again.	This	is	a
phenomenon	known	as	locality	of	reference,	which	is	observed	in	a	variety	of
different	areas	in	the	computing	field.	If	you	send	a	request	to	an	Internet
website	from	your	office	PC,	it	will	need	to	go	first	to	your	company	network's
local	router,	so	you	will	need	to	resolve	the	router's	layer	2	address.	If	you	later
click	a	link	on	that	site,	that	request	will	also	need	to	go	to	the	router.	In	fact,
almost	everything	you	do	off	your	local	network	probably	goes	first	to	that	same
router	(commonly	called	a	default	gateway).	Having	to	do	a	fresh	resolution	each
time	would	be,	well,	stupid.	It	would	be	like	having	to	look	up	the	phone	number
of	your	best	friend	every	time	you	want	to	call	to	say	hello.

To	avoid	being	accused	of	making	address	resolution	protocols	that	are,	well,
stupid,	designers	always	include	a	caching	mechanism.	After	a	device's	network
layer	address	is	resolved	to	a	data	link	layer	address,	the	link	between	the	two	is
kept	in	the	memory	of	the	device	for	a	period	of	time.	When	it	needs	the	layer	2
address	the	next	time,	the	device	just	does	a	quick	lookup	in	its	cache.	This
means	that	instead	of	doing	a	broadcast	on	every	datagram,	you	do	it	only	once
for	a	whole	sequence	of	datagrams.

Caching	is	by	far	the	most	important	performance-enhancing	tool	in	dynamic
resolution.	It	transforms	what	would	otherwise	be	a	very	wasteful	process	into
one	that,	most	of	the	time,	is	no	less	efficient	than	direct	mapping.	It	does,
however,	add	complexity.	The	cache	table	entries	must	be	maintained.	There	is
also	the	problem	that	the	information	in	the	table	may	become	stale	over	time.



What	happens	if	you	change	the	network	layer	address	or	the	data	link	layer
address	of	a	device?	For	this	reason,	cache	entries	must	be	set	to	expire
periodically.	The	discussion	of	caching	in	TCP/IP's	ARP	later	in	this	chapter
shows	some	of	the	particulars	of	how	these	issues	are	handled.

Other	Enhancements	to	Dynamic	Resolution
Other	enhancements	are	also	possible	to	the	basic	dynamic	resolution	scheme.
Let's	consider	again	our	example	of	sending	a	request	to	the	Internet.	You	send	a
request	that	needs	to	go	to	the	local	router,	so	you	resolve	its	address	and	send	it
the	request.	A	moment	later,	the	reply	comes	back	to	the	router	to	be	sent	to	you,
so	the	router	needs	your	address.	Thus,	it	would	have	to	do	a	dynamic	resolution
on	you,	even	though	you	just	exchanged	frames.	Again,	this	is	stupid.	Instead,
you	can	improve	efficiency	through	cross-resolution;	when	Device	A	resolves
the	address	of	Device	B,	Device	B	also	adds	the	entry	for	Device	A	to	its	cache.

Another	improvement	can	be	made,	too.	If	you	think	about	it,	the	devices	on	a
local	network	are	going	to	talk	to	each	other	fairly	often,	even	if	they	aren't
chatting	right	now.	If	Device	A	is	resolving	Device	B's	network	layer	address,	it
will	broadcast	a	frame	that	Devices	C,	D,	E,	and	so	on	all	see.	Why	not	have
them	also	update	their	cache	tables	with	resolution	information	that	they	see,	for
future	use?

These	and	other	enhancements	all	serve	to	cut	down	on	the	efficiency	problems
with	dynamic	address	resolution.	They	combine	to	make	dynamic	resolution
close	enough	to	direct	mapping	in	overall	capability	that	there	is	no	good	reason
not	to	use	it.	Once	again,	you	can	see	some	more	particulars	of	this	in	the	section
that	describes	ARP's	caching	feature.

Incidentally,	one	other	performance-improving	idea	sometimes	comes	up	during
this	discussion:	Instead	of	preceding	a	datagram	transmission	with	an	extra
broadcast	step	for	address	resolution,	why	not	just	broadcast	the	datagram	and	be
done	with	it?	You	actually	could	do	this,	and	if	the	datagram	were	small	enough,
it	would	be	more	efficient.	Usually,	though,	datagrams	are	large,	while
resolution	frames	can	be	quite	compact;	it	makes	sense	to	do	a	small	broadcast
and	then	a	large	unicast	rather	than	a	large	broadcast.	Also,	suppose	you	did
broadcast	this	one	datagram.	What	about	the	next	datagram	and	the	one	after
that?	Each	of	these	would	then	need	to	be	broadcast	also.	When	you	do	a



resolution	with	caching,	you	need	to	broadcast	only	once	in	a	while,	instead	of
continually.



TCP/IP	Address	Resolution	Protocol	(ARP)
ARP	is	a	full-featured,	dynamic	resolution	protocol	used	to	match	IP	addresses
to	underlying	data	link	layer	addresses.	Originally	developed	for	Ethernet,	it	has
now	been	generalized	to	allow	IP	to	operate	over	a	wide	variety	of	layer	2
technologies.

NOTE

The	Address	Resolution	Protocol	described	here	is	used	for	resolving	unicast	addresses	in	version	4	of
the	Internet	Protocol	(IPv4).	Multicast	addresses	under	IPv4	use	a	direct	mapping	method,	and	IPv6	uses
the	new	Neighbor	Discovery	(ND)	Protocol	instead	of	ARP.	These	methods	are	both	discussed	near	the
end	of	this	chapter.

TIP

RELATED	INFORMATION	For	a	discussion	of	ARP-related	issues	in	networks	with	mobile	IP
devices,	see	Chapter	30.

TIP

RELATED	INFORMATION	The	software	application	arp,	which	is	used	to	administer	the	TCP/IP
ARP	implementation	on	a	host,	is	covered	in	Chapter	88.

Physical	networks	function	at	layers	1	and	2	of	the	OSI	Reference	Model	and
use	data	link	layer	addresses.	In	contrast,	internetworking	protocols	function	at
layer	3,	interconnecting	these	physical	networks	to	create	a	possibly	huge
internetwork	of	devices	specified	using	network	layer	addresses.	Address
resolution	is	the	process	whereby	network	layer	addresses	are	resolved	into	data
link	layer	addresses.	This	permits	data	to	be	sent	one	hop	at	a	time	across	an
internetwork.

The	problem	of	address	resolution	was	apparent	from	the	very	start	in	the
development	of	the	TCP/IP	protocol	suite.	Much	of	the	early	development	of	IP
was	performed	on	the	then-fledgling	Ethernet	LAN	technology;	this	was	even
before	Ethernet	had	been	officially	standardized	as	IEEE	802.3.	It	was	necessary
to	define	a	way	to	map	IP	addresses	to	Ethernet	addresses	to	allow
communication	over	Ethernet	networks.



As	we	have	already	seen	in	this	chapter,	there	are	two	basic	methods	to	correlate
IP	and	Ethernet	addresses:	direct	mapping	or	dynamic	resolution.	However,
Ethernet	addresses	are	48	bits	long,	while	IP	addresses	are	only	32	bits,	which
immediately	rules	out	direct	mapping.	Furthermore,	the	designers	of	IP	wanted
the	flexibility	that	results	from	using	the	dynamic	resolution	model.	To	this	end,
they	developed	the	TCP/IP	Address	Resolution	Protocol	(ARP).	This	protocol	is
described	in	one	of	the	earliest	of	the	Internet	RFCs	still	in	common	use:	RFC
826,	"An	Ethernet	Address	Resolution	Protocol,"	which	was	published	in	1982.

The	name	makes	clear	that	ARP	was	originally	developed	for	Ethernet.	Thus,	it
represents	a	nexus	between	the	most	popular	layer	2	LAN	protocol	and	the	most
popular	layer	3	internetworking	protocol.	This	is	true	even	two	decades	later.
However,	it	was	also	obvious	from	the	beginning	that	even	though	Ethernet	was
a	very	common	way	of	transporting	IP,	it	would	not	be	the	only	one.	Therefore,
ARP	was	made	a	general	protocol	that	was	capable	of	resolving	addresses	from
IP	to	Ethernet	as	well	as	numerous	other	data	link	layer	technologies.

The	basic	operation	of	ARP	involves	encoding	the	IP	address	of	the	intended
recipient	in	a	broadcast	message.	It	is	sent	on	a	local	network	to	allow	the
intended	recipient	of	an	IP	datagram	to	respond	to	the	source	with	its	data	link
layer	address.	This	is	done	using	a	simple	request	and	reply	method.	A	special
format	is	used	for	ARP	messages,	which	are	passed	down	to	the	local	data	link
layer	for	transmission.

TIP

KEY	CONCEPT	ARP	was	developed	to	facilitate	dynamic	address	resolution	between	IP	and	Ethernet
and	can	now	be	used	on	other	layer	2	technologies	as	well.	It	works	by	allowing	an	IP	device	to	send	a
broadcast	on	the	local	network,	and	it	requests	a	response	with	a	hardware	address	from	another	device
on	the	same	local	network.

This	basic	operation	is	supplemented	by	methods	to	improve	performance.	Since
it	was	known	from	the	start	that	having	to	perform	a	resolution	using	broadcast
for	each	datagram	was	ridiculously	inefficient,	ARP	has	always	used	a	cache,
where	it	keeps	bindings	between	IP	addresses	and	data	link	layer	addresses	on
the	local	network.	Over	time,	various	techniques	have	been	developed	to
improve	the	methods	used	for	maintaining	cache	entries.	Refinements	and
additional	features,	such	as	support	for	cross-resolution	by	pairs	of	devices	as



additional	features,	such	as	support	for	cross-resolution	by	pairs	of	devices	as
well	as	proxy	ARP,	have	also	been	defined	over	the	years	and	added	to	the	basic
ARP	feature	set.

ARP	Address	Specification	and	General
Operation
An	ARP	transaction	begins	when	a	source	device	on	an	IP	network	has	an	IP
datagram	to	send.	It	must	first	decide	whether	the	destination	device	is	on	the
local	network	or	a	distant	network.	If	it's	the	former,	it	will	send	directly	to	the
destination;	if	it's	the	latter,	it	will	send	the	datagram	to	one	of	the	routers	on	the
physical	network	for	forwarding.	Either	way,	it	will	determine	the	IP	address	of
the	device	that	needs	to	be	the	immediate	destination	of	its	IP	datagram	on	the
local	network.	After	packaging	the	datagram	it	will	pass	it	to	its	ARP	software
for	address	resolution.

The	basic	operation	of	ARP	is	a	request	and	response	pair	of	transmissions	on
the	local	network.	The	source	(the	one	that	needs	to	send	the	IP	datagram)
transmits	a	broadcast	containing	information	about	the	destination	(the	intended
recipient	of	the	datagram).	The	destination	then	responds	via	unicast	back	to	the
source,	telling	the	source	the	hardware	address	of	the	destination.

ARP	Message	Types	and	Address	Designations
The	terms	source	and	destination	apply	to	the	same	devices	throughout	the
transaction.	However,	there	are	two	different	messages	sent	in	ARP:	one	from
the	source	to	the	destination	and	one	from	the	destination	to	the	source.	For	each
ARP	message,	the	sender	is	the	one	that	is	transmitting	the	message	and	the
target	is	the	one	receiving	it.	Thus,	the	identity	of	the	sender	and	target	changes
for	each	message.	Here's	how	the	sender	and	target	identities	work	for	requests
and	replies:

Request	For	the	initial	request,	the	sender	is	the	source	(the	device	with	the	IP
datagram	to	send),	and	the	target	is	the	destination.

Reply	For	the	reply	to	the	ARP	request,	the	sender	is	the	destination.	It	replies	to
the	source,	which	becomes	the	target.

Each	of	the	two	parties	in	any	message	has	two	addresses	(layer	2	and	layer	3)	to
be	concerned	with,	so	the	following	four	different	addresses	are	involved	in	each



message:

Sender	Hardware	Address	The	layer	2	address	of	the	sender	of	the	ARP
message.

Sender	Protocol	Address	The	layer	3	(IP)	address	of	the	sender	of	the	ARP
message.

Target	Hardware	Address	The	layer	2	address	of	the	target	of	the	ARP
message.

Target	Protocol	Address	The	layer	3	(IP)	address	of	the	target.

These	addresses	each	have	a	position	in	the	ARP	message	format,	which	we'll
examine	shortly.

ARP	General	Operation
With	that	background	in	place,	let's	look	at	the	steps	that	occur	in	an	ARP
transaction.	(These	steps	are	also	shown	graphically	in	the	illustration	in
Figure	13-5.)	This	diagram	shows	the	sequence	of	steps	that	occur	in	a	typical
ARP	transaction,	as	well	as	the	message	exchanges	between	a	source	and
destination	device,	and	the	cache	checking	and	update	functions.	(Incidentally,
those	little	stacks	are	hard	disks,	not	cans	of	soup!)

1.	 Source	Device	Checks	Cache	The	source	device	will	first	check	its	cache
to	determine	if	it	already	has	a	resolution	of	the	destination	device.	If	so,	it
can	skip	to	step	9.

2.	 Source	Device	Generates	ARP	Request	Message	The	source	device
generates	an	ARP	Request	message.	It	puts	its	own	data	link	layer	address
as	the	Sender	Hardware	Address	and	its	own	IP	address	as	the	Sender
Protocol	Address.	It	fills	in	the	IP	address	of	the	destination	as	the	Target
Protocol	Address.	(It	must	leave	the	Target	Hardware	Address	blank,	since
that	it	is	what	it	is	trying	to	determine!)

3.	 Source	Device	Broadcasts	ARP	Request	Message	The	source	broadcasts
the	ARP	Request	message	on	the	local	network.



Figure	13-5.	Address	Resolution	Protocol	(ARP)	transaction	process	ARP	works	by	having	the
source	device	broadcast	a	request	to	find	the	destination,	which	responds	using	a	reply	message.

ARP	caches	are	also	consulted	and	updated	as	needed.

4.	 Local	Devices	Process	ARP	Request	Message	The	message	is	received
by	each	device	on	the	local	network.	It	is	processed,	with	each	device
looking	for	a	match	on	the	Target	Protocol	Address.	Those	that	do	not
match	will	drop	the	message	and	take	no	further	action.

5.	 Destination	Device	Generates	ARP	Reply	Message	The	one	device
whose	IP	address	matches	the	contents	of	the	Target	Protocol	Address	of
the	message	will	generate	an	ARP	Reply	message.	It	takes	the	Sender
Hardware	Address	and	Sender	Protocol	Address	fields	from	the	ARP
Request	message	and	uses	these	as	the	values	for	the	Target	Hardware
Address	and	Target	Protocol	Address	of	the	reply.	It	then	fills	in	its	own
layer	2	address	as	the	Sender	Hardware	Address	and	its	IP	address	as	the
Sender	Protocol	Address.	Other	fields	are	filled	in,	as	explained	in	the
description	of	the	ARP	message	format	in	the	following	section.

6.	 Destination	Device	Updates	ARP	Cache	If	the	source	needs	to	send	an	IP
datagram	to	the	destination	now,	it	makes	sense	that	the	destination	will
probably	need	to	send	a	response	to	the	source	at	some	point	soon.	(After
all,	most	communication	on	a	network	is	bidirectional.)	Next,	as	an



optimization,	the	destination	device	will	add	an	entry	to	its	own	ARP	cache
that	contains	the	hardware	and	IP	addresses	of	the	source	that	sent	the	ARP
Request.	This	saves	the	destination	from	needing	to	do	an	unnecessary
resolution	cycle	later	on.

7.	 Destination	Device	Sends	ARP	Reply	Message	The	destination	device
sends	the	ARP	Reply	message.	This	reply	is,	however,	sent	unicast	to	the
source	device,	because	there	is	no	need	to	broadcast	it.

8.	 Source	Device	Processes	ARP	Reply	Message	The	source	device
processes	the	reply	from	the	destination.	It	stores	the	Sender	Hardware
Address	as	the	layer	2	address	of	the	destination	and	uses	that	address	for
sending	its	IP	datagram.

9.	 Source	Device	Updates	ARP	Cache	The	source	device	uses	the	Sender
Protocol	Address	and	Sender	Hardware	Address	to	update	its	ARP	cache
for	use	in	the	future	when	transmitting	to	this	device.

TIP

KEY	CONCEPT	ARP	is	a	relatively	simple	request-and-reply	protocol.	The	source	device	broadcasts
an	ARP	Request	that's	looking	for	a	particular	device	based	on	the	device's	IP	address.	That	device
responds	with	its	hardware	address	in	an	ARP	Reply	message.

Note	that	this	description	goes	a	bit	beyond	the	basic	steps	in	address	resolution,
because	two	enhancements	are	mentioned.	One	is	caching,	which	you'll	explore
shortly.	The	other	is	cross-resolution	(described	earlier	in	this	chapter	in	the
overview	of	caching	issues	in	dynamic	resolution),	which	is	step	6	of	the
process.	This	is	why	the	source	device	includes	its	IP	address	in	the	request.	It
isn't	really	needed	for	any	other	reason,	so	you	can	see	that	this	feature	was	built
into	ARP	from	the	start.

ARP	Message	Format
You've	just	seen	how	address	resolution	is	accomplished	in	ARP,	through	an
exchange	of	messages	between	the	source	device	seeking	to	perform	the
resolution	and	the	destination	device	that	responds	to	it.	As	with	other	protocols,
a	special	message	format	is	used	for	containing	the	information	required	for	each
step	of	the	resolution	process.



ARP	messages	use	a	relatively	simple	format.	It	includes	a	field	describing	the
type	of	message	(its	operational	code	or	opcode)	and	information	on	both	layer	2
and	layer	3	addresses.	In	order	to	support	addresses	that	may	be	of	varying
length,	the	format	specifies	the	type	of	protocol	used	at	both	layer	2	and	layer	3,
as	well	as	the	length	of	the	addresses	used	at	each	of	these	layers.	It	then
includes	space	for	all	four	of	the	address	combinations	described	earlier	in	this
chapter:	Sender	Hardware	Address,	Sender	Protocol	Address,	Target	Hardware
Address,	and	Target	Protocol	Address.

The	format	used	for	ARP	messages	is	described	in	Table	13-1.	Figure	13-6
shows	how	the	ARP	message	format	is	designed	to	accommodate	layer	2	and
layer	3	addresses	of	various	sizes.	This	diagram	shows	the	most	common
implementation,	which	uses	32	bits	for	the	layer	3	("Protocol")	addresses	and	48
bits	for	the	layer	2	hardware	addresses.	These	numbers	correspond	to	the	address
sizes	of	the	IPv4	and	IEEE	802	MAC	addresses	that	are	used	by	Ethernet.

Table	13-1.	ARP	Message	Format

Field
Name

Size
(Bytes)

Description

HRD 2 Hardware	Type:	This	field	specifies	the	type	of	hardware	used	for	the	local
network	transmitting	the	ARP	message;	thus,	it	also	identifies	the	type	of
addressing	used.	Some	of	the	most	common	values	for	this	field	are	shown
in	Table	13-2.

PRO 2 Protocol	Type:	This	field	is	the	complement	of	the	Hardware	Type	field,
specifying	the	type	of	layer	3	addresses	used	in	the	message.	For	IPv4
addresses,	this	value	is	2048	(0800	hex),	which	corresponds	to	the
EtherType	code	for	IP.

HLN 1 Hardware	Address	Length:	Specifies	how	long	hardware	addresses	are	in
this	message.	For	Ethernet	or	other	networks	using	IEEE	802	MAC
addresses,	the	value	is	6.

PLN 1 Protocol	Address	Length:	Again,	the	complement	of	the	preceding	field;
specifies	how	long	protocol	(layer	3)	addresses	are	in	this	message.	For
IPv4	addresses,	this	value	is	4.

OP 2 Opcode:	This	field	specifies	the	nature	of	the	ARP	message	being	sent.	The
first	two	values	(1	and	2)	are	used	for	regular	ARP.	Numerous	other	values
are	also	defined	to	support	other	protocols	that	use	the	ARP	frame	format,
such	as	RARP,	as	shown	in	Table	13-3.	Some	protocols	are	more	widely



such	as	RARP,	as	shown	in	Table	13-3.	Some	protocols	are	more	widely
used	than	others.

SHA Variable,
equals
value	in
HLN
field

Sender	Hardware	Address:	The	hardware	(layer	2)	address	of	the	device
sending	this	message,	which	is	the	IP	datagram	source	device	on	a	request,
and	the	IP	datagram	destination	on	a	reply.

SPA Variable,
equals
value	in
PLN
field

Sender	Protocol	Address:	The	IP	address	of	the	device	sending	this
message.

THA Variable,
equals
value	in
HLN
field

Target	Hardware	Address:	The	hardware	(layer	2)	address	of	the	device	this
message	is	being	sent	to.	This	is	the	IP	datagram	destination	device	on	a
request,	and	the	IP	datagram	source	on	a	reply.

TPA Variable,
equals
value	in
PLN
field

Target	Protocol	Address:	The	IP	address	of	the	device	this	message	is	being
sent	to.

Table	13-2.	ARP	Hardware	Type	(HRD)	Field	Values

Hardware	Type	(HRD)	Value Hardware	Type

1 Ethernet	(10	Mb)

6 IEEE	802	Networks

7 ARCNeT

15 Frame	Relay

16 Asynchronous	Transfer	Mode	(ATM)

17 HDLC

18 Fibre	Channel

19 Asynchronous	Transfer	Mode	(ATM)



20 Serial	Line

Table	13-3.	ARP	Opcode	(OP)	Field	Values

Opcode ARP	Message	Type

1 ARP	Request

2 ARP	Reply

3 RARP	Request

4 RARP	Reply

5 DRARP	Request

6 DRARP	Reply

7 DRARP	Error

8 InARP	Request

9 InARP	Reply

Figure	13-6.	ARP	message	format

Once	the	ARP	message	has	been	composed,	it	is	passed	down	to	the	data	link
layer	for	transmission.	The	entire	contents	of	the	ARP	message	become	the
payload	for	the	message	actually	sent	on	the	network,	such	as	an	Ethernet	frame
on	an	Ethernet	LAN.	Note	that	the	total	size	of	the	ARP	message	is	variable,
since	the	address	fields	are	of	variable	length.	Normally,	though,	these	messages
are	quite	small.	For	example,	they	are	only	28	bytes	for	a	network	carrying	IPv4



datagrams	in	IEEE	802	MAC	addresses.

ARP	Caching
ARP	is	a	dynamic	resolution	protocol,	which	means	that	every	resolution
requires	the	interchange	of	messages	on	the	network.	Each	time	a	device	sends
an	ARP	message,	it	ties	up	the	local	network,	consuming	network	bandwidth
that	cannot	be	used	for	other	traffic.	ARP	messages	aren't	large,	but	having	to
send	them	for	every	hop	of	every	IP	datagram	would	represent	an	unacceptable
performance	hit	on	the	network.	It	also	wastes	time	compared	to	the	simpler
direct	mapping	method	of	resolution.	On	top	of	this,	the	ARP	Request	message
is	broadcasted,	which	means	every	device	on	the	local	network	must	spend	CPU
time	examining	the	contents	of	each	one.

The	general	solution	to	the	efficiency	issues	with	dynamic	resolution	is	to
employ	caching.	In	addition	to	reducing	network	traffic,	caching	also	ensures
that	the	resolution	of	commonly	used	addresses	is	fast,	thereby	making	overall
performance	comparable	to	direct	mapping.	For	this	reason,	caching
functionality	has	been	built	into	ARP	from	the	start.

Static	and	Dynamic	ARP	Cache	Entries
The	ARP	cache	takes	the	form	of	a	table	containing	matched	sets	of	hardware
and	IP	addresses.	Each	device	on	the	network	manages	its	own	ARP	cache	table.
There	are	two	different	ways	that	cache	entries	can	be	put	into	the	ARP	cache:

Static	ARP	Cache	Entries	These	are	address	resolutions	that	are	manually
added	to	the	cache	table	for	a	device	and	are	kept	in	the	cache	on	a	permanent
basis.	Static	entries	are	typically	managed	using	a	tool	such	as	the	arp	software
utility	(see	Chapter	88).

Dynamic	ARP	Cache	Entries	These	are	hardware	and	IP	address	pairs	that	are
added	to	the	cache	by	the	software	itself	as	a	result	of	past	ARP	resolutions	that
were	successfully	completed.	They	are	kept	in	the	cache	for	only	a	period	of
time	and	are	then	removed.

A	device's	ARP	cache	can	contain	both	static	and	dynamic	entries,	each	of	which
has	advantages	and	disadvantages.	However,	dynamic	entries	are	used	most
often	because	they	are	automatic	and	don't	require	administrator	intervention.

Static	ARP	entries	are	best	used	for	devices	that	a	given	device	needs	to



Static	ARP	entries	are	best	used	for	devices	that	a	given	device	needs	to
communicate	with	on	a	regular	basis.	For	example,	a	workstation	might	have	a
static	ARP	entry	for	its	local	router	and	file	server.	Since	the	entry	is	static,	it	is
always	found	in	step	1	of	the	ARP	transaction	process,	and	there	is	no	need	to
ever	send	resolution	messages	for	the	destination	in	that	entry.	The	disadvantage
is	that	these	entries	must	be	manually	added,	and	they	must	also	be	changed	if
the	hardware	or	IP	addresses	of	any	of	the	hardware	in	the	entries	change.	Also,
each	static	entry	takes	space	in	the	ARP	cache,	so	you	don't	want	to	overuse
static	entries.	It	wouldn't	be	a	good	idea	to	have	static	entries	for	every	device	on
the	network,	for	example.

Cache	Entry	Expiration
Dynamic	entries	are	added	automatically	to	the	cache	on	an	as-needed	basis,	so
they	represent	mappings	for	hosts	and	routers	that	a	given	device	is	actively
using.	They	do	not	need	to	be	manually	added	or	maintained.	However,	it	is	also
important	to	realize	that	dynamic	entries	cannot	be	added	to	the	cache	and	left
there	forever—dynamic	entries	left	in	place	for	a	long	time	can	become	stale.

Consider	Device	A's	ARP	cache,	which	contains	a	dynamic	mapping	for	Device
B,	which	is	another	host	on	the	network.	If	dynamic	entries	stayed	in	the	cache
forever,	the	following	situations	might	arise.

Device	Hardware	Changes	Device	B	might	experience	a	hardware	failure	that
requires	its	network	interface	card	to	be	replaced.	The	mapping	in	Device	A's
cache	would	become	invalid,	since	the	hardware	address	in	the	entry	is	no	longer
on	the	network.

Device	IP	Address	Changes	Similarly,	the	mapping	in	Device	A's	cache	also
would	become	invalid	if	Device	B's	IP	address	changed.

Device	Removal	Suppose	Device	B	is	removed	from	the	local	network.	Device
A	would	never	need	to	send	to	it	again	at	the	data	link	layer,	but	the	mapping
would	remain	in	Device	A's	cache,	wasting	space	and	possibly	taking	up	search
time.

To	avoid	these	problems,	dynamic	cache	entries	must	be	set	to	automatically
expire	after	a	period	of	time.	This	is	handled	automatically	by	the	ARP
implementation,	with	typical	timeout	values	being	10	or	20	minutes.	After	a
particular	entry	times	out,	it	is	removed	from	the	cache.	The	next	time	that



particular	entry	times	out,	it	is	removed	from	the	cache.	The	next	time	that
address	mapping	is	needed,	a	fresh	resolution	is	performed	to	update	the	cache.
This	is	very	slightly	less	efficient	than	static	entries,	but	sending	two	28-byte
messages	every	10	or	20	minutes	isn't	a	big	deal.

As	mentioned	in	the	overview	of	ARP	operation,	dynamic	cache	entries	are
added	not	only	when	a	device	initiates	a	resolution,	but	when	it	is	the	destination
device	as	well.	This	is	another	enhancement	that	reduces	unnecessary	address
resolution	traffic.

Other	Caching	Features
Other	enhancements	are	also	typically	put	into	place,	depending	on	the
implementation.	Standard	ARP	requires	that	if	Device	A	initiates	resolution	with
a	broadcast,	each	device	on	the	network	should	update	its	own	cache	entries	for
Device	A,	even	if	they	are	not	the	device	that	Device	A	is	trying	to	reach.
However,	these	"third-party"	devices	are	not	required	to	create	new	cache	entries
for	Device	A	in	this	situation.

The	issue	here	is	a	trade-off.	Creating	a	new	cache	entry	would	save	any	of	those
devices	from	needing	to	resolve	Device	A's	address	in	the	near	future.	However,
it	also	means	every	device	on	the	network	will	quickly	have	an	ARP	cache	table
filled	up	with	the	addresses	of	most	of	the	other	devices	on	the	network.	This
may	not	be	desirable	in	larger	networks.	Even	in	smaller	ones,	this	model	may
not	make	sense,	given	that	modern	computing	is	client/server	in	nature	and	peer
devices	on	a	LAN	may	not	often	communicate	directly.	Some	devices	may
choose	to	create	such	cache	entries,	but	they	may	set	them	to	expire	after	a	very
short	time	to	avoid	filling	the	cache.

Each	ARP	implementation	is	also	responsible	for	any	other	housekeeping
required	to	maintain	the	cache.	For	example,	if	a	device	is	on	a	local	network
with	many	hosts	and	its	cache	table	is	too	small,	it	might	be	necessary	for	older,
less	frequently	used	entries	to	be	removed	to	make	room	for	newer	ones.	Ideally,
the	cache	should	be	large	enough	to	hold	all	the	other	devices	with	which	a
device	communicates	on	a	regular	basis	on	the	network,	along	with	some	room
for	ones	it	occasionally	talks	to.

Proxy	ARP



ARP	was	designed	to	be	used	by	devices	that	are	directly	connected	on	a	local
network.	Each	device	on	the	network	should	be	capable	of	sending	both	unicast
and	broadcast	transmissions	directly	to	one	another.	Normally,	if	Device	A	and
Device	B	are	separated	by	a	router,	they	would	not	be	considered	local	to	each
other.	Device	A	would	not	send	directly	to	Device	B	or	vice	versa;	they	would
send	to	the	router	instead	at	layer	2	and	would	be	considered	two	hops	apart	at
layer	3.

In	some	networking	situations,	however,	there	might	be	two	physical	network
segments	that	are	in	the	same	IP	network	or	subnetwork	and	are	connected	by	a
router.	In	other	words,	Device	A	and	Device	B	might	be	on	different	networks	at
the	data	link	layer	level,	but	on	the	same	IP	network	or	subnet.	When	this
happens,	Device	A	and	Device	B	will	each	think	the	other	is	on	the	local
network	when	they	look	to	send	IP	datagrams.

In	this	situation,	suppose	that	Device	A	wants	to	send	a	datagram	to	Device	B.	It
doesn't	have	Device	B's	hardware	address	in	the	cache,	so	it	begins	an	address
resolution.	When	it	broadcasts	the	ARP	Request	message	to	get	Device	B's
hardware	address,	however,	it	will	quickly	run	into	a	problem:	Device	B	is	not
on	Device	A's	local	network.	The	router	between	them	will	not	pass	Device	A's
broadcast	onto	Device	B's	part	of	the	network,	because	routers	don't	pass
hardware-layer	broadcasts.	Device	B	will	never	get	the	request,	and	thus	Device
A	will	not	get	a	reply	containing	Device	B's	hardware	address.

The	solution	to	this	situation	is	called	ARP	proxying	or	Proxy	ARP.	In	this
technique,	the	router	that	sits	between	the	local	networks	is	configured	to
respond	to	Device	A's	broadcast	on	behalf	of	Device	B.	It	does	not	send	back	to
Device	A	the	hardware	address	of	Device	B.	Since	they	are	not	on	the	same
network,	Device	A	cannot	send	directly	to	Device	B	anyway.	Instead,	the	router
sends	Device	A	its	own	hardware	address.	Device	A	then	sends	to	the	router,
which	forwards	the	message	to	Device	B	on	the	other	network.	Of	course,	the
router	also	does	the	same	thing	on	Device	A's	behalf	for	Device	B,	and	for	every
other	device	on	both	networks,	when	a	broadcast	is	sent	that	targets	a	device	that
isn't	on	the	same	actual	physical	network	as	the	resolution	initiator.	This	is
illustrated	in	Figure	13-7.

Proxy	ARP	provides	flexibility	for	networks	where	hosts	are	not	all	actually	on



the	same	physical	network	but	are	configured	as	if	they	were	at	the	network
layer.	It	can	be	used	to	provide	support	in	other	special	situations	where	a	device
cannot	respond	directly	to	ARP	message	broadcasts.	It	may	be	used	when	a
firewall	is	configured	for	security	purposes.	A	type	of	proxying	is	also	used	as
part	of	Mobile	IP	to	solve	the	problem	of	address	resolution	when	a	mobile
device	travels	away	from	its	home	network.

TIP

KEY	CONCEPT	Since	ARP	relies	on	broadcasts	for	address	resolution,	and	broadcasts	are	not
propagated	beyond	a	physical	network,	ARP	cannot	function	between	devices	on	different	physical
networks.	When	such	operation	is	required,	a	device,	such	as	a	router,	can	be	configured	as	an	ARP
proxy	to	respond	to	ARP	requests	on	the	behalf	of	a	device	on	a	different	network.

Figure	13-7.	ARP	Proxy	operation	These	two	examples	show	how	a	router	acting	as	an	ARP	proxy
returns	its	own	hardware	address	in	response	to	requests	by	one	device	for	an	address	on	the	other

network.	In	this	small	internetwork	shown,	a	single	router	connects	two	LANs	that	are	on	the	same	IP
network	or	subnet.	The	router	will	not	pass	ARP	broadcasts,	but	has	been	configured	to	act	as	an	ARP
proxy.	In	this	example,	Device	A	and	Device	D	are	each	trying	to	send	an	IP	datagram	to	the	other,	and
so	each	broadcasts	an	ARP	Request.	The	router	responds	to	the	request	sent	by	Device	A	as	if	it	were
Device	D,	giving	to	Device	A	its	own	hardware	address	(without	propagating	Device	A's	broadcast).	It
will	forward	the	message	sent	by	Device	A	to	Device	D	on	Device	D's	network.	Similarly,	it	responds	to



Device	D	as	if	it	were	Device	A,	giving	its	own	address,	then	forwarding	what	Device	D	sends	to	it	over
to	the	network	where	Device	A	is	located.

The	main	advantage	of	proxying	is	that	it	is	transparent	to	the	hosts	on	the
different	physical	network	segments.	The	technique	has	some	drawbacks,
however.	First,	it	introduces	added	complexity.	Second,	if	more	than	one	router
connects	two	physical	networks	using	the	same	network	ID,	problems	may	arise.
Third,	it	introduces	potential	security	risks;	since	it	essentially	means	that	a
router	impersonates	devices	by	acting	as	a	proxy	for	them,	the	potential	for	a
device	spoofing	another	is	real.	For	these	reasons,	it	may	be	better	to	redesign
the	network	so	that	routing	is	done	between	physical	networks	separated	by	a
router,	if	possible.



TCP/IP	Address	Resolution	for	IP	Multicast
Addresses
Like	most	discussions	of	address	resolution,	most	of	this	chapter	so	far	has
focused	on	unicast	communication,	where	a	datagram	is	sent	from	one	source
device	to	one	destination	device.	Whether	direct	mapping	or	dynamic	resolution
is	used	for	resolving	a	network	layer	address,	it	is	a	relatively	simple	matter	to
resolve	addresses	when	there	is	only	one	intended	recipient	of	the	datagram.	As
you've	seen,	TCP/IP	uses	ARP	for	its	dynamic	resolution	scheme,	which	is
designed	for	unicast	resolution	only.

However,	IP	also	supports	multicasting	of	datagrams,	as	I	explain	in	the	sections
on	IP	multicasting	and	IP	multicast	addressing	in	Chapters	Chapter	23	and
Chapter	17,	respectively.	In	this	situation,	the	datagram	must	be	sent	to	multiple
recipients,	which	complicates	matters	considerably.	You	need	to	establish	a
relationship	of	some	sort	between	the	IP	multicast	group	address	and	the
addresses	of	the	devices	at	the	data	link	layer.	You	could	do	this	by	converting
the	IP	multicast	datagram	to	individual	unicast	transmissions	at	the	data	link
layer	with	each	using	ARP	for	resolution,	but	this	would	be	horribly	inefficient.

When	possible,	IP	makes	use	of	the	multicast	addressing	and	delivery
capabilities	of	the	underlying	network	to	deliver	multicast	datagrams	on	a
physical	network.	Perhaps	surprisingly,	even	though	ARP	employs	dynamic
resolution,	multicast	address	resolution	is	done	using	a	version	of	the	direct
mapping	technique.	By	defining	a	mapping	between	IP	multicast	groups	and
data	link	layer	multicast	groups,	you	enable	physical	devices	to	know	when	to
pay	attention	to	multicasted	datagrams.

The	most	commonly	used	multicast-capable	data	link	addressing	scheme	is	the
IEEE	802	addressing	system	best	known	for	its	use	in	Ethernet	networks.	These
data	link	layer	addresses	have	48	bits,	arranged	into	two	blocks	of	24.	The	upper
24	bits	are	arranged	into	a	block	called	the	organizationally	unique	identifier
(OUI),	with	different	values	assigned	to	individual	organizations;	the	lower	24
bits	are	then	used	for	specific	devices.

The	Internet	Assigned	Number	Authority	(IANA)	itself	has	an	OUI	that	it	uses



for	mapping	multicast	addresses	to	IEEE	802	addresses.	This	OUI	is	01:00:5E.
To	form	a	mapping	for	Ethernet,	24	bits	are	used	for	this	OUI,	and	the	25th	(of
the	48)	is	always	zero.	This	leaves	23	bits	of	the	original	48	to	encode	the
multicast	address.	To	do	the	mapping,	the	lower-order	23	bits	of	the	multicast
address	are	used	as	the	last	23	bits	of	the	Ethernet	address	starting	with	01:00:5E
for	sending	the	multicast	message.

Figure	13-8	illustrates	how	the	multicast	address	mapping	process	works.

TIP

KEY	CONCEPT	IP	multicast	addresses	are	resolved	to	IEEE	802	(Ethernet)	MAC	addresses	using	a
direct	mapping	technique	that	uses	23	of	the	28	bits	in	the	IP	multicast	group	address.

Of	course,	there	are	28	unique	bits	in	IP	multicast	addresses,	so	this	is	a	"bit"	of
a	problem!	What	it	means	is	that	there	is	no	unique	mapping	between	IP
multicast	addresses	and	Ethernet	multicast	addresses.	Since	5	of	the	28	bits	of
the	multicast	group	cannot	be	encoded	in	the	Ethernet	address,	32	(25)	different
IP	multicast	addresses	map	onto	each	possible	Ethernet	multicast	address.	In
theory,	this	would	be	a	problem,	but	in	practice,	it	isn't.	The	chances	of	any	two
IP	multicast	addresses	on	a	single	network	mapping	to	the	same	Ethernet
multicast	address	at	the	same	time	are	pretty	small.

Figure	13-8.	Mapping	of	multicast	IP	Addresses	to	IEEE	802	multicast	MAC	addresses	Multicast	IP
addresses	are	mapped	to	IEEE	802	multicast	MAC	addresses	by	copying	the	IANA	multicast	OUI	value
(01-00-5E)	to	the	top	24	bits,	setting	the	25th	bit	to	zero,	and	copying	the	bottom	23	bits	of	the	multicast
address	to	the	remaining	23	bits.	To	create	a	48-bit	multicast	IEEE	802	(Ethernet)	address,	the	top	24
bits	are	filled	in	with	the	IANA's	multicast	OUI,	01-00-5E.	The	25th	bit	is	zero,	and	the	bottom	23	bits



of	the	multicast	group	are	put	into	the	bottom	23	bits	of	the	MAC	address.	This	leaves	5	bits	(shown
hatched)	that	are	not	mapped	to	the	MAC	address,	meaning	that	32	different	IP	addresses	may	have	the

same	mapped	multicast	MAC	address.

Still,	it	is	possible	that	two	IP	multicast	groups	might	be	in	use	on	the	same
physical	network	and	might	map	to	the	same	data	link	layer	multicast	address.
For	this	reason,	devices	must	not	assume	that	all	multicast	messages	they	receive
are	for	their	groups;	they	must	pass	up	the	messages	to	the	IP	layer	to	check	the
full	IP	multicast	address	to	make	sure	that	they	really	were	supposed	to	get	the
multicast	datagram	they	received.	If	they	accidentally	get	one	that	was	intended
for	a	multicast	group	they	are	not	a	member	of,	they	discard	it.	This	happens
infrequently,	so	the	relative	lack	of	efficiency	is	not	a	large	concern.



TCP/IP	Address	Resolution	for	IP	Version	6
The	TCP/IP	ARP	is	a	fairly	generic	protocol	for	dynamically	resolving	network
layer	addresses	into	data	link	layer	addresses.	Even	though	it	was	designed	for
IPv4,	the	message	format	allows	for	variable-length	addresses	at	both	the
hardware	and	network	layers.	This	flexibility	means	it	would	have	been
theoretically	possible	to	use	it	for	the	new	version	of	IP,	IPv6.	Some	minor
changes	might	have	been	required,	but	the	technique	could	have	been	about	the
same.

The	designers	of	IPv6	chose	not	to	do	this,	however.	Changing	IP	is	a	big	job
that	has	been	under	way	for	many	years,	providing	a	rare	opportunity	to	change
various	aspects	of	TCP/IP.	The	Internet	Engineering	Task	Force	(IETF)	decided
to	take	advantage	of	the	changes	in	IPv6	to	overhaul	not	only	IP	itself,	but	also
many	of	the	protocols	that	support	or	assist	it.	In	IPv6,	the	address	resolution	job
of	ARP	has	been	combined	with	several	functions	performed	by	the	Internet
Control	Message	Protocol	(ICMP)	in	the	original	TCP/IP	suite,	supplemented
with	additional	capabilities	and	defined	as	the	new	Neighbor	Discovery	(ND)
Protocol.

The	term	neighbor	in	IPv6	simply	refers	to	devices	on	a	local	network,	and	as
the	name	implies,	ND	is	responsible	for	tasks	related	to	communicating
information	between	neighbors	(among	other	things).	I	describe	ND	briefly	in
Chapter	36,	including	a	discussion	of	the	various	tasks	it	performs.	Here,	I	focus
specifically	on	how	ND	performs	address	resolution.

The	basic	concepts	of	address	resolution	in	IPv6	ND	aren't	all	that	different	from
those	in	IPv4	ARP.	Resolution	is	still	dynamic	and	is	based	on	the	use	of	a	cache
table	that	maintains	pairings	of	IPv6	addresses	and	hardware	addresses.	Each
device	on	a	physical	network	keeps	track	of	this	information	for	its	neighbors.
When	a	source	device	needs	to	send	an	IPv6	datagram	to	a	local	network
neighbor	but	doesn't	have	its	hardware	address,	it	initiates	the	resolution	process.
For	clarity	in	the	text	let's	say	that,	as	usual,	Device	A	is	trying	to	send	to	Device
B.

Instead	of	sending	an	ARP	Request	message,	Device	A	creates	an	ND	Neighbor
Solicitation	message.	Now,	here's	where	the	first	big	change	can	be	seen	from



ARP.	If	the	underlying	data	link	protocol	supports	multicasting,	as	Ethernet
does,	the	Neighbor	Solicitation	message	is	not	broadcast.	Instead,	it	is	sent	to	the
solicited-node	address	of	the	device	whose	IPv6	address	you	are	trying	to
resolve.	So	Device	A	won't	broadcast	the	message,	but	it	will	multicast	it	to
Device	B's	solicited-node	multicast	address.

The	solicited-node	multicast	address	is	a	special	mapping	that	each	device	on	a
multicast-capable	network	creates	from	its	unicast	address;	it	is	described	in
Chapter	25's	discussion	of	IPv6	multicast	addresses.	The	solicited-node	address
isn't	unique	for	every	IPv6	address,	but	the	odds	of	any	two	neighbors	on	a	given
network	having	the	same	one	are	small.	Each	device	that	receives	a	multicasted
Neighbor	Solicitation	must	still	check	to	make	sure	it	is	the	device	whose
address	the	source	is	trying	to	resolve.

Why	bother	with	this,	if	devices	still	have	to	check	each	message?	The	multicast
will	affect	at	most	a	small	number	of	devices.	With	a	broadcast,	each	and	every
device	on	the	local	network	would	receive	the	message,	while	the	use	of	the
solicited-node	address	means	at	most	that	a	couple	of	devices	will	need	to
process	it.	Other	devices	don't	even	have	to	bother	checking	the	Neighbor
Solicitation	message	at	all.

Device	B	will	receive	the	Neighbor	Solicitation	and	respond	back	to	Device	A
with	a	Neighbor	Advertisement.	This	is	analogous	to	the	ARP	Reply	and	tells
Device	A	the	physical	address	of	Device	B.	Device	A	then	adds	Device	B's
information	to	its	neighbor	cache.	For	efficiency,	cross-resolution	is	supported,
as	in	IPv4	address	resolution.	This	is	done	by	having	Device	A	include	its	own
layer	2	address	in	the	Neighbor	Solicitation,	assuming	it	knows	it.	Device	B	will
record	this	along	with	Device	A's	IP	address	in	Device	B's	neighbor	cache.

TIP

KEY	CONCEPT	Address	resolution	in	IPv6	uses	the	new	Neighbor	Discovery	(ND)	Protocol	instead	of
the	Address	Resolution	Protocol	(ARP).	A	device	trying	to	send	an	IPv6	datagram	sends	a	Neighbor
Solicitation	message	to	get	the	address	of	another	device,	which	responds	with	a	Neighbor
Advertisement.	When	possible,	to	improve	efficiency,	the	request	is	sent	using	a	special	type	of	multicast
address	rather	than	broadcast.

This	is	actually	a	fairly	simplified	explanation	of	how	resolution	works	in	IPv6,
because	ND	is	quite	complicated.	Neighbor	solicitations	and	advertisements	are



because	ND	is	quite	complicated.	Neighbor	solicitations	and	advertisements	are
also	used	for	other	functions,	such	as	testing	the	reachability	of	nodes	and
determining	if	duplicate	addresses	are	in	use.	There	are	many	special	cases	and
issues	that	ND	addresses	to	ensure	that	no	problems	develop	during	address
resolution.	ND	also	supports	proxied	address	resolution.

NOTE

Even	though	I	put	this	discussion	where	it	would	be	near	the	other	discussions	of	address	resolution,	ND
really	isn't	a	layer	connection	or	lower-level	protocol	like	ARP.	It	is	analogous	to	ICMP	(Chapter	31)	in
its	role	and	function,	and,	in	fact,	makes	use	of	ICMP(v6)	messages.	One	advantage	of	this	architectural
change	is	that	there	is	less	dependence	on	the	characteristics	of	the	physical	network,	so	resolution	is
accomplished	in	a	way	that's	more	similar	to	other	network	support	activities.	Thus,	it	is	possible	to
make	use	of	facilities	that	can	be	applied	to	all	IP	datagram	transmissions,	such	as	IP	security	features.
Chapter	36	contains	much	more	information	on	this	subject.



Chapter	14.	REVERSE	ADDRESS
RESOLUTION	AND	THE	TCP/IP
REVERSE	ADDRESS
RESOLUTION	PROTOCOL
(RARP)

In	Chapter	13,	you	explored	the	operation	of	the	TCP/IP	Address	Resolution
Protocol	(ARP).	ARP	is	used	when	a	device	needs	to	determine	the	layer	2
(hardware)	address	of	some	other	device	but	has	only	its	layer	3	(network,	IP)
address.	It	broadcasts	a	hardware	layer	request,	and	the	target	device	responds
with	the	hardware	address	that	matches	the	known	IP	address.

In	theory,	it	is	also	possible	to	use	ARP	in	the	opposite	way.	If	you	know	the
hardware	address	of	a	device	but	not	its	IP	address,	you	could	broadcast	a
request	containing	the	hardware	address	and	get	back	a	response	that	contains
the	IP	address.	In	this	chapter,	you	will	briefly	explore	this	concept	of	reverse
address	resolution.

The	obvious	first	question	is	why	would	you	ever	need	to	do	this?	Since	you	are
dealing	with	communication	on	an	Internet	Protocol	(IP)	internetwork,	you	are
always	going	to	know	the	IP	address	of	the	destination	of	the	datagram	you	need
to	send—it's	right	there	in	the	datagram	itself.	You	also	know	your	own	IP
address	as	well.	Or	do	you?

In	a	traditional	TCP/IP	network,	every	normal	host	on	a	network	knows	its	IP
address	because	it	is	stored	somewhere	on	the	machine.	When	you	turn	on	your
PC,	the	TCP/IP	software	reads	the	IP	address	from	a	file,	which	allows	your	PC
to	learn	and	start	using	its	IP	address.	However,	there	are	some	devices,	such	as



to	learn	and	start	using	its	IP	address.	However,	there	are	some	devices,	such	as
diskless	workstations,	that	don't	have	any	means	of	storing	an	IP	address	where
it	can	be	easily	retrieved.	When	these	units	are	powered	up,	they	know	their
physical	address	only	(because	it's	wired	into	the	hardware)	but	not	their	IP
address.

The	problem	you	need	to	solve	here	is	what	is	commonly	called	bootstrapping	in
the	computer	industry.	This	refers	to	the	concept	of	starting	something	from	a
zero	state;	it	is	analogous	to	"pulling	yourself	up	by	your	own	bootstraps."	This
is	seemingly	impossible,	just	as	it	seems	paradoxical	to	use	TCP/IP	to	configure
the	IP	address	that	is	needed	for	TCP/IP	communications.	However,	it	is	indeed
possible	to	do	this,	by	making	use	of	broadcasts,	which	allow	local
communication	even	when	the	target's	address	is	not	known.

The	Reverse	Address	Resolution	Protocol
(RARP)
The	first	method	devised	to	address	the	bootstrapping	problem	in	TCP/IP	was
the	backward	use	of	ARP,	which	is	described	in	the	previous	chapter.	This
technique	was	formalized	in	RFC	903,	"A	Reverse	Address	Resolution	Protocol
(RARP),"	published	in	1984.	ARP	allows	Device	A	to	say,	"I	am	Device	A,	and
I	have	Device	B's	IP	address.	Device	B	please	tell	me	your	hardware	address."
RARP	is	used	by	Device	A	to	say,	"I	am	Device	A,	and	I	am	sending	this
broadcast	using	my	hardware	address;	can	someone	please	tell	me	my	IP
address?"

The	two-step	operation	of	RARP	is	illustrated	in	Figure	14-1.	As	the	name
suggests,	RARP	works	like	ARP	but	in	reverse,	which	is	why	this	diagram	is
similar	to	Figure	13-4.

The	next	question	then	is	who	knows	Device	A's	IP	address	if	Device	A	doesn't?
The	answer	is	that	a	special	RARP	server	must	be	configured	to	listen	for	RARP
requests	and	then	issue	replies	to	them.	Each	physical	network	where	RARP	is	in
use	must	have	RARP	software	running	on	at	least	one	machine.

RARP	is	not	only	very	similar	to	ARP,	it	basically	is	ARP.	RFC	903	doesn't
define	a	whole	new	protocol	from	scratch;	it	just	describes	a	new	method	for
using	ARP	to	perform	the	opposite	of	its	normal	function.	RARP	uses	ARP



messages	in	the	same	format	as	ARP	(described	in	Chapter	13),	but	uses
different	opcodes	to	accomplish	its	reverse	function.	As	in	ARP,	a	request	and
reply	are	used	in	an	exchange.	The	meaning	of	the	address	fields	is	the	same,
too:	The	sender	is	the	device	transmitting	a	message,	while	the	target	is	the	one
receiving	it.

TIP

KEY	CONCEPT	The	Reverse	Address	Resolution	Protocol	(RARP)	is	the	earliest	and	simplest
protocol	that's	designed	to	allow	a	device	to	obtain	an	IP	address	for	use	on	a	TCP/IP	network.	It	is	based
directly	on	ARP	and	works	in	basically	the	same	way,	but	in	reverse:	A	device	sends	a	request
containing	its	hardware	address,	and	a	device	set	up	as	an	RARP	server	responds	back	with	the	device's
assigned	IP	address.

Figure	14-1.	Operation	of	the	Reverse	Address	Resolution	Protocol	(RARP)	RARP	works	like	ARP	but
in	reverse;	a	device	broadcasts	its	hardware	address	and	an	RARP	server	responds	with	its	IP	address.
Here,	instead	of	Device	A	providing	the	IP	address	of	another	device	and	asking	for	its	hardware

address,	it	is	providing	its	own	hardware	address	and	asking	for	an	IP	address	it	can	use.	The	answer,	in
this	case,	is	provided	by	Device	D,	which	is	serving	as	an	RARP	server	for	this	network.



RARP	General	Operation
Figure	14-2	shows	the	steps	followed	in	a	RARP	transaction.	As	you	can	see,
RARP	uses	a	simple	request	and	reply	exchange	to	allow	a	device	to	obtain	an	IP
address.

Figure	14-2.	Reverse	Address	Resolution	Protocol	(RARP)	operation	RARP	consists	of	the	exchange	of
one	broadcast	request	message	and	one	unicast	reply	message.

Here's	what	happens	at	each	step:

1.	 Source	Device	Generates	RARP	Request	Message	The	source	device
generates	an	RARP	Request	message.	Thus,	it	uses	the	value	3	for	the
opcode	in	the	message.	It	puts	its	own	data	link	layer	address	as	both	the
Sender	Hardware	Address	and	also	the	Target	Hardware	Address.	It	leaves
both	the	Sender	Protocol	Address	and	the	Target	Protocol	Address	blank,
since	it	doesn't	know	either.

2.	 Source	Device	Broadcasts	RARP	Request	Message	The	source
broadcasts	the	ARP	Request	message	on	the	local	network.

3.	 Local	Devices	Process	RARP	Request	Message	The	message	is	received
by	each	device	on	the	local	network	and	processed.	Devices	that	are	not
configured	to	act	as	RARP	servers	ignore	the	message.

4.	 RARP	Server	Generates	RARP	Reply	Message	Any	device	on	the
network	that	is	set	up	to	act	as	an	RARP	server	responds	to	the	broadcast
from	the	source	device.	It	generates	an	RARP	Reply	using	an	opcode	value
of	4.	It	sets	the	Sender	Hardware	Address	and	Sender	Protocol	Address	to



its	own	hardware	and	IP	address,	since	it	is	the	sender	of	the	reply.	It	then
sets	the	Target	Hardware	Address	to	the	hardware	address	of	the	original
source	device.	It	looks	up	in	a	table	the	hardware	address	of	the	source,
determines	that	device's	IP	address	assignment,	and	puts	it	into	the	Target
Protocol	Address	field.

5.	 RARP	Server	Sends	RARP	Reply	Message	The	RARP	server	sends	the
RARP	Reply	message	unicast	to	the	device	looking	to	be	configured.

6.	 Source	Device	Processes	RARP	Reply	Message	The	source	device
processes	the	reply	from	the	RARP	server.	It	then	configures	itself	using
the	IP	address	in	the	Target	Protocol	Address	supplied	by	the	RARP
server.

NOTE

More	than	one	RARP	server	may	respond	to	a	request,	if	two	or	more	are	configured	on	any	local
network.	The	source	device	will	typically	use	the	first	reply	and	discard	the	others.



Limitations	of	RARP
RARP	is	the	earliest	and	most	rudimentary	of	the	class	of	technologies	I	call	host
configuration	protocols,	which	I	describe	in	general	terms	in	Chapter	59.	As	the
first	of	these	protocols,	RARP	was	a	useful	addition	to	TCP/IP	in	the	early
1980s,	but	has	several	shortcomings,	the	most	important	of	which	are	as	follows:

Low-Level	Hardware	Orientation	RARP	works	using	hardware	broadcasts.
This	means	that	if	you	have	a	large	internetwork	with	many	physical	networks,
you	need	an	RARP	server	on	every	network	segment.	Worse,	if	you	need
reliability	to	make	sure	RARP	keeps	running	even	if	one	RARP	server	goes
down,	you	need	two	on	each	physical	network.	This	makes	centralized
management	of	IP	addresses	difficult.

Manual	Assignment	RARP	allows	hosts	to	configure	themselves	automatically,
but	the	RARP	server	must	still	be	set	up	with	a	manual	table	of	bindings	between
hardware	and	IP	addresses.	These	must	be	maintained	for	each	server,	which	is,
again,	a	lot	of	work	for	an	administrator.

Limited	Information	RARP	provides	a	host	with	only	its	IP	address.	It	cannot
provide	other	needed	information	such	as,	for	example,	a	subnet	mask	or	default
gateway.

The	importance	of	host	configuration	has	increased	dramatically	since	the	early
1980s.	Many	organizations	assign	IP	addresses	dynamically	even	for	hosts	that
have	disk	storage,	because	of	the	many	advantages	this	provides	in
administration	and	because	of	the	efficient	use	of	address	space.	For	this	reason,
RARP	has	been	replaced	by	two	more	capable	technologies	that	operate	at
higher	layers	in	the	TCP/IP	protocol	stack:	BOOTP	and	DHCP.	They	are
discussed	in	the	application	layer	section	on	host	configuration	protocols,	in
Chapters	Chapter	60	through	Chapter	64.



Part	II-3.	INTERNET	PROTOCOL	VERSION	4
(IP/IPV4)
Chapter	15

Chapter	16

Chapter	17

Chapter	18

Chapter	19

Chapter	20

Chapter	21

Chapter	22

Chapter	23

The	idea	of	singling	out	any	one	protocol	as	being	more	important	than	the
others	in	a	network	is	kind	of	pointless,	if	you	think	about	it.	The	protocols	and
technologies	work	as	a	team	to	accomplish	the	goal	of	communication	across	the
network.	As	with	any	team,	no	single	member	can	get	the	job	done	alone,	no
matter	how	good	it	is.	Still,	if	we	were	to	try	to	pick	a	"most	valuable	player"	in
the	world	of	networking,	a	good	case	could	be	made	that	we	have	it	in	the
TCP/IP	Internet	Protocol	(IP).

Even	though	it	gets	second	billing	in	the	name	of	the	TCP/IP	protocol	suite,	IP	is
the	workhorse	of	TCP/IP.	It	implements	key	network	layer	functions	including
addressing,	datagram	handling,	and	routing,	and	it	is	the	foundation	on	which
other	TCP/IP	protocols	are	built.	Even	the	ones	lower	in	the	TCP/IP	architecture,
such	as	the	Address	Resolution	Protocol	(ARP)	and	the	Point-to-Point	Protocol
(PPP),	are	easier	to	understand	when	you	know	how	IP	works.

This	part	includes	nine	chapters	that	provide	considerable	coverage	of	IP.	The
first	chapter	gives	an	overview	of	IP	as	a	whole,	including	a	discussion	of	its
versions,	while	the	rest	of	the	chapters	focus	on	the	details	of	operation	of	the
most	popular	current	version	of	the	protocol,	IP	version	4	(IPv4).

The	second	through	sixth	chapters	discuss	in	great	detail	the	concepts	and



practice	behind	IP	addressing.	The	second	chapter	provides	an	overview	of	IPv4
addressing	concepts	and	issues.	The	third	discusses	the	original,	class-based
(classful)	IP	addressing	scheme	and	how	the	different	classes	work.	The	fourth
and	fifth	chapters	are	devoted	to	IP	subnets	and	subnet	addressing.	They	discuss
subnetting	concepts	and	include	an	illustration	of	practical	step-by-step
subnetting.	The	sixth	chapter	describes	the	new	classless	addressing	system,	also
sometimes	called	supernetting.

The	seventh	through	ninth	chapters	discuss	important	practical	issues	related	to
how	IPv4	datagrams	are	created	and	handled.	You'll	find	a	full	description	of	the
IPv4	message	format	and	options	in	the	seventh	chapter;	explanations	of	IP
datagram	sizing,	fragmentation,	and	reassembly	in	the	eighth	chapter;	and
coverage	of	routing	and	multicasting	in	the	ninth	chapter.

As	the	title	of	this	part	implies,	the	coverage	here	is	limited	to	IPv4.	(For
simplicity,	in	this	part,	I	use	the	simpler	designation	IP	rather	than	IPv4,	except
where	the	version	number	is	required	for	clarity.)	IP	version	6	(IPv6)	is	covered
in	its	separate	section	(Part	II-4),	as	are	the	IP-related	protocols.	That	said,	some
of	the	principles	here	will	also	apply	to	IPv6,	as	well	as	IP	Network	Address
Translation	(NAT),	IPsec,	and	Mobile	IP	(Part	II-4)	in	a	limited	manner.



Chapter	15.	INTERNET
PROTOCOL	VERSIONS,
CONCEPTS,	AND	OVERVIEW

The	Internet	Protocol	(IP)	is	a	very	important	protocol	in	internetworking.	It
would	be	no	exaggeration	to	say	that	you	can't	really	comprehend	modern
networking	without	a	good	understanding	of	IP.	Unfortunately,	IP	can	be
somewhat	difficult	to	understand.	A	large	amount	of	complexity	has	become
associated	with	it	over	the	years,	and	this	has	allowed	it	to	meet	the	many
demands	placed	on	it.

Before	diving	into	the	details	of	how	IP	works,	we'll	look	at	the	basic	concepts
underlying	IP.	In	this	chapter,	I	explain	how	IP	operates	in	basic	terms	and	the
most	important	aspects	of	how	it	does	its	job.	We'll	look	at	its	main	functions,	its
history,	and	how	it	has	spawned	the	development	of	several	IP-related	protocols.

IP	Overview	and	Key	Operational	Characteristics
IP	is	the	core	of	the	TCP/IP	protocol	suite	and	the	main	protocol	at	the	network
layer.	The	network	layer	is	primarily	concerned	with	the	delivery	of	data
between	devices	that	may	be	on	different	networks,	which	are	interconnected	in
an	arbitrary	manner.	In	other	words,	an	internetwork.	IP	is	the	mechanism	by
which	this	data	is	sent	on	TCP/IP	networks	(with	help	from	other	protocols	at	the
network	layer,	too,	of	course).

Let's	look	at	the	TCP/IP	layer	model	and	consider	what	IP	does	from	an
architectural	standpoint.	As	the	layer	3	protocol,	it	provides	a	service	to	layer	4
in	the	TCP/IP	stack,	represented	mainly	by	the	Transmission	Control	Protocol
(TCP)	and	User	Datagram	Protocol	(UDP)	(see	Part	II-8).	IP	takes	data	that	has



been	packaged	by	either	TCP	or	UDP,	manipulates	it	as	necessary,	and	sends	it
out	(see	Figure	15-1).

This	service	is	sometimes	called	internetwork	datagram	delivery.	There	are
many	details	that	explain	exactly	how	this	service	is	accomplished,	but	in	a
nutshell,	IP	sends	data	from	point	A	to	point	B	over	an	internetwork	of
connected	networks.

Figure	15-1.	The	main	function	of	IP:	internetwork	datagram	delivery	IP's	overall	responsibility	is	to
deliver	data	between	devices	on	unconnected	networks.	This	figure	shows	how	IP	delivers	datagrams
from	one	device	to	another	over	an	internetwork;	in	this	case,	a	distant	client	and	server	communicate

with	each	other	by	passing	IP	datagrams	over	a	series	of	interconnected	networks.

TIP

KEY	CONCEPT	While	the	Internet	Protocol	has	many	functions	and	characteristics,	it	can	be	boiled
down	to	one	primary	purpose:	the	delivery	of	datagrams	across	an	internetwork	of	connected	networks.

Of	course,	there	are	many	ways	in	which	IP	could	have	been	implemented	in
order	to	accomplish	this	task.	To	understand	how	the	designers	of	TCP/IP	made
IP	work,	let's	take	a	look	at	the	key	characteristics	used	to	describe	IP	and	the
general	manner	in	which	it	operates:

Universally	Addressed	In	order	to	send	data	from	point	A	to	point	B,	it	is
necessary	to	ensure	that	devices	know	how	to	identify	which	device	is	point	B.
IP	defines	the	addressing	mechanism	for	the	network	and	uses	these	addresses
for	delivery	purposes.



Underlying	Protocol-Independent	IP	is	designed	to	allow	the	transmission	of
data	across	any	type	of	underlying	network	that	is	designed	to	work	with	a
TCP/IP	stack.	It	includes	provisions	that	allow	it	to	adapt	to	the	requirements	of
various	lower-level	protocols	such	as	Ethernet	or	IEEE	802.11.	IP	can	also	run
on	the	special	data	link	protocols,	Serial	Line	Interface	Protocol	(SLIP)	and
Point-to-Point	Protocol	(PPP),	that	were	created	for	it	(see	Part	II-1).	An
important	example	is	IP's	ability	to	fragment	large	blocks	of	data	into	smaller
ones	in	order	to	match	the	size	limitations	of	physical	networks,	and	then	have
the	recipient	reassemble	the	pieces	again	as	needed.

Connectionless	Delivery	IP	is	a	connectionless	protocol.	This	means	that	when
point	A	wants	to	send	data	to	point	B,	it	doesn't	first	set	up	a	connection	to	point
B	and	then	send	the	data—it	just	makes	the	datagram	and	sends	it.	(See	the
section	in	Chapter	1	on	connection-oriented	and	connectionless	protocols	for
more	information	on	this.)

Unreliable	Delivery	IP	is	said	to	be	an	unreliable	protocol.	That	doesn't	mean
that	one	day	your	IP	software	will	decide	to	go	fishing	rather	than	run	your
network.	It	does	mean	that	when	datagrams	are	sent	from	Device	A	to	Device	B,
Device	A	just	sends	each	one	and	then	moves	on	to	the	next.	IP	doesn't	keep
track	of	the	ones	it	sent.	It	does	not	provide	reliability	or	service-quality
capabilities,	such	as	error	protection	for	the	data	it	sends	(though	it	does	on	the
IP	header),	flow	control,	or	retransmission	of	lost	datagrams.	For	this	reason,	IP
is	sometimes	called	a	best-effort	protocol.	It	does	what	it	can	to	get	data	to	where
it	needs	to	go,	but	makes	no	guarantees	that	the	data	will	actually	get	there.

Unacknowledged	Delivery	Corresponding	with	its	unreliable	nature,	IP	doesn't
use	acknowledgements.	When	Device	B	gets	a	datagram	from	Device	A,	it
doesn't	send	back	a	"thank	you	note"	to	tell	Device	A	that	the	datagram	was
received.	It	leaves	Device	A	in	the	dark,	so	to	speak.

These	last	three	characteristics	might	be	enough	to	make	you	cringe,	thinking
that	giving	your	data	to	IP	would	be	somewhat	like	trusting	a	new	car	to	your
16-year-old	son.	If	you	are	going	to	build	an	entire	network	around	this	protocol,
why	design	it	so	that	it	works	without	connections,	doesn't	guarantee	that	the
data	will	get	there,	and	has	no	means	of	acknowledging	receipt	of	data?

The	reason	is	simple:	Establishing	connections,	guaranteeing	delivery,	error



checking,	and	similar	insurance-type	functions	have	a	cost	in	performance.	It
takes	time,	computer	resources,	and	network	bandwidth	to	perform	these	tasks,
and	they	aren't	always	necessary	for	every	application.	Now,	consider	that	IP
carries	pretty	much	all	user	traffic	on	a	TCP/IP	network.	To	build	this
complexity	into	IP	would	burden	all	traffic	with	this	overhead,	whether	or	not	it
was	needed.

The	solution	taken	by	the	designers	of	TCP/IP	was	to	exploit	the	power	of
layering.	If	service-quality	features	such	as	connections,	error	checking,	or
guaranteed	delivery	are	required	by	an	application,	they	are	provided	at	the
transport	layer	(or	possibly,	the	application	layer).	On	the	other	hand,
applications	that	don't	need	these	features	can	avoid	using	them.	This	is	the
major	distinction	between	the	two	TCP/IP	transport	layer	protocols:	TCP	and
UDP.	TCP	is	full	featured	but	a	bit	slower	than	UDP;	UDP	is	spartan	in	its
capabilities,	but	faster	than	TCP.	This	system	is	really	the	best	of	both	worlds,
and	it	works.



IP	Functions
The	exact	number	of	IP	functions	depends	on	where	you	draw	the	line	between
certain	activities.	For	explanatory	purposes,	however,	I	view	IP	as	having	four
basic	functions	(or	more	accurately,	function	sets):

Addressing	Before	it	can	deliver	datagrams,	IP	must	know	where	to	deliver
them.	For	this	reason,	IP	includes	a	mechanism	for	host	addressing.	Furthermore,
since	IP	operates	over	internetworks,	its	system	is	designed	to	allow	for	the
unique	addressing	of	devices	across	arbitrarily	large	networks.	It	also	contains	a
structure	to	facilitate	the	routing	of	datagrams	to	distant	networks,	if	that	is
required.	Since	most	of	the	other	TCP/IP	protocols	use	IP,	an	understanding	the
IP	addressing	scheme	is	of	vital	importance	to	comprehending	much	of	what
goes	on	in	TCP/IP.	It	is	explored	fully	in	Chapters	Chapter	16	through
Chapter	20.

Data	Encapsulation	and	Formatting/Packaging	As	the	TCP/IP	network	layer
protocol,	IP	accepts	data	from	the	transport	layer	protocols	UDP	and	TCP.	It
then	encapsulates	this	data	into	an	IP	datagram	using	a	special	format	prior	to
transmission.

Fragmentation	and	Reassembly	IP	datagrams	are	passed	down	to	the	data	link
layer	for	transmission	on	the	local	network.	However,	the	maximum	frame	size
of	each	physical	and	data	link	network	using	IP	may	be	different.	For	this
reason,	IP	includes	the	ability	to	fragment	IP	datagrams	into	pieces,	so	that	they
can	each	be	carried	on	the	local	network.	The	receiving	device	uses	the
reassembly	function	to	re-create	the	whole	IP	datagram.	Some	people	view
fragmentation	and	reassembly	as	distinct	functions,	though	clearly	they	are
complementary,	and	I	view	them	as	being	part	of	the	same	job.

Routing	and	Indirect	Delivery	When	an	IP	datagram	must	be	sent	to	a
destination	on	the	same	local	network,	you	can	do	this	easily	with	the	network's
underlying	local	area	network	(LAN),	wireless	LAN	(WLAN),	or	wide	area
network	(WAN)	protocol,	using	what	is	sometimes	called	direct	delivery.
However,	in	many	(if	not	most	cases)	the	final	destination	is	on	a	distant	network
that	isn't	directly	attached	to	the	source.	In	this	situation,	the	datagram	must	be
delivered	indirectly.	This	is	accomplished	by	routing	the	datagram	through



intermediate	devices	(routers).	IP	accomplishes	this	in	concert	with	support	from
the	other	protocols	including	the	Internet	Control	Message	Protocol	(ICMP)	and
the	TCP/IP	gateway/routing	protocols	such	as	the	Routing	Information	Protocol
(RIP)	and	the	Border	Gateway	Protocol	(BGP).



IP	History,	Standards,	Versions,	and	Closely
Related	Protocols
Since	IP	is	really	the	architectural	foundation	for	the	entire	TCP/IP	protocol
suite,	you	might	have	expected	that	it	was	created	first,	and	that	the	other
protocols	were	built	upon	it.	That's	usually	how	you	build	a	structure,	after	all!
The	history	of	IP,	however,	is	a	bit	more	complex.	The	functions	it	performs
were	defined	at	the	birth	of	the	protocol,	but	IP	itself	didn't	exist	for	the	first	few
years	that	the	protocol	suite	was	being	defined.

I	explore	the	early	days	of	TCP/IP	in	Chapter	8,	which	provides	an	overview	of
the	suite	as	a	whole.	What	is	notable	about	the	development	of	IP	is	that	its
functions	were	originally	part	of	TCP.	As	a	formal	protocol,	IP	was	born	when
an	early	version	of	TCP	developed	in	the	1970s	for	predecessors	of	the	modern
Internet	was	split	into	TCP	at	layer	4	and	IP	at	layer	3.	The	key	milestone	in	the
development	of	IP	was	the	publication	of	RFC	791,	"Internet	Protocol,"	in
September	1981.	This	standard,	a	revision	of	the	similar	RFC	760	of	the
previous	year,	defined	the	core	functionality	and	characteristics	of	the	version	of
IP	that	has	been	in	widespread	use	for	the	last	two	decades.

IP	Versions	and	Version	Numbers
The	IP	defined	in	RFC	791	was	the	first	widely	used	version	of	IP.	Interestingly,
however,	it	is	not	version	1	of	IP	but	version	4!	This	would	of	course	imply	that
there	were	earlier	versions	of	the	protocol	at	one	point.	Interestingly,	however,
there	really	weren't.	IP	was	created	when	its	functions	were	split	out	from	an
early	version	of	TCP	that	combined	both	TCP	and	IP	functions.	TCP	evolved
through	three	earlier	versions	and	was	split	into	TCP	and	IP	for	version	4.	That
version	number	was	applied	to	both	TCP	and	IP	for	consistency.

TIP

KEY	CONCEPT	Version	4	of	the	Internet	Protocol	(IP)	is	actually	the	first	version	that	was	widely
deployed	and	is	currently	the	one	in	widespread	use.

So,	when	you	use	IP	today,	you	are	using	IP	version	4,	which	is	frequently



abbreviated	IPv4.	Unless	otherwise	qualified,	it's	safe	to	assume	that	IP	means	IP
version	4—at	least	for	the	next	few	years.	(This	version	number	is	carried	in	the
appropriate	field	of	all	IP	datagrams,	as	described	in	the	topic	discussing	the	IP
datagram	format	in	Chapter	21.)

Given	that	it	was	originally	designed	for	an	internetwork	a	tiny	fraction	of	the
size	of	our	current	Internet,	IPv4	has	proven	itself	remarkably	capable.	Various
additions	and	changes	have	been	made	over	time	to	how	IP	is	used,	especially
with	respect	to	addressing,	but	the	core	protocol	is	basically	what	it	was	in	the
early	1980s.	There's	good	reason	for	this.	Changing	something	as	fundamental	as
IP	requires	a	great	deal	of	development	effort	and	also	introduces	complexities
during	transition.

IPv4	has	served	us	well,	but	people	understood	that,	for	various	reasons,	a	new
version	of	IP	would	eventually	be	required.	Due	to	the	difficulties	associated
with	making	such	an	important	change,	development	of	this	new	version	of	IP
has	actually	been	under	way	since	the	mid-1990s.	This	new	version	of	IP	is
formally	called	Internet	Protocol	version	6	(IPv6)	and	also	sometimes	referred	to
as	IP	Next	Generation	or	IPng.	I	discuss	the	reasons	why	IPv6	was	developed
and	how	it	differs	from	IPv4	in	considerable	detail	in	Part	II-4	of	this	book.

A	natural	question	at	this	point	is,	"What	happened	to	version	5	of	IP?"	The
answer	is	that	it	doesn't	exist.	While	this	may	seem	confusing,	version	5	was	in
fact	intentionally	skipped	in	order	to	avoid	confusion,	or	at	least	to	rectify	it.	The
problem	with	version	5	relates	to	an	experimental	TCP/IP	protocol	called	the
Internet	Stream	Protocol,	version	2,	originally	defined	in	RFC	1190.	This
protocol	was	originally	seen	by	some	as	being	a	peer	of	IP	at	the	Internet	layer	in
the	TCP/IP	architecture,	and	in	its	standard	version,	these	packets	were	assigned
IP	version	5	to	differentiate	them	from	normal	IP	packets	(version	4).	This
protocol	apparently	never	went	anywhere,	but	to	be	absolutely	sure	that	there
would	be	no	confusion,	version	5	was	skipped	over	in	favor	of	version	6.

IP-Related	Protocols
In	addition	to	the	old	and	new	versions	of	IP,	there	are	several	protocols	that	are
IP-related.	These	are	protocols	that	add	to	or	expand	on	the	capabilities	of	IP
functions	for	special	circumstances,	but	they	are	not	part	of	IP	proper.	These	are



as	follows:

IP	Network	Address	Translation	(IP	NAT	or	NAT)	This	protocol	provides	IP
address	translation	capabilities	that	allow	private	networks	to	be	interfaced	to
public	networks	in	a	flexible	manner.	It	allows	public	IP	addresses	to	be	shared
and	improves	security	by	making	it	more	difficult	for	hosts	on	the	public
network	to	gain	unauthorized	access	to	hosts.	It	is	commonly	called	NAT.	This
protocol	is	discussed	in	Chapter	28.

IP	Security	(IPsec)	IPsec	defines	a	set	of	subprotocols	that	provide	a
mechanism	for	the	secure	transfer	of	data	using	IP.	It	is	rapidly	growing	in
popularity	as	a	security	protocol	that	enables	virtual	private	networks.	This
protocol	is	discussed	in	Chapter	29.

Mobile	IP	This	is	a	protocol	that	addresses	some	of	the	difficulties	associated
with	using	IP	on	computers	that	frequently	move	from	one	network	to	another.	It
provides	a	mechanism	that	allows	data	to	be	automatically	routed	to	a	mobile
host	(such	as	a	notebook	computer),	without	requiring	a	constant	reconfiguration
of	the	device's	IP	address.	This	protocol	is	discussed	in	Chapter	30.



Chapter	16.	IPV4	ADDRESSING
CONCEPTS	AND	ISSUES

The	primary	job	of	the	Internet	Protocol	(IP)	is	delivering	messages	between
devices,	and	like	any	good	delivery	service,	it	can't	do	its	job	too	well	if	it
doesn't	know	where	the	recipients	are	located.	Obviously	then,	one	of	the	most
important	functions	of	IP	is	addressing.	IP	addressing	is	used	not	only	to
uniquely	identify	IP	addresses,	but	also	to	facilitate	the	routing	of	IP	datagrams
over	internetworks.	IP	addresses	are	used	and	referred	to	extensively	in	TCP/IP
networking.

Even	though	the	original	IP	addressing	scheme	was	relatively	simple,	it	has
become	complex	over	time	as	changes	have	been	made	to	it	to	allow	it	to	deal
with	various	addressing	requirements.	The	more	advanced	styles	of	IP
addressing,	such	as	subnetting	and	classless	addressing,	are	the	ones	used	most
in	modern	networks.	However,	they	can	be	a	bit	confusing	to	understand.	To
help	make	sense	of	them,	we	must	start	at	the	beginning	with	a	discussion	of	the
fundamentals	of	IP	addressing.

In	this	chapter,	I	begin	a	larger	exploration	of	IP	addressing	by	explaining	the
key	concepts	and	issues	behind	it.	I	begin	with	an	overview	of	IP	addressing	and
a	discussion	of	what	it	is	all	about.	I	describe	the	size	of	IP	addresses,	the
concept	of	its	address	space,	and	the	notation	usually	used	for	IP	addresses.	I
provide	basic	information	on	the	structure	of	an	IP	address	and	how	it	is	divided
into	a	network	identifier	and	host	identifier.	I	then	describe	the	different	types	of
IP	addresses	and	the	additional	information,	such	as	a	subnet	mask	and	default
gateway,	that	often	accompanies	an	IP	address	on	larger	networks.	I	provide	a
brief	description	of	how	multiple	addresses	are	sometimes	assigned	to	single
devices	and	why.	I	conclude	with	a	description	of	the	process	by	which	public	IP



addresses	are	registered	and	managed,	and	the	organizations	that	do	this	work	for
the	global	Internet.

TIP

BACKGROUND	INFORMATION	If	you	are	not	familiar	with	at	least	the	basics	of	how	binary
numbers	work,	and	also	with	how	to	convert	between	binary	and	decimal	numbers,	I	recommend	reading
Chapter	4,	which	provides	some	background	on	data	representation	and	the	mathematics	of	computing,
before	you	proceed	here.

IP	Addressing	Overview	and	Fundamentals
IP	addressing	is	important	because	it	facilitates	the	primary	function	of	the	IP:
the	delivery	of	datagrams	across	an	internetwork.	When	you	examine	this	in
more	detail,	it	becomes	apparent	that	the	IP	address	actually	has	two	different
functions,	as	follows:

Network	Interface	Identification	Like	a	street	address,	the	IP	address	provides
unique	identification	of	the	interface	between	a	device	and	the	network.	This	is
required	to	ensure	that	the	datagram	is	delivered	to	the	correct	recipients.

Routing	When	the	source	and	destination	of	an	IP	datagram	are	not	on	the	same
network,	the	datagram	must	be	delivered	indirectly	using	intermediate	systems.
This	is	a	process	called	routing.	The	IP	address	is	an	essential	part	of	the	system
used	to	route	datagrams.

You	may	have	noticed	a	couple	of	things	about	this	short	list.	One	is	that	I	said
the	IP	address	identifies	the	network	interface,	not	that	it	identifies	the	device
itself.	This	distinction	is	important	because	it	underscores	the	concept	that	IP	is
oriented	around	connections	to	a	large,	virtual	network	at	layer	3,	which	can
span	multiple	physical	networks.	Some	devices,	such	as	routers,	will	have	more
than	one	network	connection,	necessary	to	take	datagrams	from	one	network	and
route	them	onto	another.	This	means	they	will	also	have	more	than	one	IP
address—one	per	connection.

You	might	also	find	it	curious	that	I	said	that	the	IP	address	facilitates	routing.
How	can	it	do	that?	The	answer	is	that	the	addressing	system	is	designed	with	a
structure	that	can	be	interpreted	to	allow	routers	to	determine	what	to	do	with	a
datagram	based	on	the	values	in	the	address.	Numbers	related	to	the	IP	address,
such	as	the	subnet	mask	when	subnetting	is	used,	support	this	function.



such	as	the	subnet	mask	when	subnetting	is	used,	support	this	function.

Let's	look	at	some	of	the	more	important	issues	and	characteristics	associated
with	IP	addresses	in	general	terms.

Number	of	IP	Addresses	Per	Device
Any	device	that	has	data	sent	to	it	at	the	network	layer	will	have	at	least	one	IP
address:	one	per	network	interface.	This	means	that	normal	hosts	such	as
computers	and	network-capable	printers	usually	get	one	IP	address,	while	routers
get	more	than	one	IP	address.	Some	special	hosts	may	have	more	than	one	IP
address	if	they	are	multihomed—connected	to	more	than	one	network.

Lower-level	network	interconnection	devices—such	as	repeaters,	bridges,	and
switches—don't	require	an	IP	address	because	they	pass	traffic	based	on	layer	2
(data	link	layer)	addresses.	Network	segments	connected	by	bridges	and
switches	form	a	single	broadcast	domain,	and	any	devices	on	them	can	send	data
to	each	other	directly	without	routing.	To	IP,	these	devices	are	essentially
invisible;	they	are	no	more	significant	than	the	wires	that	connect	devices
together	(with	a	couple	of	exceptions).	Such	devices	may,	however,	optionally
have	an	IP	address	for	management	purposes.	In	this	regard,	they	are	acting	like
a	regular	host	on	the	network.

Figure	16-1	shows	the	IP	interfaces	of	a	few	common	LAN	devices	as	small
circles.	Each	regular	host	has	one	interface,	while	the	router	that	serves	this	LAN
has	three,	since	it	connects	to	three	different	networks.	Note	that	the	LAN	switch
has	no	IP	interfaces;	it	connects	the	hosts	and	router	at	layer	2.	(Also	see
Figure	16-5,	which	shows	the	IP	interfaces	of	devices	in	a	more	complex
configuration.)



Figure	16-1.	IP	interfaces	for	common	network	devices	Regular	hosts	have	one	interface;	routers
usually	have	more	than	one;	and	switches	have	none	(because	they	operate	at	layer	2).

Address	Uniqueness	and	Network	Specificity
Each	IP	address	on	a	single	internetwork	must	be	unique.	(This	seems	rather
obvious,	although	there	are	exceptions	in	IPv6,	in	the	form	of	special	anycast
addresses,	as	discussed	in	Chapter	25.)

Since	IP	addresses	represent	network	interfaces	and	are	used	for	routing,	the	IP
address	is	specific	to	the	network	to	which	it	is	connected.	If	the	device	moves	to
a	new	network,	the	IP	address	will	usually	have	to	change	as	well.	For	the	full
reason	why,	see	the	discussion	of	basic	IP	address	structure	later	in	this	chapter.
This	issue	was	a	primary	motivation	for	the	creation	of	Mobile	IP	(covered	in
Chapter	30).

Contrasting	IP	Addresses	and	Data	Link	Layer
Addresses
IP	addresses	are	used	for	network-layer	data	delivery	across	an	internetwork.
This	makes	IP	addresses	quite	different	from	the	data	link	layer	address	of	a
device,	such	as	its	Ethernet	MAC	address.	(In	TCP/IP	parlance,	these	are
sometimes	called	physical	addresses	or	hardware	addresses.)

At	the	network	layer,	a	single	datagram	may	be	sent	from	Device	A	to	Device	B.
However,	the	actual	delivery	of	the	datagram	may	require	that	it	passes	through



However,	the	actual	delivery	of	the	datagram	may	require	that	it	passes	through
a	dozen	or	more	physical	devices	if	Device	A	and	Device	B	are	not	on	the	same
network.

It	is	also	necessary	to	provide	a	function	that	maps	between	IP	and	data	link
layer	addresses.	In	TCP/IP,	this	is	the	job	of	the	Address	Resolution	Protocol
(ARP;	see	Chapter	13).

In	a	physical	network	such	as	an	Ethernet,	the	MAC	address	is	all	the
information	needed	to	send	data	between	devices.	In	contrast,	an	IP	address
represents	only	the	final	delivery	point	of	the	datagram.	The	route	taken	depends
on	the	characteristics	of	the	network	paths	between	the	source	and	destination
devices.	It	is	even	possible	that	there	may	not	be	a	route	between	any	two
devices,	which	means	two	devices	cannot	exchange	data,	even	if	they	know	each
other's	addresses!

Private	and	Public	IP	Network	Addresses
There	are	two	distinct	ways	that	a	network	can	be	set	up	with	IP	addresses.	On	a
private	network,	a	single	organization	controls	the	assignment	of	the	addresses
for	all	devices;	they	have	pretty	much	absolute	control	to	do	what	they	wish	in
selecting	numbers,	as	long	as	each	address	is	unique.

In	contrast,	on	a	public	network,	a	mechanism	is	required	to	ensure	that
organizations	don't	use	overlapping	addresses	and	that	they	enable	efficient
routing	of	data	between	organizations.	The	best-known	example	of	this	is	the
Internet,	where	public	IP	registration	and	management	facilities	have	been
created	to	address	this	issue.	There	are	also	advanced	techniques	now,	such	as	IP
Network	Address	Translation	(NAT),	which	allow	a	network	using	private
addresses	to	be	interfaced	to	a	public	TCP/IP	network.

IP	Address	Configuration	and	Addressing	Types
IP	addresses	can	be	set	up	as	either	a	static	or	dynamic	configuration.	In	a	static
configuration	setup,	each	device	is	manually	configured	with	an	IP	address	that
doesn't	change.	This	is	fine	for	small	networks	but	quickly	becomes	an
administrative	nightmare	in	larger	networks,	when	changes	are	required.	The
alternative,	dynamic	configuration,	allows	IP	addresses	to	be	assigned	to	devices



and	changed	under	software	control.	The	two	host	configuration	protocols,
BOOTP	and	DHCP,	were	created	to	fill	this	latter	function	(see	Part	III-3).

Additionally,	provision	is	included	in	the	IP	addressing	scheme	for	all	three
basic	types	of	addressing:	unicast,	multicast,	and	broadcast.

TIP

KEY	CONCEPT	IP	addresses	serve	the	dual	function	of	device	identification	and	routing.	Each
network	interface	requires	one	IP	address,	which	is	network	specific.	IP	addresses	can	be	either	statically
or	dynamically	allocated,	and	come	in	unicast,	multicast,	and	broadcast	forms.



IP	Address	Size,	Address	Space,	and	Notation
Now	that	you	have	looked	at	the	general	issues	and	characteristics	associated
with	IP	addresses,	it's	time	to	get	past	the	introductions	and	dig	into	the	"meat"
of	the	IP	address	discussion.	Let's	start	by	looking	at	the	physical	construction
and	size	of	the	IP	address	and	how	it	is	referred	to	and	used.

IP	Address	Size	and	Binary	Notation
At	its	simplest,	the	IP	address	is	just	a	32-bit	binary	number:	a	set	of	32	ones	or
zeros.	At	their	lowest	levels,	computers	always	work	in	binary,	and	this	also
applies	to	networking	hardware	and	software.	While	different	meanings	are
ascribed	to	different	bits	in	the	address,	the	address	itself	is	just	a	32-digit	binary
number.

People	don't	work	too	well	with	binary	numbers,	because	they	are	long	and
complicated,	and	the	use	of	only	two	digits	makes	them	hard	to	differentiate.
(Quick,	which	of	these	is	larger:	11100011010100101001100110110001	or
11100011010100101001101110110001?)	For	this	reason,	when	you	use	IP
addresses,	you	don't	work	with	them	in	binary	except	when	absolutely	necessary.

The	first	thing	that	people	would	naturally	do	with	a	long	string	of	bits	is	to	split
it	into	four	eight-bit	octets	(or	bytes,	even	though	the	two	aren't	technically	the
same;	see	Chapter	4),	to	make	it	more	manageable.	So
11100011010100101001101110110001	would	become	11100011	-	01010010	-
10011101	-	10110001.	Then	you	could	convert	each	of	those	octets	into	a	more
manageable	two-digit	hexadecimal	number	to	yield	the	following:	E3	-	52	-	9D	-
B1.	This	is,	in	fact,	the	notation	used	for	IEEE	802	MAC	addresses,	except	that
they	are	48	bits	long,	so	they	have	six	two-digit	hex	numbers,	and	they	are
usually	separated	by	colons,	not	dashes,	as	I	used	here.

(Incidentally,	the	second	binary	number	is	the	larger	one.)

IP	Address	Dotted	Decimal	Notation
Most	people	still	find	hexadecimal	a	bit	difficult	to	work	with.	So,	IP	addresses
are	normally	expressed	with	each	octet	of	eight	bits	converted	to	a	decimal
number	and	the	octets	separated	by	a	period	(a	dot).	Thus,	the	previous	example



would	become	227.82.157.177,	as	shown	in	Figure	16-2.	This	is	usually	called
dotted	decimal	notation	for	rather	obvious	reasons.	Each	of	the	octets	in	an	IP
address	can	take	on	the	values	from	0	to	255,	so	the	lowest	value	is	theoretically
0.0.0.0	and	the	highest	is	255.255.255.255.

TIP

KEY	CONCEPT	IP	addresses	are	32-bit	binary	numbers,	which	can	be	expressed	in	binary,
hexadecimal,	or	decimal	form.	Most	commonly,	they	are	expressed	by	dividing	the	32	bits	into	four
bytes	and	converting	each	to	decimal,	then	separating	these	numbers	with	dots	to	create	dotted	decimal
notation.

Figure	16-2.	IP	address	binary,	hexadecimal,	and	dotted	decimal	representations	The	binary,
hexadecimal,	and	decimal	representations	of	an	IP	address	are	all	equivalent.

Dotted	decimal	notation	provides	a	convenient	way	to	work	with	IP	addresses
when	communicating	among	people.	Never	forget	that	to	the	computers,	the	IP
address	is	always	a	32-bit	binary	number;	you'll	understand	the	importance	of
this	when	you	look	at	how	the	IP	address	is	logically	divided	into	components	in
the	next	topic,	and	when	you	examine	techniques	that	manipulate	IP	addresses,
such	as	subnetting.

IP	Address	Space
Since	the	IP	address	is	32	bits	wide,	this	provides	a	theoretical	address	space	of
232,	or	4,294,967,296	addresses.	This	seems	like	quite	a	lot	of	addresses,	and	in
some	ways,	it	is.	However,	as	you	will	see,	due	to	how	IP	addresses	are
structured	and	allocated,	not	every	one	of	those	addresses	can	actually	be	used.

One	of	the	unfortunate	legacies	of	the	fact	that	IP	was	originally	created	on	a
rather	small	internetwork	is	that	decisions	were	made	that	wasted	much	of	the
address	space.	For	example,	all	IP	addresses	starting	with	127	in	the	first	octet
are	reserved	for	the	loopback	function.	Just	this	one	decision	makes	1/256th	of



the	total	number,	or	16,277,216	addresses,	no	longer	available.	There	are	also
other	ways	that	the	IP	address	space	was	not	conserved.	This	caused	difficulty	as
the	Internet	grew	in	size.	(You'll	see	more	about	this	in	Chapter	17,	which	covers
classful	addressing.)

TIP

KEY	CONCEPT	Since	IP	addresses	are	32	bits	long,	the	total	address	space	of	IPv4	is	232	or
4,294,967,296	addresses.	However,	not	all	of	these	addresses	can	be	used,	for	a	variety	of	reasons.

This	IP	address	space	dictates	the	limit	on	the	number	of	addressable	interfaces
in	each	IP	internetwork.	So,	if	you	have	a	private	network,	you	can,	in	theory,
have	four-billion-plus	addresses.	However,	in	a	public	network	such	as	the
Internet,	alldevices	must	share	the	available	address	space.	Techniques	such	as
Classless	Inter-Domain	Routing	(CIDR),	or	supernetting,	and	NAT	were
designed	in	part	to	utilize	the	existing	Internet	IP	address	space	more	efficiently.
IPv6	expands	the	IP	address	size	from	32	bits	all	the	way	up	to	128,	which
increases	the	address	space	to	a	ridiculously	large	number	and	makes	the	entire
matter	of	address	space	size	moot.



IP	Basic	Address	Structure	and	Main
Components
As	I	mentioned	in	the	IP	addressing	overview,	one	of	the	ways	that	IP	addresses
are	used	is	to	facilitate	the	routing	of	datagrams	in	an	IP	internetwork.	This	is
made	possible	because	of	the	way	that	IP	addresses	are	structured	and	how	that
structure	is	interpreted	by	network	routers.

Network	ID	and	Host	ID
As	you	just	saw,	each	IPv4	address	is	32	bits	long.	When	you	refer	to	the	IP
address,	you	use	a	dotted	decimal	notation,	while	the	computer	converts	this	into
binary.	However,	even	though	these	sets	of	32	bits	are	considered	a	single	entity,
they	have	an	internal	structure	containing	two	components:

Network	Identifier	(Network	ID)	A	certain	number	of	bits,	starting	from	the
leftmost	bit,	is	used	to	identify	the	network	where	the	host	or	other	network
interface	is	located.	This	is	also	sometimes	called	the	network	prefix	or	even	just
the	prefix.

Host	Identifier	(Host	ID)	The	remainder	of	the	bits	is	used	to	identify	the	host
on	the	network.

NOTE

By	convention,	IP	devices	are	often	called	hosts	for	simplicity,	as	I	do	throughout	this	book.	Even
though	each	host	usually	has	a	single	IP	address,	you	should	remember	that	IP	addresses	are	strictly
associated	with	network	layer	network	interfaces,	not	physical	devices,	and	a	device	may	therefore	have
more	than	one	IP	address	(especially	a	router	or	multihomed	host).

As	you	can	see	in	Figure	16-3,	this	really	is	a	fairly	simple	concept.	The
fundamental	division	of	the	bits	of	an	IP	address	is	into	a	network	ID	and	host
ID.	In	this	illustration,	the	network	ID	is	8	bits	long,	and	the	host	ID	is	24	bits	in
length.	This	is	similar	to	the	structure	used	for	phone	numbers	in	North	America.
The	telephone	number	(401)	555-7777	is	a	ten-digit	number	that's	usually
referred	to	as	a	single	phone	number.	However,	it	has	a	structure.	In	particular,	it
has	an	area	code	(401)	and	a	local	number	(555-7777).

The	fact	that	the	network	ID	is	contained	in	the	IP	address	is	what	partially



The	fact	that	the	network	ID	is	contained	in	the	IP	address	is	what	partially
facilitates	the	routing	of	IP	datagrams	when	the	address	is	known.	Routers	look
at	the	network	portion	of	the	IP	address	to	first	determine	if	the	destination	IP
address	is	on	the	same	network	as	the	host	IP	address.	Then	routing	decisions	are
made	based	on	information	the	routers	keep	about	where	various	networks	are
located.	Again,	this	is	conceptually	similar	to	how	the	area	code	is	used	by	the
equivalent	of	routers	in	the	phone	network	to	switch	telephone	calls.	The	host
portion	of	the	address	is	used	by	devices	on	the	local	portion	of	the	network.

Figure	16-3.	Basic	IP	address	division:	network	ID	and	host	ID	This	diagram	shows	one	of	the	many
ways	to	divide	an	IP	address	into	a	network	ID	and	host	ID.

Location	of	the	Division	Between	Network	ID
and	Host	ID
One	difference	between	IP	addresses	and	phone	numbers	is	that	the	dividing
point	between	the	bits	used	to	identify	the	network	and	those	that	identify	the
host	isn't	fixed.	It	depends	on	the	nature	of	the	address,	the	type	of	addressing
being	used,	and	other	factors.

Take	the	previous	example	of	227.82.157.177	(see	Figure	16-2).	It	is	possible	to
divide	this	into	a	network	ID	of	227.82	and	a	host	ID	of	157.177.	Alternatively,
the	network	ID	might	be	227	and	the	host	ID	might	be	82.157.177	within	that
network.

To	express	the	network	and	host	IDs	as	32-bit	addresses,	you	add	zeros	to
replace	the	missing	pieces.	With	a	network	ID	of	227	and	a	host	ID	of
82.157.177,	the	address	of	the	network	becomes	227.0.0.0	and	the	address	of	the
host	0.82.157.177.	(In	practice,	network	addresses	of	this	sort	are	routinely	seen
with	the	added	zeros;	network	IDs	are	not	seen	as	often	in	32-bit	form	this	way.)

Lest	you	think	from	these	examples	that	the	division	must	always	be	between
whole	octets	of	the	address,	you	should	know	that	it's	also	possible	to	divide	it	in



the	middle	of	an	octet.	For	example,	you	could	split	the	IP	address
227.82.157.177	so	that	there	were	20	bits	for	the	network	ID	and	12	bits	for	the
host	ID.	The	process	is	the	same,	but	determining	the	dotted	decimal	ID	values	is
more	tricky	because	here,	the	157	is	split	into	two	binary	numbers.	The	results
are	227.82.144.0	for	the	network	ID	and	0.0.0.13.177	for	the	host	ID,	as	shown
in	Figure	16-4.

Since	IP	addresses	are	normally	expressed	as	four	dotted-decimal	numbers,
educational	resources	often	show	the	division	between	the	network	ID	and	host
ID	occurring	on	an	octet	boundary.	However,	it's	essential	to	remember	that	the
dividing	point	often	appears	in	the	middle	of	one	of	these	eight-bit	numbers.	In
Figure	16-4,	the	network	ID	is	20	bits	long,	and	the	host	ID	12	bits	long.	This
results	in	the	third	number	of	the	original	IP	address,	157,	being	split	into	144
and	13.

The	place	where	the	line	is	drawn	between	the	network	ID	and	the	host	ID	must
be	known	in	order	for	devices	such	as	routers	to	know	how	to	interpret	the
address.	This	information	is	conveyed	either	implicitly	or	explicitly,	depending
on	the	type	of	IP	addressing	in	use,	as	I	discuss	next.

Figure	16-4.	Mid-octet	IP	address	division	IP	addresses	need	not	be	divided	between	network	ID	and
host	ID	on	octet	boundaries.	The	division	here	is	into	a	20-bit	network	ID	and	a	12-bit	host	ID.

TIP

KEY	CONCEPT	The	basic	structure	of	an	IP	address	consists	of	two	components:	the	network	ID	and
host	ID.	The	dividing	point	of	the	32-bit	address	is	not	fixed,	but	depends	on	a	number	of	factors	and	can
occur	in	a	variety	of	places,	including	in	the	middle	of	a	dotted-decimal	octet.



Since	the	IP	address	can	be	split	into	network	ID	and	host	ID	components,	it	is
also	possible	to	use	either	one	or	the	other	by	itself,	depending	on	context.	These
addresses	are	assigned	special	meanings.	For	example,	if	the	network	ID	is	used
with	all	ones	as	the	host	ID,	this	indicates	a	broadcast	to	the	entire	network.
Similarly,	if	the	host	ID	is	used	by	itself	with	all	zeros	for	the	network	ID,	this
implies	an	IP	address	sent	to	the	host	of	that	ID	on	the	local	network,	whatever
that	might	be.	This	is	explained	in	much	more	detail	in	Chapter	17.

It	is	the	inclusion	of	the	network	ID	in	the	IP	address	of	each	host	on	the	network
that	causes	the	IP	addresses	to	be	network-specific.	If	you	move	a	device	from
one	network	to	a	different	one,	the	network	ID	must	change	to	that	of	the	new
network.	Therefore,	the	IP	address	must	change	as	well.	This	is	an	unfortunate
drawback	that	shows	up	most	commonly	when	dealing	with	mobile	devices;	see
Chapter	30.



IP	Addressing	Categories	and	IP	Address
Adjuncts
We	just	explored	how	the	32	bits	in	an	IP	address	are	fundamentally	divided	into
the	network	ID	and	host	ID.	The	network	ID	is	used	for	routing	purposes,	and
the	host	ID	uniquely	identifies	each	network	interface	on	the	network.	In	order
for	devices	to	know	how	to	use	IP	addresses	on	the	network,	they	must	be	able	to
tell	which	bits	are	used	for	each	ID.	However,	the	dividing	line	is	not	predefined.
It	depends	on	the	type	of	addressing	used	in	the	network.

Understanding	how	these	IDs	are	determined	leads	us	into	a	larger	discussion	of
the	three	main	categories	of	IP	addressing	schemes:	classful,	subnetted,	and
classless.	Each	of	these	uses	a	slightly	different	system	of	indicating	where	in	the
IP	address	the	host	ID	is	found.

Conventional	(Classful)	Addressing
The	original	IP	addressing	scheme	is	set	up	so	that	the	dividing	line	occurs	only
in	one	of	a	few	locations:	on	octet	boundaries.	Three	main	classes	of	addresses—
A,	B,	and	C—are	differentiated	based	on	how	many	octets	are	used	for	the
network	ID	and	how	many	for	the	host	ID.	For	example,	Class	C	addresses
devote	24	bits	to	the	network	ID	and	8	bits	to	the	host	ID.	This	type	of
addressing	is	now	often	referred	to	by	the	made-up	word	classful	to	differentiate
it	from	the	newer	classless	scheme.

This	most	basic	addressing	type	uses	the	simplest	method	to	divide	the	network
and	host	IDs:	The	class,	and	therefore	the	dividing	point,	are	encoded	into	the
first	few	bits	of	each	address.	Routers	can	tell	from	these	bits	which	octets
belong	to	which	identifier.

Subnetted	Classful	Addressing
In	the	subnet	addressing	system,	the	two-tier	network	and	host	division	of	the	IP
address	is	made	into	a	three-tier	system	by	taking	some	number	of	bits	from	a
Class	A,	B,	or	C	host	ID	and	using	them	for	a	subnet	identifier	(subnet	ID).	The
network	ID	is	unchanged.	The	subnet	ID	is	used	for	routing	within	the	different
subnetworks	that	constitute	a	complete	network,	thereby	providing	extra



flexibility	for	administrators.	For	example,	consider	a	Class	C	address	that
normally	uses	the	first	24	bits	for	the	network	ID	and	remaining	8	bits	for	the
host	ID.	The	host	ID	can	be	split	into,	say,	3	bits	for	a	subnet	ID	and	5	bits	for
the	host	ID.

This	system	is	based	on	the	original	classful	scheme,	so	the	dividing	line
between	the	network	ID	and	full	host	ID	is	based	on	the	first	few	bits	of	the
address	as	before.	The	dividing	line	between	the	subnet	ID	and	the	"subhost"	ID
is	indicated	by	a	32-bit	number	called	a	subnet	mask.	In	the	previous	example,
the	subnet	mask	would	be	27	ones	followed	by	5	zeros—the	zeros	indicate	what
part	of	the	address	is	the	host.	In	dotted	decimal	notation,	this	would	be
255.255.255.224.

Classless	Addressing
In	the	classless	system,	the	classes	of	the	original	IP	addressing	scheme	are
tossed	out	the	window.	The	division	between	the	network	ID	and	host	ID	can
occur	at	an	arbitrary	point,	not	just	on	octet	boundaries,	as	in	the	classful
scheme.

The	dividing	point	is	indicated	by	putting	the	number	of	bits	used	for	the
network	ID,	called	the	prefix	length,	after	the	address.	(Recall	that	the	network
ID	bits	are	also	sometimes	called	the	network	prefix,	so	the	network	ID	size	is
the	prefix	length.)	For	example,	if	227.82.157.177	is	part	of	a	network	where	the
first	27	bits	are	used	for	the	network	ID,	that	network	would	be	specified	as
227.82.157.160/27.	The	/27	is	conceptually	the	same	as	the	255.255.255.224
subnet	mask,	since	it	has	27	one	bits	followed	by	5	zeros.

TIP

KEY	CONCEPT	An	essential	factor	in	determining	how	an	IP	address	is	interpreted	is	the	addressing
scheme	in	which	it	is	used.	The	three	methods,	arranged	in	increasing	order	of	age,	complexity,	and
flexibility,	are	classful	addressing,	subnetted	classful	addressing,	and	classless	addressing.

This	introduction	to	the	concepts	of	classful,	subnetted,	and	classless	addressing
was	designed	to	show	you	how	they	impact	the	way	the	IP	address	is	interpreted.
I	have	greatly	summarized	important	concepts	here.	All	three	methods	are
explained	in	their	own	chapters	in	full	detail.



Subnet	Mask	and	Default	Gateway
In	the	original	classful	scheme,	the	division	between	network	ID	and	host	ID	is
implied.	However,	if	either	subnetting	or	classless	addressing	is	used,	then	the
subnet	mask	(or	slash	number,	which	is	equivalent)	is	required	to	fully	qualify
the	address.	These	numbers	are	considered	adjuncts	to	the	IP	address	and	usually
mentioned	with	the	address	itself,	because	without	them,	it	is	not	possible	to
know	where	the	network	ID	ends	and	the	host	ID	begins.

One	other	number	that	is	often	specified	along	with	the	IP	address	for	a	device	is
the	default	gateway	identifier.	In	simplest	terms,	this	is	the	IP	address	of	the
router	that	provides	default	routing	functions	for	a	particular	device.	When	a
device	on	an	IP	network	wants	to	send	a	datagram	to	a	device	it	can't	see	on	its
local	IP	network,	it	sends	it	to	the	default	gateway,	which	takes	care	of	routing
functions.	Without	this,	each	IP	device	would	also	need	to	have	knowledge	of
routing	functions	and	routes,	which	would	be	inefficient.	See	Chapter	23,	which
discusses	IP	routing	concepts,	and	Chapter	37	through	41,	which	cover	TCP/IP
routing	protocols,	for	more	information.



Number	of	IP	Addresses	and	Multihoming
Each	network	interface	on	an	IP	internetwork	has	a	separate	IP	address.	In	a
classic	network,	each	regular	computer,	usually	called	a	host,	attaches	to	the
network	in	exactly	only	one	place,	so	it	will	have	only	one	IP	address.	This	is
what	most	of	us	are	familiar	with	when	using	an	IP	network	(and	is	also	why
most	people	use	the	term	host	when	they	really	mean	network	interface).

If	a	device	has	more	than	one	interface	to	the	internetwork,	it	will	have	more
than	one	IP	address.	The	most	obvious	case	where	this	occurs	is	with	routers,
which	connect	together	different	networks	and	thus	must	have	an	IP	address	for
the	interface	on	each	one.	It	is	also	possible	for	hosts	to	have	more	than	one	IP
address,	however.	Such	a	device	is	sometimes	said	to	be	multihomed.

There	are	two	ways	that	a	host	can	be	multihomed:

Two	or	More	Interfaces	to	the	Same	Network	Devices	such	as	servers	or
high-powered	workstations	may	be	equipped	with	two	physical	interfaces	to	the
same	network	for	performance	and	reliability	reasons.	They	will	have	two	IP
addresses	on	the	same	network	with	the	same	network	ID.

Interfaces	to	Two	or	More	Different	Networks	Devices	may	have	multiple
interfaces	to	different	networks.	The	IP	addresses	will	typically	have	different
network	IDs	in	them.

Figure	16-5	shows	examples	of	both	types	of	multihomed	device.	Of	course,
these	could	be	combined,	with	a	host	having	two	connections	to	one	network	and
a	third	to	another	network.	There	are	also	some	other	special	cases,	such	as	a
host	with	a	single	network	connection	having	multiple	IP	address	aliases.

NOTE

When	subnetting	is	used,	the	same	distinction	can	be	made	between	multihoming	to	the	same	subnet	or	a
different	subnet.

Now,	let's	consider	the	second	case.	If	a	host	has	interfaces	to	two	or	more
different	networks,	could	it	pass	IP	datagrams	between	them?	Yes,	if	it	had	the
right	software	running	on	it.	And	wouldn't	that	make	the	host	a	router,	of	sorts?
In	fact,	that	is	exactly	the	case.	A	multihomed	host	with	interfaces	to	two



networks	can	use	software	to	function	as	a	router.	This	is	sometimes	called
software	routing.

Using	a	host	as	a	router	has	certain	advantages	and	disadvantages	compared	to	a
hardware	router.	A	server	that	is	multihomed	can	perform	routing	functions	and
also,	well,	act	as	a	server.	A	dedicated	hardware	router	is	designed	for	the	job	of
routing	and	usually	will	be	more	efficient	than	a	software	program	running	on	a
host.

TIP

KEY	CONCEPT	A	host	with	more	than	one	IP	network	interface	is	said	to	be	multihomed.	A
multihomed	device	can	have	multiple	connections	to	the	same	network,	to	different	networks,	or	both.	A
host	connected	to	two	networks	can	be	configured	to	function	as	a	router.

Multihoming	was	once	considered	a	fairly	esoteric	application,	but	has	become
more	common	in	recent	years.	This	is	also	true	of	multihoming	on	different
networks	for	software	routing	use.	In	fact,	you	may	be	doing	this	in	your	home
without	realizing	it.

Suppose	you	have	two	PCs	networked	together	and	a	single	phone	line	to
connect	to	the	Internet.	One	computer	dials	up	to	your	Internet	service	provider
(ISP)	and	runs	software	such	as	Microsoft's	Internet	Connection	Sharing	(ICS)	to
let	the	other	computer	access	the	Internet.	Millions	of	people	do	this	every	day—
they	have	a	multihomed	system	(the	one	connecting	to	the	Internet	and	the	other
PC)	with	ICS	acting	in	the	role	of	a	software	router	(though	there	are	some
technical	differences	between	ICS	and	a	true	router,	of	course).



IP	Address	Management	and	Assignment
Methods	and	Authorities
What	would	happen	if	you	told	someone	that	you	lived	at	34	Elm	Street,	and
when	he	turned	onto	your	road,	he	found	four	different	houses	with	the	number
34	on	them?	He	probably	would	find	your	place	eventually	but	wouldn't	be	too
pleased.	Neither	would	you	or	your	mail	carrier!	And	all	of	you	folks	are	much
smarter	than	computers.	Like	street	addresses,	IP	addresses	must	be	unique	for
them	to	be	useful.

Figure	16-5.	Multihomed	devices	on	an	IP	internetwork	This	internetwork	consists	of	two	LANs,	A
(above)	and	B	(below).	LAN	A	has	a	multihomed	workstation,	shown	with	two	IP	network	interface
"circles."	The	two	LANs	are	connected	together	through	a	multihomed,	shared	server	that	has	been
configured	to	route	traffic	between	them.	Note	that	this	server	also	handles	all	traffic	passing	between

LAN	B	and	the	Internet	(since	the	Internet	connection	is	in	LAN	A	only).

Since	IP	datagrams	are	sent	only	within	the	confines	of	the	IP	internetwork,	they
must	be	unique	within	each	internetwork.	If	you	are	a	company	with	your	own



private	internetwork,	this	isn't	really	a	big	problem.	Whoever	is	in	charge	of
maintaining	the	internetwork	keeps	a	list	of	what	numbers	have	been	used	where
and	makes	sure	that	no	two	devices	are	given	the	same	address.	However,	what
happens	in	a	public	network	with	many	different	organizations?	Here,	it	is
essential	that	the	IP	address	space	be	managed	across	the	organizations	to	ensure
that	they	use	different	addresses.	It's	not	feasible	to	have	each	organization
coordinate	its	activities	with	each	other	one.	Therefore,	some	sort	of	centralized
management	authority	is	required.

At	the	same	time	that	you	need	someone	to	ensure	that	there	are	no	conflicts	in
address	assignment,	you	don't	want	users	of	the	network	to	have	to	go	to	this
central	authority	every	time	they	need	to	make	a	change	to	their	network.	It
makes	more	sense	to	have	the	authority	assign	numbers	in	blocks	or	chunks	to
organizations	based	on	the	number	of	devices	they	want	to	connect	to	the
network.	The	organizations	can	manage	those	blocks	as	they	see	fit,	and	the
authority's	job	is	made	easier	because	it	deals	in	blocks	instead	of	billions	of
individual	addresses	and	machines.

The	Internet,	as	the	big	IP	internetwork,	requires	this	coordination	task	to	be
performed	for	millions	of	organizations	worldwide.	The	job	of	managing	IP
address	assignment	on	the	Internet	was	originally	carried	out	by	a	single
organization:	the	Internet	Assigned	Number	Authority	(IANA).	IANA	was
responsible	for	allocating	IP	addresses,	along	with	other	important	centralized
coordination	functions	such	as	managing	universal	parameters	used	for	TCP/IP
protocols.	In	the	late	1990s,	a	new	organization	called	the	Internet	Corporation
for	Assigned	Names	and	Numbers	(ICANN)	was	created.	ICANN	now	oversees
the	IP	address	assignment	task	of	IANA,	as	well	as	managing	other	tasks	such	as
Domain	Name	System	(DNS)	name	registration	(see	Chapter	54).

IP	addresses	were	originally	allocated	directly	to	organizations.	The	original	IP
addressing	scheme	was	based	on	classes,	and	so	IANA	would	assign	addresses
in	Class	A,	B,	and	C	blocks.	Today,	addressing	is	classless,	using	CIDR's
hierarchical	addressing	scheme.	IANA	doesn't	assign	addresses	directly,	but
rather	delegates	them	to	regional	Internet	registries	(RIRs).	These	are	APNIC,
ARIN,	LACNIC,	and	RIPE	NCC.	Each	RIR	can,	in	turn,	delegate	blocks	of
addresses	to	lower-level	registries	such	as	national	Internet	registries	(NIRs)	and
local	Internet	registries	(LIRs).



local	Internet	registries	(LIRs).

Eventually,	blocks	of	addresses	are	obtained	by	ISPs	for	distribution	to	end-user
organizations.	Some	of	the	ISP's	customers	are	end-user	organizations,	but
others	are	(smaller)	ISPs	themselves.	They	can,	in	turn,	use	or	delegate	the
addresses	in	their	blocks.	This	can	continue	for	several	stages	in	a	hierarchical
fashion.	This	arrangement	helps	ensure	that	IP	addresses	are	assigned	and	used
in	the	most	efficient	manner	possible.	See	Chapter	20,	which	discusses	CIDR,
for	more	information	on	how	this	works.

IANA,	ICANN,	and	the	RIRs	are	responsible	for	more	than	just	IP	address
allocation,	though	I	have	concentrated	on	IP	addresses	here	for	obvious	reasons.
For	more	general	information	on	IANA,	ICANN,	APNIC,	ARIN,	LACNIC,	and
RIPE	NCC,	try	a	can	of	alphabet	soup—or	Chapter	3,	which	provides	an
overview	of	the	Internet	registration	authorities.



Chapter	17.	CLASSFUL
(CONVENTIONAL)	ADDRESSING

The	original	addressing	method	for	IP	addresses	divided	the	IP	address	space
into	five	chunks	of	different	sizes	called	classes,	and	assigned	blocks	of
addresses	to	organizations	from	these	classes	based	on	the	size	and	requirements
of	the	organization.	In	this	classful	addressing	scheme,	each	class	is	reserved	for
a	particular	purpose,	with	the	main	address	classes	differentiated	based	on	how
many	octets	are	used	for	the	network	identifier	(network	ID)	and	how	many	are
used	for	the	host	identifier	(host	ID).

In	this	chapter,	I	describe	classful	IP	addressing.	I	begin	with	an	overview	of	the
concept	and	general	description	of	the	different	classes.	I	discuss	the	network
and	host	IDs	and	address	ranges	associated	with	the	different	classes.	I	discuss
the	capacities	of	each	of	the	commonly	used	classes,	meaning	how	many
networks	belong	to	each	and	how	many	hosts	each	network	can	contain.	I
discuss	the	special	meanings	assigned	to	certain	IP	address	patterns	and	the
special	ranges	reserved	for	private	IP	addressing,	loopback	functions,	and
multicasting.	I	conclude	with	a	discussion	of	the	problems	with	this	type	of
addressing,	which	led	to	it	being	abandoned	in	favor	of	subnetting,	and
eventually,	classless	assignment	of	the	IP	address	space.

NOTE

The	classful	addressing	scheme	has	been	replaced	by	the	classless	addressing	system	described	in
Chapter	20.	However,	I	think	it	is	still	important	to	understand	how	this	original	system	operates,	as	it
forms	the	basis	for	the	more	sophisticated	addressing	mechanisms.

IP	Classful	Addressing	Overview	and	Address



Classes
The	developers	of	the	Internet	Protocol	(IP)	recognized	that	organizations	come
in	different	sizes	and	would	therefore	need	varying	numbers	of	IP	addresses	on
the	Internet.	They	devised	a	system	to	divide	the	IP	address	space	into	classes,
each	of	which	contained	a	portion	of	the	total	addresses	and	was	dedicated	to
specific	uses.	Some	classes	would	be	devoted	to	large	networks	on	the	Internet,
while	others	would	be	reserved	for	smaller	organizations	or	special	purposes.

This	original	system	had	no	name;	it	was	simply	"the"	IP	addressing	system.
Today	it	is	called	the	classful	addressing	scheme	to	differentiate	it	from	the
newer	classless	scheme.

IP	Address	Classes
There	are	five	classes	in	the	classful	system,	which	are	assigned	the	letters	A
through	E.	Table	17-1	provides	some	general	information	about	the	classes,	their
intended	uses,	and	their	characteristics.

Table	17-1.	IP	Address	Classes	and	Class	Characteristics	and	Uses

IP
Address
Class

Fraction	of
Total	IP
Address
Space

Number
of
Network
ID	Bits

Number
of	Host
ID	Bits

Intended	Use

Class	A 1/2 8 24 Unicast	addressing	for	very	large
organizations	with	hundreds	of	thousands	or
millions	of	hosts	to	connect	to	the	Internet

Class	B 1/4 16 16 Unicast	addressing	for	medium	to	large
organizations	with	many	hundreds	to
thousands	of	hosts	to	connect	to	the	Internet

Class	C 1/8 24 8 Unicast	addressing	for	smaller
organizations	with	no	more	than	about	250
hosts	to	connect	to	the	Internet

Class	D 1/16 n/a n/a IP	multicasting

Class	E 1/16 n/a n/a Reserved	for	experimental	use



Looking	at	this	table	(and	Figure	17-1),	you	can	see	that	Classes	A,	B,	and	C
take	up	most	of	the	total	address	space	(seven-eighths	of	it).	These	are	the
classes	used	for	unicast	IP	addressing	and	messages	sent	to	a	single	network
interface.	(The	blocks	also	include	associated	broadcast	addresses	for	these
networks.)	This	is	what	I	usually	consider	normal	IP	addressing.

Figure	17-1.	Division	of	IPv4	address	space	into	classes

You	can	think	of	Classes	A,	B,	and	C	as	the	papa	bear,	mama	bear,	and	baby
bear	of	traditional	IP	addressing.	They	allow	the	Internet	to	provide	addressing
for	a	small	number	of	very	large	networks,	a	moderate	number	of	medium-sized
organizations,	and	a	large	number	of	smaller	companies.	This	approximately
reflects	the	distribution	of	organization	sizes	in	the	real	world,	though	the	large
gulf	in	the	maximum	number	of	hosts	allowed	for	each	address	class	leads	to
inflexibility,	as	I	will	discuss	later	in	the	chapter.

As	you	can	see,	the	classes	differ	in	where	they	draw	the	line	between	the
network	ID	and	the	host	ID	portions	of	the	addresses	they	contain.	However,	in
each	case,	the	division	is	made	on	octet	boundaries.	In	classful	addressing,	the
division	does	not	occur	within	an	octet.

Classes	D	and	E	are	special—to	the	point	where	many	people	don't	even	realize
they	exist.	Class	D	is	used	for	IP	multicasting,	while	Class	E	is	reserved	for
experimental	use	(by	designers	of	the	Internet).	I	discuss	IP	multicast	addressing
later	in	this	chapter.

TIP



KEY	CONCEPT	The	classful	IP	addressing	scheme	divides	the	IP	address	space	into	five	classes,	A
through	E,	of	differing	sizes.	Classes	A,	B,	and	C	are	the	most	important	ones,	designated	for
conventional	unicast	addresses	and	taking	up	seven-eighths	of	the	address	space.	Class	D	is	reserved	for
IP	multicasting,	and	Class	E	is	reserved	for	experimental	use.

Rationale	for	Classful	Addressing
While	the	drawbacks	of	the	classful	system	are	often	discussed	today	(as	you'll
see	later	in	this	chapter),	it's	important	to	keep	in	context	what	the	size	of	the
Internet	was	when	this	system	was	developed.	The	Internet	was	tiny	then,	and
the	32-bit	address	space	seemed	enormous	by	comparison	to	even	the	number	of
machinesits	creators	envisioned	years	into	the	future.	It's	only	fair	to	also
remember	the	following	advantages	of	the	classful	system	developed	over	25
years	ago:

Simplicity	and	Clarity	There	are	only	a	few	classes	to	choose	from,	and	it's
very	simple	to	understand	how	the	addresses	are	split	up.	The	distinction
between	classes	is	clear	and	obvious.	The	divisions	between	network	ID	and	host
ID	in	Classes	A,	B,	and	C	are	on	octet	boundaries,	making	it	easy	to	tell	what	the
network	ID	is	of	any	address.

Reasonable	Flexibility	Three	levels	of	granularity	match	the	sizes	of	large,
medium-sized,	and	small	organizations	reasonably	well.	The	original	system
provided	enough	capacity	to	handle	the	anticipated	growth	rate	of	the	Internet	at
the	time.

Routing	Ease	As	you	will	see	shortly,	the	class	of	the	address	is	encoded	right
into	the	address	to	make	it	easy	for	routers	to	know	what	part	of	any	address	is
the	network	ID	and	what	part	is	the	host	ID.	There	was	no	need	for	adjunct
information	such	as	a	subnet	mask.

Reserved	Addresses	Certain	addresses	are	reserved	for	special	purposes.	This
includes	not	just	Classes	D	and	E,	but	also	special	reserved	address	ranges	for
private	addressing.

Of	course,	it	turned	out	that	some	of	the	decisions	in	the	original	IP	addressing
scheme	were	regrettable—but	that's	the	benefit	of	hindsight.	I'm	sure	we	would
all	like	to	have	back	the	268-odd	million	addresses	that	were	set	aside	for	Class
E.	While	it	may	seem	wasteful	now	to	have	reserved	a	full	one-sixteenth	of	the



address	space	for	experimental	use,	remember	that	the	current	size	of	the	Internet
was	never	anticipated	even	10	years	ago,	never	mind	25.	Furthermore,	it's	good
practice	to	reserve	some	portion	of	any	scarce	resource	for	future	use.



IP	Classful	Addressing	Network	and	Host
Identification	and	Address	Ranges
The	classful	IP	addressing	scheme	divides	the	total	IP	address	space	into	five
classes,	A	through	E.	One	of	the	benefits	of	the	relatively	simple	classful	scheme
is	that	information	about	the	classes	is	encoded	directly	into	the	IP	address.	This
means	you	can	determine	in	advance	which	address	ranges	belong	to	each	class.
It	also	means	the	opposite	is	possible:	You	can	identify	which	class	is	associated
with	any	address	by	examining	just	a	few	bits	of	the	address.	This	latter	benefit
was	one	of	the	main	motivators	for	the	initial	creation	of	the	classful	system.

Classful	Addressing	Class	Determination
Algorithm
When	TCP/IP	was	first	created,	computer	technology	was	still	in	its	infancy.
Routers	needed	to	be	able	to	quickly	make	decisions	about	how	to	move	IP
datagrams	around.	The	IP	address	space	was	split	into	classes	in	such	a	way	that,
by	looking	at	only	the	first	few	bits	of	any	IP	address,	the	router	could	easily	tell
how	to	choose	between	the	network	and	host	ID,	and	thus	what	to	do	with	the
datagram.

The	number	of	bits	the	router	needs	to	look	at	may	be	as	few	as	one	or	as	many
as	four,	depending	on	what	it	finds	when	it	starts	looking.	The	algorithm	used	to
determine	the	class	corresponds	to	the	system	used	to	divide	the	address	space,
as	illustrated	in	Figure	17-2.



Figure	17-2.	Class	determination	algorithm	for	classful	IP	addresses	The	simplicity	of	the	classful	IP
addressing	can	be	seen	in	the	very	uncomplicated	algorithm	used	to	determine	the	class	of	an	address.

Here	are	the	four	very	basic	steps	in	the	algorithm:

1.	 If	the	first	bit	is	a	0,	it's	a	Class	A	address,	and	you're	done.	(Half	the
address	space	has	a	0	for	the	first	bit,	so	this	is	why	Class	A	takes	up	half
the	address	space.)	If	it's	a	1,	continue	to	step	2.

2.	 If	the	second	bit	is	a	0,	it's	a	Class	B	address,	and	you're	done.	(Half	of	the
remaining	non–Class	A	addresses,	or	one	quarter	of	the	total.)	If	it's	a	1,
continue	to	step	3.

3.	 If	the	third	bit	is	a	0,	it's	a	Class	C	address,	and	you're	done.	(Half	again	of
what's	left,	or	one-eighth	of	the	total.)	If	it's	a	1,	continue	to	step	4.

4.	 If	the	fourth	bit	is	a	0,	it's	a	Class	D	address.	(Half	the	remainder,	or	one-
sixteenth	of	the	address	space.)	If	it's	a	1,	it's	a	Class	E	address.	(The	other
half,	one-sixteenth.)

And	that's	pretty	much	it.

Determining	Address	Class	from	the	First	Octet



Bit	Pattern
As	humans,	of	course,	we	generally	work	with	addresses	in	dotted	decimal
notation	and	not	in	binary,	but	it's	pretty	easy	to	see	the	ranges	that	correspond	to
the	classes.	For	example,	consider	Class	B.	The	first	two	bits	of	the	first	octet	are
10.	The	remaining	bits	can	be	any	combination	of	ones	and	zeros.	This	is
normally	represented	as	10xx	xxxx	(shown	as	two	groups	of	four	for
readability).	Thus,	the	binary	for	the	first	octet	can	range	from	1000	0000	to
1011	1111	(128	to	191	in	decimal).	So	in	the	classful	scheme,	any	IP	address
whose	first	octet	is	between	128	and	191	inclusive	is	a	Class	B	address.

Table	17-2	shows	the	bit	patterns	for	each	of	the	five	classes	and	the	way	that	the
first	octet	ranges	can	be	calculated.	The	first	column	shows	the	format	of	the	first
octet	of	the	IP	address;	the	xs	can	be	either	a	zero	or	a	one.	Next	are	the	lowest
and	highest	value	columns	for	each	class	in	binary	(the	fixed	few	bits	are	in	bold
print	so	you	can	see	that	they	do	not	change	while	the	others	do),	followed	by	the
corresponding	range	for	the	first	octet,	in	decimal.

Table	17-2.	IP	Address	Class	Bit	Patterns,	First-Octet	Ranges,	and	Address
Ranges

IP
Address
Class

First
Octet	of
IP
Address

Lowest
Value	of
First
Octet
(Binary)

Highest
Value	of
First	Octet
(Binary)

Range	of
First	Octet
Values
(Decimal)

Octets
in
Network
ID/Host
ID

Theoretical	IP
Address
Range

Class	A 0xxx
xxxx

0000	0001 0111	1110 1	to	126 1	/	3 1.0.0.0	to
126.255.255.255

Class	B 10xx
xxxx

1000	0000 1011	1111 128	to	191 2	/	2 128.0.0.0	to
191.255.255.255

Class	C 110x
xxxx

1100	0000 1101	1111 192	to	223 3	/	1 192.0.0.0	to
223.255.255.255

Class	D 1110
xxxx

1110	0000 1110	1111 224	to	239 — 224.0.0.0	to
239.255.255.255

Class	E 1111
xxxx

1111	0000 1111	1111 240	to	255 — 240.0.0.0	to
255.255.255.255



This	table	also	shows	the	theoretical	lowest	and	highest	IP	address	ranges	for
each	of	the	classes.	This	means	that	they	are	the	result	of	taking	the	full	span	of
binary	numbers	possible	in	each	class.	In	reality,	some	of	the	values	are	not
available	for	normal	use.	For	example,	even	though	the	range	192.0.0.0	to
192.0.0.255	is	technically	in	Class	C,	it	is	reserved	and	not	actually	used	by
hosts	on	the	Internet.

Also,	certain	IP	addresses	cannot	be	used	because	they	have	special	meaning.
For	example,	255.255.255.255	is	a	reserved	broadcast	address.	In	a	similar	vein,
note	that	the	range	for	Class	A	is	from	1	to	126	and	not	0	to	127	as	you	might
have	expected.	This	is	because	Class	A	networks	0	and	127	are	reserved;	127	is
the	network	that	contains	the	IP	loopback	address.	These	special	and	reserved
addresses	are	discussed	later	in	this	chapter.

Recall	that	Classes	A,	B,	and	C	differ	in	where	the	dividing	line	is	between	the
network	ID	and	the	host	ID:	1	for	network	and	3	for	host	for	Class	A,	2	for	each
for	Class	B,	and	3	for	network	and	1	for	host	for	Class	C.	Based	on	this	division,
in	Table	17-2,	I	have	highlighted	the	network	ID	portion	of	the	IP	address	ranges
for	each	of	Classes	A,	B,	and	C.	The	plain	text	corresponds	to	the	range	of	host
IDs	for	each	allowable	network	ID.	Figure	17-3	shows	graphically	how	bits	are
used	in	each	of	the	five	classes.

Figure	17-3.	IP	address	class	bit	assignments	and	network/host	ID	sizes	This	illustration	shows	how	the
32	bits	of	IP	address	are	assigned	for	each	of	the	five	IP	address	classes.	Classes	A,	B,	and	C	are	the
normal	classes	used	for	regular	unicast	addresses;	each	has	a	different	dividing	point	between	the

network	ID	and	host	ID.	Classes	D	and	E	are	special	and	are	not	divided	in	this	manner.



TIP

KEY	CONCEPT	In	the	classful	IP	addressing	scheme,	the	class	of	an	IP	address	is	identified	by
looking	at	the	first	one,	two,	three,	or	four	bits	of	the	address.	This	can	be	done	both	by	humans	working
with	these	addresses	and	routers	making	routing	decisions.	The	use	of	these	bit	patterns	means	that	IP
addresses	in	different	classes	fall	into	particular	address	ranges	that	allow	an	address's	class	to	be
determined	by	looking	at	the	first	byte	of	its	dotted	decimal	address.

For	example,	consider	Class	C.	The	lowest	IP	address	is	192.0.0.0,	and	the
highest	is	223.255.255.255.	The	first	three	octets	are	the	network	ID	and	can
range	from	192.0.0	to	223.255.255.	For	each	network	ID	in	that	range,	the	host
ID	can	range	from	0	to	255.

NOTE

It	is	common	to	see	resources	refer	to	the	network	ID	of	a	classful	address	as	including	only	the
significant	bits;	that	is,	only	the	ones	that	are	not	common	to	all	networks	of	that	class.	For	example,	you
may	see	a	Class	B	network	ID	shown	in	a	diagram	as	having	14	bits,	with	the	10	that	starts	all	such
networks	shown	separately,	as	if	it	were	not	part	of	the	network	ID.	Remember	that	the	network	ID	does
include	those	bits	as	well;	it	is	8	full	bits	for	Class	A,	16	for	Class	B,	and	24	for	Class	C.	In	the	case	of
Class	D	addresses,	all	32	bits	are	part	of	the	address,	but	only	the	lower	28	bits	are	part	of	the	multicast
group	address;	see	the	topic	on	multicast	addressing	later	in	this	chapter	for	more.



IP	Address	Class	A,	B,	and	C	Network	and	Host
Capacities
So	far,	I	have	introduced	the	concepts	of	IP	address	classes	and	showed	how	the
classes	relate	to	ranges	of	IP	addresses.	Of	the	five	classes,	D	and	E	are
dedicated	to	special	purposes,	so	I	will	leave	those	alone	for	now.	Classes	A,	B,
and	C	are	the	ones	actually	assigned	for	normal	(unicast)	addressing	purposes	on
IP	internetworks,	and	therefore	they	are	the	primary	focus	of	our	continued
attention.

As	you've	seen,	the	classes	differ	in	the	number	of	bits	(and	octets)	used	for	the
network	ID	compared	to	the	host	ID.	The	number	of	different	networks	possible
in	each	class	is	a	function	of	the	number	of	bits	assigned	to	the	network	ID,	and
likewise,	the	number	of	hosts	possible	in	each	network	depends	on	the	number
of	bits	provided	for	the	host	ID.	You	must	also	take	into	account	the	fact	that
one,	two,	or	three	of	the	bits	in	the	IP	address	are	used	to	indicate	the	class	itself,
so	it	is	effectively	excluded	from	use	in	determining	the	number	of	networks
(though	again,	it	is	still	part	of	the	network	ID).

Based	on	this	information,	you	can	calculate	the	number	of	networks	in	each
class,	and	for	each	class,	the	number	of	host	IDs	per	network.	Table	17-3	shows
the	calculations.

Table	17-3.	IP	Address	Class	Network	and	Host	Capacities

IP
Address
Class

Total	#	of
Bits	for
Network
ID/Host	ID

First
Octet	of
IP
Address

#	of	Network
ID	Bits	Used
To	Identify
Class

Usable	#
of
Network
ID	Bits

Number	of
Possible
Network
IDs

#	of	Host
IDs	Per
Network
ID

Class	A 8/24 0xxx
xxxx

1 8-1	=	7 27-2	=	126 224-2	=
16,277,214

Class	B 16/16 10xx
xxxx

2 16-2	=	14 214	=
16,384

216-2	=
65,534

Class	C 24/8 110x
xxxx

3 24-3	=	21 221	=
2,097,152

28-2	=	254



Let's	walk	through	one	line	of	this	table	so	you	can	see	how	it	works	using	Class
B	as	an	example.	The	basic	division	is	into	16	bits	for	network	ID	and	16	bits	for
host	ID.	However,	the	first	2	bits	of	all	Class	B	addresses	must	be	10,	so	that
leaves	only	14	bits	to	uniquely	identify	the	network	ID.	This	gives	us	a	total	of
214	or	16,384	Class	B	network	IDs.	For	each	of	these,	you	have	216	host	IDs,	less
two,	for	a	total	of	65,534.

Why	less	two?	For	each	network	ID,	two	host	IDs	cannot	be	used:	the	host	ID
with	all	zeros	and	the	ID	with	all	ones.	These	are	addresses	with	special
meanings,	as	described	in	the	next	section.	Also	notice	that	two	is	subtracted
from	the	number	of	network	IDs	for	Class	A.	This	is	because	two	of	the	Class	A
network	IDs	(0	and	127)	are	reserved.

Several	other	address	ranges	are	set	aside	in	all	three	of	the	classes	shown	here.
They	are	listed	in	the	"IP	Reserved,	Private,	and	Loopback	Addresses"	section
later	in	this	chapter.

TIP

KEY	CONCEPT	In	the	classful	IP	addressing	scheme,	a	Class	A	network	contains	addresses	for	about
16	million	network	interfaces;	a	Class	B	network	contains	about	65,000;	and	a	Class	C	network	contains
254.

As	you	can	see,	there	is	quite	a	disparity	in	the	number	of	hosts	available	for
each	network	in	each	of	these	classes.	What	happens	if	an	organization	needs
1,000	IP	addresses?	It	must	use	either	four	Class	Cs	or	one	Class	B	(and	in	so
doing,	waste	over	90	percent	of	the	possible	addresses	in	the	Class	B	network).
Bear	in	mind	that	there	are	only	about	16,000	Class	B	network	IDs	available
worldwide,	and	you	begin	to	understand	one	of	the	big	problems	with	classful
addressing.



IP	Addresses	with	Special	Meanings
Some	IP	addresses	do	not	refer	directly	to	specific	hardware	devices;	instead,
they	are	used	to	refer	indirectly	to	one	or	more	devices.	To	draw	an	analogy	with
language,	most	IP	addresses	refer	to	proper	nouns,	like	"John"	or	"the	red	table
in	the	corner."	However,	some	are	used	more	the	way	you	use	pronouns	such	as
"this	one"	or	"that	group	over	there."	I	call	these	IP	addresses	with	special
meanings.

These	special	addresses	are	constructed	by	replacing	the	normal	network	ID	or
host	ID	(or	both)	in	an	IP	address	with	one	of	two	special	patterns:

All	Zeros	When	the	network	ID	or	host	ID	bits	are	replaced	by	a	set	of	all	zeros,
the	special	meaning	is	the	equivalent	of	the	pronoun	this,	referring	to	whatever
was	replaced.	It	can	also	be	interpreted	as	the	default	or	the	current.	For
example,	if	you	replace	the	network	ID	with	all	zeros	but	leave	the	host	ID
alone,	the	resulting	address	means	"the	device	with	the	host	ID	given,	on	this
network,"or	"the	device	with	the	host	ID	specified,	on	the	default	network	or	the
current	network."

All	Ones	When	the	network	ID	or	host	ID	bits	are	replaced	by	a	set	of	all	ones,
this	has	the	special	meaning	of	all,	meaning	that	the	IP	address	refers	to	all	hosts
on	the	network.	This	is	generally	used	as	a	broadcast	address	for	sending	a
message	to	everyone.

TIP

KEY	CONCEPT	When	the	network	ID	or	host	ID	of	an	IP	address	is	replaced	by	a	pattern	of	all	ones
or	all	zeros,	the	result	is	an	address	with	a	special	meaning.	Examples	of	such	addresses	include	"all
hosts"	broadcast	addresses	and	addresses	that	refer	to	a	specific	host	or	a	whole	network.

There	are	many	special	addresses.	A	small	number	apply	to	the	entire	TCP/IP
network,	while	others	exist	for	each	network	or	host	ID.	Since	two	special
patterns	can	be	applied	to	the	network	ID,	host	ID,	or	both,	there	are	six	potential
combinations,	each	of	which	has	its	own	meaning.	Of	these,	five	are	used.

Table	17-4	describes	each	of	these	special	meanings	and	includes	examples	from
Class	A,	B,	and	C.	Note	how	an	IP	address	in	each	of	the	common	classes	can	be



modified	to	have	special	meaning	forms.	(The	first	row	shows	the	examples	in
their	normal	form,	for	reference.)

Table	17-4.	IP	Address	Patterns	with	Special	Meanings

Network
ID

Host
ID

Class	A
Example

Class	B
Example

Class	C
Example

Special	Meaning	and
Description

Network
ID

Host
ID

77.91.215.5 154.3.99.6 227.82.157.160 Normal	Meaning:
Refers	to	a	specific
device.

Network
ID

All
Zeros

77.0.0.0 154.3.0.0 227.82.157.0 The	Specified	Network:
This	notation,	with	a	0	at
the	end	of	the	address,
refers	to	an	entire
network.

All
Zeros

Host
ID

0.91.215.5 0.0.99.6 0.0.0.160 Specified	Host	on	This
Network:	This	addresses
a	host	on	the	current	or
default	network	when	the
network	ID	is	not	known
or	when	it	doesn't	need	to
be	explicitly	stated.

All
Zeros

All
Zeros

0.0.0.0 Me:	Used	by	a	device	to
refer	to	itself	when	it
doesn't	know	its	own	IP
address.	(Alternatively,
"this	host,"	or	"the
current/default	host.")
The	most	common	use	is
when	a	device	attempts	to
determine	its	address
using	a	host-
configuration	protocol
like	DHCP.	May	also	be
used	to	indicate	that	any
address	of	a	multihomed
host	may	be	used.

Network
ID

All
Ones

77.255.255.255 154.3.255.255 227.82.157.255 All	Hosts	on	the
Specified	Network:
Used	for	broadcasting	to
all	hosts	on	the	local
network.



network.

All	Ones All
Ones

255.255.255.255 All	Hosts	on	the
Network:	Specifies	a
global	broadcast	to	all
hosts	on	the	directly
connected	network.	Note
that	there	is	no	address
that	would	imply	sending
to	all	hosts	everywhere
on	the	global	Internet,
since	this	would	be	very
inefficient	and	costly.

NOTE

The	missing	combination	from	Table	17-4	is	that	of	the	network	ID	being	all	ones	and	the	host	ID
normal.	Semantically,	this	would	refer	to	"all	hosts	of	a	specific	ID	on	all	networks,"	which	doesn't	really
mean	anything	useful	in	practice,	so	it's	not	used.	Note	also	that,	in	theory,	a	special	address	where	the
network	ID	is	all	zeros	and	the	host	ID	is	all	ones	would	have	the	same	meaning	as	the	all-ones	limited
broadcast	address.	The	latter	is	used	instead,	however,	because	it	is	more	general,	not	requiring
knowledge	of	where	the	division	is	between	the	network	ID	and	the	host	ID.

Since	the	all-zeros	and	all-ones	patterns	are	reserved	for	these	special	meanings,
they	cannot	be	used	for	regular	IP	addresses.	This	is	why,	when	you	looked	at
the	number	of	hosts	per	network	in	each	of	the	classes,	you	had	to	subtract	two
from	the	theoretical	maximum:	one	for	the	all-zeros	case	and	one	for	the	all-ones
case.

Similarly,	the	network	ID	cannot	be	all	zeros	either.	However,	this	doesn't
require	specific	exclusion	because	the	entire	block	of	addresses	with	0	in	the	first
octet	(0.x.x.x)	is	one	of	the	reserved	sets	of	IP	addresses.	These	reserved
addresses,	described	in	the	next	section,	further	restrict	the	use	of	certain
addresses	in	the	IP	address	space	for	regular	uses.



IP	Reserved,	Private,	and	Loopback	Addresses
In	addition	to	the	unusable	numbers	with	special	meanings	just	discussed,
several	other	sets	of	IP	addresses	have	special	uses,	and	are	therefore	not
available	for	normal	address	assignment.	These	generally	fall	into	three
categories:	reserved,	private,	and	loopback	addresses.

Reserved	Addresses
Several	blocks	of	addresses	were	designated	as	reserved	with	no	specific
indication	given	as	to	what	they	were	reserved	for.	Perhaps	they	were	set	aside
for	future	experimentation	or	for	internal	use	in	managing	the	Internet.	(In
general,	it's	a	good	idea	to	set	aside	some	portion	of	any	limited	resource	for
unanticipated	needs.)

A	couple	of	these	blocks	appear	in	each	of	the	three	main	classes	(A,	B,	and	C),
at	the	beginning	and	end	of	each	class.	(All	of	Class	D	and	E	are	also	reserved,
since	they	aren't	used	for	regular	addressing.)

Private,	Unregistered,	Nonroutable	Addresses
You'll	recall	that	in	the	IP	address	overview	in	Chapter	16,	I	contrasted	private
and	public	IP	addresses.	Every	IP	address	on	an	IP	network	must	be	unique.	In
the	case	of	a	public	IP	network,	addresses	are	allocated	by	a	central	authority	to
ensure	that	there	is	no	overlap.	In	contrast,	on	a	private	network,	you	can	use
whatever	addresses	you	want.

Then	why	not	just	pick	any	random	block	of	Class	A,	B,	or	C	addresses	for	your
private	network	and	use	that?	You	could,	and	some	people	did.	For	example,	if
you	weren't	connected	to	the	Internet	you	could	use,	say,	the	Class	A	network
18.x.x.x	that	is	reserved	on	the	Internet	to	the	Massachusetts	Institute	of
Technology	(MIT).	Since	you	aren't	connected	to	MIT,	you	would	think	that
wouldn't	matter.

However,	as	the	Internet	grew,	those	disconnected	private	networks	needed	to
connect	to	the	public	Internet	after	all,	and	then	they	had	a	conflict.	If	they	used
the	18.x.x.x	addresses,	they	would	have	to	renumber	all	their	devices	to	avoid
getting	a	big	bunch	of	computer	geeks	really	angry.	(There	were,	in	fact,	cases
where	companies	that	had	used	IP	address	space	belonging	to	other	companies



where	companies	that	had	used	IP	address	space	belonging	to	other	companies
accidentally	connected	those	machines	to	the	Internet,	causing	a	small	amount	of
ruckus	in	the	process.)

RFC	1918	(superseding	RFC	1597)	provided	the	solution.	It	defines	a	set	of
unroutable,	special	address	blocks	just	for	private	addresses.	These	addresses
simply	don't	exist	on	the	public	Internet.	For	this	reason,	they	are	not	registered
like	other	public	addresses;	they	are	sometimes	called	unregistered.	Anyone	can
use	them,	but	they	cannot	connect	to	the	Internet	because	routers	are	not
programmed	to	forward	traffic	with	these	address	ranges	outside	of	local
organizations.	RFC	1918	was	published	to	encourage	the	use	of	these	private
blocks	in	order	to	cut	down	on	the	number	of	devices	on	the	public	Internet	that
didn't	really	need	to	be	publicly	accessible.	This	was	in	response	to	the	need	to
conserve	the	public	address	space.

NOTE

In	order	to	connect	a	network	using	private	addressing	to	the	public	Internet,	it	is	necessary	to	employ
additional	hardware	and	software.	A	gateway	machine	can	be	used	as	an	interface	between	the	public
and	private	networks.	Technologies	such	as	Network	Address	Translation	(NAT;	see	Chapter	28)	are
often	used	in	conjunction	with	private	IP	addresses	to	allow	these	hosts	to	communicate	on	the	public	IP
network.

TIP

KEY	CONCEPT	Private	address	blocks	were	created	to	allow	private	IP	Internets	to	be	created	using
addresses	that	were	guaranteed	not	to	conflict	with	public	IP	addresses.	They	are	commonly	used	in
internetworks	that	aren't	connected	to	the	global	Internet;	devices	using	them	can	also	access	the	global
Internet	by	using	NAT.

Loopback	Addresses
Normally,	when	a	TCP/IP	application	wants	to	send	information,	that
information	travels	down	the	protocol	layers	to	IP,	where	it	is	encapsulated	in	an
IP	datagram.	That	datagram	then	passes	down	to	the	data	link	layer	of	the
device's	physical	network	for	transmission	to	the	next	hop,	on	the	way	to	the	IP
destination.

However,	one	special	range	of	addresses,	127.0.0.0	to	127.255.255.255,	is	set



aside	for	loopback	functionality.	IP	datagrams	sent	by	a	host	to	a	127.x.x.x
loopback	address	are	not	passed	down	to	the	data	link	layer	for	transmission;
instead,	they	loop	back	to	the	source	device	at	the	IP	level.	In	essence,	this	short-
circuits	the	normal	protocol	stack;	data	is	sent	by	a	device's	layer	3	IP
implementation	and	then	immediately	received	by	it.

This	loopback	range	is	used	for	testing	the	TCP/IP	protocol	implementation	on	a
host.	Since	the	lower	layers	are	short-circuited,	sending	to	a	loopback	address
allows	you	to	isolate	and	test	the	higher	layers	(IP	and	above)	without
interference	from	the	lower	layers.	127.0.0.1	is	the	address	most	commonly	used
for	testing	purposes.

TIP

KEY	CONCEPT	Portions	of	the	IP	address	space	are	set	aside	for	reserved,	private,	and	loopback
addresses.

Reserved,	Private,	and	Loopback	Addressing
Blocks
Table	17-5	shows	all	of	the	special	blocks	set	aside	from	the	normal	IP	address
space	in	numerical	order,	with	a	brief	explanation	of	how	each	is	used.	It	lists
both	the	classful	and	the	classless	notation	representing	each	of	these	blocks
because	the	Internet	now	uses	classless	addressing,	and	because	some	of	the
private	blocks	don't	correspond	to	single	Class	A,	B,	or	C	networks.

Note	especially	the	private	address	block	from	192.168.0.0	to	192.168.255.255.
This	is	the	size	of	a	Class	B	network,	but	it	isn't	Class	B	in	the	classful	scheme,
because	the	first	octet	of	192	puts	it	in	the	Class	C	part	of	the	address	space.	It	is
actually	256	contiguous	Class	C	networks.

You	may	also	notice	the	special	Class	B	(/16)	block	169.254.x.x.	This	is
reserved	for	Automatic	Private	IP	Addressing	(APIPA),	discussed	in	Chapter	64.
Systems	that	are	configured	to	use	this	feature	will	automatically	assign	systems
addresses	from	this	block	to	enable	them	to	communicate	even	if	no	server	can
be	found	for	proper	IP	address	assignment	using	the	Dynamic	Host	Control
Protocol	(DHCP).



Table	17-5.	Reserved,	Private,	and	Loopback	IP	Addresses

Range	Start
Address

Range	End
Address

Classful
Address
Equivalent

Classless
Address
Equivalent

Description

0.0.0.0 0.255.255.255 Class	A	network
0.x.x.x

0/8 Reserved

10.0.0.0 10.255.255.255 Class	A	network
10.x.x.x

10/8 Class	A	private
address	block

127.0.0.0 127.255.255.255 Class	A	network
127.x.x.x

127/8 Loopback	address
block

128.0.0.0 128.0.255.255 Class	B	network
128.0.x.x

128.0/16 Reserved

169.254.0.0 169.254.255.255 Class	B	network
169.254.x.x

169.254/16 Class	B	private
address	block
reserved	for
automatic	private
address	allocation
(see	Chapter	64	for
details)

172.16.0.0 172.31.255.255 16	contiguous
Class	B	networks
from	172.16.x.x
through	172.31.x.x

172.16/12 Class	B	private
address	blocks

191.255.0.0 191.255.255.255 Class	B	network
191.255.x.x

191.255/16 Reserved

192.0.0.0 192.0.0.255 Class	C	network
192.0.0.x

192.0.0/24 Reserved

192.168.0.0 192.168.255.255 256	contiguous
Class	C	networks
from	192.168.0.x
through
192.168.255.x

192.168/16 Class	C	private
address	blocks

223.255.255.0 223.255.255.255 Class	C	network
223.255.255.x

223.255.255/24 Reserved



IP	Multicast	Addressing
The	vast	majority	of	traffic	on	IP	internetworks	is	unicast,	which	is	one	source
device	sending	to	one	destination	device.	IP	also	supports	multicasting,	which	is
a	source	device	sending	to	a	group	of	devices.	Multicasting	is	not	used	a	great
deal	on	the	present-day	Internet,	mainly	due	to	a	lack	of	widespread	hardware
support,	though	it	is	useful	in	certain	circumstances,	especially	as	a	more
efficient	alternative	to	broadcasting.

The	classful	IP	addressing	scheme	sets	aside	one-sixteenth	of	the	address	space
for	multicast	addresses	as	Class	D.	Multicast	addresses	are	identified	by	the
pattern	1110	in	the	first	four	bits,	which	corresponds	to	a	first	octet	of	224	to
239.	Thus,	the	full	range	of	multicast	addresses	is	from	224.0.0.0	to
239.255.255.255.

Since	multicast	addresses	represent	a	group	of	IP	devices	(sometimes	called	a
host	group),	they	can	be	used	only	as	the	destination	of	a	datagram,	never	the
source.

Multicast	Address	Types	and	Ranges
The	other	28	bits	in	the	IP	address	define	the	multicast	group	address.	The	size
of	the	Class	D	multicast	address	space	is	therefore	228,	or	268,435,456	multicast
groups.	No	substructure	defines	the	use	of	these	28	bits,	and	there	is	no	specific
concept	of	a	network	ID	and	host	ID	as	in	Class	A,	B,	and	C.	However,	certain
portions	of	the	address	space	are	set	aside	for	specific	uses.	Table	17-6	and
Figure	17-4	show	the	general	allocation	of	the	Class	D	address	space.

Table	17-6.	IP	Multicast	Address	Ranges	and	Uses

Range	Start
Address

Range	End
Address

Description

224.0.0.0 224.0.0.255 Reserved	for	special	well-known	multicast
addresses

224.0.1.0 238.255.255.255 Globally	scoped	(Internetwide)	multicast
addresses.

239.0.0.0 239.255.255.255 Administratively	scoped	(local)	multicast



239.0.0.0 239.255.255.255 Administratively	scoped	(local)	multicast
addresses

NOTE

As	with	the	other	IP	address	classes,	the	entire	32	bits	of	the	address	is	always	used.	It	is	only	the	least
significant	28	bits	that	are	interesting,	because	the	upper	four	bits	never	change.

Figure	17-4.	IP	Multicast	address	ranges	and	uses	All	multicast	addresses	begin	with	1110.	The	well-
known	group	has	zeros	for	the	first	20	bits	of	the	multicast	group	address,	with	8	bits	available	to	define
255	special	multicast	addresses.	Multicast	addresses	starting	with	1110	1111	are	locally	scoped;	all

other	addresses	are	globally	scoped	(this	includes	addresses	starting	with	1110	0000	other	than	the	255
well-known	addresses).

TIP

RELATED	INFORMATION	The	concept	of	multicast	address	scope	was	more	completely	defined	in
IPv6,	and	I	discuss	it	in	more	detail	in	the	in	the	discussion	of	IPv6	multicast	addresses	in	Chapter	25.

The	bulk	of	the	address	space	is	in	the	middle	multicast	range.	These	are	normal
multicast	addresses,	like	the	Class	A,	B,	and	C	unicast	addresses,	and	they	can
be	assigned	to	various	groups.

The	last	address	range	is	for	administratively	scoped	multicast	groups.	This	is	a
fancy	term	for	multicast	groups	used	within	a	private	organization.	This	block,
representing	one-sixteenth	of	the	total	multicast	address	space,	is	comparable	to
the	private	addresses	you	saw	earlier	in	this	chapter.	It	is	further	subdivided	into
site-local	multicast	addresses,	organization-local	addresses,	and	so	forth.

Well-Known	Multicast	Addresses
The	first	block	of	256	addresses	is	used	to	define	special,	well-known	multicast
address	blocks	(Table	17-7	has	a	selective	listing).	These	do	not	represent
arbitrary	groups	of	devices	and	cannot	be	assigned	in	that	manner.	Instead,	they



have	a	special	meaning	that	allows	a	source	to	send	a	message	to	a	predefined
group.

Table	17-7.	Well-Known	IP	Multicast	Addresses

Range	Start	Address Description

224.0.0.0 Reserved;	not	used

224.0.0.1 All	devices	on	the	subnet

224.0.0.2 All	routers	on	the	subnet

224.0.0.3 Reserved

224.0.0.4 All	routers	using	DVMRP

224.0.0.5 All	routers	using	OSPF

224.0.0.6 Designated	routers	using	OSPF

224.0.0.9 Designated	routers	using	RIP-2

224.0.0.11 Mobile	agents	(for	Mobile	IP)

224.0.0.12 DHCP	server/relay	agent

Delivery	of	IP	multicast	traffic	is	more	complex	than	unicast	traffic	due	to	the
existence	of	multiple	recipients.	Instead	of	the	normal	resolution	method	through
the	Address	Resolution	Protocol	(ARP)	used	for	unicast	datagrams,	the	IP
multicast	group	and	a	hardware	multicast	group	are	mapped.



Problems	with	Classful	IP	Addressing
The	classful	addressing	system	was	the	first	major	attempt	to	define	a	method	for
universal	addressing	of	a	large	IP	internetwork.	There	was	a	reasonable	rationale
for	the	system,	as	I	mentioned	in	the	overview	of	the	classful	scheme,	and	given
that	it	was	developed	decades	ago	for	a	network	that	was	limited	in	size,	it	did
the	job	remarkably	well	for	a	long	time.

No	one	ever	expected	the	Internet	to	mushroom	to	anything	close	to	its	current
size.	As	the	Internet	grew,	the	classful	IP	addressing	mechanism	showed	some
problems.

The	three	main	problems	with	classful	addressing	are	as	follows:

Lack	of	Internal	Address	Flexibility	Big	organizations	are	assigned	large,
monolithic	blocks	of	addresses	that	aren't	a	good	match	for	the	structure	of	their
underlying	internal	networks.

Inefficient	Use	of	Address	Space	The	existence	of	only	three	block	sizes
(Classes	A,	B,	and	C)	leads	to	a	waste	of	limited	IP	address	space.

Proliferation	of	Router	Table	Entries	As	the	Internet	grows,	more	and	more
entries	are	required	for	routers	to	route	IP	datagrams.	This	causes	performance
problems	for	routers.	Attempting	to	reduce	inefficient	address	space	allocation
leads	to	even	more	router	table	entries.

The	first	issue	results	primarily	from	the	fact	that	in	the	classful	system,	big
companies	are	assigned	a	rather	large	(Class	B)	or	truly	enormous	(Class	A)
block	of	addresses.	They	are	considered	by	the	Internet	routers	to	be	a	single
network,	with	one	network	ID.	Now	imagine	that	you	are	running	a	medium-to-
large-sized	company	with	5,000	computers,	and	you	are	assigned	a	Class	B
address	for	your	network.	Do	you	really	have	5,000	computers	all	hooked	into	a
single	network?	I	sure	as	heck	hope	you	don't!	Yet	you	would	be	forced	to	try	to
fit	all	of	these	into	a	single	IP	network	in	the	original	classful	method.	There	was
no	way	to	create	an	internal	hierarchy	of	addresses.

The	second	and	third	issues	both	stem	from	the	fact	that	the	granularity	in	the
classful	system	is	simply	too	low	to	be	practical	in	a	large	internetwork;	there	are
simply	too	few	choices	in	the	sizes	of	available	networks.	Three	sizes	seem	fine



in	principle,	but	the	gaps	between	the	sizes	are	enormous,	and	the	sizes	don't
match	up	well	with	the	distribution	of	organizations	in	the	real	world.	Consider
the	difference	in	size	between	Class	C	and	Class	B	networks—a	jump	from	254
hosts	all	the	way	up	to	over	65,000!	There	are	many,	many	companies	that	need
more	than	254	IP	address	but	a	lot	fewer	than	65,000.	And	what	about	Class	A?
How	many	companies	need	16	million	IP	addresses,	even	the	truly	large	ones?
Probably	none,	if	you	think	about	it,	yet	that's	half	the	IP	address	space	right
there.

What	class	of	network	should	the	company	with	5,000	computers	use?	As
Figure	17-5	shows,	the	classful	scheme	offers	no	good	match	for	this	company's
needs.	If	it	were	assigned	a	Class	B,	over	90	percent	of	the	IP	addresses	would
be	wasted.

The	alternative	to	wasting	all	these	IP	addresses	would	be	to	give	this	fictitious
company	a	bunch	of	Class	C	addresses	instead	of	one	Class	B;	but	they	would
need	20	of	them.	While	this	would	use	the	address	space	more	efficiently,	it
leads	to	the	third	issue:	Every	router	on	the	Internet	then	has	to	replace	the	single
Class	B	router	table	entry	with	20	Class	C	router	entries.	Multiply	this	by	a	few
thousand	medium-sized	companies,	and	you	can	see	that	this	method	would	add
dramatically	to	the	size	of	router	tables.	The	larger	these	tables,	the	more	time	it
takes	for	routers	to	make	routing	decisions.

Figure	17-5.	The	main	problem	with	classful	addressing	In	this	scale	diagram,	each	square	represents	50



available	addresses.	Since	a	Class	C	address	has	only	254	addresses,	and	a	Class	B	contains	65,534
addresses,	an	organization	with	5,000	hosts	is	caught	in	the	middle.	It	can	only	choose	to	either	waste	90

percent	of	a	Class	B	address	or	use	20	different	Class	C	networks.

The	problems	with	classful	addressing	have	been	solved	by	three	enhancements,
as	you'll	see	in	later	chapters.	The	first,	which	primarily	addresses	the	first	issue,
was	the	development	of	subnetting.	The	second	was	the	move	to	classless
addressing	and	routing,	which	replaces	the	classful	system	with	a	new	method
with	higher	granularity.	This	tackles	the	second	and	third	issues	by	letting
addresses	be	assigned	based	on	real	organizational	needs,	without	requiring
numerous	routing	table	entries	for	each	organization.	The	third	improvement	is
the	new	IP	version	6	(IPv6),	which	finally	does	away	with	the	cramped	32-bit	IP
address	space	in	favor	of	a	gargantuan	128-bit	one.

Other	support	technologies,	such	as	NAT,	have	helped	to	extend	the	life	of	IPv4
by	allowing	multiple	devices	to	share	public	addresses.	This	alone	has	added
years	to	the	life	of	the	IPv4	addressing	system.



Chapter	18.	IP	SUBNET
ADDRESSING	(SUBNETTING)
CONCEPTS

In	the	previous	chapter,	we	looked	at	the	original	classful	IP	addressing	scheme,
which	conceptually	divides	a	large	internetwork	into	a	simple	two-level
hierarchy	that	includes	many	networks	of	different	sizes,	each	of	which	contains
a	number	of	hosts.	The	system	works	well	for	smaller	organizations	that	may
connect	all	their	machines	in	a	single	network.	However,	it	lacks	flexibility	for
large	organizations	that	often	have	many	subnetworks,	or	subnets.	To	better	meet
the	administrative	and	technical	requirements	of	larger	organizations,	the
classful	IP	addressing	system	was	enhanced	through	a	technique	known	as
subnet	addressing,	or	more	simply,	subnetting.

In	this	chapter,	I	describe	the	concepts	and	general	techniques	associated	with	IP
subnet	addressing.	I	begin	with	an	overview	of	subnetting,	including	a	discussion
of	the	motivation	for	the	system	and	its	advantages.	I	discuss	how	the	traditional
two-level	method	for	dividing	IP	addresses	becomes	three-level	for	subnetting.	I
talk	about	subnet	masks	and	how	they	are	used	in	calculations	for	addressing	and
routing.	I	discuss	the	default	subnet	masks	used	to	represent	the	classful	Class	A,
B,	and	C	networks	in	a	subnetting	environment	and	then	how	custom	subnet
masks	are	used	for	these	classes.	I	then	discuss	subnet	identifiers	and	general
concepts	behind	determining	subnet	and	host	addresses	in	a	subnet	environment.
I	provide	summary	tables	for	subnetting	Class	A,	B,	and	C	networks.	I	conclude
with	a	brief	discussion	of	Variable	Length	Subnet	Masking	(VLSM),	an
enhancement	of	conventional	subnetting	that	improves	its	flexibility	further.

NOTE



I	provide	a	great	deal	of	coverage	of	subnetting,	because	understanding	it	is	an	important	part	of	learning
about	how	IP	addresses	work,	and	hence,	how	TCP/IP	functions.	However,	the	technique	is	today
considered	mostly	historical	because	it	is	based	on	classful	addressing.	The	concept	of	a	subnet	and
subnet	mask	has	certainly	not	disappeared,	but	the	idea	of	being	assigned	a	Class	A,	B,	or	C	Internet
address	block	and	then	explicitly	subnetting	it	is	no	longer	relevant.

TIP

RELATED	INFORMATION	This	is	the	first	of	two	chapters	dedicated	to	IP	address	subnetting.
Chapter	19	describes	the	step-by-step	process	for	subnetting	using	examples.	If	you	find	that	after
reading	this	concepts	section	that	you	don't	quite	understand	subnetting,	try	reading	the	example-based
section,	and	you	may	find	that	it	helps	make	it	all	click.	On	the	other	hand,	if	you	are	already	somewhat
familiar	with	subnetting,	you	may	find	that	you	can	skip	this	concepts	section	and	just	go	through	the
step-by-step	examples.	You	will	find	much	more	in	that	chapter	in	the	way	of	gory	details	of	subnet
mask,	subnet	address,	and	host	address	calculations.	Putting	the	practical	details	there	allows	this	section
to	concentrate	on	concepts	without	getting	too	bogged	down	in	numbers.

TIP

BACKGROUND	INFORMATION	Understanding	subnetting	requires	familiarity	with	binary	numbers
and	how	they	are	manipulated.	This	includes	the	concept	of	using	boolean	operators	such	as	AND	to
"mask"	binary	digits.	If	reading	that	last	sentence	made	you	go	"huh?"	I	strongly	recommend	reviewing
the	background	section	on	computing	mathematics	(Chapter	4)	before	you	proceed.

IP	Subnet	Addressing	Overview,	Motivation,	and
Advantages
As	I	discussed	in	the	previous	chapter,	IP	addressing	was	originally	designed
around	the	assumption	of	a	strict	two-level	hierarchy	for	internetworks:	the	first
level	was	the	network,	and	the	second	level	the	host.	Each	organization	was
usually	represented	by	a	single	network	identifier	(network	ID)	that	indicated	a
Class	A,	B,	or	C	block	dedicated	to	them.	Within	that	network,	the	organization
needed	to	put	all	of	the	devices	it	wanted	to	connect	to	the	public	IP	network.

It	did	not	take	long	after	this	scheme	was	developed	for	serious	inadequacies	in
it	to	be	noticed,	especially	by	larger	organizations.	In	order	to	address	this
problem,	RFC	950	[1985]	defined	a	new	addressing	procedure	called	subnet
addressing	or	subnetting.

Subnet	addressing	adds	an	additional	hierarchical	level	to	the	way	IP	addresses



are	interpreted:	Instead	of	having	just	hosts,	the	network	has	subnets	and	hosts.
Each	subnet	is	a	subnetwork,	and	functions	much	the	way	a	full	network	does	in
conventional	classful	addressing.	A	three-level	hierarchy	is	thus	created:
networks,	which	contain	subnets,	each	of	which	then	has	a	number	of	hosts.
Thus,	an	organization	can	organize	hosts	into	subnets	that	reflect	the	way
internal	networks	are	structured.	In	essence,	subnet	addressing	allows	each
organization	to	have	its	own	internetwork	within	the	Internet.	This	change
brought	numerous	advantages	over	the	old	system,	such	as	the	following:

Better	Match	to	Physical	Network	Structure	Hosts	can	be	grouped	into
subnets	that	reflect	the	way	they	are	actually	structured	in	the	organization's
physical	network.

Flexibility	The	number	of	subnets	and	number	of	hosts	per	subnet	can	be
customized	for	each	organization.	Each	can	decide	on	its	own	subnet	structure
and	change	it	as	required.

Invisibility	to	Public	Internet	Subnetting	was	implemented	so	that	the	internal
division	of	a	network	into	subnets	is	visible	only	within	the	organization.	To	the
rest	of	the	Internet,	the	organization	is	still	just	one	big,	flat	network.	This	also
means	that	any	changes	made	to	the	internal	structure	are	not	visible	outside	the
organization.

No	Need	to	Request	New	IP	Addresses	Organizations	don't	need	to	constantly
requisition	more	IP	addresses,	as	they	would	in	the	workaround	of	using	multiple
small	Class	C	blocks.

No	Routing	Table	Entry	Proliferation	Since	the	subnet	structure	exists	only
within	the	organization,	routers	outside	that	organization	know	nothing	about	it.
The	organization	still	maintains	a	single	(or	perhaps	a	few)	routing	table	entries
for	all	of	its	devices.	Only	routers	inside	the	organization	need	to	worry	about
routing	between	subnets.

The	change	to	subnetting	affects	both	addressing	and	routing	in	IP	networks.
Addressing	changes	because,	instead	of	having	just	a	network	ID	and	host	ID,
you	now	also	have	a	subnet	ID	to	be	concerned	with.	The	size	of	the	subnet	ID
can	vary	for	each	network,	so	an	additional	piece	of	information	is	needed	to
supplement	the	IP	address	to	indicate	what	part	of	the	address	is	the	subnet	ID



and	what	part	is	the	host	ID.	This	is	a	32-bit	number	commonly	called	a	subnet
mask.	The	mask	is	used	both	for	calculating	subnet	and	host	addresses,	and	by
routers	for	determining	how	to	move	IP	datagrams	around	a	subnetted	network.

Routing	changes	because	of	the	additional	level	of	hierarchy.	In	regular	classful
addressing,	when	a	router	receives	an	IP	datagram,	it	only	needs	to	decide	if	the
destination	is	on	the	same	network	or	a	different	network.	Under	subnetting,	it
must	also	look	at	the	subnet	ID	of	the	destination	and	make	one	of	three	choices:
same	subnet,	different	subnet	on	the	same	network,	or	different	network.
Changes	are	also	required	to	routing	protocols,	such	as	the	Routing	Information
Protocol	(RIP;	see	Chapter	38),	to	deal	with	subnets	and	subnet	masks.

TIP

KEY	CONCEPT	Subnet	addressing	adds	an	additional	hierarchical	level	to	how	IP	addresses	are
interpreted	by	dividing	an	organization's	IP	network	into	subnets.	This	allows	each	organization	to
structure	its	address	space	to	match	its	internal	physical	networks,	rather	than	being	forced	to	treat	them
a	flat	block.	This	solves	a	number	of	problems	with	the	original	classful	addressing	scheme,	but	requires
changes	to	how	addressing	and	routing	work,	as	well	as	modifications	to	several	TCP/IP	protocols.

It's	funny,	but	the	main	drawbacks	to	subnetting,	compared	with	the	older
addressing	scheme,	have	more	to	do	with	understanding	how	subnetting	works
than	with	the	technology	itself.	More	effort	is	required	to	deal	with	addressing
and	routing	in	a	subnet	environment,	and	administrators	must	learn	how	to
subdivide	their	network	into	subnets	and	properly	assign	addresses.	This	can	be	a
bit	confusing	to	someone	who	is	new	to	subnetting.	However,	the	technology
today	is	quite	well	established,	so	even	this	is	not	much	of	a	problem.



IP	Subnetting:	Three-Level	Hierarchical	IP
Subnet	Addressing
As	I	mentioned	earlier,	subnetting	adds	an	additional	level	to	the	hierarchy	of
structures	used	in	IP	addressing.	To	support	this,	IP	addresses	must	be	broken
into	three	elements	instead	of	two.	This	is	done	by	leaving	the	network	ID	alone
and	dividing	the	host	ID	into	a	subnet	ID	and	host	ID.	These	subnet	ID	bits	are
used	to	identify	each	subnet	within	the	network.	Hosts	are	assigned	to	the
subnets	in	whatever	manner	makes	the	most	sense	for	that	network.

Interestingly,	the	earlier	analogy	to	telephone	numbers	still	holds	in	the	world	of
subnetting	and	shows	how	subnetting	changes	the	way	IP	addresses	are
interpreted.	For	example,	a	phone	number	like	(401)	555-7777	has	an	area	code
(401)	and	a	local	number	(555-7777).	The	local	number,	however,	can	itself	be
broken	down	into	two	parts:	the	exchange	(555)	and	the	local	extension	(7777).
This	means	phone	numbers	really	are	comprised	of	three	hierarchical
components,	just	as	IP	addresses	are	in	subnetting.

Of	course,	the	number	of	bits	in	an	IP	address	is	fixed	at	32.	This	means	that	in
splitting	the	host	ID	into	subnet	ID	and	host	ID,	you	reduce	the	size	of	the	host
ID	portion	of	the	address.	In	essence,	you	are	stealing	bits	from	the	host	ID	to
use	for	the	subnet	ID.	Class	A	networks	have	24	bits	to	split	between	the	subnet
ID	and	host	ID;	Class	B	networks	have	16;	and	Class	C	networks	have	only	8.

TIP

KEY	CONCEPT	A	classful	network	is	subnetted	by	dividing	its	host	ID	portion,	leaving	some	of	the
bits	for	the	host	ID	while	allocating	others	to	a	new	subnet	ID.	These	bits	are	then	used	to	identify
individual	subnets	within	the	network,	into	which	hosts	are	assigned.

Now	remember	that	when	we	looked	at	the	sizes	of	each	of	the	main	classes	in
the	previous	chapter,	we	saw	that,	for	each	class,	the	number	of	networks	and	the
number	of	hosts	per	network	are	a	function	of	how	many	bits	we	use	for	each.
The	same	applies	to	the	splitting	of	the	host	ID.	Since	we	are	dealing	with	binary
numbers,	the	number	of	subnets	is	two	to	the	power	of	the	size	of	the	subnet	ID
field.	Similarly,	the	number	of	hosts	per	subnet	is	two	to	the	power	of	the	size	of
the	host	ID	field	(less	two	for	excluded	special	cases).



the	host	ID	field	(less	two	for	excluded	special	cases).

Let's	take	a	brief	example	to	see	how	this	works.	Imagine	that	you	start	with
Class	B	network	154.71.0.0,	with	16	bits	for	the	network	ID	(154.71)	and	16	are
for	the	host	ID.	In	regular	classful	addressing,	there	are	no	subnets	and	65,534
hosts	total.	To	subnet	this	network,	you	can	decide	to	split	those	16	bits	however
you	feel	best	suits	the	needs	of	the	network:	1	bit	for	the	subnet	ID	and	15	for	the
host	ID,	or	2	and	14,	3	and	13,	and	so	on.	Most	any	combination	will	work,	as
long	as	the	total	is	16;	I've	used	5	and	11	in	the	example	shown	in	Figure	18-1.
The	more	bits	you	steal	from	the	host	ID	for	the	subnet	ID,	the	more	subnets	you
can	have,	but	the	fewer	hosts	you	can	have	for	each	subnet.

Figure	18-1.	Subnetting	Class	B	network	We	begin	with	the	Class	B	network	154.71.0.0,	which	has	16
bits	in	its	host	ID	block.	We	then	subnet	this	network	by	dividing	the	host	ID	into	a	subnet	ID	and	host

ID.	In	this	case,	5	bits	have	been	allocated	to	the	subnet	ID,	leaving	11	bits	for	the	host	ID.

Choosing	how	to	split	the	host	ID	into	subnet	and	host	bits	is	one	of	the	most
important	design	considerations	in	setting	up	a	subnetted	IP	network.	The
number	of	subnets	is	generally	determined	based	on	the	number	of	physical
subnetworks	in	the	overall	organizational	network,	and	the	number	of	hosts	per
subnetwork	must	not	exceed	the	maximum	allowed	for	the	particular	subnetting
choice	you	make.	Choosing	how	to	divide	the	original	host	ID	bits	into	subnet
ID	bits	and	host	ID	bits	is	sometimes	called	custom	subnetting	and	is	described
in	more	detail	later	in	this	chapter.



IP	Subnet	Masks,	Notation,	and	Subnet
Calculations
Subnetting	divides	an	organization's	network	into	a	two-level	structure	of
subnets	and	hosts	that	is	entirely	internal	and	hidden	from	all	other	organizations
on	the	Internet.	One	of	the	many	advantages	of	this	is	that	each	organization	gets
to	make	its	own	choice	about	how	to	divide	the	classful	host	ID	into	subnet	ID
and	host	ID.

In	a	nonsubnetted	classful	environment,	routers	use	the	first	octet	of	the	IP
address	to	determine	what	the	class	of	the	address	is,	and	from	this	they	know
which	bits	are	the	network	ID	and	which	are	the	host	ID.	When	you	use
subnetting,	these	routers	also	need	to	know	how	that	host	ID	is	divided	into
subnet	ID	and	host	ID.	However,	this	division	can	be	arbitrary	for	each	network.
Furthermore,	there	is	no	way	to	tell	how	many	bits	belong	to	each	simply	by
looking	at	the	IP	address.

In	a	subnetting	environment,	the	additional	information	about	which	bits	are	for
the	subnet	ID	and	which	are	for	the	host	ID	must	be	communicated	to	devices
that	interpret	IP	addresses.	This	information	is	given	in	the	form	of	a	32-bit
binary	number	called	a	subnet	mask.	The	term	mask	comes	from	the	binary
mathematics	concept	called	bit	masking.	This	is	a	technique	where	a	special
pattern	of	ones	and	zeros	can	be	used	in	combination	with	boolean	functions
such	as	AND	and	OR	to	select	or	clear	certain	bits	in	a	number.	(I	explain	bit
masking	in	the	background	section	on	binary	numbers	and	mathematics,	in
Chapter	4.)

Function	of	the	Subnet	Mask
There's	something	about	subnet	masks	that	seems	to	set	people's	hair	on	end,
especially	if	they	aren't	that	familiar	with	binary	numbers.	However,	the	idea
behind	them	is	quite	straightforward.	The	mask	is	a	32-bit	number,	just	as	the	IP
address	is	a	32-bit	number.	Each	of	the	32	bits	in	the	subnet	mask	corresponds	to
the	bit	in	the	IP	address	in	the	same	location	in	the	number.	The	bits	of	the	mask
in	any	given	subnetted	network	are	chosen	so	that	the	bits	used	for	either	the
network	ID	or	subnet	ID	are	ones,	while	the	bits	used	for	the	host	ID	are	zeros.



TIP

KEY	CONCEPT	The	subnet	mask	is	a	32-bit	binary	number	that	accompanies	an	IP	address.	It	is
created	so	that	it	has	a	one	bit	for	each	corresponding	bit	of	the	IP	address	that	is	part	of	its	network	ID
or	subnet	ID,	and	a	zero	for	each	bit	of	the	IP	address's	host	ID.	The	mask	thus	tells	TCP/IP	devices
which	bits	in	that	IP	address	belong	to	the	network	ID	and	subnet	ID,	and	which	are	part	of	the	host	ID.

Why	bother	doing	this	with	a	32-bit	binary	number?	The	answer	is	the	magic	of
boolean	logic.	You	use	the	subnet	mask	by	applying	the	boolean	AND	function
between	it	and	the	IP	address.	For	each	of	the	32	"bit	pairs"	in	the	IP	address	and
subnet	mask,	you	employ	the	AND	function,	the	output	of	which	is	one	only	if
both	bits	are	one.	What	this	means	in	practical	terms	is	the	following,	for	each	of
the	32	bits:

Subnet	Bit	Is	a	One	In	this	case,	you	are	ANDing	either	a	zero	or	one	in	the	IP
address	with	a	one.	If	the	IP	address	bit	is	a	zero,	the	result	of	the	AND	will	be
zero;	if	it	is	a	one,	the	AND	will	be	one.	In	other	words,	where	the	subnet	bit	is	a
one,	the	IP	address	is	preserved	unchanged.

Subnet	Bit	Is	a	Zero	Here,	you	are	ANDing	with	a	zero,	so	the	result	is	always
zero,	regardless	of	what	the	IP	address	is.	Thus,	when	the	subnet	bit	is	a	zero,	the
IP	address	bit	is	always	cleared	to	zero.

Thus,	when	you	use	the	subnet	mask	on	an	IP	address,	the	bits	in	the	network	ID
and	subnet	ID	are	left	intact,	while	the	host	ID	bits	are	removed.	Like	a	mask
that	blocks	part	of	your	face	but	lets	other	parts	show,	the	subnet	mask	blocks
some	of	the	address	bits	(the	host	bits)	and	leaves	others	alone	(the	network	and
subnet	bits).	A	router	that	performs	this	function	is	left	with	the	address	of	the
subnet.	Since	it	knows	from	the	class	of	the	network	what	part	is	the	network	ID,
it	also	knows	what	subnet	the	address	is	on.

TIP

KEY	CONCEPT	To	use	a	subnet	mask,	a	device	performs	a	boolean	AND	operation	between	each	bit
of	the	subnet	mask	and	each	corresponding	bit	of	an	IP	address.	The	resulting	32-bit	number	contains
only	the	network	ID	and	subnet	ID	of	the	address,	with	the	host	ID	cleared	to	zero.

Subnet	Mask	Notation



Like	IP	addresses,	subnet	masks	are	always	used	as	a	32-bit	binary	number	by
computers.	And	like	IP	addresses,	using	them	as	32-bit	binary	numbers	is
difficult	for	humans.	Therefore,	they	are	usually	converted	to	dotted	decimal
notation	for	convenience,	just	as	IP	addresses	are.

For	example,	suppose	you	decide	to	subnet	the	Class	B	network	154.71.0.0	using
5	bits	for	the	subnet	ID	and	11	bits	for	the	host	ID	(see	Figure	18-2).	In	this	case,
the	subnet	mask	will	have	16	ones	for	the	network	portion	(since	this	is	Class	B)
followed	by	5	ones	for	the	subnet	ID,	and	11	zeros	for	the	host	ID.	That's
11111111	11111111	11111000	00000000	in	binary,	with	the	bits	corresponding
to	the	subnet	ID	highlighted.	In	dotted	decimal,	the	subnet	mask	would	be
255.255.248.0.

Figure	18-2.	Determining	the	subnet	mask	of	a	subnetted	network	The	Class	B	network	from	Figure	18-
1	is	shown	at	the	top,	with	5	bits	assigned	to	the	subnet	ID	and	11	bits	left	for	the	host	ID.	To	create	the
subnet	mask,	you	fill	in	a	32-bit	number	with	1	for	each	network	ID	and	subnet	ID	bit,	and	0	for	each

host	ID	bit.	You	can	then	convert	this	to	dotted	decimal.

Applying	the	Subnet	Mask:	An	Example
Now,	let's	see	how	the	subnet	mask	might	be	used.	Suppose	you	have	a	host	on
this	network	with	an	IP	of	154.71.150.42	and	a	router	needs	to	figure	out	which
subnet	this	address	is	on.	To	do	so,	it	performs	the	masking	operation	shown	in
Table	18-1	and	Figure	18-3.

Table	18-1.	Determining	the	Subnet	ID	of	an	IP	Address	Through	Subnet
Masking

Component Octet	1 Octet	2 Octet	3 Octet	4



Component Octet	1 Octet	2 Octet	3 Octet	4

IP	Address 10011010	(154) 01000111	(71) 10010110	(150) 00101010	(42)

Subnet	Mask 11111111	(255) 11111111	(255) 11111000	(248) 00000000	(0)

Result	of	AND	Masking 10011010	(154) 01000111(71) 10010000	(144) 00000000	(0)

Figure	18-3.	Determining	the	subnet	ID	of	an	IP	address	through	subnet	masking	Subnet	masking
involves	performing	a	boolean	AND	between	each	corresponding	bit	in	the	subnet	mask	and	the	IP

address.	The	subnet	mask	can	be	likened	to	a	physical	mask;	each	1	in	it	lets	the	corresponding	bit	of	the
IP	address	show	through,	while	each	0	blocks	the	corresponding	IP	address	bit.	In	this	way	the	host	ID
bits	of	the	address	are	stripped	so	the	device	can	determine	the	subnet	to	which	the	address	belongs.

This	result,	154.71.144.0,	is	the	IP	address	of	the	subnet	to	which	154.71.150.42
belongs.	There	is	no	need	to	explicitly	differentiate	the	network	ID	bits	from	the
subnet	ID	bits,	because	you	are	still	using	classful	addresses.	Any	router	can	see
that	since	the	first	two	bits	of	the	address	are	10,	this	is	a	Class	B	address.	So	the
network	ID	is	16	bits,	and	this	means	the	subnet	ID	must	be	bits	17	to	21,
counting	from	the	left.	Here,	the	subnet	is	the	portion	highlighted	earlier:	10010,
or	subnet	18.	(I'll	explain	this	better	in	the	"IP	Custom	Subnet	Masks"	section
later	in	this	chapter.)

TIP

KEY	CONCEPT	The	subnet	mask	is	often	expressed	in	dotted	decimal	notation	for	convenience,	but	is
used	by	computers	as	a	binary	number	and	usually	must	be	expressed	in	binary	to	understand	how	the
mask	works	and	the	number	of	subnet	ID	bits	it	represents.



Rationale	for	Subnet	Mask	Notation
In	practical	terms,	the	subnet	mask	actually	conveys	only	a	single	piece	of
information:	the	line	between	the	subnet	ID	and	host	ID.	Then	why	bother	with	a
big	32-bit	binary	number	in	that	case,	instead	of	just	specifying	the	bit	number
where	the	division	occurs?	Instead	of	carrying	the	subnet	mask	of	255.255.248.0
around,	why	not	just	divide	the	IP	address	after	bit	21?	Even	if	devices	want	to
perform	a	masking	operation,	couldn't	they	just	create	the	mask	as	needed?

That's	a	very	good	question.	There	are	two	historical	reasons:	efficiency
considerations	and	support	for	noncontiguous	masks.	The	subnet	mask
expression	is	efficient	because	it	allows	routers	to	perform	a	quick	masking
operation	to	determine	the	subnet	address.	(This	is	not	really	an	issue	today
given	the	speed	of	today's	machines.)

When	splitting	the	bits	in	the	host	ID	for	subnet	ID	and	host	ID,	RFC	950
specifies	that	they	may	be	split	in	more	than	one	place.	In	the	previous	example,
you	could,	instead	of	splitting	the	16	bits	into	5	bits	for	subnet	ID	and	11	for	host
ID,	have	done	it	as	2	bits	for	the	subnet	ID,	then	4	bits	for	the	host	ID,	then	3
more	bits	for	the	subnet	ID,	and	finally	7	more	bits	for	host	ID.	This	would	be
represented	by	the	subnet	mask	pattern	11000011	10000000	for	those	16	bits
(following	the	16	ones	for	the	network	ID).	Of	course,	subnetting	this	way
makes	assigning	addresses	extremely	confusing.	For	this	reason,	while
technically	legal,	noncontiguous	subnet	masking	is	not	recommended	and	not
done	in	practice.

Given	that	noncontiguous	masks	are	not	used,	and	today's	computers	are	faster,
the	alternative	method	of	expressing	masks	with	just	a	single	number	is	now
often	used.	Instead	of	writing	"IP	address	of	154.71.150.42	with	subnet	mask	of
255.255.248.0,"	you	can	simply	write	"154.71.150.42/21."	This	is	sometimes
called	slash	notation	or	Classless	Inter-Domain	Routing	(CIDR)	notation.	While
this	is	more	commonly	used	in	Variable	Length	Subnet	Masking	(VLSM)
environments	and	is	the	standard	for	specifying	classless	addresses	under	the
CIDR	addressing	scheme	(see	Chapter	20),	it	is	also	sometimes	seen	in	regular
subnetting	discussions.

NOTE



Since	these	weird	masks	were	never	really	used,	some	resources	say	that	the	subnet	mask	always	had	to
be	contiguous,	but	this	is	not	true—originally,	it	was	legal	but	advised	against.	Later,	this	practice
became	so	out	of	favor	that	many	hardware	devices	would	not	support	it.	Today,	now	that	classless
addressing	and	CIDR	are	standard,	noncontiguous	masks	are	simply	illegal.



IP	Default	Subnet	Masks	for	Address	Classes	A,
B,	and	C
In	order	to	better	understand	how	subnets	divide	a	Class	A,	B,	or	C	network,	let's
look	at	how	the	Class	A,	B,	and	C	networks	are	represented	in	a	subnetted
environment.	This	might	seem	unnecessary	if	you	aren't	planning	to	create
subnets,	but	the	fact	is,	once	subnetting	became	popular,	most	operating	systems,
networking	hardware,	and	software	assumed	that	subnetting	would	be	used.
Even	if	you	decide	not	to	subnet,	you	may	need	to	express	your	unsubnetted
network	using	a	subnet	mask.

In	essence,	a	nonsubnetted	Class	A,	B,	or	C	network	can	be	considered	the
default	for	the	more	general,	custom-subnetted	network.	You	can	think	of	a
nonsubnetted	network	as	being	the	case	where	you	choose	to	divide	the	host	ID
so	that	exactly	zero	bits	are	used	for	the	subnet	ID,	and	all	the	bits	are	used	for
the	host	ID.	This	default	case	is	the	basis	for	the	more	practical	subnetting	you
will	examine	shortly.

As	is	always	the	case,	the	subnet	mask	for	a	default,	unsubnetted	Class	A,	B,	or
C	network	has	ones	for	each	bit	that	is	used	for	the	network	ID	or	subnet	ID	and
zeros	for	the	host	ID	bits.	Of	course,	I	just	said	you	aren't	subnetting,	so	there	are
no	subnet	ID	bits!	Thus,	the	subnet	mask	for	this	default	case	has	ones	for	the
network	ID	portion	and	zeros	for	the	host	ID	portion.	This	is	called	the	default
subnet	mask	for	each	of	the	IP	address	classes.

Since	Class	A,	B,	and	C	divide	the	network	ID	from	the	host	ID	on	octet
boundaries,	the	subnet	mask	will	always	have	all	ones	or	all	zeros	in	an	octet.
Therefore,	the	default	subnet	masks	will	always	have	255s	or	0s	when	expressed
in	decimal	notation.	Table	18-2	summarizes	the	default	subnet	masks	for	each	of
the	classes.	They	are	also	shown	graphically	in	Figure	18-4.

Table	18-2.	Default	Subnet	Masks	for	Class	A,	Class	B,	and	Class	C
Networks

IP	Address
Class

Total	#	of	Bits	for
Network	ID/Host	ID

Default	Subnet	Mask

First Second Third Fourth



	 	 First
Octet

Second
Octet

Third
Octet

Fourth
Octet

Class	A 8/24 11111111
(255)

00000000
(0)

00000000
(0)

00000000
(0)

Class	B 16/16 11111111
(255)

11111111
(255)

00000000
(0)

00000000
(0)

Class	C 24/8 11111111
(255)

11111111
(255)

11111111
(255)

00000000
(0)

Figure	18-4.	Default	subnet	masks	for	Class	A,	Class	B,	and	Class	C	networks

Thus,	the	three	default	subnet	masks	are	255.0.0.0	for	Class	A,	255.255.0.0	for
Class	B,	and	255.255.255.0	for	Class	C.

While	all	default	subnet	masks	use	only	255	and	0,	not	all	subnet	masks	with
255	and	0	are	defaults.	There	are	a	small	number	of	custom	subnets	that	divide
on	octet	boundaries	as	well.	These	are	as	follows:

255.255.0.0	This	is	the	default	mask	for	Class	B,	but	can	also	be	the	custom
subnet	mask	for	dividing	a	Class	A	network	using	8	bits	for	the	subnet	ID
(leaving	16	bits	for	the	host	ID).

255.255.255.0	This	is	the	default	subnet	mask	for	Class	C,	but	can	be	a	custom
Class	A	with	16	bits	for	the	subnet	ID	or	a	Class	B	with	8	bits	for	the	subnet	ID.

TIP



KEY	CONCEPT	Each	of	the	three	IP	unicast	and	broadcast	address	classes,	A,	B,	and	C,	has	a	default
subnet	mask	defined	that	has	a	one	for	each	bit	of	the	class's	network	ID,	a	zero	for	each	bit	of	its	host
ID,	and	no	subnet	ID	bits.	The	three	default	subnet	masks	are	255.0.0.0	for	Class	A,	255.255.0.0	for
Class	B,	and	255.255.255.0	for	Class	C.



IP	Custom	Subnet	Masks
A	default	subnet	mask	doesn't	really	represent	subnetting	because	you	are
assigning	zero	bits	to	the	subnet	ID.	To	do	real	subnetting,	you	must	dedicate	at
least	one	of	the	bits	of	the	presubnetted	host	ID	to	the	subnet	ID.

Since	you	can	choose	the	dividing	point	between	subnet	ID	and	host	ID	to	suit
the	network,	this	is	sometimes	called	customized	subnetting.	The	subnet	mask
that	you	use	when	creating	a	customized	subnet	is,	in	turn,	called	a	custom
subnet	mask.	The	custom	subnet	mask	is	used	by	network	hardware	to	determine
how	you	have	decided	to	divide	the	subnet	ID	from	the	host	ID	in	the	network.

Deciding	How	Many	Subnet	Bits	to	Use
The	key	decision	in	customized	subnetting	is	how	many	bits	to	take	from	the
host	ID	portion	of	the	IP	address	to	put	into	the	subnet	ID.	You'll	recall	that	the
number	of	subnets	possible	on	the	network	is	two	to	the	power	of	the	number	of
bits	you	use	to	express	the	subnet	ID,	and	the	number	of	hosts	possible	per
subnet	is	two	to	the	power	of	the	number	of	bits	left	in	the	host	ID	(less	two,	as	I
explain	later	in	this	section).

Thus,	the	decision	of	how	many	bits	to	use	for	each	of	the	subnet	ID	and	host	ID
represents	a	fundamental	trade-off	in	subnet	addressing:

Each	bit	taken	from	the	host	ID	for	the	subnet	ID	doubles	the	number	of
subnets	that	are	possible	in	the	network.

Each	bit	taken	from	the	host	ID	for	the	subnet	ID	(approximately)	halves	the
number	of	hosts	that	are	possible	within	each	subnet	on	the	network.

For	example,	say	you	start	with	a	Class	B	network	with	the	network	address
154.71.0.0.	Since	this	is	Class	B,	16	bits	are	for	the	network	ID	(154.71)	and	16
are	for	the	host	ID.	In	the	default	case,	there	are	no	subnets	and	65,534	hosts
total.	To	subnet	this	network,	you	can	use	the	following:

One	bit	for	the	subnet	ID	and	15	bits	for	the	host	ID.	If	you	do	this,	then	the
total	number	of	subnets	is	21,	or	2.	The	first	subnet	is	0,	and	the	second	is	1.
The	number	of	hosts	available	for	each	subnet	is	215–2,	or	32,766.



Two	bits	for	the	subnet	ID	and	14	for	the	host	ID.	In	this	case,	you	double	the
number	of	subnets.	You	now	have	22,	or	4	subnets:	00,	01,	10,	and	11
(subnets	0,	1,	2,	and	3).	But	the	number	of	hosts	is	now	only	214–2,	or	16,382.

Any	combination	of	bits	that	add	up	to	16	as	long	as	they	allow	you	at	least
two	hosts	per	subnet:	4	and	12,	5	and	11,	and	so	on.

The	way	you	decide	to	divide	the	classful	host	ID	into	subnet	ID	and	host	ID	bits
is	the	key	design	decision	in	subnetting.	You	make	your	choice	based	on	the
number	of	subnets	in	the	network,	and	also	on	the	maximum	number	of	hosts
that	need	to	be	assigned	to	each	subnet	in	the	network.	For	example,	if	you	have
10	total	subnets	for	your	Class	B	network,	you	need	4	bits	to	represent	this,
because	24	is	16	while	23	is	only	8.	This	leaves	12	bits	for	the	host	ID,	for	a
maximum	of	4,094	hosts	per	subnet.

However,	suppose	instead	that	you	have	20	subnets.	If	so,	4	bits	for	subnet	ID
won't	suffice;	you	need	5	bits	(25=32).	This	means	that	you	now	have	only	11
bits	for	the	host	ID,	for	a	maximum	of	2,046	hosts	per	subnet.	(Step	2	of	the
practical	subnetting	example	in	Chapter	19	discusses	these	decisions	in	more
detail.)

Now	if	you	have	20	subnets	and	also	need	a	maximum	of	3,000	hosts	per	subnet,
you	have	a	problem.	You	need	5	bits	to	express	20	different	subnets,	but	you
need	12	bits	to	express	the	number	3,000	for	the	host	ID.	That's	17	bits—too
many.	What's	the	solution?	You	might	be	able	to	shuffle	your	physical	networks
so	that	you	only	have	16.	If	not,	you	need	a	second	Class	B	network.

TIP

KEY	CONCEPT	The	fundamental	trade-off	in	subnetting	is	that	each	addition	of	a	bit	to	the	subnet	ID
(and	thus,	subtraction	of	that	bit	from	the	host	ID)	doubles	the	number	of	subnets,	and	approximately
halves	the	number	of	hosts	in	each	subnet.	Each	subtraction	of	a	bit	from	the	subnet	ID	(and	addition	of
that	bit	to	the	host	ID)	does	the	opposite.

Determining	the	Custom	Subnet	Mask
Once	you	determine	how	many	bits	to	devote	to	the	subnet	and	host	IDs,	you	can
determine	the	subnet	mask.	You	begin	with	the	default	subnet	mask	in	binary	for
the	appropriate	class	of	the	network.	You	start	with	the	leftmost	zero	in	that



mask	and	change	as	many	bits	to	one	as	you	have	dedicated	to	the	subnet	ID,	at
which	point	you	can	express	the	subnet	mask	in	dotted	decimal	form.	Figure	18-
5	shows	how	the	custom	subnet	mask	can	be	determined	for	each	of	the
subnetting	options	of	a	Class	C	network	in	both	binary	and	decimal.

Consider	the	Class	C	network	200.13.94.0	in	Figure	18-5.	There	are	eight	bits	in
the	original	host	ID,	which	gives	you	six	different	subnetting	options	(you	can't
use	seven	or	eight	bits	for	the	subnet	ID,	for	reasons	I	will	discuss	shortly).
Suppose	you	use	three	of	these	for	the	subnet	ID,	leaving	five	for	the	host	ID.	To
determine	the	custom	subnet	mask,	you	start	with	the	Class	C	default	subnet
mask:

11111111	11111111	11111111	00000000

You	then	change	the	first	three	zeros	to	ones,	to	get	the	custom	subnet	mask:

11111111	11111111	11111111	11100000

In	dotted	decimal	format,	this	is	255.255.255.224.

NOTE

Once	you've	made	the	choice	of	how	to	subnet,	you	determine	the	custom	subnet	mask	by	starting	with
the	default	subnet	mask	for	the	network	and	changing	each	subnet	ID	bit	from	a	zero	to	a	one.

NOTE

In	regular	subnetting,	the	choice	of	how	many	bits	to	use	for	the	subnet	ID	is	fixed	for	the	entire
network.	You	can't	have	subnets	of	different	sizes—they	must	all	be	the	same.	Thus,	the	number	of	hosts
in	the	largest	subnet	will	dictate	how	many	bits	you	need	for	the	host	ID.	This	means	that	in	the	previous
case,	if	you	had	a	strange	configuration	where	19	subnets	had	only	100	hosts	each	but	the	20th	had
3,000,	you	would	have	a	problem.	If	this	were	the	case,	you	could	solve	the	problem	easily	by	dividing
that	one	oversized	subnet	into	two	or	more	smaller	ones.	An	enhancement	to	subnetting	called	Variable
Length	Subnet	Masking	(VLSM)	was	created	in	large	part	to	remove	this	restriction.	VLSM	is	described
later	in	the	chapter.



Figure	18-5.	Custom	subnet	masks	for	Class	C	networks	Since	there	are	host	ID	bits	in	a	Class	C
network	address,	there	are	six	different	ways	that	the	network	can	be	subnetted.	Each	corresponds	to	a
different	custom	subnet	mask,	which	is	created	by	changing	the	allocated	subnet	ID	bits	from	zero	to

one.

Subtracting	Two	from	the	Number	of	Hosts	per
Subnet	and	(Possibly)	Subnets	per	Network
You've	seen	how	you	must	subtract	two	from	the	number	of	hosts	allowed	in
each	network	in	regular	classful	addressing.	This	is	necessary	because	two	host
IDs	in	each	subnet	have	special	meanings:	the	all-zeros	host	ID	(for	"this
network")	and	the	all-ones	host	ID	(for	broadcasts	to	all	hosts	on	the	network).
These	restrictions	apply	to	each	subnet	under	subnetting,	too,	which	is	why	you
must	continue	to	subtract	two	from	the	number	of	hosts	per	subnet.	(This	is	also
why	dividing	the	eight	host	ID	bits	of	a	Class	C	network	into	seven	bits	for
subnet	ID	and	one	bit	for	host	ID	is	meaningless:	It	leaves	21–2	=	0	hosts	per
subnet,	which	is	not	particularly	useful.)

A	similar	issue	occurs	with	the	subnet	ID	as	well.	When	subnetting	was



A	similar	issue	occurs	with	the	subnet	ID	as	well.	When	subnetting	was
originally	defined	in	RFC	950,	the	standard	specifically	excluded	the	use	of	the
all-zeros	and	all-ones	subnets.	This	was	due	to	concern	that	routers	might
become	confused	by	these	cases.	A	later	standard,	RFC	1812,	"Requirements	for
IP	Version	4	Routers,"	removed	this	restriction	in	1995.	Thus,	modern	hardware
now	has	no	problem	with	the	all-zeros	or	all-ones	subnets,	but	some	very	old
hardware	may	still	balk	at	it.

TIP

KEY	CONCEPT	The	number	of	hosts	allowed	in	each	subnet	is	the	binary	power	of	the	number	of	host
ID	bits	remaining	after	subnetting,	less	two.	The	reduction	by	two	occurs	because	the	all-zeros	and	all-
ones	host	IDs	within	each	subnet	are	reserved	for	two	special	meaning	addresses:	to	refer	to	the
subnetwork	itself	and	to	refer	to	its	local	broadcast	address.	In	some	implementations,	the	number	of
subnets	is	also	reduced	by	two	because	the	all-zeros	and	all-ones	subnet	IDs	were	originally	not	allowed
to	be	used.

For	this	reason,	you	will	sometimes	see	discussions	of	subnetting	that	exclude
these	cases.	When	that	is	done,	you	lose	two	potential	subnets:	the	all-zeros	and
all-ones	subnets.	If	you	do	this,	then	choosing	one	bit	for	subnet	ID	is	no	longer
valid,	as	it	yields	21–2=0	subnets.	You	must	choose	two	bits	if	you	need	two
subnets.

NOTE

In	this	book,	I	assume	you	are	dealing	with	modern	hardware	and	do	not	exclude	the	all-zeros	and	all-
ones	subnets,	but	I	do	try	to	make	explicit	note	of	this	fact	wherever	relevant.	Summary	tables	later	in
this	chapter	show	the	trade-off	in	subnetting	each	of	Classes	A,	B,	and	C,	and	the	subnet	mask	for	each
of	the	choices.



IP	Subnet	Identifiers,	Subnet	Addresses,	and
Host	Addresses
The	main	advantage	that	conventional	classful	addressing	without	subnets	offers
over	subnets	is	simplicity.	For	example,	even	though	there	can	be	problems	with
managing	thousands	of	devices	in	a	single	Class	B	network,	it	is	simple	to	assign
addresses	within	the	network:	They	are	all	lumped	together,	so	any	combination
of	bits	can	be	used	within	the	host	ID	(except	for	all-zeros	and	all-ones).

When	you	subnet,	however,	you	create	a	two-level	structure	within	the	classful
host	ID:	subnet	ID	and	host	ID.	This	means	you	must	choose	IP	addresses	for
devices	more	carefully.	In	theory,	you	are	selecting	subnets	to	correspond	to	the
physical	networks	within	the	organization,	so	you	want	to	assign	IP	addresses	in
a	way	that	is	consistent	with	the	physical	network	structure.

Subnet	Identifiers
Once	you	decide	how	many	subnets	you	will	have,	you	need	to	identify	the
subnets	and	determine	their	addresses.	You	begin	with	the	subnet	identifier,	the
subnet	ID	of	any	subnets	on	our	network.	Subnets	are	numbered	starting	with
zero	and	increasing	up	to	one	less	than	the	maximum	number	of	subnets,	which
is	a	function	of	how	many	bits	are	in	the	subnet	ID.	(If	the	all-zero	and	all-ones
subnet	IDs	are	excluded,	as	specified	in	RFC	950,	then	the	first	subnet	ID	is
one.)

Of	course,	you	may	not	need	all	of	the	subnets	that	can	be	defined.	For	example,
if	you	have	20	subnets,	you	need	five	bits	for	the	subnet	identifier,	which	allows
a	theoretical	maximum	of	32	subnets.	You	would	use	only	subnets	0	to	19;	20
through	31	would	be	reserved	for	future	use.	These	subnets	could	be	expressed
either	in	decimal	form	(0,	1,	2	…	up	to	19)	or	in	binary	(00000,	00001,	00010,
and	so	on,	up	to	10011).

Subnet	Addresses
For	each	subnet,	you	can	also	determine	the	subnet	address.	To	do	this,	you	start
with	the	IP	address	for	the	overall	network,	which	has	all	zeros	in	the	classful
host	ID	field	(8	bits,	16	bits,	or	24	bits).	You	then	insert	the	subnet	ID	for	a



particular	subnet	into	the	designated	subnet	bits.

For	example,	to	subnet	the	Class	B	network	154.71.0.0	shown	in	Figure	18-2,	in
which	you	use	five	subnet	ID	bits,	you	start	with	the	following	network	IP
address,	with	the	subnet	ID	bits	highlighted:

10011010	01000111	00000000	00000000

To	find	the	address	of	say,	subnet	11,	you	substitute	01011	for	these	bits,	leaving
the	host	ID	bits	zero,	as	follows:

10011010	01000111	01011000	00000000

You	can	then	convert	this	from	binary	form	to	dotted	decimal,	resulting	in	a
subnet	address	of	154.71.88.0.

TIP

KEY	CONCEPT	The	subnet	identifier	of	a	subnet	is	just	its	subnet	ID.	The	subnet	address	of	a	subnet
is	determined	by	substituting	its	subnet	ID	into	the	subnet	bits	of	the	overall	network	address.

When	you	look	at	subnet	addressing,	especially	when	you	substitute	subnet	IDs
in	sequence,	a	pattern	becomes	immediately	visible.	The	first	subnet	address	is
always	the	address	of	the	overall	network,	because	the	subnet	ID	is	all	zeros.
Then	you	find	the	second	subnet	address	in	decimal	form	by	adding	a	specific
multiple	of	two	to	one	of	the	octets.	The	third	address	is	then	found	by	adding
this	same	number	to	the	second	address,	and	so	on.

In	fact,	the	decimal	value	of	each	subnet	address	can	be	expressed	as	a	formula,
based	on	the	class	of	the	original	network	and	the	number	of	bits	being	used	for
the	subnet	ID.	For	example,	consider	a	Class	B	network	with	the	overall	address
of	x.y.0.0	(it	doesn't	matter	what	x	and	y	are	for	these	purposes).	Now	say	you
are	using	two	bits	for	the	subnet	ID.	You	have	four	subnet	addresses	here:

The	address	of	subnet	0	will	be	the	same	as	the	network	address:	x.y.0.0.

The	address	of	subnet	1	will	be	found	by	substituting	01	for	the	first	two	bits
of	the	third	octet.	This	yields	an	address	of	x.y.01000000.0000000,	or
x.y.64.0	in	straight	decimal.

Subnet	2's	address	is	found	by	substituting	10	for	the	subnet	ID	bits,	so	it	is



x.y.10000000.0000000,	or	x.y.128.0	in	straight	decimal.

Subnet	3's	address	will	be	x.y.192.0.

So,	the	formula	in	this	case	for	subnet	N	is	x.y.N*64.0.	If	you	use	five	bits	for	a
subnet,	the	formula	is	x.y.N*8.0.	As	you	saw	earlier,	the	subnet	address	for
subnet	11	in	network	154.71.0.0	is	154.71.88.0.	I	have	shown	the	formulas	for
all	of	the	combinations	of	subnet	ID	and	host	ID	size	in	the	subnetting	summary
tables	(Tables	Table	18-3,	Table	18-4,	and	Table	18-5).	These	formulas	can	be	a
real	time-saver	once	you	become	more	familiar	with	subnetting.

Host	Addresses	Within	Each	Subnet
Once	you	know	the	subnet	address	for	a	particular	subnet,	you	assign	IP
addresses	by	plugging	in	values	into	the	remaining	host	ID	bits.	You	skip	the	all-
zeros	value,	so	the	first	host	in	the	subnet	has	all	zeros	for	the	host	ID	except	for
a	one	in	the	rightmost	bit	position.	Then	the	next	host	has	all	zeros	except	for
"10"	at	the	end	(2	in	decimal).	You	can	do	this	all	the	way	up	to	one	less	than	the
all-ones	value.	Again,	you	then	convert	each	IP	address	from	binary	to	decimal.

NOTE

You	can	find	exactly	these	details	in	Chapter	19's	coverage	of	practical	subnetting.



IP	Subnetting	Summary	Tables	for	Class	A,
Class	B,	and	Class	C	Networks
Since	there	are	only	a	few	options	for	how	to	subnet	Class	A,	Class	B,	and	Class
C	networks,	I	list	the	options	for	each	class	in	summary	Tables	Table	18-3
through	Table	18-5.	These	tables	can	help	you	quickly	decide	how	many	bits	to
use	for	subnet	ID	and	host	ID,	and	then	what	the	subnet	mask	is	for	their
selection.	They	also	summarize	nicely	what	I've	discussed	so	far	in	this	chapter.

Each	row	of	each	table	shows	one	possible	subnetting	option	for	that	class,
including	the	number	of	bits	for	each	of	the	subnet	ID	and	host	ID,	and	the
number	of	subnets	and	hosts	based	on	the	number	of	bits.	I	then	show	the	subnet
mask	in	binary	and	decimal	form,	as	well	as	in	CIDR	notation	(covered	in
Chapter	20).	Finally,	I	include	the	formula	for	calculating	the	addresses	for	each
subnet	under	each	of	the	options.

A	few	additional	explanatory	notes	are	in	order	regarding	these	tables:

The	values	for	the	number	of	subnets	per	network	assume	that	the	all-zeros
and	all-ones	subnets	are	allowed.	If	not,	you	must	subtract	two	from	those
figures.	This	also	means	that	the	option	using	only	one	bit	for	the	subnet	ID
becomes	invalid,	and	the	subnet	address	formulas	no	longer	work	as	shown.

The	number	of	hosts	per	subnet	excludes	the	all-zeros	and	all-ones	cases,	so	it
is	two	to	the	power	of	the	number	of	host	ID	bits,	less	two.

The	first	row	of	each	table	shows	the	default	case	where	the	number	of	subnet
bits	is	zero,	and	thus	the	subnet	mask	is	the	default	subnet	mask	for	the	class.

In	the	subnet	mask	for	all	options	but	the	default,	I	have	highlighted	the
portion	of	the	subnet	mask	corresponding	to	the	subnet	ID,	for	clarity.	This
has	been	done	for	each	individual	bit	of	the	binary	mask,	and	for	each	octet	in
the	dotted	decimal	representation	of	the	mask	where	part	of	the	subnet	ID	is
found.

In	looking	at	these	tables,	you	will	see	that	not	all	of	the	divisions	make	a
great	deal	of	sense	in	the	real	world,	though	you	might	be	surprised.	For
example,	at	first	glance,	it	seems	silly	to	think	that	you	might	want	to	assign



14	bits	of	a	Class	B	host	ID	to	the	subnet	ID	and	leave	2	bits	for	the	host	ID
—what	sort	of	real	network	has	16,384	subnets	with	two	hosts	on	each?	Yet,
some	larger	Internet	service	companies	may	indeed	require	thousands	of	tiny
subnets	when	setting	up	connections	between	routers	or	between	their	core
network	and	their	customers.

The	subnet	address	formulas	in	the	last	column	of	each	table	show	the
address	for	subnet	N	(numbering	from	zero	up	to	one	less	than	the	maximum
number	of	subnets).	See	the	end	of	step	4	in	the	step-by-step	subnetting
discussion	(Chapter	19)	for	a	full	explanation	of	how	these	formulas	work.

Table	18-3.	Subnetting	Summary	Table	for	Class	A	Networks

#	of
Subnet
ID	Bits

#	of
Host
ID
Bits

#	of
Subnets
per
Network

#	of
Hosts
per
Subnet

Subnet	Mask	(Binary/Dotted	Decimal)

0
(Default)

24 1 16,277,214 11111111.00000000.00000000.00000000255.0.0.0

1 23 2 8,388,606 11111111.10000000.00000000.00000000255.128.0.0

2 22 4 4,194,302 11111111.11000000.00000000.00000000255.192.0.0

3 21 8 2,097,150 11111111.11100000.00000000.00000000255.224.0.0

4 20 16 1,048,574 11111111.11110000.00000000.00000000255.240.0.0

5 19 32 524,286 11111111.11111000.00000000.00000000255.248.0.0

6 18 64 262,142 11111111.11111100.00000000.00000000255.252.0.0

7 17 128 131,070 11111111.11111110.00000000.00000000255.254.0.0

8 16 256 65,534 11111111.11111111.00000000.00000000255.255.0.0

9 15 512 32,766 11111111.11111111.10000000.00000000255.255.128.0

10 14 1,024 16,382 11111111.11111111.11000000.00000000255.255.192.0

11 13 2,048 8,190 11111111.11111111.11100000.00000000255.255.224.0



11 13 2,048 8,190 11111111.11111111.11100000.00000000255.255.224.0

12 12 4,096 4,094 11111111.11111111.11110000.00000000255.255.240.0

13 11
8,192 2,046

11111111.11111111.11111000.00000000255.255.248.0

14 10 16,384 1,022 11111111.11111111.11111100.00000000255.255.252.0

15 9 32,768 510 11111111.11111111.11111110.00000000255.255.254.0

16 8 65,536 254 11111111.11111111.11111111.00000000255.255.255.0

17 7 131,072 126 11111111.11111111.11111111.10000000255.255.255.128

18 6 262,144 62 11111111.11111111.11111111.11000000255.255.255.192

19 5 524,288 30 11111111.11111111.11111111.11100000255.255.255.224

20 4 1,048,576 14 11111111.11111111.11111111.11110000255.255.255.240

21 3 2,097,152 6 11111111.11111111.11111111.11111000255.255.255.248

22 2 4,194,304 2 11111111.11111111.11111111.11111100255.255.255.252

Table	18-4.	Subnetting	Summary	Table	for	Class	B	Networks

#	of
Subnet
ID	Bit

#	of
Host
ID
Bits

#	of
Subnets
per
Network

#	of
Hosts
per
Subnet

Subnet	Mask	(Binary/Dotted	Decimal) Subnet
Mask
(Slash/
CIDR



Bits Network Subnet CIDR
Notation)

0
(Default)

16 1 65,534 11111111.11111111.00000000.00000000255.255.0.0 /16

1 15 2 32,766 11111111.11111111.10000000.00000000255.255.128.0 /17

2 14 4 16,382 11111111.11111111.11000000.00000000255.255.192.0 /18

3 13 8 8,190 11111111.11111111.11100000.00000000255.255.224.0 /19

4 12 16 4,094 11111111.11111111.11110000.00000000255.255.240.0 /20

5 11 32 2,046 11111111.11111111.11111000.00000000255.255.248.0 /21

6 10 64 1,022 11111111.11111111.11111100.00000000255.255.252.0 /22

7 9 128 510 11111111.11111111.11111110.00000000255.255.254.0 /23

8 8 256 254 11111111.11111111.11111111.00000000255.255.255.0 /24

9 7 512 126 11111111.11111111.11111111.10000000255.255.255.128 /25

10 6 1,024 62 11111111.11111111.11111111.11000000255.255.255.192 /26

11 5 2,048 30 11111111.11111111.11111111.11100000255.255.255.224 /27

12 4 4,096 14 11111111.11111111.11111111.11110000255.255.255.240 /28

13 3 8,192 6 11111111.11111111.11111111.11111000255.255.255.248 /29

14 2 16,384 2 11111111.11111111.11111111.11111100255.255.255.252 /30

Table	18-5.	Subnetting	Summary	Table	for	Class	C	Networks

#	of
Subnet

#	of
Host

#	of
Subnets

#	of
Hosts

Subnet	Mask	(Binary/Dotted	Decimal) Subnet
Mask



Subnet
ID	Bit

Host
ID
Bits

Subnets
per
Network

Hosts
per
Subnet

Mask
(Slash/
CIDR
Notation)

0
(Default)

8 1 254 11111111.11111111.11111111.00000000255.255.255.0 /24

1 7 2 126 11111111.11111111.11111111.10000000255.255.255.128 /25

2 6 4 62 11111111.11111111
.11111111.11000000255.255.255.192

/26

3 5 8 30 11111111.11111111.11111111.11100000255.255.255.224 /27

4 4 16 14 11111111.11111111.11111111.11110000255.255.255.240 /28

5 3 32 6 11111111.11111111.11111111.11111000255.255.255.248 /29

6 2 64 2 11111111.11111111.11111111.11111100255.255.255.252 /30



IP	Variable	Length	Subnet	Masking	(VLSM)
The	main	weakness	with	conventional	subnetting	is	that	the	subnet	ID	represents
only	one	additional	hierarchical	level	in	how	IP	addresses	are	interpreted	and
used	for	routing.

It	may	seem	greedy	to	look	at	subnetting	and	say,	"What,	only	one	additional
level?"	However,	in	large	networks,	the	need	to	divide	the	entire	network	into
only	one	level	of	subnetworks	doesn't	represent	the	best	use	of	the	IP	address
block.

Furthermore,	you	have	already	seen	that	since	the	subnet	ID	is	the	same	length
throughout	the	network,	you	can	have	problems	if	you	have	subnetworks	with
very	different	numbers	of	hosts	on	them.	The	subnet	ID	must	be	chosen	based	on
whichever	subnet	has	the	greatest	number	of	hosts,	even	if	most	of	subnets	have
far	fewer.	This	is	inefficient	even	in	small	networks,	and	can	result	in	the	need	to
use	extra	addressing	blocks	while	wasting	many	of	the	addresses	in	each	block.

For	example,	consider	a	relatively	small	company	with	a	Class	C	network,
201.45.222.0/24.	The	administrators	have	six	subnetworks	in	their	network.	The
first	four	subnets	(S1,	S2,	S3,	and	S4)	are	relatively	small,	containing	only	10
hosts	each.	However,	one	of	them	(S5)	is	for	their	production	floor	and	has	50
hosts,	and	the	last	(S6)	is	their	development	and	engineering	group,	which	has
100	hosts.	The	total	number	of	hosts	needed	is	thus	196.

Without	subnetting,	the	company	has	enough	hosts	in	the	Class	C	network	to
handle	them	all.	However,	when	they	try	to	subnet,	they	have	a	big	problem.	In
order	to	have	six	subnets,	they	need	to	use	three	bits	for	the	subnet	ID.	This
leaves	only	five	bits	for	the	host	ID,	which	means	every	subnet	has	the	identical
capacity	of	30	hosts,	as	shown	in	Figure	18-6.	This	is	enough	for	the	smaller
subnets	but	not	enough	for	the	larger	ones.	The	only	solution	with	conventional
subnetting,	other	than	shuffling	the	physical	subnets,	is	to	get	another	Class	C
block	for	the	two	big	subnets	and	use	the	original	for	the	four	small	ones.	But
this	is	expensive	and	means	wasting	hundreds	of	IP	addresses!



Figure	18-6.	Class	C	(/24)	network	split	into	eight	conventional	subnets	With	traditional	subnetting,	all
subnets	must	be	the	same	size,	which	creates	problems	when	there	are	some	subnets	that	are	much

larger	than	others.	Contrast	this	with	Figure	18-7.

The	Solution:	Variable	Length	Subnet	Masking
The	solution	is	an	enhancement	to	the	basic	subnet	addressing	scheme	called
Variable	Length	Subnet	Masking	(VLSM).	The	idea	is	that	you	subnet	the
network	and	then	subnet	the	subnets	just	the	way	you	originally	subnetted	the
network.	In	fact,	you	can	do	this	multiple	times,	creating	subnets	of	subnets	of
subnets,	as	many	times	as	you	need	(subject	to	how	many	bits	you	have	in	the
host	ID	of	your	address	block).

It	is	possible	to	choose	to	apply	this	multiple-level	splitting	to	only	some	of	the
subnets,	thereby	allowing	you	to	selectively	cut	the	IP	address	pie	so	that	some
of	the	slices	are	bigger	than	others.	This	means	that	the	company	in	the	previous
example	could	create	six	subnets	to	match	the	needs	of	its	networks,	as	shown	in
Figure	18-7.



Figure	18-7.	Class	C	(/24)	network	split	using	VLSM	Using	VLSM,	an	organization	can	divide	its	IP
network	multiple	times	to	create	subnets	that	match	the	size	requirements	of	its	physical	networks	much

better.	Contrast	this	with	Figure	18-6.

TIP

KEY	CONCEPT	Variable	Length	Subnet	Masking	(VLSM)	is	a	technique	for	which	subnetting	is
performed	multiple	times	in	iteration	to	allow	a	network	to	be	divided	into	a	hierarchy	of	subnetworks
that	vary	in	size.	This	allows	an	organization	to	better	match	the	size	of	its	subnets	to	the	requirements	of
its	networks.

Multiple-Level	Subnetting	Using	VLSM
VLSM	subnetting	is	done	the	same	way	as	regular	subnetting;	it	just	involves
extra	levels	of	subnetting	hierarchy.	To	implement	it,	you	first	subnet	the
network	into	large	subnets	and	then	further	break	down	one	or	more	of	the
subnets	as	required.	You	add	bits	to	the	subnet	mask	for	each	of	the	sub-subnets
and	sub-sub-subnets	to	reflect	their	smaller	size.

In	VLSM,	the	slash	notation	of	classless	addressing	is	commonly	used	instead	of
binary	subnet	masks	(it	works	very	much	like	CIDR),	so	that's	what	I	will	use.

NOTE

If	you're	feeling	a	bit	uncomfortable	with	how	subnetting	works,	consider	reading	the	chapter	on
practical	subnetting	(Chapter	19)	before	proceeding	with	the	VLSM	example	that	follows.



For	example,	consider	the	class	C	network,	201.45.222.0/24.	You	do	three
subnettings	as	follows	(see	Figure	18-8	for	an	illustration	of	the	process).

Figure	18-8.	VLSM	example	This	diagram	illustrates	the	example	described	in	the	text,	of	a	Class	C
(/24)	network	divided	using	three	hierarchical	levels.	It	is	first	divided	into	two	subnets;	one	subnet	is
divided	into	two	sub-subnets;	and	one	sub-subnet	is	divided	into	four	sub-sub-subnets.	The	resulting	six
subnets,	shown	with	thick	black	borders,	have	a	maximum	capacity	of	126,	62,	14,	14,	14,	and	14	hosts.

You	first	do	an	initial	subnetting	by	using	one	bit	for	the	subnet	ID,	leaving
you	seven	bits	for	the	host	ID	and	two	subnets:	201.45.222.0/25	and
201.45.222.128/25.	Each	of	these	can	have	a	maximum	of	126	hosts.	You	set
aside	the	first	of	these	for	subnet	S6	and	its	100	hosts.

You	take	the	second	subnet,	201.45.222.128/25,	and	subnet	it	further	into	two
sub-subnets	by	taking	one	bit	from	the	seven	bits	left	in	the	host	ID.	This
gives	you	the	sub-subnets	201.45.222.128/26	and	201.45.222.192/26,	each	of
which	can	have	62	hosts.	You	set	aside	the	first	of	these	for	subnet	S5	and	its
50	hosts.



You	take	the	second	sub-subnet,	201.45.222.192/26,	and	subnet	it	further	into
four	sub-sub-subnets.	You	take	two	bits	from	the	six	that	are	left	in	the	host
ID,	which	gives	you	four	sub-sub-subnets	that	each	can	have	a	maximum	of
14	hosts.	These	are	used	for	S1,	S2,	S3,	and	S4.

Although	I've	chosen	these	numbers	so	that	they	work	out	perfectly,	you	should
get	the	picture.	VLSM	greatly	improves	both	the	flexibility	and	the	efficiency	of
subnetting.

NOTE

In	order	to	use	VLSM,	routers	that	support	VLSM-capable	routing	protocols	must	be	employed.	VLSM
also	requires	more	care	in	how	routing	tables	are	constructed	to	ensure	that	there	is	no	ambiguity	in	how
to	interpret	an	address	in	the	network.

As	I	mentioned	earlier,	VLSM	is	similar	in	concept	to	the	way	CIDR	is
performed.	The	difference	between	VLSM	and	CIDR	is	primarily	one	of	focus.
VLSM	deals	with	subnets	of	a	single	network	in	a	private	organization.	CIDR
takes	the	concept	you	just	saw	in	VLSM	to	the	Internet	as	a	whole	by	changing
how	organizational	networks	are	allocated,	replacing	the	single-level	classful
hierarchy	with	a	multiple-layer	hierarchy.



Chapter	19.	IP	SUBNETTING
PRACTICAL	SUBNET	DESIGN
AND	ADDRESS	DETERMINATION
EXAMPLE

When	educators	ask	students	what	they	consider	to	be	the	most	confusing	aspect
in	learning	about	networking,	many	say	that	it	is	IP	address	subnetting.	While
subnetting	isn't	all	that	difficult	in	concept,	it	can	be	a	bit	mind-boggling,	in	part
due	to	the	manipulations	of	binary	numbers	required.	Many	people	understand
the	ideas	behind	subnetting	but	find	it	hard	to	follow	the	actual	steps	required	to
subnet	a	network.

For	this	reason,	even	though	I	explained	the	concepts	behind	subnetting	in	detail
in	the	previous	chapter,	I	felt	it	would	be	valuable	to	have	another	that	provides	a
step-by-step	look	at	how	to	perform	custom	subnetting.	This	chapter	divides
subnetting	into	five	relatively	straightforward	stages	that	cover	determining
requirements;	deciding	how	many	bits	to	use	for	the	subnet	ID	and	host	ID;	and
then	determining	important	numbers	such	as	the	subnet	mask,	subnet	addresses,
and	host	addresses.

My	focus	here	is	on	showing	the	practical	"how"	of	subnetting.	The	topics	work
through	two	examples	using	a	Class	B	and	a	Class	C	sample	network	to	show
you	how	subnetting	is	done,	and	I	am	explicit	in	showing	how	everything	is
calculated.	This	means	the	section	is	a	bit	number	heavy.	Also,	I	try	not	to
duplicate	conceptual	issues	covered	in	the	previous	section,	though	a	certain
amount	of	overlap	does	occur.	Overall,	if	you	are	not	familiar	with	how
subnetting	works	at	all,	you	will	want	to	read	the	previous	chapter	first.	I	do	refer



to	topics	in	that	chapter	where	appropriate,	especially	the	summary	tables.
Incidentally,	I	only	cover	conventional	subnetting	here,	not	Variable	Length
Subnet	Masking	(VLSM).

This	section	may	serve	as	a	useful	refresher	or	summary	of	subnetting	for
someone	who	is	already	familiar	with	the	basics	but	just	wants	to	review	the
steps	performed	in	subnetting.	Again,	bear	in	mind	that	subnetting	is	based	on
the	older,	classful	IP	addressing	scheme,	and	today's	Internet	is	classless,	using
Classless	Inter-Domain	Routing	(CIDR;	see	Chapter	20).

NOTE

If	in	reading	this	chapter,	you	find	yourself	wanting	to	do	binary-to-decimal	conversions	or	binary	math,
remember	that	most	versions	of	Windows	(and	many	other	operating	systems)	have	a	calculator	program
that	incorporates	scientific	functions.

IP	Subnetting	Step	1:	Analyzing	Requirements
When	you	are	building	or	upgrading	a	network	as	a	whole,	the	first	step	isn't
buying	hardware,	or	figuring	out	protocols,	or	even	design.	It's	requirements
analysis,	the	process	of	determining	what	it	is	the	network	needs	to	do.	Without
this	foundation,	you	risk	implementing	a	network	that	may	perfectly	match	your
design,	but	not	meet	the	needs	of	your	organization.	The	same	rule	applies	to
subnetting	as	well.	Before	you	look	at	the	gory	details	of	host	addresses	and
subnet	masks,	you	must	decide	how	to	subnet	the	network.	To	do	that,	you	must
understand	the	requirements	of	the	network.

Analyzing	the	requirements	of	the	network	for	subnetting	isn't	difficult,	because
there	are	only	a	few	issues	that	you	need	to	consider.	Since	requirements
analysis	is	usually	done	by	asking	questions,	here's	a	list	of	the	most	important
questions	in	analyzing	subnetting	requirements:

What	class	is	the	IP	address	block?

How	many	physical	subnets	are	on	the	network	today?	(A	physical	subnet
generally	refers	to	a	broadcast	domain	on	a	LAN—a	set	of	hosts	on	a	physical
network	bounded	by	routers.)

Do	you	anticipate	adding	any	more	physical	networks	in	the	near	future,	and



if	so,	how	many?

How	many	hosts	do	you	have	in	the	largest	of	the	subnets	today?

How	many	hosts	do	you	anticipate	having	in	the	largest	subnet	in	the	near
future?

TIP

KEY	CONCEPT	To	successfully	subnet	a	network,	you	must	begin	by	learning	what	the	requirements
of	the	network	will	be.	The	most	important	parameters	to	determine	are	the	number	of	subnets	required
and	the	maximum	number	of	hosts	needed	per	subnet.	Numbers	should	not	be	based	on	just	present
needs,	but	also	take	into	account	requirements	anticipated	in	the	near	future.

The	first	question	is	important	because	everything	in	subnetting	is	based	around
dividing	up	a	Class	A,	Class	B,	or	Class	C	network,	so	you	need	to	know	which
one	you	are	dealing	with.	If	you	are	in	the	process	of	designing	a	network	from
scratch	and	don't	have	a	Class	A,	B,	or	C	block	yet,	then	you	will	determine
which	one	you	need	based	on	the	approximate	size	of	the	organization.

After	that,	you	need	to	determine	two	key	numbers:	how	many	physical	subnets
you	have	and	the	maximum	number	of	hosts	per	subnet.	You	need	to	know	these
not	only	for	the	present	network,	but	for	the	near	future	as	well.	The	current
values	for	these	two	numbers	represent	how	the	network	needs	to	be	designed
today.	However,	designing	only	for	the	present	is	not	a	good	idea.

Suppose	you	have	exactly	four	subnetworks	in	the	network	now.	In	theory,	you
could	use	only	two	bits	for	the	subnet	ID,	since	22	equals	4.	However,	if	the
company	were	growing	rapidly,	this	would	be	a	poor	choice.	When	you	needed
to	add	a	fifth	subnet,	you	would	have	a	problem!

Similarly,	consider	the	growth	in	the	number	of	hosts	in	a	subnet.	If	the	current
largest	subnet	has	60	hosts,	you	don't	want	six	bits	for	the	host	ID,	because	that
limits	you	to	62	hosts.	You	can	divide	large	subnets	into	smaller	ones,	but	this
may	just	mean	unnecessary	additional	work.

So	what	is	the	"near	future?"	The	term	is	necessarily	vague,	because	it	depends
on	how	far	into	the	future	the	organization	wants	to	look.	On	the	one	hand,
planning	for	several	years'	growth	can	make	sense,	if	you	have	enough	IP
addresses	to	do	it.	On	the	other,	you	don't	want	to	plan	too	far	out,	since	changes
in	the	short	term	may	cause	you	to	completely	redesign	your	network	anyway.



in	the	short	term	may	cause	you	to	completely	redesign	your	network	anyway.



IP	Subnetting	Step	2:	Partitioning	Network
Address	Host	Bits
After	you	complete	the	brief	requirements	analysis,	you	should	know	the	two
critical	parameters	that	you	must	have	in	order	to	subnet	the	network:	the
number	of	subnets	required	for	the	network	and	the	maximum	number	of	hosts
per	subnetwork.	In	using	these	figures	to	design	the	subnetted	network,	you	will
be	faced	with	the	key	design	decision	in	subnetting:	how	to	divide	the	8,	16,	or
24	bits	in	the	classful	host	ID	into	the	subnet	ID	and	host	ID.

Put	another	way,	you	need	to	decide	how	many	bits	to	steal	from	the	host	ID	to
use	for	the	subnet	ID.	As	I	explained	in	the	section	on	custom	subnet	masks	in
the	previous	chapter,	the	fundamental	trade-off	in	choosing	this	number	is	as
follows:

Each	bit	taken	from	the	host	ID	for	the	subnet	ID	doubles	the	number	of
subnets	that	are	possible	in	the	network.

Each	bit	taken	from	the	host	ID	for	the	subnet	ID	(approximately)	halves	the
number	of	hosts	that	are	possible	within	each	subnet	on	the	network.

There	are	six	possible	ways	this	decision	can	be	made	for	a	Class	C	network,	as
illustrated	in	Figure	19-1.

Figure	19-1.	Subnetting	design	trade-off	for	Class	C	networks	This	drawing	shows	the	options	for
subnetting	a	Class	C	network.	As	you	increase	the	number	of	bits	for	the	host	ID,	you	increase	the

number	of	subnets,	but	decrease	the	size	of	each.

The	relationship	between	the	bits	and	the	number	of	subnets	and	hosts	is	as
follows:



The	number	of	subnets	allowed	in	the	network	is	two	to	the	power	of	the
number	of	subnet	ID	bits.

The	number	of	hosts	allowed	per	subnet	is	two	to	the	power	of	the	number	of
host	ID	bits,	less	two.

You	subtract	two	from	the	number	of	hosts	in	each	subnet	to	exclude	the	special
meaning	cases	where	the	host	ID	is	all	zeros	or	all	ones.	As	I	explained	in	the
previous	chapter,	this	exclusion	was	originally	also	applied	to	the	subnet	ID,	but
is	no	longer	in	newer	systems.

To	choose	how	many	bits	to	use	for	the	subnet,	you	could	use	trial	and	error.	By
this,	I	mean	you	could	try	to	first	calculate	the	number	of	subnets	and	hosts	when
you	use	one	bit	for	the	subnet	ID	and	leave	the	rest	for	the	host	ID.	You	could
then	try	with	two	bits	for	the	subnet	ID,	and	then	try	with	three,	and	so	on.	This
would	be	silly,	however;	it's	time-consuming	and	makes	it	hard	for	you	to
choose	the	best	option.	There's	an	easier	method:	You	can	use	the	subnetting
summary	tables,	presented	in	the	previous	chapter.	They	let	you	look	at	all	the
options,	and	you	can	usually	see	immediately	the	best	one	for	you.

Class	C	Subnetting	Design	Example
Let's	take	an	example.	Suppose	you	have	a	Class	C	network,	base	address
211.77.20.0,	with	a	total	of	seven	subnets.	The	maximum	number	of	hosts	per
subnet	is	25.	Looking	at	the	subnetting	summary	table	for	Class	C	(Table	18-5	in
Chapter	18),	the	answer	is	instantly	clear:	You	need	three	bits	for	the	subnet	ID.
Why?	This	allows	you	eight	subnets	and	30	hosts	per	subnet.	If	you	try	to	choose
two	bits,	you	can't	define	enough	subnets	(only	four).	As	Figure	19-2	shows,	if
you	choose	four	bits	for	the	subnet	ID,	then	you	can	have	only	14	hosts	per
subnet.



Figure	19-2.	Example	of	Class	C	subnetting	In	this	particular	example,	where	seven	subnets	are	needed
and	25	hosts	are	needed	for	the	largest	subnet,	there	is	only	one	choice	of	subnet	ID	size	that	meets	the

requirements.	It's	an	easy	decision!

Class	B	Subnetting	Design	Example
In	some	cases,	especially	with	larger	networks,	you	may	have	multiple	choices.
Consider,	as	a	more	interesting	example,	the	larger	Class	B	network	166.113.0.0,
where	you	have	a	total	of	15	subnets	and	the	largest	has	450	hosts.	Examining
the	subnet	summary	table	for	Class	B	(Table	18-4	in	Chapter	18)	suggests	four
acceptable	options,	as	shown	in	Figure	19-3.

In	all	four	of	these	options,	the	number	of	subnets	is	equal	to	15	or	greater,	and
the	number	of	hosts	per	subnet	is	over	450.	So	which	option	should	you	choose?
Usually,	you	want	to	pick	something	in	the	middle.	If	you	use	four	bits	for	the
subnet	ID,	this	gives	you	a	maximum	of	only	16	subnets,	which	limits	growth	in
the	number	of	subnets,	since	you	already	have	15.	The	same	applies	to	the
choice	of	seven	bits	for	the	subnet	ID,	since	you	already	have	450	hosts	in	one
subnet	now,	and	that	limits	you	to	510.	Thus,	you	probably	want	either	five	or
six	bits	here.	If	you	expect	more	growth	in	the	number	of	hosts	in	the	largest
subnet,	you	should	choose	five	bits;	if	you	expect	more	growth	in	the	number	of
subnets,	you	should	choose	six	bits.	If	you're	unsure,	it's	probably	best	to	assume
more	growth	in	the	number	of	hosts	per	subnet,	so	here	you	would	choose	five
bits.

The	converse	problem	may	also	occur:	You	may	be	in	a	position	where	there



The	converse	problem	may	also	occur:	You	may	be	in	a	position	where	there
don't	appear	to	be	any	options—no	rows	in	the	summary	table	match.	For
example,	if	the	Class	C	example	had	35	hosts	in	the	largest	subnet	instead	of	25,
you	would	be	out	of	luck,	because	there	is	no	combination	of	subnet	ID	and	host
ID	size	that	works.	The	same	is	true	in	the	Class	B	example	if	you	had	4,500
hosts	in	that	big	subnet	instead	of	450.	In	this	situation,	you	would	need	to	divide
the	large	subnet	into	a	smaller	one,	use	more	than	one	IP	address	block,	or
upgrade	to	a	larger	block.

Figure	19-3.	Example	of	Class	B	subnetting	This	Class	B	network	needs	at	least	15	subnets	and	must
allow	up	to	450	hosts	per	subnet.	Three	subnet	ID	bits	are	too	few,	and	eight	bits	means	only	254	hosts

per	subnet,	which	is	insufficient.	This	leaves	four	acceptable	options,	so	you	must	choose	wisely.

TIP

KEY	CONCEPT	If	there	is	more	than	one	combination	of	subnet	ID	and	host	ID	sizes	that	will	meet
requirements,	try	to	choose	a	middle-of-the-road	option	that	best	anticipates	future	growth	requirements.
If	no	combination	meets	the	requirements,	the	requirements	have	to	change!



IP	Subnetting	Step	3:	Determining	the	Custom
Subnet	Mask
Once	you	have	decided	how	many	bits	to	use	for	the	subnet	ID	and	how	many	to
leave	for	the	host	ID,	you	can	determine	the	custom	subnet	mask	for	the
network.	Now,	don't	go	running	for	cover	on	me.	A	lot	of	people's	eyes	glaze
over	at	mention	of	the	subnet	mask,	but	it's	really	quite	simple	to	figure	out	once
you	have	done	the	homework	in	making	the	design	decision	you	did	in	step	2.	In
fact,	there	are	two	ways	of	doing	this;	one	is	less	work	than	the	other,	but	they're
both	quite	easy.	I	was	going	to	call	them	the	hard	way	and	the	easy	way,	but
instead,	I'll	call	them	easy	and	easier.

Calculating	the	Custom	Subnet	Mask
Let's	start	with	the	easy	method,	in	which	you	calculate	the	subnet	mask	in
binary	form	from	the	information	you	already	have	about	the	network,	and	then
convert	the	mask	to	decimal.	To	refresh	your	memory	and	guide	the	process,
remember	this:	The	subnet	mask	is	a	32-bit	binary	number	where	a	one
represents	each	bit	that	is	part	of	the	network	ID	or	subnet	ID,	and	a	zero
represents	each	bit	of	the	host	ID.

Class	C	Custom	Subnet	Mask	Calculation	Example
Refer	back	to	the	Class	C	example	in	the	previous	section	(Figure	19-2).	Say	you
decided	to	use	three	bits	for	the	subnet	ID,	leaving	five	bits	for	the	host	ID.	Here
are	the	steps	you	will	follow	to	determine	the	custom	subnet	mask	for	this
network	(illustrated	in	Figure	19-4):

1.	 Determine	Default	Subnet	Mask	Each	of	Classes	A,	B,	and	C	has	a
default	subnet	mask,	which	is	the	subnet	mask	for	the	network	prior	to
subnetting.	It	has	a	one	for	each	network	ID	bit	and	a	zero	for	each	host	ID
bit.	For	Class	C,	the	subnet	mask	is	255.255.255.0.	In	binary,	this	is:

11111111	11111111	11111111	00000000

2.	 Change	Leftmost	Zeros	to	Ones	for	Subnet	Bits	You	have	decided	to
use	three	bits	for	the	subnet	ID.	The	subnet	mask	must	have	a	one	for	each



of	the	network	ID	or	subnet	ID	bits.	The	network	ID	bits	are	already	one
from	the	default	subnet	mask,	so,	you	change	the	three	leftmost	zero	bits	in
the	default	subnet	mask	from	a	0	to	1,	as	shown	in	bold	here.	This	results	in
the	following	custom	subnet	mask	for	the	network:

11111111	11111111	11111111	11100000

3.	 Convert	Subnet	Mask	to	Dotted	Decimal	Notation	You	take	each	of	the
octets	in	the	subnet	mask	and	convert	it	to	decimal.	The	result	is	the
custom	subnet	mask	in	the	form	you	usually	see	it:	255.255.255.224.

4.	 Express	Subnet	Mask	in	Slash	Notation	Alternatively,	you	can	express
the	subnet	mask	in	slash	notation.	This	is	just	a	slash	followed	by	the
number	of	ones	in	the	subnet	mask.	255.255.255.224	is	equivalent	to	/27.

Class	B	Custom	Subnet	Mask	Calculation	Example
Now	let's	do	the	same	example	with	the	Class	B	network	(166.113.0.0)	with	five
bits	for	the	subnet	ID	(with	a	bit	less	narration	this	time;	see	Figure	19-5):

1.	 Determine	Default	Subnet	Mask	For	Class	B,	the	subnet	mask	is
255.255.0.0.	In	binary,	this	is:

11111111	11111111	00000000	00000000

2.	 Change	Leftmost	Zeros	to	Ones	for	Subnet	Bits	If	you	use	five	bits	for
the	subnet	ID,	you	change	the	five	leftmost	zero	bits	from	a	0	to	1,	as
shown	in	bold,	to	give	you	the	binary	custom	subnet	mask,	as	follows:

11111111	11111111	11111000	00000000



Figure	19-4.	Determining	the	custom	subnet	mask	for	a	Class	C	network

3.	 Convert	Subnet	Mask	to	Dotted	Decimal	Notation	You	take	each	of	the
octets	in	the	subnet	mask	and	convert	it	to	decimal	to	give	you	a	custom
subnet	mask	of	255.255.248.0.

4.	 Express	Subnet	Mask	in	Slash	Notation	You	can	express	the	subnet
mask	255.255.248.0	as	/21,	since	it	is	21	ones	followed	by	11	zeros.	In
other	words,	its	prefix	length	is	21.

Figure	19-5.	Determining	the	custom	subnet	mask	for	a	Class	B	network

Determining	the	Custom	Subnet	Mask	Using



Subnetting	Tables
Now,	what	could	be	easier	than	that?	Well,	you	could	simply	refer	to	the
subnetting	summary	tables,	presented	in	Chapter	18.	Find	the	table	for	the
appropriate	class,	and	then	find	the	row	that	you	selected	in	the	previous	step
that	matches	the	number	of	subnet	ID	bits	you	want	to	use.	You	can	see	the
matching	subnet	mask	right	there.

(Hey,	it's	good	to	know	how	to	do	it	yourself!	You	may	not	always	have	tables
to	refer	to!)



IP	Subnetting	Step	4:	Determining	Subnet
Identifiers	and	Subnet	Addresses
The	network	ID	assigned	to	the	network	applies	to	the	entire	network.	This
includes	all	subnets	and	all	hosts	in	all	subnets.	Each	subnet,	however,	needs	to
be	identified	with	a	unique	subnet	identifier,	or	subnet	ID,	so	it	can	be
differentiated	from	the	other	subnets	in	the	network.	This	is	the	purpose	of	the
subnet	ID	bits	that	you	took	from	the	host	ID	bits	in	subnetting.	After	you	have
identified	each	subnet,	you	need	to	determine	the	address	of	each	subnet,	so	you
can	use	this	in	assigning	hosts	specific	IP	addresses.

This	is	another	step	in	subnetting	that	is	not	really	hard	to	understand	or	do.	The
key	to	understanding	how	to	determine	subnet	IDs	and	subnet	addresses	is	to
always	work	in	binary	form,	and	then	convert	to	decimal	later.	You	will	also
look	at	a	shortcut	for	determining	addresses	in	decimal	directly,	which	is	faster
but	less	conceptually	simple.

NOTE

I	assume	in	this	description	that	you	will	be	using	the	all-zeros	and	all-ones	subnet	numbers.	In	the
original	RFC	950	subnetting	system,	those	two	subnets	are	not	used,	which	changes	most	of	the
following	calculations.	See	Chapter	18	for	an	explanation.

You	number	the	subnets	starting	with	0,	and	then	1,	2,	3,	and	so	on,	up	to	the
highest	subnet	ID	that	you	need.	You	determine	the	subnet	IDs	and	addresses	as
follows:

Subnet	ID	This	is	just	the	subnet	number,	and	it	can	be	expressed	in	either
binary	or	decimal	form.

Subnet	Address	This	is	the	address	formed	by	taking	the	address	of	the	network
as	a	whole	and	substituting	the	(binary)	subnet	ID	for	the	subnet	ID	bits.	You
need	to	do	this	in	binary,	but	only	for	the	octets	where	there	are	subnet	ID	bits;
the	ones	where	there	are	only	network	ID	bits	or	only	host	ID	bits	are	left	alone.

Seem	complicated?	Let's	go	back	to	the	examples,	and	you'll	see	that	it	really
isn't.



Class	C	Subnet	ID	and	Address	Determination
Example
You'll	recall	the	Class	C	example	network,	211.77.20.0.	The	network	address	in
binary	is	as	follows:

11010011	01001101	00010100	00000000

You	are	subnetting	using	three	bits	for	the	subnet	ID,	leaving	five	bits	for	the
host	ID.	Now	let's	see	the	network	address	with	the	subnet	bits	in	bold:

11010011	01001101	00010100	00000000

These	are	the	bits	that	you	substitute	with	the	subnet	ID	for	each	subnet.	Notice
that	since	the	first	three	octets	contain	network	ID	bits,	and	the	network	ID	is	the
same	for	every	subnet,	they	never	change.	You	don't	even	really	need	to	look	at
them	in	binary	form,	though	for	clarity,	you	will	do	so	here.

Here's	how	you	determine	the	subnet	IDs	and	addresses,	again,	starting	with	0
(see	Figure	19-6):

Subnet	0	This	has	a	subnet	ID	of	0,	or	000	in	binary.	To	find	the	address,	you
start	with	the	network	address	in	binary	and	substitute	000	for	the	subnet	ID	bits.
Well	gee,	those	bits	are	already	all	zero!	What	this	means	is	that	the	address	for
subnet	0	is	the	same	as	the	address	for	the	network	as	a	whole:	211.77.20.0.	This
is	always	the	case:	subnet	0	always	has	the	same	address	as	the	network.

Subnet	1	This	has	a	subnet	ID	of	1	in	decimal	or	001	in	binary.	To	find	the
address,	you	substitute	001	for	the	subnet	ID	bits,	which	yields	the	following:

11010011	01001101	00010100	00100000

Converting	to	decimal,	you	get	211.77.20.32.

Subnet	2	This	has	a	subnet	ID	of	2,	or	010	in	binary.	To	find	its	address,	you
substitute	010	for	the	subnet	ID	bits,	to	give	you	the	following:

11010011	01001101	00010100	01000000

Which	is	211.77.20.64	in	binary.

Subnet	3	This	has	a	subnet	ID	of	011.	As	you	can	see,	the	first	three	octets	of
the	address	are	always	211.77.20.	The	last	octet	here	is	01100000,	which	is	96	in



decimal,	so	the	whole	address	is	211.77.20.96.

Starting	to	see	a	pattern	here?	Yes,	the	address	of	any	subnet	can	be	found	by
adding	32	to	the	last	octet	of	the	previous	subnet.	This	pattern	occurs	for	all
subnetting	choices;	the	increment	depends	on	how	many	bits	you	are	using	for
the	subnet	ID.	Here,	the	increment	is	32,	which	is	25;	5	is	the	number	of	host	ID
bits	left	after	you	took	three	subnet	ID	bits.

Subnet	4	This	has	a	subnet	ID	of	100.	Its	address	is	211.77.20.128.

Subnet	5	This	has	a	subnet	ID	of	101.	Its	address	is	211.77.20.160.

Subnet	6	This	has	a	subnet	ID	of	110.	Its	address	is	211.77.20.192.

Subnet	7	This	has	a	subnet	ID	of	111.	Its	address	is	211.77.20.224.

Figure	19-6.	Determining	subnet	addresses	for	a	Class	C	network	This	diagram	shows	each	of	the	eight
possible	subnets	created	when	you	use	three	bits	for	the	subnet	ID	in	a	Class	C	network.	The	binary

subnet	ID	is	simply	substituted	for	the	subnet	bits,	and	the	resulting	32-bit	number	is	converted	to	dotted
decimal	form.

TIP



KEY	CONCEPT	The	subnet	addresses	in	a	subnetted	network	are	always	evenly	spaced	numerically,
with	the	spacing	depending	on	the	number	of	subnet	ID	bits.

This	example	needed	only	seven	subnets,	0	through	6.	Subnet	7	would	be	a
spare.	Notice	that	the	last	subnet	has	the	same	last	octet	as	the	subnet	mask	for
the	network?	That's	because	I	substituted	111	for	the	subnet	ID	bits,	just	as	in	the
subnet	mask	calculation.

Class	B	Subnet	ID	and	Address	Determination
Example
Let's	look	at	the	other	example	now,	Class	B	network	166.113.0.0.	In	binary	this
is	as	follows:

0100110	01110001	00000000	00000000

You're	using	five	bits	for	the	subnet	ID,	leaving	11	host	ID	bits.	The	network
address	with	the	subnet	ID	bits	highlighted	is	as	follows:

0100110	01110001	00000000	00000000

Here,	only	the	third	octet	will	ever	change	for	the	different	subnets.	The	first	two
will	always	be	166.113,	and	the	last	octet	will	always	be	0.	There	are	32	possible
subnets;	I'll	list	the	first	few	so	you	can	see	the	pattern	(refer	to	Figure	19-7	as
well):

Subnet	0	This	has	a	subnet	ID	of	00000.	This	means	the	address	will	be
166.113.0.0,	which	is	the	network	address,	as	you	would	expect.

Subnet	1	This	has	a	subnet	ID	of	00001.	The	address	becomes

10100110	01110001	00001000	00000000

This	is	116.113.8.0	in	decimal.

Subnet	2	This	has	a	subnet	ID	of	00010,	giving	an	address	of
116.113.00010000.0	or	116.113.16.0.

Subnet	3	This	has	a	subnet	ID	of	00011	and	a	subnet	address	of	116.113.24.0.



Figure	19-7.	Determining	subnet	addresses	for	a	Class	B	network	This	is	the	same	as	Figure	19-6,	but
for	a	Class	B	network	with	five	subnet	ID	bits	(I	have	not	shown	all	32	subnets,	for	obvious	reasons).

Again,	the	pattern	here	is	obvious:	You	add	eight	to	the	third	octet	to	get
successive	addresses.	The	last	subnet	here	is	31,	which	has	a	subnet	address	of
116.113.248.0,	which	has	the	same	third	and	fourth	octets	as	the	subnet	mask	of
255.255.248.0.

Using	Subnet	Address	Formulas	to	Calculate
Subnet	Addresses
Since	the	subnet	addresses	form	a	pattern,	and	the	pattern	depends	on	the
number	of	subnet	ID	bits,	it	is	possible	to	express	the	subnet	addresses	using	a
single	formula	for	each	subnetting	option.	I	have	shown	these	formulas	for	each
of	the	Classes	A,	B,	and	C	in	the	subnetting	summary	tables	in	Chapter	18.	The
formulas	can	be	used	to	directly	calculate	the	address	of	subnet	N,	where	N	is
numbered	from	0	up	to	one	less	than	the	total	number	of	subnets,	as	I	have	done
earlier.

In	these	formulas,	the	network	ID	bits	are	shown	as	x.,	x.y.,	or	x.y.z.	for	the	three
classes.	This	just	means	that	the	subnet	addresses	have	as	those	octets	whatever



classes.	This	just	means	that	the	subnet	addresses	have	as	those	octets	whatever
the	numbers	are	in	those	octets	for	the	network	address.	In	the	examples,	x.y
would	be	166.113	for	the	Class	B	network,	and	x.y.z	would	be	211.77.20	for	the
Class	C	network.

When	the	number	of	subnet	bits	is	eight	or	less,	the	formula	is	relatively	simple,
and	a	calculation	is	done	for	only	one	octet,	as	a	multiplication	of	N,	such	as
N*4	or	N*32.	This	is	usually	the	case,	since	the	number	of	subnets	is	usually	less
than	256,	and	it's	the	case	with	both	of	the	examples.

In	the	Class	C	network	with	three	subnet	ID	bits,	the	formula	from	the	table	is
x.y.z.N*32.	For	this	network,	all	subnets	are	of	the	form	211.77.20.N*32,	with	N
going	from	zero	to	seven.	So,	subnet	5	is	211.77.20.(5*32),	which	is
211.77.20.160,	as	you	saw	before.	Similarly,	in	the	Class	B	network	with	five
subnet	ID	bits,	the	formula	is	x.y.N*8.0.	In	this	case,	x.y	is	166.113.	Subnet	26
would	have	the	address	166.113.(26*8).0,	or	166.113.208.0.

This	is	pretty	simple	stuff,	and	it	makes	the	formulas	a	good	shortcut	for	quickly
determining	subnet	addresses,	especially	when	there	are	many	subnets.	They	can
also	be	used	in	a	spreadsheet.

The	only	place	where	using	the	formulas	requires	a	bit	of	care	is	when	the
number	of	subnet	bits	is	nine	or	more.	This	means	that	the	subnet	identifier
crosses	an	octet	boundary,	and	this	causes	the	formula	to	become	more	complex.

When	the	number	of	subnet	bits	is	greater	than	eight,	some	of	the	octets	are	of
the	form	N	divided	by	an	integer,	such	as	N/8.	This	is	an	integer	division,	which
means	divide	N	by	8,	keep	the	integer	part,	and	drop	the	fractional	part	or
remainder.	Other	octets	are	calculated	based	on	the	modulo	of	N,	shown	as
N%8.	This	is	the	exact	opposite:	It	means	divide	N	by	8,	drop	the	integer,	and
keep	the	remainder.	For	example,	33/5	in	integer	math	is	6	(6	with	a	remainder
of	3,	drop	the	remainder,	or	alternately,	6.6,	drop	the	fraction),	and	33%5	is	3	(6
with	a	remainder	of	3,	drop	the	6,	keep	the	remainder).

Let's	take	as	an	example	the	Class	B	network	and	suppose	that	for	some	strange
reason	you	decided	to	use	ten	bits	for	the	subnet	ID	instead	of	five.	In	this	case,
the	formula	is	x.y.N/4.(N%4)*64.	Subnet	23	in	this	case	would	have	the	address
166.113.23/4.(23%4)*64.	The	23/4	becomes	just	5	(the	fractional	.75	is
dropped).	23	modulo	4	is	3,	which	is	multiplied	by	64	to	get	192.	So	the	subnet



address	is	166.113.5.192.	Subnet	709	would	be	116.113.709/4.(709%4)*64,
which	is	116.113.177.64.

Okay,	now	for	the	real	fun!	If	you	subnet	a	Class	A	address	using	more	than	16
bits	for	the	subnet	ID,	you	are	crossing	two	octet	boundaries,	and	the	formulas
become	very	…	interesting,	involving	both	integer	division	and	modulo.
Suppose	you	were	in	charge	of	Class	A	address	21.0.0.0	and	decide	to	subnet	it.
However,	you	sat	down	to	do	this	after	having	had	a	few	stiff	ones	at	the	office
holiday	party,	so	your	judgment	is	a	bit	impaired.	You	decide	that	it	would	be	a
great	idea	to	choose	21	bits	for	the	subnet	ID,	since	you	like	the	number	21.	This
gives	you	a	couple	million	subnets.

The	formula	for	subnet	addresses	in	this	case	is	rather	long	and	complicated:
x.N/8192.(N/32)%256.(N%32)*8.	Yikes.	Well,	this	is	a	bit	involved—so	much
so	that	it	might	be	easier	to	just	take	a	subnet	number	and	do	it	in	binary,	the
long	way.	But	let's	take	an	example	and	see	how	it	works	for,	say,	subnet
987654.	The	first	octet	is	21.	The	second	octet	is	987654/8192,	integer	division.
This	is	120.	The	third	octet	is	(987654/32)%256.	The	result	of	the	division	is
30864	(you	drop	the	fraction).	Then	you	take	30864%256,	which	yields	a
remainder	of	144.	The	fourth	octet	is	(987654%32)*8.	This	is	6*8	or	48.	So
subnet	address	987654	is	21.120.144.48.

(Don't	drink	and	drive.	Don't	drink	and	subnet	either.)



IP	Subnetting	Step	5:	Determining	Host
Addresses	for	Each	Subnet
Once	you	know	the	addresses	of	each	of	the	subnets	in	the	network,	you	use
these	addresses	as	the	basis	for	assigning	IP	addresses	to	the	individual	hosts	in
each	subnet.	You	start	by	associating	a	subnet	base	address	with	each	physical
network	(since	at	least	in	theory,	the	subnets	correspond	to	the	physical
networks).	You	then	sequentially	assign	hosts	particular	IP	addresses	within	the
subnet	(or	in	a	different	manner,	if	you	prefer!).

Determining	host	addresses	is	really	quite	simple	once	you	know	the	subnet
address.	All	you	do	is	substitute	the	numbers	1,	2,	3,	and	so	on	for	the	host	ID
bits	in	the	subnet	address.	You	must	do	this	in	binary	and	then	convert	the
address	to	decimal	form.	Again,	you	can	take	some	shortcuts	once	the	rather
obvious	pattern	of	how	to	assign	addresses	emerges.	You'll	look	at	those	near	the
end	of	the	chapter.

Class	C	Host	Address	Determination	Example
Let's	start	with	the	Class	C	example	again,	211.77.20.0,	which	you	divided	into
eight	subnets	using	three	subnet	bits.	Here's	how	the	address	appears	with	the
subnet	bits	shown	in	bold,	and	the	host	ID	bits	shown	in	italics:

11010011	01001101	00010100	00000000

The	first	subnet	is	subnet	0,	which	has	all	zeros	for	those	subnet	bits,	and	thus
the	same	address	as	the	network	as	a	whole:	211.77.20.0.	You	substitute	the
numbers	1,	2,	3,	and	so	on	for	the	italicized	bits	to	get	the	host	IDs.	(Remember
that	you	don't	start	with	zero	here	because	for	the	host	ID,	the	all-zeros	and	all-
ones	binary	patterns	have	special	meaning).	So	it	goes	like	this:

The	first	host	address	has	the	number	1	for	the	host	ID,	or	00001	in	binary.	So	it
is	as	follows:

11010011	01001101	00010100	00000001

In	decimal,	this	is	211.77.20.1.

The	second	host	address	has	the	number	2	for	the	host	ID,	or	00010	in	binary.	Its
binary	value	is	as	follows:



binary	value	is	as	follows:

11010011	01001101	00010100	00000010

In	decimal,	this	is	211.77.20.2.

I'm	sure	you	get	the	picture	already;	the	third	host	will	be	211.77.20.3,	the	fourth
211.77.20.4,	and	so	on.	There	is	a	maximum	of	30	hosts	in	each	subnet,	as	you
saw	earlier.	So	the	last	host	in	this	subnet	will	be	found	by	substituting	30
(11110	in	binary)	for	the	host	ID	bits,	resulting	in	a	decimal	address	of
211.77.20.30.

You	can	do	the	same	thing	for	each	of	the	other	subnets;	the	only	thing	that
changes	is	the	values	in	the	subnet	ID	bits.	Let's	take	subnet	6,	for	example.	It
has	110	for	the	subnet	bits	instead	of	000.	So	its	subnet	base	address	is
211.77.20.192,	or

11010011	01001101	00010100	11000000

You	assign	hosts	to	this	subnet	by	substituting	00001,	then	00010,	then	00011
for	the	host	ID	bits	as	shown	earlier.	Let's	take	the	hosts	one	at	a	time:

The	first	host	address	is	as	follows:

11010011	01001101	00010100	11000001

or	211.77.20.193.

The	second	host	address	is

11010011	01001101	00010100	11000010

or	211.77.20.194.

And	so	on,	all	the	way	up	to	the	last	host	in	the	subnet,	which	is	211.77.20.222.
Figure	19-8	shows	graphically	how	subnet	and	host	addresses	are	calculated	for
this	sample	network.

One	more	address	you	may	wish	to	calculate	is	the	broadcast	address	for	the
subnet.	This	is	one	of	the	special	cases,	as	discussed	in	Chapter	18,	found	by
substituting	all	ones	for	the	host	ID.	For	subnet	0,	this	would	be	211.77.20.31.
For	subnet	6,	it	would	be	211.77.20.223.	That's	pretty	much	all	there	is	to	it.



Figure	19-8.	Determining	host	addresses	for	a	Class	C	network	This	diagram	shows	how	both	subnet
addresses	and	host	addresses	are	determined	in	a	two-step	process.	The	subnet	addresses	are	found	by
substituting	subnet	ID	values	(shown	in	bold)	for	the	subnet	ID	bits	of	the	network.	Then,	for	any	given
subnet	address,	you	can	determine	a	host	address	by	substituting	a	host	number	(shown	in	bold	and
italicized)	for	the	host	ID	bits	within	that	subnet.	So,	for	example,	host	2	in	subnet	6	has	110	for	the

subnet	ID	and	00010	for	the	host	ID,	resulting	in	a	final	octet	value	of	11000010,	or	194.

Class	B	Host	Address	Determination	Example
You	can	do	the	same	thing	for	the	Class	B	network,	naturally.	The	address	of
that	network	is	166.113.0.0.	Now	say	you	want	to	define	the	hosts	that	go	in
subnet	13.	You	substitute	13	in	binary	(01101)	for	the	subnet	ID	bits	to	get	the
following	subnet	address,	which	is	shown	with	the	subnet	ID	bits	in	bold	and	the
host	ID	bits	in	italics:



10100110	01110001	01101000	00000000

This	is	the	subnet	address	166.113.104.0.	Now	you	have	11	bits	of	host	ID,	so
you	can	have	a	maximum	of	2,046	hosts.	The	first	is	found	by	substituting	000
00000001	for	the	host	ID	bits,	which	gives	an	address	of	166.113.104.1.	The
second	host	is	166.113.104.2,	and	so	on.	The	last	is	found	by	substituting	111
11111110,	which	gives	an	address	of	166.113.111.254.	Note	that	since	the	host
ID	bits	extend	over	two	octets,	two	octets	change	as	you	increment	the	host	ID,
unlike	the	Class	C	example.	The	broadcast	address	is	166.113.111.255.

TIP

KEY	CONCEPT	In	a	subnetted	network,	the	address	of	Host	H	within	subnet	number	S	is	found	by
plugging	in	the	binary	value	of	S	for	the	network's	subnet	ID	bits,	and	the	binary	value	of	H	for	the
subnet's	host	ID	bits.

Shortcuts	for	Computing	Host	Addresses
As	you	can	see,	defining	the	host	IDs	is	really	quite	straightforward.	If	you	can
substitute	bits	and	convert	to	decimal,	you	have	all	you	need	to	know.	You	can
also	see	that,	as	was	the	case	with	defining	the	subnet	addresses,	there	are
patterns	that	you	can	use	in	defining	host	IDs	and	understanding	how	they	work.
These	generally	define	ways	for	which	you	can	more	quickly	determine	certain
host	addresses	by	working	directly	in	decimal	instead	of	bothering	with	binary
substitutions.	This	is	a	bit	more	complex	conceptually,	so	proceed	only	if	you	are
feeling	a	bit	brave.

The	following	are	some	of	the	shortcuts	you	can	use	in	determining	host	IP
addresses	in	a	subnet	environment:

First	Host	Address	The	first	host	address	is	always	the	subnet	address	with	the
last	octet	incremented	by	1.	So	in	the	Class	C	example,	subnet	3's	base	address	is
211.77.20.96.	The	first	host	address	in	subnet	3	is	thus	211.77.20.97.

Subsequent	Host	Addresses	After	you	find	the	first	host	address,	to	get	the	next
one,	you	just	add	one	to	the	last	octet	of	the	previous	address.	If	this	makes	the
last	octet	256	(which	can	happen	only	if	there	are	more	than	eight	host	ID	bits),
you	"wrap	around"	this	to	zero	and	increment	the	third	octet.



Directly	Calculating	Host	Addresses	If	the	number	of	host	ID	bits	is	eight	or
less,	you	can	find	host	N's	address	by	adding	N	to	the	last	octet's	decimal	value.
For	example,	in	the	Class	C	example,	subnet	3's	base	address	is	211.77.20.96.
Therefore,	host	23	in	this	subnet	has	an	address	of	211.77.20.119.	If	there	are
more	than	eight	bits	in	the	host	ID,	this	works	for	only	the	first	255	hosts,	after
which	you	need	to	wrap	around	and	increase	the	value	of	the	third	octet.
Consider	again	subnet	13	in	the	Class	B	example,	which	has	a	base	address	of
166.113.104.0.	Host	214	on	this	subnet	has	address	166.113.104.0,	but	host	314
isn't	166.113.104.314.	It	is	166.113.105.58	(host	255	is	166.113.104.255,	then
host	256	is	166.113.105.0,	and	you	count	up	58	more	(314–256)	to	get	to	314,
166.113.105.58).

Range	of	Host	Addresses	For	a	range	of	hosts	for	any	subnet,	the	first	address
is	the	base	address	of	subnet	with	last	octet	incremented	by	one.	The	last	address
is	the	base	address	of	next	subnet	after	this	one,	less	two	in	the	last	octet	(which
may	require	changing	a	0	in	the	last	octet	to	254	and	reducing	the	value	of	the
third	octet	by	1).	For	example,	consider	subnet	17	in	the	Class	B	example.	Its
subnet	address	is	166.113.136.0.	The	address	of	subnet	18	is	166.113.144.0.	So
the	range	of	hosts	for	subnet	17	is	166.113.136.1	to	166.113.143.254.

Broadcast	Address	The	broadcast	address	for	a	subnet	is	always	one	less	than
the	base	address	of	the	subsequent	subnet.	Or	alternatively,	one	more	than	the
last	real	host	address	of	the	subnet.	So	for	subnet	17	in	the	Class	B	example,	the
broadcast	address	is	166.113.143.255.

Did	I	just	confuse	you?	Well,	remember	that	these	are	shortcuts,	and	sometimes
when	you	take	a	shortcut,	you	get	lost.	Just	kidding;	it's	really	not	that	hard	once
you	play	around	with	it	a	bit.

In	closing,	remember	the	following	quick	summary	when	working	with	IP
addresses	in	a	subnet	environment:

The	network	ID	is	the	same	for	all	hosts	in	all	subnets	and	for	all	subnets	in
the	network.

The	subnet	ID	is	the	same	for	all	hosts	in	each	subnet,	but	it's	unique	to	each
subnet	in	the	network.

The	host	ID	is	unique	within	each	subnet.	Each	subnet	has	the	same	set	of



host	IDs.

Subnetting	is	fun!	(Okay,	okay,	sorry….)



Chapter	20.	IP	CLASSLESS
ADDRESSING—CLASSLESS
INTER-DOMAIN	ROUTING
(CIDR)/SUPERNETTING

As	the	Internet	began	to	grow	dramatically,	three	main	problems	arose	with	the
original	classful	addressing	scheme	described	in	the	previous	chapters.	These
difficulties	were	addressed	partially	through	subnet	addressing,	which	provides
more	flexibility	for	the	administrators	of	individual	networks	on	an	Internet.
Subnetting,	however,	doesn't	really	tackle	the	problems	in	general	terms.	Some
of	these	issues	remain	due	to	the	use	of	classes	even	with	subnets.

While	development	began	on	version	6	of	the	Internet	Protocol	(IPv6;	see
Part	II-4)	and	its	roomy	128-bit	addressing	system	in	the	mid-1990s,	developers
recognized	that	it	would	take	many	years	before	widespread	deployment	of	IPv6
would	be	possible.	In	order	to	extend	the	life	of	IPv4	until	the	newer	version
could	be	completed,	it	was	necessary	to	take	a	new	approach	to	addressing	IPv4
devices.	This	new	system	calls	for	eliminating	the	notion	of	address	classes
entirely,	creating	a	new	classless	addressing	scheme	sometimes	called	Classless
Inter-Domain	Routing	(CIDR).

In	this	chapter,	I	describe	modern	classless	IP	addressing.	I	begin	with	an
overview	of	the	concepts	behind	classless	addressing	and	the	idea	behind
supernetting,	including	why	it	was	created	and	what	its	advantages	and
disadvantages	are.	I	then	define	CIDR	and	describe	how	the	system	works	in
more	detail,	including	the	notation	used	for	address	blocks.	I	list	each	of	the
CIDR	address	block	sizes	and	show	how	they	relate	to	the	older	Class	A,	B,	and



C	networks.	I	conclude	with	a	CIDR	addressing	example	that's	similar	to	the
examples	in	Chapter	19,	but	this	one	focuses	on	CIDR	and	is	a	bit	more
condensed.

IP	Classless	Addressing	and	Supernetting
Overview
Subnet	addressing	was	an	important	development	in	the	evolution	of	IP
addressing,	because	it	solved	some	important	issues	with	the	conventional,	two-
level	class-based	addressing	scheme.	Subnetting's	contribution	to	flexibility	in	IP
addressing	was	to	allow	each	network	to	have	its	own	two-level	hierarchy,
thereby	giving	the	administrator	of	each	network	the	equivalent	of	an	Internet
within	the	Internet.

When	you	looked	at	the	advantages	of	subnetting	in	Chapter	18,	you	saw	that
subnetting	was	local	within	each	organization	and	invisible	to	other
organizations.	This	is	an	advantage	in	that	it	lets	each	organization	tailor	its
network	without	other	groups	having	to	worry	about	the	details	of	how	this	is
done.	Unfortunately,	this	invisibility	also	represents	a	key	disadvantage	of
subnetted	classful	addressing:	It	cannot	correct	the	fundamental	inefficiencies
associated	with	that	type	of	addressing,	because	organizations	are	still	assigned
address	blocks	based	on	classes.

The	Main	Problem	with	Classful	Addressing
A	key	weakness	of	the	subnetting	system	is	its	low	granularity.	A	Class	B
address	block	contains	a	very	large	number	of	addresses	(65,534),	but	a	Class	C
block	has	only	a	relatively	small	number	(254).	There	are	many	thousands	of
medium-sized	organizations	that	need	more	than	254	IP	addresses,	but	a	small
percentage	of	these	needs	65,534	or	anything	even	close	to	it.	(The	lack	of	a
good	match	to	a	medium-sized	organization	with	5,000	hosts	is	illustrated	in
Figure	17-5	in	Chapter	17.)	When	setting	up	their	networks,	these	companies
and	groups	would	tend	to	request	Class	B	address	blocks	and	not	Class	C	blocks,
because	they	needed	more	than	254	hosts,	without	considering	how	many	of	the
65,000-odd	addresses	they	really	would	use.

Due	to	how	the	classes	of	the	older	system	were	designed,	there	are	over	two
million	Class	C	address	blocks,	but	only	16,384	Class	B	networks.	While	16,384



million	Class	C	address	blocks,	but	only	16,384	Class	B	networks.	While	16,384
seems	like	a	lot	at	first	glance,	there	are	millions	of	organizations	and
corporations	around	the	world.	Class	B	allocations	were	being	consumed	at	a
rapid	pace,	while	the	smaller	Class	C	networks	were	relatively	unused.

The	folks	handing	out	Internet	addresses	needed	a	way	to	better	utilize	the
address	space	so	that	it	would	not	run	out	before	the	transition	to	IPv6.
Subnetting	didn't	help	a	great	deal	with	this	problem.	Why?	Because	it	only
works	within	the	classful	address	blocks.	If	an	organization	needing	2,000	IP
addresses	requested	a	Class	B	block,	they	could	use	subnetting	to	more
efficiently	manage	their	block.	However,	subnetting	could	do	nothing	about	the
fact	that	this	organization	would	never	use	over	62,000	of	the	addresses	in	its
block—about	97	percent	of	their	allocated	address	space.

The	only	solution	to	this	would	be	to	convince—or	at	worst	case,	force—
companies	to	use	many	smaller	Class	C	blocks	instead	of	wasting	the	bulk	of	a
Class	B	assignment.	Many	organizations	resisted	this	due	to	the	complexity
involved,	and	this	caused	the	other	main	problem	that	subnetting	didn't	correct:
the	growth	of	Internet	routing	tables.	Replacing	one	Class	B	network	with	10
Class	C	networks	means	ten	times	as	many	entries	for	routers	to	maintain.

The	Solution:	Eliminate	Address	Classes
It	was	clear	that	as	long	as	there	were	only	three	sizes	of	networks,	the	allocation
efficiency	problem	could	never	be	properly	rectified.	The	solution	was	to	get	rid
of	the	classes	completely,	in	favor	of	a	classless	allocation	scheme.	This	system
would	solve	both	of	the	main	problems	with	classful	addressing:	inefficient
address	space	use	and	the	exponential	growth	of	routing	tables.

This	system	was	developed	in	the	early	1990s	and	formalized	in	1993	in	RFCs
1517,	1518,	1519,	and	1520.	The	technology	was	called	Classless	Inter-Domain
Routing	(CIDR).	Despite	this	name,	the	scheme	deals	with	both	addressing	and
routing	matters,	since	they	are	inextricably	linked.

The	idea	behind	CIDR	is	to	adapt	the	concept	of	subnetting	a	single	network	to
the	entire	Internet.	In	essence,	classless	addressing	means	that	instead	of
breaking	a	particular	network	into	subnets,	you	can	aggregate	networks	into
larger	"supernets."	CIDR	is	sometimes	called	supernetting	for	this	reason:	It



applies	the	principles	of	subnetting	to	larger	networks.	It	is	this	aggregation	of
networks	into	supernets	that	allowed	CIDR	to	resolve	the	problem	of	growing
Internet	routing	tables.

Of	course,	if	you	are	going	to	apply	subnetting	concepts	to	the	entire	Internet,
you	need	to	be	able	to	have	subnets	of	different	sizes.	After	all,	that's	one	of	the
primary	goals	in	eliminating	the	classes.	So,	more	accurately,	CIDR	is	an
Internet-wide	application	of	not	just	regular	one-level	subnetting,	but	of	Variable
Length	Subnet	Masking	(VLSM),	introduced	in	Chapter	18.	Just	as	VLSM
allows	you	split	a	network	as	many	times	as	you	want	to	create	subnets,	sub-
subnets,	and	sub-sub-subnets,	CIDR	lets	you	do	this	with	the	entire	Internet,	as
many	times	as	needed.

TIP

KEY	CONCEPT	Classless	Inter-Domain	Routing	(CIDR)	is	a	system	of	IP	addressing	and	routing	that
solves	the	many	problems	of	classful	addressing	by	eliminating	fixed	address	classes	in	favor	of	a
flexible,	multiple-level,	hierarchical	structure	of	networks	of	varying	sizes.

The	Many	Benefits	of	Classless	Addressing	and
Routing
CIDR	provides	numerous	advantages	over	the	classful	addressing	scheme,
whether	or	not	subnetting	is	used:

Efficient	Address	Space	Allocation	Instead	of	allocating	addresses	in	fixed-size
blocks	of	low	granularity,	under	CIDR,	addresses	are	allocated	in	sizes	of	any
binary	multiple.	So	a	company	that	needs	5,000	addresses	can	be	assigned	a
block	of	8,190	instead	of	65,534,	as	shown	in	Figure	20-1.	Or	to	think	of	it
another	way,	the	equivalent	of	a	single	Class	B	network	can	be	shared	among
eight	companies	that	each	need	8,190	or	fewer	IP	addresses.

Elimination	of	Class	Imbalances	There	are	no	more	Class	A,	B,	and	C
networks,	so	there	is	no	problem	with	some	portions	of	the	address	space	being
widely	used	while	others	are	neglected.

Efficient	Routing	Entries	CIDR's	multiple-level	hierarchical	structure	allows	a
small	number	of	routing	entries	to	represent	a	large	number	of	networks.



Network	descriptions	can	be	aggregated	and	represented	by	a	single	entry.	Since
CIDR	is	hierarchical,	the	detail	of	lower-level,	smaller	networks	can	be	hidden
from	routers	that	move	traffic	between	large	groups	of	networks.	This	is
discussed	more	completely	in	Chapter	23,	which	covers	IP	routing	issues.

No	Separate	Subnetting	Method	CIDR	implements	the	concepts	of	subnetting
within	the	Internet	itself.	An	organization	can	use	the	same	method	used	on	the
Internet	to	subdivide	its	internal	network	into	subnets	of	arbitrary	complexity,
without	needing	a	separate	subnetting	mechanism.

Figure	20-1.	Classless	addressing	(CIDR)	solves	the	granularity	problem	Figure	17-5	in	Chapter	17
illustrates	the	primary	problem	with	classful	addressing:	the	great	distance	between	the	size	of	Class	B
and	Class	C	networks.	CIDR	solves	this	issue	by	allowing	any	number	of	bits	to	be	used	for	the	network
ID.	In	the	case	of	an	organization	with	5,000	hosts,	a	/19	network	with	8,190	hosts	can	be	assigned.	This

reduces	the	address	space	waste	for	such	an	organization	by	about	95.

Since	the	main	benefit	of	classful	addressing	was	its	simplicity,	it's	no	surprise
that	the	main	drawback	of	CIDR	is	its	greater	complexity.	One	issue	is	that	it	is
no	longer	possible	to	determine,	by	looking	at	the	first	octet,	how	many	bits	of
an	IP	address	represent	the	network	ID	and	how	many	represent	the	host	ID.	A
bit	more	care	needs	to	be	used	in	setting	up	routers	as	well,	to	make	sure	that
routing	is	accomplished	correctly.



IP	Supernetting:	CIDR	Hierarchical	Addressing
and	Notation
When	you	first	looked	at	IP	addressing	in	Chapter	17,	you	saw	that	IP	addresses
were	designed	to	be	divided	into	a	network	identifier	(network	ID)	and	host
identifier	(host	ID).	Then,	when	subnets	were	introduced,	you	"stole"	bits	from
the	host	ID	to	create	a	subnet	ID,	giving	the	IP	address	a	total	of	three
hierarchical	levels.	With	VLSM,	you	further	subnetted	the	subnets,	taking	more
bits	from	the	host	ID	to	give	you	a	multiple-level	hierarchy	with	sub-subnets,
sub-sub-subnets,	and	so	forth.

In	a	classless	environment,	you	completely	change	how	you	look	at	IP	addresses
by	applying	VLSM	concepts	not	just	to	one	network,	but	to	the	entire	Internet.	In
essence,	the	Internet	becomes	just	one	giant	network	that	is	subnetted	into	a
number	of	large	blocks.	Some	of	these	large	blocks	are	then	broken	down	into
smaller	blocks,	which	can	in	turn	be	broken	down	further.	This	breaking	down
can	occur	multiple	times,	allowing	you	to	split	the	"pie"	of	Internet	addresses
into	slices	of	many	different	sizes	to	suit	the	needs	of	the	organization.

As	the	name	implies,	classless	addressing	completely	eliminates	the	prior
notions	of	classes.	There	are	no	more	Class	A,	B,	and	C	blocks	that	are	divided
by	the	first	few	bits	of	the	address.	Instead,	under	CIDR,	all	Internet	blocks	can
be	of	arbitrary	size.	Instead	of	having	all	networks	use	8	(Class	A),	16	(Class	B),
or	24	(Class	C)	bits	for	the	network	ID,	you	can	have	large	networks	with,	say,
13	bits	for	the	network	ID	(leaving	19	bits	for	the	host	ID),	or	very	small	ones
that	use	28	bits	for	the	network	ID	(only	4	bits	for	the	host	ID).	The	size	of	the
network	is	still	based	on	the	binary	power	of	the	number	of	host	ID	bits.

CIDR	(Slash)	Notation
You'll	recall	that	when	you	used	subnetting,	you	had	a	problem:	Subnetting
could	be	done	by	taking	any	number	of	available	host	ID	bits,	so	how	would
devices	know	where	the	line	was	between	the	subnet	ID	and	host	ID?	The	same
problem	occurs	under	CIDR.	There	are	no	classes,	so	you	can't	tell	anything	by
looking	at	the	first	few	bits	of	an	IP	address.	Since	addresses	can	have	the
dividing	point	between	host	ID	and	network	ID	occur	anywhere,	you	need



additional	information	in	order	to	interpret	IP	addresses	properly.	Under	CIDR,
this	impacts	not	only	addresses	within	an	organization,	but	also	addresses	in	the
entire	Internet,	since	there	are	no	classes	and	each	network	can	be	a	different
size.

For	this	reason,	just	as	subnetting	required	the	use	of	a	subnet	mask	to	show
which	bits	belong	to	the	network	ID	or	subnet	ID	and	which	belong	to	the	host
ID,	CIDR	uses	a	subnet	mask	to	show	where	the	line	is	drawn	between	host	ID
and	network	ID.	However,	for	simplicity,	under	CIDR	you	don't	usually	work
with	32-bit	binary	subnet	masks.	Instead,	you	use	slash	notation,	more	properly
called	CIDR	notation.	This	notation	shows	the	size	of	the	network,	sometimes
called	the	prefix	length,	by	following	an	IP	address	with	an	integer	that	tells	you
how	many	bits	are	used	for	the	network	ID	(prefix).

TIP

KEY	CONCEPT	Since	there	are	no	address	classes	in	CIDR,	you	cannot	tell	the	size	of	the	network	ID
of	an	address	from	the	address	alone.	In	CIDR,	the	length	of	the	prefix	(network	ID)	is	indicated	by
placing	it	following	a	slash	after	the	address.	This	is	called	CIDR	notation,	or	slash	notation.

For	example,	consider	the	network	specification	184.13.152.0/22.	The	22	means
this	network	has	22	bits	for	the	network	ID	and	10	bits	for	the	host	ID.	This	is
equivalent	to	specifying	a	network	with	an	address	of	184.13.152.0	and	a	subnet
mask	of	255.255.252.0,	as	you	can	see	in	Figure	20-2.	This	sample	network
provides	a	total	of	1,022	hosts	(210–2).	The	table	in	the	following	section	shows
all	the	different	possible	network	sizes	that	can	be	configured	under	CIDR.



Figure	20-2.	CIDR	(slash)	notation	and	its	subnet	mask	equivalent	A	classless	network	is	normally
specified	in	CIDR,	or	slash	notation,	such	as	this	example:	184.13.152.0/22.	Here,	the	/22	means	the

first	22	bits	of	the	address	are	the	network	ID.	The	equivalent	subnet	mask	can	be	calculated	by	creating
a	32-bit	number	with	22	ones	followed	by	10	zeros.

NOTE

You	may	recall	that	under	classful	subnetting,	the	bits	used	for	the	subnet	ID	did	not	need	to	be
contiguous.	Even	though	this	ability	was	almost	never	used	to	avoid	confusion,	noncontiguous	subnet	ID
bits	were	possible.	Under	CIDR,	the	requirement	for	contiguous	subnet	ID	bits	has	been	made	official—
you	could	not	use	slash	notation	otherwise.

Supernetting:	Subnetting	the	Internet
In	theory,	then,	what	CIDR	does	is	provide	the	central	address-assignment
authority	with	the	flexibility	to	hand	out	address	blocks	of	different	sizes	to
organizations	based	on	their	need.	However,	when	CIDR	was	developed,	a	shift
was	made	in	the	method	by	which	public	IP	addresses	were	assigned.	Having
everyone	in	the	world	attempt	to	get	addresses	from	one	organization	wasn't	the
best	method.	It	was	necessary	under	the	classful	scheme	because	the	hierarchy
was	only	two	levels	deep.	The	Internet	Assigned	Numbers	Authority	(IANA)
handed	out	network	IDs	to	everyone,	who	then	assigned	host	IDs	(or	subnetted).

Under	CIDR,	you	have	many	hierarchical	levels:	You	split	big	blocks	into
smaller	blocks,	and	then	still-smaller	blocks,	and	so	on.	It	makes	sense	to
manage	blocks	in	a	similar	hierarchical	manner	as	well.	So	what	happens	is	that
IANA/ICANN	divides	addresses	into	large	blocks,	which	it	distributes	to	the
four	regional	Internet	registries	(RIRs):	APNIC,	ARIN,	LACNIC,	and	RIPE
NCC.	These	then	further	divide	the	address	blocks	and	distribute	them	to	lower-
level	national	Internet	registries	(NIRs),	local	Internet	registries	(LIRs),	and/or
individual	organizations	such	as	Internet	service	providers	(ISPs).	This	is	all
explained	in	the	background	discussion	of	Internet	authorities	and	registries	in
Chapter	3.

ISPs	can	then	divide	these	blocks	into	smaller	ones	and	then	allocate	them	to
their	customers.	These	customers	are	sometimes	smaller	ISPs	themselves,	which
repeat	the	process.	They	split	their	blocks	into	pieces	of	different	sizes	and
allocate	them	to	their	customers,	some	of	whom	are	even	smaller	ISPs	and	some
of	whom	are	end	users.	The	number	of	times	this	can	occur	is	limited	only	by



of	whom	are	end	users.	The	number	of	times	this	can	occur	is	limited	only	by
how	many	addresses	are	in	the	original	block.

It's	also	worth	noting	that	while	CIDR	is	based	on	subnetting	concepts,
subnetting	itself	is	not	used	in	CIDR—or	at	least,	not	in	the	way	it	is	used	under
classful	addressing.	There	is	no	explicit	subnetting	using	a	subnet	ID	within
CIDR.	All	IP	addresses	are	interpreted	only	as	having	a	network	ID	and	a	host
ID.	An	organization	does	the	equivalent	of	subnetting	by	dividing	its	own
network	into	subnetworks	using	the	same	general	method	that	ISPs	do.	This
probably	seems	a	bit	confusing.	Later	in	this	chapter,	I	provide	a	detailed
example	of	hierarchical	address	block	assignments	and	how	splitting	works
under	CIDR.

Common	Aspects	of	Classful	and	Classless
Addressing
There	are	a	few	aspects	of	addressing	that	were	defined	under	the	"classful"
scheme	that	don't	change	under	CIDR:

Private	Address	Blocks	Certain	blocks	of	addresses	are	still	reserved	for	private
network	addressing.	These	addresses	are	not	directly	routed	on	the	Internet,	but
can	be	used	in	conjunction	with	Network	Address	Translation	(NAT;	see
Chapter	28)	to	allow	IP	hosts	without	public	addresses	to	access	the	Internet.

Addresses	with	Special	Meanings	The	special	meanings	assigned	to	certain
network	ID	and	host	ID	patterns	are	the	same	as	before.	This	is	also	why	you
still	must	subtract	two	from	the	number	of	hosts	in	each	network.	These
represent	the	all-zeros	case	that	refers	to	the	network	as	a	whole	and	the	all-ones
address	used	for	broadcast.

Loopback	Addresses	The	network	127.0.0.0	is	still	reserved	for	loopback
functionality.	(In	CIDR	it	is	given	the	notation	127.0.0.0/8.)

Finally,	note	that	use	of	classless	addressing	requires	hardware	and	software
designed	to	handle	it.	If	the	hardware	and	software	are	still	assuming	that	they
are	operating	in	a	classful	environment,	they	will	not	properly	interpret
addresses.	Since	CIDR	has	now	been	around	for	more	than	a	decade,	this	is
usually	not	a	problem	with	modern	systems.



IP	Classless	Addressing	Block	Sizes	and
Classful	Network	Equivalents
Because	CIDR	allows	you	to	divide	IP	addresses	into	network	IDs	and	host	IDs
along	any	bit	boundary,	it	allows	for	the	creation	of	dozens	of	different	sizes	of
networks.	As	with	subnetting,	the	size	of	network	is	a	trade-off	between	the
number	of	bits	used	for	the	network	ID	and	the	number	used	for	the	host	ID.
Unlike	conventional	subnetting,	where	a	single	choice	is	made	for	all	subnets,
CIDR	allows	many	levels	of	hierarchical	division	of	the	Internet,	so	many	sizes
of	networks	exist	simultaneously.	Larger	networks	are	created	and	subdivided
into	smaller	ones.

Since	many	people	are	used	to	looking	at	IP	address	blocks	in	terms	of	their
classful	sizes,	it	is	common	to	express	CIDR	address	blocks	in	terms	of	their
classful	equivalents.	First,	at	this	point	it	should	be	simple	to	see	that	a	CIDR	/8
network	is	equal	in	size	to	a	Class	A	network,	a	/16	is	equivalent	to	a	Class	B
network,	and	a/24	is	equivalent	to	a	Class	C	network.	This	is	because	Class	A
networks	use	8	bits	for	the	network	ID,	Class	B	networks	use	16,	and	Class	C
networks	use	24.	However,	remember	that	these	CIDR	equivalents	do	not	need
to	have	any	particular	ranges	for	their	first	octets	as	in	the	classful	scheme.

Each	time	you	reduce	the	prefix	length,	you	are	defining	a	network	about	double
the	size	of	the	one	with	the	higher	number,	since	you	have	increased	the	number
of	bits	in	the	host	ID	by	one.	So,	a	/15	network	is	equal	in	size	to	two	/16
networks.

Table	20-1	shows	each	of	the	possible	theoretical	ways	to	divide	the	32	bits	of	an
IP	address	into	network	ID	and	host	ID	bits	under	CIDR.	For	each,	I	have	shown
the	number	of	hosts	in	each	network,	and	the	way	a	network	of	each	size	is
represented	in	both	slash	notation	and	as	a	conventional	subnet	mask.	I	have	also
shown	the	equivalent	number	of	Class	A,	Class	B,	and	Class	C	networks	for
each.

Keep	the	following	things	in	mind	while	looking	at	this	table:

Some	of	the	entries	shown	are	more	theoretical	than	practical	and	are
included	merely	for	completeness.	This	is	particularly	the	case	with	the	larger



networks.	For	example,	I	doubt	anyone	ever	actually	works	with	a	/1	or	/2
CIDR	network;	there	would	be	only	two	of	the	former	and	four	of	the	latter
encompassing	the	entire	IP	address	space!	Most	of	the	time,	you	will	be
working	with	smaller	networks,	/16	and	below.

Under	normal	circumstances,	you	cannot	have	a	/31	or	/32	CIDR	network,
because	it	would	have	zero	valid	host	IDs.	(There	is	a	special	case:	/31
networks	can	be	used	for	point-to-point	links,	where	it	is	obvious	who	the
intended	recipient	is	of	each	transmission,	and	where	broadcasts	are	not
necessary.	This	is	described	in	RFC	3021.)

In	the	columns	showing	the	number	of	equivalent	Class	A,	B,	and	C	networks
I	have	only	shown	numbers	in	the	range	of	1/256	to	256	for	simplicity.
Obviously,	a	/6	network,	in	addition	to	being	equal	in	size	to	four	Class	A
networks,	also	equals	1,024	Class	B	networks,	and	262,144	Class	C	networks,
but	few	people	would	bother	referring	to	a	/6	as	being	262,144	Class	C
networks.

Table	20-1.	CIDR	Address	Blocks	and	Classful	Address	Equivalents

#	of	Bits
for
Network
ID

#	of
Bits
for
Host
ID

#	of	Hosts
per
Network

Prefix
Length	in
Slash
Notation

Equivalent
Subnet	Mask

#	of	Equivalent
Classful
Addressing
Networks

	 	 	 	 	 Class
A

Class
B

Class
C

1 31 2,147,483,646 /1 128.0.0.0 128 — —

2 30 1,073,741,822 /2 192.0.0.0 64 — —

3 29 536,870,910 /3 224.0.0.0 32 — —

4 28 268,435,454 /4 240.0.0.0 16 — —

5 27 134,217,726 /5 248.0.0.0 8 — —

6 26 67,108,862 /6 252.0.0.0 4 — —

7 25 33,554,430 /7 254.0.0.0 2 — —



7 25 33,554,430 /7 254.0.0.0 2 — —

8 24 16,777,214 /8 255.0.0.0 1 256 —

9 23 8,388,606 /9 255.128.0.0 1/2 128 —

10 22 4,194,302 /10 255.192.0.0 1/4 64 —

11 21 2,097,150 /11 255.224.0.0 1/8 32 —

12 20 1,048,574 /12 255.240.0.0 1/16 16 —

13 19 524,286 /13 255.248.0.0 1/32 8 —

14 18 262,142 /14 255.252.0.0 1/64 4 —

15 17 131,070 /15 255.254.0.0 1/128 2 —

16 16 65,534 /16 255.255.0.0 1/256 1 256

17 15 32,766 /17 255.255.128.0 — 1/2 128

18 14 16,382 /18 255.255.192.0 — 1/4 64

19 13 8,190 /19 255.255.224.0 — 1/8 32

20 12 4,094 /20 255.255.240.0 — 1/16 16

21 11 2,046 /21 255.255.248.0 — 1/32 8

22 10 1,022 /22 255.255.252.0 — 1/64 4

23 9 510 /23 255.255.254.0 — 1/128 2

24 8 254 /24 255.255.255.0 — 1/256 1

25 7 126 /25 255.255.255.128 — — 1/2

26 6 62 /26 255.255.255.192 — — 1/4

27 5 30 /27 255.255.255.224 — — 1/8

28 4 14 /28 255.255.255.240 — — 1/16

29 3 6 /29 255.255.255.248 — — 1/32

30 2 2 /30 255.255.255.252 — — 1/64



IP	CIDR	Addressing	Example
The	multiple	hierarchical	levels	of	CIDR	make	the	technology	seem	rather
complicated.	However,	understanding	how	CIDR	works	really	is	not	that
difficult,	assuming	you	already	know	how	subnetting	is	done.	In	particular,	if
you	know	how	VLSM	functions,	you	basically	already	know	how	CIDR	works,
since	they	are	pretty	much	the	same	thing.	They	differ	only	in	the	way	that	the
hierarchical	division	of	networks	is	accomplished,	and	in	the	terminology.

To	show	how	CIDR	works	better,	let's	take	an	example	that	will	illustrate	the
power	of	classless	addressing:	its	ability	to	selectively	subdivide	a	large	block	of
addresses	into	smaller	ones	that	suit	the	needs	of	various	organizations.	Since
address	allocation	in	CIDR	typically	starts	with	larger	blocks	owned	by	larger
ISPs,	let's	start	there	as	well.

Suppose	you	have	an	ISP	that	is	just	starting	up.	It's	not	a	major	ISP,	but	a
moderate-sized	one	with	only	a	few	customers,	so	it	needs	only	a	relatively	small
allocation.	It	begins	with	the	block	71.94.0.0/15.	The	/15	on	the	end	of	the	block
address	tells	you	that	this	is	a	block	of	addresses	where	the	first	15	bits	are	the
network	ID	and	the	last	17	are	the	host	ID.	This	block	was	obtained	from	a	larger
ISP,	carved	from	a	larger	block	of	addresses	by	that	ISP.	For	example,
71.94.0.0/15	would	be	equal	to	half	of	the	address	block	71.92.0.0/14,	a	quarter
of	the	block	71.88.0.0/13,	and	so	on.

The	ISP's	block	is	equal	in	size	to	two	Class	B	networks	and	has	a	total	of
131,070	possible	host	addresses.	This	ISP	can	choose	to	divide	this	block	in	a
variety	of	ways,	depending	on	the	needs	of	its	clients	and	its	own	internal	use.
However,	this	ISP	is	just	starting	up,	so	it	is	not	even	sure	of	what	its	ultimate
needs	will	be.	Let's	say	it	expects	to	resell	about	half	of	its	address	space	to	other
ISPs,	but	isn't	sure	what	sizes	they	will	need	yet.	Of	the	other	half,	it	plans	to
split	it	into	four	different	sizes	of	blocks	to	match	the	needs	of	different-sized
organizations.

To	imagine	how	the	ISP	divides	its	address	space,	you	can	consider	the	analogy
of	cutting	up	a	pie.	The	ISP	will	first	cut	the	pie	in	half	and	reserve	one-half	for
its	future	ISP	customers.	It	will	then	cut	the	other	half	into	some	large	pieces	and
some	small	pieces.	This	is	illustrated	in	Figure	20-3.	(Okay,	I	know	it's	a	square



pie.	I	wanted	to	show	the	individual	small	blocks	to	scale.)

The	actual	process	of	division	might	follow	the	progression	described	in	the
following	section	and	illustrated	in	Figure	20-4.

First	Level	of	Division
The	"pie"	is	initially	cut	down	the	middle	by	using	the	single	leftmost	host	ID	bit
as	an	extra	network	bit.	Here's	the	network	address	block,	71.94.0.0/15	in	binary,
with	the	leftmost	host	ID	bit	shown	in	bold:

01000111	01011110	00000000	00000000

Figure	20-3.	Example	of	a	hierarchical	division	of	a	/15	CIDR	address	block	This	diagram	shows	one
method	by	which	an	ISP	with	a	relatively	large	/15	address	block	(131,070	hosts)	might	choose	to

hierarchically	divide	it.	In	this	case	it	is	first	divided	in	half	into	two	/16	blocks.	One	is	reserved,	while
the	other	is	divided	into	four	/18	blocks.	Each	of	those	is	divided	into	blocks	of	a	different	size	to	allow

allocation	to	organizations	requiring	up	to	62,	126,	254,	or	510	hosts,	respectively.

To	make	the	split,	you	make	one	network	equal	to	this	binary	network	address
with	the	highlighted	bit	remaining	zero,	and	the	other	one	with	it	changed	to	a
one.	This	creates	two	subnetworks—not	subnets	as	in	the	classful	sense	of	the
word,	but	portions	of	the	original	network—that	I	have	numbered	based	on	the
numeric	value	of	what	is	substituted	into	the	new	network	ID	bits,	as	follows:

Subnetwork	0:	01000111	01011110	00000000	00000000

Subnetwork	1:	01000111	01011111	00000000	00000000

Because	bit	16	is	now	also	part	of	the	network	address,	these	are	/16	networks,



Because	bit	16	is	now	also	part	of	the	network	address,	these	are	/16	networks,
the	size	of	a	classful	Class	B	network.	So	the	subnetworks	are	as	follows:

Subnetwork	0:	71.94.0.0/16

Subnetwork	1:	71.95.0.0/16

You'll	notice	subnetwork	0	has	the	same	IP	address	as	the	larger	network	it	came
from;	this	is	always	true	of	the	subnetwork	0	in	a	network.

Figure	20-4.	Hierarchical	address	division	using	CIDR

Second	Level	of	Division
Let's	say	you	set	aside	subnetwork	0	earlier	for	future	ISP	allocations.	You	then



Let's	say	you	set	aside	subnetwork	0	earlier	for	future	ISP	allocations.	You	then
choose	to	divide	the	second	subnetwork	into	four.	These	you	will	then	further
subdivide	into	different	sizes	to	meet	the	customer's	needs.	To	divide	into	four
groups,	you	need	two	more	bits	from	the	host	ID	of	subnetwork	1,	as	shown	here
in	bold	and	underlined	next	to	the	original	subnet	bit:

01000111	01011111	00000000	00000000

These	two	bits	are	replaced	by	the	patterns	00,	01,	10,	and	11	to	get	four	sub-
subnetworks.	They	will	be	/18	networks,	since	you	took	two	extra	bits	from	the
host	ID	of	a	/16	as	shown	here:

Sub-subnetwork	1-0:	01000111	01011111	00000000	00000000	(71.95.0.0/18)

Sub-subnetwork	1-1:	01000111	01011111	01000000	00000000	(71.95.64.0/18)

Sub-subnetwork	1-2:	01000111	01011111	10000000	00000000	(71.95.128.0/18)

Sub-subnetwork	1-3:	01000111	01011111	11000000	00000000	(71.95.192.0/18)

Each	of	these	has	16,382	addresses.

Third	Level	of	Division
You	now	take	each	of	the	four	/18	networks	and	further	subdivide	it.	You	want
to	make	each	of	these	contain	a	number	of	blocks	of	different	sizes
corresponding	to	the	potential	customers.	One	way	to	do	this	would	be	as
follows:

Larger	Organizations	Customers	needing	up	to	510	addresses	require	a	/23
network.	You	divide	sub-subnetwork	1-0,	71.95.0.0/18	by	taking	five	bits	from
the	host	ID	field:

01000111	01011111	00000000	00000000

You	substitute	into	these	five	bits	00000,	00001,	00010	and	so	on,	giving	you	32
different	/23	networks	in	this	block,	each	containing	nine	bits	for	the	host	ID,	for
510	hosts.	The	first	will	be	sub-sub-subnetwork	1-0-0,	71.95.0.0/23;	the	second
sub-sub-subnetwork	1-0-1,	71.95.2.0/23;	the	last	will	be	sub-sub-subnetwork	1-
0-31:	71.95.62.0/23.

Medium-Sized	Organizations	For	customers	needing	up	to	254	addresses,	you
divide	sub-subnetwork	1-1,	71.95.64.0/18,	by	taking	six	bits	from	the	host	ID



field:

01000111	01011111	01000000	00000000

This	gives	you	64	different	/24	networks.	The	first	will	be	sub-sub-subnetwork
1-1-0,	71.95.64.0/24,	the	second	sub-sub-subnetwork	1-1-1,	71.95.65.0/24,	and
so	on.

Smaller	Organizations	For	customers	with	up	to	126	hosts,	you	divide	sub-
subnetwork	1-2,	71.95.128.0/18,	by	taking	seven	bits	from	the	host	ID	field,	as
follows:

01000111	01011111	10000000	00000000

Seven	bits	allow	128	of	these	/25	networks	within	the	/18	block.	The	first	will	be
71.95.128.0/25,	the	second	71.95.128.128/25,	the	third	71.95.129.0/25,	and	so
on.

Very	Small	Organizations	For	customers	with	up	to	60	hosts,	you	divide	sub-
subnetwork	1-3,	71.95.192.0/18,	by	taking	eight	bits	from	the	host	ID	field:

01000111	01011111	11000000	00000000

This	gives	you	256	different	/26	networks	within	the	/18	block.	The	first	will	be
71.95.192.0/26,	the	second	71.95.192.64/26,	and	so	on.

This	example	shows	only	one	of	many	different	ways	to	slice	up	this	pie.	The
ISP	might	decide	that	creating	four	different	sizes	of	customer	networks	in
advance	was	not	the	right	way	to	go.	It	might	instead	just	take	the	tack	of
dividing	the	pie	in	half,	dividing	it	in	half	again,	and	so	on,	as	many	times	as
needed	to	create	slices	of	the	right	size.	Alternatively,	if	most	of	their	customers
needed	around	50,	100,	200,	or	500	hosts,	the	previous	example	might	be	the
easiest	to	administer.

It	would	still	be	possible	for	the	ISP	to	divide	any	of	the	smaller	blocks	further	if
they	needed	to	do	so.	They	could	split	a	/26	sub-sub-subnetwork	into	four	/28
sub-sub-sub-subnetworks	for	very	small	customers,	for	example.	Also,	an
individual	customer	of	this	ISP	could	do	the	same	thing,	dividing	its	own	block
to	suit	the	internal	structure	of	its	network.



Chapter	21.	INTERNET
PROTOCOL	DATAGRAM
ENCAPSULATION	AND
FORMATTING

The	primary	job	of	the	Internet	Protocol	(IP)	is	to	deliver	data	between	devices
over	an	internetwork.	On	its	journey	between	two	hosts	in	an	internetwork,	this
data	may	travel	across	many	physical	networks.	To	help	ensure	that	the	data	is
sent	and	received	properly,	it	is	encapsulated	within	a	message	called	an	IP
datagram.	This	datagram	includes	several	fields	that	help	manage	the	operation
of	IP	and	ensure	that	data	gets	where	it	needs	to	go.

In	this	chapter,	I	take	a	look	at	how	IP	takes	data	passed	to	it	from	higher	layers
and	packages	it	for	transmission.	I	begin	with	a	general	discussion	of	IP
datagrams	and	encapsulation.	I	then	describe	the	general	format	of	IP	datagrams,
including	the	fields	used	in	the	IP	header	and	how	they	are	interpreted.	I	also
include	a	brief	discussion	of	IP	datagram	options	and	their	use.

TIP

BACKGROUND	INFORMATION	This	chapter	assumes	at	least	passing	familiarity	with	IP
addressing	concepts,	as	outlined	in	Chapters	Chapter	16–Chapter	20.	It	also	makes	reference	to	the
chapter	on	datagram	fragmentation	and	reassembly	(Chapter	22).

NOTE

IP	datagrams	are	sometimes	called	IP	packets.	Whether	datagram	or	packet	is	the	preferred	term	seems
to	depend	on	whom	you	ask;	even	the	standards	don't	use	one	term	exclusively.	On	the	other	hand,	I
have	seen	IP	datagrams	called	IP	frames,	and	that's	definitely	not	correct!	Chapter	1	describes	these



terms	more	completely.

IP	Datagram	Encapsulation
In	Chapter	5,	which	described	OSI	Reference	Model	concepts,	I	looked	at
several	ways	that	protocols	at	various	layers	in	a	networking	protocol	stack
interact	with	each	other.	One	of	the	most	important	concepts	in	interprotocol
operation	is	that	of	encapsulation.	Most	data	originates	within	the	higher	layers
of	the	OSI	model.	The	protocols	at	these	layers	pass	the	data	down	to	lower
layers	for	transmission,	usually	in	the	form	of	discrete	messages.	Upon	receipt,
each	lower-level	protocol	takes	the	entire	contents	of	the	message	received	and
encapsulates	it	into	its	own	message	format,	adding	a	header	and	possibly	a
footer	that	contain	important	control	information.

You	might	think	of	encapsulation	as	similar	to	sending	a	letter	enclosed	in	an
envelope.	You	write	a	letter	and	put	it	in	an	envelope	with	a	name	and	address,
but	if	you	give	it	to	a	courier	for	overnight	delivery;	the	courier	takes	that
envelope	and	puts	it	in	a	larger	delivery	envelope.	In	a	similar	way,	messages	at
higher	networking	layers	are	encapsulated	in	lower-layer	messages,	which	can
then	in	turn	be	further	encapsulated.

Due	to	the	prominence	of	TCP/IP,	IP	is	one	of	the	most	important	places	where
data	encapsulation	occurs	on	a	modern	network.	Data	is	passed	to	IP	typically
from	one	of	the	two	main	transport	layer	protocols:	the	Transmission	Control
Protocol	(TCP)	or	User	Datagram	Protocol	(UDP).	This	data	is	already	in	the
form	of	a	TCP	or	UDP	message	with	TCP	or	UDP	headers.	This	is	then
encapsulated	into	the	body	of	an	IP	message,	usually	called	an	IP	datagram	or	IP
packet.	Encapsulation	and	formatting	of	an	IP	datagram	is	also	sometimes	called
packaging—again,	the	envelope	is	an	obvious	comparison.

Figure	21-1	displays	this	entire	process,	which	looks	very	similar	to	the	drawing
of	the	OSI	Reference	Model	as	a	whole,	as	shown	in	Figure	5-5	in	Chapter	5.	As
you	can	see,	an	upper-layer	message	is	packaged	into	a	TCP	or	UDP	message.
This	then	becomes	the	payload	of	an	IP	datagram,	shown	here	with	only	one
header	(things	can	get	a	bit	more	complex	than	this).	The	IP	datagram	is	then
passed	down	to	layer	2,	where	it	is	encapsulated	into	some	sort	of	local	area



network	(LAN),	wide	area	network	(WAN),	or	wireless	LAN	(WLAN)	frame,
and	then	converted	to	bits	and	transmitted	at	the	physical	layer.

If	the	message	to	be	transmitted	is	too	large	to	pass	through	the	underlying
network,	it	may	first	be	fragmented.	This	is	analogous	to	splitting	up	a	large
delivery	into	multiple	smaller	envelopes	or	boxes.	In	this	case,	each	IP	datagram
carries	only	part	of	the	higher-layer	message.	The	receiving	device	must
reassemble	the	message	from	the	IP	datagrams.

Figure	21-1.	IP	datagram	encapsulation	The	upper-layer	message	is	packaged	into	a	TCP	or	UDP
message,	which	becomes	the	payload	of	an	IP	datagram.	The	IP	datagram	is	then	passed	down	to	layer

2,	where	it	is	encapsulated	in	a	LAN,	WAN,	or	WLAN	frame.	It	is	then	converted	to	bits	and
transmitted	at	the	physical	layer.

The	IP	datagram	is	somewhat	similar	in	concept	to	a	frame	used	in	Ethernet	or
another	data	link	layer,	except	that	IP	datagrams	are	designed	to	facilitate
transmission	across	an	internetwork,	while	data	link	layer	frames	are	used	only
for	direct	delivery	within	a	physical	network.	The	fields	included	in	the	IP
header	are	used	to	manage	internetwork	datagram	delivery.	This	includes	key
information	for	delivery,	such	as	the	address	of	the	destination	device,
identification	of	the	type	of	frame,	and	control	bits.	The	header	follows	a	format
that	you	will	examine	shortly.



that	you	will	examine	shortly.

Once	data	is	encapsulated	into	an	IP	datagram,	it	is	passed	down	to	the	data	link
layer	for	transmission	across	the	current	"hop"	of	the	internetwork.	There	it	is
further	encapsulated,	IP	header	and	all,	into	a	data	link	layer	frame	such	as	an
Ethernet	frame.	An	IP	datagram	may	be	encapsulated	into	many	such	data	link
layer	frames	as	it	is	routed	across	the	internetwork;	on	each	hop,	the	IP	datagram
is	removed	from	the	data	link	layer	frame	and	then	repackaged	into	a	new	one
for	the	next	hop.	The	IP	datagram,	however,	is	not	changed	(except	for	some
control	fields)	until	it	reaches	its	final	destination.



IP	Datagram	General	Format
Data	transmitted	over	an	internetwork	using	IP	is	carried	in	messages	called	IP
datagrams.	As	is	the	case	with	all	network	protocol	messages,	IP	uses	a	specific
format	for	its	datagrams.	Here,	I	will	discuss	the	IP	version	4	(IPv4)	datagram
format,	which	was	defined	in	RFC	791	along	with	the	rest	of	IPv4.

The	IPv4	datagram	is	conceptually	divided	into	two	pieces:	the	header	and	the
payload.	The	header	contains	addressing	and	control	fields,	while	the	payload
carries	the	actual	data	to	be	sent	over	the	internetwork.	Unlike	some	message
formats,	IP	datagrams	do	not	have	a	footer	following	the	payload.

Even	though	IP	is	a	relatively	simple,	connectionless,	and	unreliable	protocol,
the	IPv4	header	carries	a	fair	bit	of	information,	which	makes	it	rather	large.	It	is
at	least	20	bytes	long,	and	with	options	it	can	be	significantly	longer.	The	IP
datagram	format	is	described	in	Tables	Table	21-1,	Table	21-2,	and	Table	21-3,
and	illustrated	in	Figure	21-2.

Table	21-1.	Internet	Protocol	Version	4	(IPv4)	Datagram	Format

Field	Name Size
(Bytes)

Description

Version 1/2	(4
bits)

Identifies	the	version	of	IP	used	to	generate	the	datagram.	For	IPv4,
this	is	the	number	4.	This	field	ensures	compatibility	between	devices
that	may	be	running	different	versions	of	IP.	In	general,	a	device
running	an	older	version	of	IP	will	reject	datagrams	created	by	newer
implementations,	under	the	assumption	that	the	older	version	may	not
be	able	to	interpret	the	newer	datagram	correctly.

IHL 1/2	(4
bits)

Specifies	the	length	of	the	IP	header,	in	32-bit	words.	This	includes
the	length	of	any	options	fields	and	padding.	The	normal	value	of	this
field	when	no	options	are	used	is	5	(5	32-bit	words	=	5*4	=	20	bytes).
Contrast	this	with	the	longer	Total	Length	field	in	this	table.

TOS 1 A	field	designed	to	carry	information	to	provide	quality-of-service
features,	such	as	prioritized	delivery	for	IP	datagrams.	This	has	not
been	as	widely	used	as	originally	defined,	and	its	meaning	has	been
redefined	for	use	by	a	technique	called	Differentiated	Services	(DS),
as	discussed	in	the	"IP	Datagram	Type	of	Service	(TOS)	Field"
section	of	this	chapter.



TL 2 Specifies	the	total	length	of	the	IP	datagram,	in	bytes.	Since	this	field
is	16	bits	wide,	the	maximum	length	of	an	IP	datagram	is	65,535
bytes,	though	most	are	much	smaller.

Identification 2 This	field	contains	a	16-bit	value	that	is	common	to	each	of	the
fragments	belonging	to	a	particular	message;	for	datagrams	originally
sent	unfragmented,	it	is	still	filled	in	so	it	can	be	used	if	the	datagram
must	be	fragmented	by	a	router	during	delivery.	The	recipient	uses
this	field	to	reassemble	messages	without	accidentally	mixing
fragments	from	different	messages.	This	is	needed	because	fragments
may	arrive	from	multiple	messages	mixed	together,	since	IP
datagrams	can	be	received	out	of	order	from	any	device.	(See	the
discussion	of	IP	message	fragmentation	in	Chapter	22.)

Flags 3/8	(3
bits)

Three	control	flags,	two	of	which	are	used	to	manage	fragmentation
(as	described	in	the	topic	on	fragmentation),	and	one	that	is	reserved.
See	Table	21-2.

Fragment
Offset

1	5/8
(13	bits)

When	fragmentation	of	a	message	occurs,	this	field	specifies	the
offset,	or	position,	in	the	message	where	the	data	in	this	fragment	goes
in	units	of	eight	bytes	(64	bits).	The	first	fragment	has	an	offset	of	0.
(See	the	discussion	of	fragmentation	in	Chapter	27	for	a	description	of
how	the	field	is	used.)

TTL 1 This	specifies	how	long	the	datagram	is	allowed	to	live	on	the
network,	in	router	hops.	Each	router	decrements	the	value	of	the	TTL
field	(reduces	it	by	one)	prior	to	transmitting	it.	If	the	TTL	field	drops
to	zero,	the	datagram	is	assumed	to	have	taken	too	long	a	route	and	is
discarded.	(See	the	"IP	Datagram	Time	to	Live	(TTL)	Field"	section
later	in	this	chapter	for	more	information.)

Protocol 1 Identifies	the	higher-layer	protocol	(generally	either	a	transport	layer
protocol	or	encapsulated	network	layer	protocol)	carried	in	the
datagram.	Table	21-3	shows	the	protocol	values	of	this	field,	which
were	originally	defined	by	the	IETF	"Assigned	Numbers"	standard,
RFC	1700,	and	are	now	maintained	by	the	Internet	Assigned	Numbers
Authority	(IANA).

Header
Checksum

2 A	checksum	is	computed	over	the	header	to	provide	basic	protection
against	corruption	in	transmission.	This	is	not	the	more	complex
cyclic	redundancy	check	(CRC)	code	that's	typically	used	by	data	link
layer	technologies	such	as	Ethernet;	it's	just	a	16-bit	checksum.	It	is
calculated	by	dividing	the	header	bytes	into	words	(a	word	is	two
bytes)	and	then	adding	them	together.	Only	the	header	is
checksummed;	not	the	data.	At	each	hop,	the	device	receiving	the
datagram	does	the	same	checksum	calculation,	and	if	there	is	a
mismatch,	it	discards	the	datagram	as	damaged.



Source
Address

4 This	is	the	32-bit	IP	address	of	the	originator	of	the	datagram.	Note
that	even	though	intermediate	devices	such	as	routers	may	handle	the
datagram,	they	do	not	normally	put	their	address	into	this	field—the
address	is	always	that	of	the	device	that	originally	sent	the	datagram.

Destination
Address

4 This	is	the	32-bit	IP	address	of	the	intended	recipient	of	the	datagram.
Again,	even	though	devices	such	as	routers	may	be	the	intermediate
targets	of	the	datagram,	this	field	is	always	used	to	specify	the
ultimate	destination.

Options Variable One	or	more	of	several	types	of	options	may	be	included	after	the
standard	headers	in	certain	IP	datagrams,	as	discussed	later	in	this
chapter,	in	the	"IP	Datagram	Options	and	Option	Format"	section.

Padding Variable If	one	or	more	options	are	included,	and	the	number	of	bits	used	for
them	is	not	a	multiple	of	32,	enough	0	bits	are	added	to	pad	out	the
header	to	a	multiple	of	32	bits	(four	bytes).

Data Variable This	is	the	data	that	will	be	transmitted	in	the	datagram.	It	is	either	an
entire	higher-layer	message	or	a	fragment	of	one.

Table	21-2.	IPv4	Flags	Subfields

Subfield
Name

Size
(Bytes)

Description

Reserved 1/8	(1
bit)

Not	used.

DF 1/8	(1
bit)

When	set	to	1,	this	says	that	the	datagram	should	not	be	fragmented.
Since	the	fragmentation	process	is	generally	invisible	to	higher	layers,
most	protocols	don't	care	about	this	and	don't	set	this	flag.	It	is,	however,
used	for	testing	the	maximum	transmission	unit	(MTU)	of	a	link.

MF 1/8	(1
bit)

When	set	to	0,	this	indicates	the	last	fragment	in	a	message;	when	set	to	1,
it	indicates	that	more	fragments	are	yet	to	come	in	the	fragmented
message.	If	no	fragmentation	is	used	for	a	message,	there	is	only	one
fragment	(the	whole	message),	and	this	flag	is	0.	If	fragmentation	is	used,
all	fragments	but	the	last	set	this	flag	to	1	so	that	the	recipient	knows
when	all	fragments	have	been	sent.

Table	21-3.	IPv4	Protocol	Subfields

Value
(Hexadecimal)

Value
(Decimal)

Protocol



(Hexadecimal) (Decimal)

00 0 Reserved

01 1 ICMP

02 2 IGMP

03 3 GGP

04 4 IP-in-IP	Encapsulation

06 6 TCP

08 8 EGP

11 17 UDP

32 50 Encapsulating	Security	Payload	(ESP)	Extension
Header

33 51 Authentication	Header	(AH)	Extension	Header

NOTE

The	last	two	entries	in	Table	21-3	are	used	when	IPSec	inserts	additional	headers	into	the	datagram:	the
AH	or	ESP	headers.	See	Chapter	29	for	more	information.



Figure	21-2.	IPv4	datagram	format	This	diagram	shows	the	all-important	IPv4	datagram	format.	The
first	20	bytes	are	the	fixed	IP	header,	followed	by	an	optional	Options	section,	and	a	variable-length
Data	area.	Note	that	the	Type	of	Service	field	is	shown	as	originally	defined	in	the	IPv4	standard.

IP	Datagram	Time	to	Live	(TTL)	Field
Let's	look	at	the	Time	to	Live	(TTL)	field.	Since	IP	datagrams	are	sent	from
router	to	router	as	they	travel	across	an	internetwork,	a	datagram	could	be	passed
from	Router	A	to	Router	B	to	Router	C,	and	then	back	to	Router	A.	This	is
called	a	router	loop,	and	it's	something	that	we	don't	want	to	happen.

To	ensure	that	datagrams	don't	circle	around	endlessly,	the	TTL	field	was
designed	to	contain	a	time	value	(in	seconds),	which	would	be	filled	in	when	the
datagram	was	originally	sent.	Routers	would	decrease	the	time	value
periodically,	and	if	it	ever	hit	zero,	destroy	the	datagram.	The	TTL	field	was	also
designed	to	ensure	that	time-critical	datagrams	wouldn't	become	stale	or	pass
their	expiration	date.

In	practice,	this	field	is	not	used	in	exactly	this	manner.	Routers	today	are	fast
and	usually	take	far	less	than	a	second	to	forward	a	datagram,	which	makes	it
impractical	to	measure	the	time	that	a	datagram	lives.	Instead,	this	field	is	used
as	a	maximum	hop	count	for	the	datagram.	Each	time	a	router	processes	a
datagram,	it	reduces	the	value	of	the	TTL	field	by	one.	If	doing	this	results	in	the
field	being	zero,	the	datagram	is	said	to	have	expired,	at	which	point	it	is
dropped,	and	usually	an	Internet	Control	Message	Protocol	(ICMP)	Time
Exceeded	message	is	sent	to	inform	the	originator	of	the	message	that	it	has
expired.	The	TTL	field	is	one	of	the	primary	mechanisms	by	which	networks	are
protected	from	router	loops.	(See	the	description	of	ICMP	Time	Exceeded
messages	in	Chapter	32	for	more	on	how	TTL	helps	IP	handle	router	loops.)

IP	Datagram	Type	of	Service	(TOS)	Field
The	Type	of	Service	(TOS)	field	is	a	one-byte	field	that	was	originally	intended
to	provide	certain	quality-of-service	(QoS)	features	for	IP	datagram	delivery.	It
allowed	IP	datagrams	to	be	tagged	with	information	indicating	not	only	their
precedence,	but	also	the	preferred	manner	in	which	they	should	be	delivered.	It
was	divided	into	a	number	of	subfields,	as	shown	in	Table	21-4	and	Figure	21-2.



The	lack	of	QoS	features	has	been	considered	a	weakness	of	IP	for	a	long	time.
But	as	you	can	see	in	Table	21-4,	these	features	were	built	into	IP	from	the	start.
The	fact	is	that	even	though	this	field	was	defined	in	the	standard	in	the	early
1980s,	it	was	not	widely	used	by	hardware	and	software.	For	years,	it	was	just
passed	around	with	all	zeros	in	the	bits	and	mostly	ignored.

The	Internet	Engineering	Task	Force	(IETF),	seeing	the	field	unused,	attempted
to	revive	its	use.	In	1998,	RFC	2474	redefined	the	first	six	bits	of	the	TOS	field
to	support	a	technique	called	Differentiated	Services	(DS).	Under	DS,	the	values
in	the	TOS	field	are	called	codepoints	and	are	associated	with	different	service
levels.	(See	RFC	2474	for	all	the	details.)

TIP

RELATED	INFORMATION	Be	sure	to	read	the	remainder	of	this	chapter	for	more	information	on
how	IP	options	are	used	in	datagrams	and	Chapter	22	for	some	more	context	on	the	use	of
fragmentation-related	fields	such	as	Identification,	Fragment	Offset,	and	More	Fragments.

Table	21-4.	Original	Definition	of	IPv4	Type	of	Service	(TOS)	Field

Subfield
Name

Size
(Bytes)

Description

Precedence 3/8	(3
bits)

A	field	indicating	the	priority	of	the	datagram.	There	were	eight	defined
values,	from	lowest	to	highest	priority:

000:	Routine

001:	Priority

010:	Immediate

011:	Flash

100:	Flash	Override

101:	CRITIC/ECP

110:	Internetwork	Control

111:	Network	Control

D 1/8	(1
bit)

Set	to	0	to	request	normal	delay	in	delivery;	set	to	1	if	a	low	delay
delivery	is	requested.

T 1/8	(1
bit)

Set	to	0	to	request	normal	delivery	throughput;	set	to	1	if	higher
throughput	delivery	is	requested.



R 1/8	(1
bit)

Set	to	0	to	request	normal	reliability	in	delivery;	set	to	1	if	higher
reliability	delivery	is	requested.

Reserved 2/8	(2
bits)

Not	used.



IP	Datagram	Options	and	Option	Format
All	IP	datagrams	must	include	the	standard	20-byte	header	that	contains	key
information	such	as	the	source	and	destination	address	of	the	datagram,
fragmentation	control	parameters,	length	information,	and	more.	In	addition	to
these	invariable	fields,	the	creators	of	IPv4	included	the	ability	to	add	options
that	provide	additional	flexibility	in	how	IP	handles	datagrams.	Use	of	these
options	is,	of	course,	optional.	However,	all	devices	that	handle	IP	datagrams
must	be	capable	of	properly	reading	and	handling	them.

The	IP	datagram	may	contain	zero,	one,	or	more	options,	so	the	total	length	of
the	Options	field	in	the	IP	header	is	variable.	Each	of	the	options	can	be	a	single
byte	or	multiple	bytes	in	length,	depending	on	how	much	information	the	option
needs	to	convey.	When	more	than	one	option	is	included,	they	are	concatenated
and	put	into	the	Options	field	as	a	whole.	Since	the	IP	header	must	be	a	multiple
of	32	bits,	a	Padding	field	is	included	if	the	number	of	bits	in	all	options	together
is	not	a	multiple	of	32	bits.

Each	IP	option	has	its	own	subfield	format,	generally	structured	as	shown	in
Tables	Table	21-5	and	Table	21-6,	and	illustrated	in	Figure	21-3.	For	most
options,	all	three	subfields	are	used:	Option	Type,	Option	Length,	and	Option
Data.	For	a	few	simple	options,	however,	this	complex	substructure	is	not
needed.	In	those	cases,	the	option	type	itself	communicates	all	the	information
required,	so	the	Option	Type	field	appears,	and	the	Option	Length	and	Option
Data	subfields	are	omitted.

Table	21-5.	IPv4	Option	Format

Subfield
Name

Size
(Bytes)

Description

Option
Type

1 The	Option	Type	subfield	is	divided	into	three	subsubfields,	as	shown	in
Table	21-6.

Option
Length

0	or	1 For	variable-length	options,	indicates	the	size	of	the	entire	option,
including	all	three	subfields	shown	here,	in	bytes.

Option
Data

0	or
variable

For	variable-length	options,	contains	data	to	be	sent	as	part	of	the	option.



Data variable

Table	21-6.	IPv4	Options:	Option	Type	Subfields

Sub-
Subfield
Name

Size
(Bytes)

Description

Copied
Flag

1/8	(1
bit)

This	bit	is	set	to	1	if	the	option	is	intended	to	be	copied	into	all	fragments
when	a	datagram	is	fragmented;	it	is	cleared	to	0	if	the	option	should	not
be	copied	into	fragments.

Option
Class

2/8	(2
bits)

Specifies	one	of	four	potential	values	that	indicate	the	general	category
into	which	the	option	belongs.	In	fact,	only	two	of	the	values	are	used:	0
is	for	Control	options,	and	2	for	Debugging	and	Measurement.

Option
Number

5/8	(5
bits)

Specifies	the	kind	of	option.	32	different	values	can	be	specified	for	each
of	the	two	option	classes.	Of	these,	a	few	are	more	commonly	employed.
See	Table	21-7	for	more	information	on	the	specific	options.

Table	21-7	lists	the	most	common	IPv4	options,	showing	the	option	class,	option
number,	and	length	for	each	(a	length	of	1	indicates	that	an	option	consists	of
only	an	Option	Type	field).	The	table	also	provides	a	brief	description	of	how
each	is	used.

Figure	21-3.	IPv4	Options	field	format	This	diagram	shows	the	full	field	format	for	an	IPv4	option.
Note	that	a	few	simple	options	may	consist	of	only	the	Option	Type	subfield,	with	the	Option	Length

and	Option	Data	subfields	omitted.

Table	21-7.	Common	IPv4	Options

Option
Class

Option
Number

Length
(Bytes)

Option
Name

Description



0 0 1 End	of
Options
List

An	option	containing	just	a	single	zero	byte,	used
to	mark	the	end	of	a	list	of	options.

0 1 1 No
Operation

A	"dummy	option"	used	as	internal	padding	to
align	certain	options	on	a	32-bit	boundary	when
required.

0 2 11 Security An	option	provided	for	the	military	to	indicate	the
security	classification	of	IP	datagrams.

0 3 Variable Loose
Source
Route

One	of	two	options	for	source	routing	of	IP
datagrams.

0 7 Variable Record
Route

Allows	the	route	used	by	a	datagram	to	be	recorded
within	the	header	for	the	datagram	itself.	If	a	source
device	sends	a	datagram	with	this	option	in	it,	each
router	that	handles	the	datagram	adds	its	IP	address
to	this	option.	The	recipient	can	then	extract	the	list
of	IP	addresses	to	see	the	route	taken	by	the
datagram.	Note	that	the	length	of	this	option	is	set
by	the	originating	device.	It	cannot	be	enlarged	as
the	datagram	is	routed,	and	if	it	fills	up	before	it
arrives	at	its	destination,	only	a	partial	route	will	be
recorded.

0 9 Variable Strict
Source
Route

One	of	two	options	for	source	routing	of	IP
datagrams.

2 4 Variable Timestamp Works	similar	to	the	Record	Route	option,	but	each
device	puts	in	a	timestamp,	so	the	recipient	can	see
how	long	it	took	for	the	datagram	to	travel	between
routers.	As	with	the	Record	Route	option,	the
length	of	this	option	is	set	by	the	originating	device
and	cannot	be	enlarged	by	intermediate	devices.

2 18 12 Traceroute Used	in	the	enhanced	implementation	of	the
traceroute	utility,	as	described	in	RFC	1393.	Also
see	Chapter	33,	which	discusses	ICMP	traceroute
messages.

TIP

KEY	CONCEPT	Each	IPv4	datagram	has	a	20-byte	mandatory	header	and	may	also	include	one	or



more	options.	Each	option	has	its	own	field	format,	and	most	are	variable	in	size.

Normally,	IP	datagrams	are	routed	without	any	specific	instructions	from
devices	about	the	path	a	datagram	should	take	from	the	source	to	the	destination.
It's	the	job	of	routers	to	use	routing	protocols	and	to	figure	out	those	details.	In
some	cases,	however,	it	may	be	advantageous	to	have	the	source	of	a	datagram
specify	the	route	a	datagram	takes	through	the	network.	This	process	is	called
source	routing.

There	are	two	IP	options	that	support	source	routing.	In	each,	the	option	includes
a	list	of	IP	addresses	that	specify	the	routers	that	must	be	used	to	reach	the
destination.	When	strict	source	routing	is	used,	the	path	specified	in	the	option
must	be	used	exactly,	in	sequence,	with	no	other	routers	permitted	to	handle	the
datagram	at	all.	In	contrast,	loose	source	routing	specifies	a	list	of	IP	addresses
that	must	be	followed	in	sequence,	but	it	allows	intervening	hops	between	the
devices	on	the	list.	(For	full	details	on	the	exact	structure	used	by	each	option
type,	please	refer	to	RFC	791.)



Chapter	22.	IP	DATAGRAM	SIZE,
FRAGMENTATION,	AND
REASSEMBLY

The	main	responsibility	of	the	Internet	Protocol	(IP)	is	to	deliver	data	between
internetworked	devices.	As	you	saw	in	the	preceding	chapter,	this	requires	that
data	received	from	higher	layers	be	encapsulated	into	IP	datagrams	for
transmission.	These	datagrams	are	then	passed	down	to	the	data	link	layer,
where	they	are	sent	over	physical	network	links.	In	order	for	this	to	work
properly,	each	datagram	must	be	small	enough	to	fit	within	the	frame	format	of
the	underlying	technology.	If	the	message	is	bigger	than	the	maximum	frame
size	of	the	underlying	network,	it	may	be	necessary	to	fragment	the	message.
The	datagrams	are	then	sent	individually	and	reassembled	into	the	original
message.

IP	is	designed	to	manage	datagram	size	and	to	make	fragmentation	and
reassembly	seamless.	This	chapter	explores	issues	related	to	managing	the	size
of	IP	datagrams.	I	start	with	an	overview	of	datagram	size	issues	and	the
important	concept	of	a	network's	maximum	transmission	unit	(MTU),	discussing
why	fragmentation	is	necessary.	I	then	describe	the	process	by	which	messages
are	fragmented	by	the	source	device,	and	possibly	by	routers	along	the	path	to
the	destination,	and	how	they	are	reassembled	by	the	recipient.

TIP

BACKGROUND	INFORMATION	Understanding	fragmentation	and	reassembly	requires	some
knowledge	of	the	basic	format	of	IP	datagrams	and	some	of	the	fields	they	contain.	If	you	haven't	yet
read	the	chapter	describing	the	general	format	of	IP	datagrams	in	Chapter	21,	you	may	wish	to	review	it
before	proceeding	here.



IP	Datagram	Size,	MTU,	and	Fragmentation
Overview
As	the	core	network	layer	protocol	of	the	TCP/IP	protocol	suite,	IP	is	designed
to	implement	potentially	large	internetworks	of	devices.	When	we	work	with	IP,
we	get	used	to	the	concept	of	hosts	being	able	to	send	information	back	and
forth,	even	though	the	hosts	may	be	quite	far	apart.	Although	we	can	usually
consider	the	TCP/IP	internetwork	to	be	like	a	large,	abstract	virtual	network	of
devices,	we	must	always	remember	that	underneath	the	network	layer,	data
always	travels	across	one	or	more	physical	networks.	The	implementation	of	IP
must	take	this	reality	into	account	as	well.

In	order	to	send	messages	using	IP,	we	encapsulate	the	higher-layer	data	into	IP
datagrams.	These	datagrams	must	then	be	sent	down	to	the	data	link	layer,	where
they	are	further	encapsulated	into	the	frames	of	whatever	technology	will	be
used	to	physically	convey	them,	either	directly	to	their	destination	or	indirectly
to	the	next	intermediate	step	in	their	journey	to	their	intended	recipient.	The	data
link	layer	implementation	puts	the	entire	IP	datagram	into	the	data	portion	(the
payload)	of	its	frame	format,	just	as	IP	puts	transport	layer	messages—transport
headers	and	all—into	its	IP	Data	field.	This	immediately	presents	us	with	a
potential	issue:	matching	the	size	of	the	IP	datagram	to	the	size	of	the	underlying
data	link	layer	frame	size.

IP	Datagram	Size	and	the	Underlying	Network
Frame	Size
The	underlying	network	that	a	device	uses	to	connect	to	other	devices	could	be	a
local	area	network	(LAN)	connection	(like	Ethernet	or	Token	Ring),	wireless
LAN	(WLAN)	link	(such	as	802.11),	dial-up	connection,	Digital	Subscriber	Line
(DSL)	connection,	T1	link,	or	other	wide	area	network	(WAN)	connection.	Each
physical	network	will	generally	use	its	own	frame	format,	and	each	format	has	a
limit	on	how	much	data	can	be	sent	in	a	single	frame.	If	the	IP	datagram	is	too
large	for	the	data	link	layer	frame	format's	payload	section,	we	have	a	problem!

For	example,	consider	a	Fiber	Distributed	Data	Interface	(FDDI)	network.	The
maximum	size	of	the	data	field	in	FDDI	is	around	4,470	bytes.	This	means	FDDI



can	handle	an	IP	datagram	of	up	to	4,470	bytes.	In	contrast,	a	regular	Ethernet
frame	uses	a	frame	format	that	limits	the	size	of	the	payload	it	sends	to	1,500
bytes.	This	means	that	Ethernet	cannot	deal	with	IP	datagrams	greater	than	1,500
bytes.

Now,	remember	that	in	sending	a	datagram	across	an	internetwork,	it	may	pass
across	more	than	one	physical	network.	To	access	a	site	on	the	Internet,	for
example,	we	typically	send	a	request	through	our	local	router,	which	then
connects	to	other	routers	that	eventually	relay	the	request	to	the	Internet	site.
Each	hop	as	the	datagram	is	forwarded	may	use	a	different	physical	network,
with	a	different	maximum	underlying	frame	size.

The	whole	idea	behind	a	network	layer	protocol	is	to	implement	this	concept	of	a
virtual	network	where	devices	can	communicate	over	great	distances.	This
means	that	higher	layers	shouldn't	need	to	worry	about	details	like	the	size	limits
of	underlying	data	link	layer	technologies.	This	task	falls	to	IP.

MTU	and	Datagram	Fragmentation
Each	device	on	an	IP	internetwork	must	know	the	capacity	of	its	immediate	data
link	layer	connection	to	other	devices.	This	capacity	is	called	the	maximum
transmission	unit	(MTU)	of	the	network,	also	known	as	the	maximum	transfer
unit.

If	an	IP	layer	receives	a	message	to	be	sent	across	the	internetwork,	it	looks	at
the	size	of	the	message	and	then	computes	how	large	the	IP	datagram	would	be
after	the	addition	of	the	20	or	more	bytes	needed	for	the	IP	header.	If	the	total
length	is	greater	than	the	MTU	of	the	underlying	network,	the	IP	layer	will
fragment	the	message	into	multiple	IP	fragments.	Thus,	if	a	host	is	connected	to
its	local	network	using	an	Ethernet	LAN,	it	may	use	an	MTU	of	1,500	bytes	for
IP	datagrams,	and	it	will	fragment	anything	larger.

Figure	22-1	shows	an	example	of	different	MTUs	and	fragmentation.

TIP

KEY	CONCEPT	The	size	of	the	largest	IP	datagram	that	can	be	transmitted	over	a	physical	network	is
called	that	network's	maximum	transmission	unit	(MTU).	If	a	datagram	is	passed	from	a	network	with	a
high	MTU	to	one	with	a	low	MTU,	it	must	be	fragmented	to	fit	the	other	network's	smaller	MTU.



Since	some	physical	networks	on	the	path	between	devices	may	have	a	smaller
MTU	than	others,	it	may	be	necessary	to	fragment	the	datagram	more	than	once.
For	example,	suppose	the	source	device	wants	to	send	an	IP	message	12,000
bytes	long.	Its	local	connection	has	an	MTU	of	3,300	bytes.	It	will	need	to	divide
this	message	into	four	fragments	for	transmission:	three	that	are	about	3,300
bytes	long	and	a	fourth	remnant	about	2,100	bytes	long.	(I'm	oversimplifying	by
ignoring	the	extra	headers	required;	the	"The	IP	Message	Fragmentation
Process"	section	later	in	this	chapter	includes	the	full	details	of	the	fragmentation
process.)

Figure	22-1.	IP	maximum	transmission	unit	(MTU)	and	fragmentation	In	this	simple	example,	Device	A
is	sending	to	Device	B	over	a	small	internetwork	consisting	of	one	router	and	two	physical	links.	The
link	from	Device	A	to	the	router	has	an	MTU	of	3,300	bytes,	but	from	the	router	to	Device	B,	it	is	only

1,300	bytes.	Thus,	any	IP	datagrams	larger	than	1,300	bytes	will	need	to	be	fragmented.

Multiple-Stage	Fragmentation
While	the	IP	fragments	are	in	transit,	they	may	need	to	pass	over	a	hop	between
two	routers	where	the	physical	network's	MTU	is	only	1,300	bytes.	In	this	case,
each	of	the	fragments	will	again	need	to	be	fragmented.	The	3,300-byte
fragments	will	end	up	in	three	pieces	each	(two	of	about	1,300	bytes	and	one	of
around	700	bytes),	and	the	final	2,100-byte	fragment	will	become	a	1,300-byte
and	800-byte	fragment.	So,	instead	of	having	four	fragments,	we	will	end	up
with	eleven	(3*3+1*2)	fragments,	as	shown	in	Figure	22-2.



Figure	22-2.	IPv4	datagram	fragmentation.	This	example	illustrates	a	two-step	fragmentation	of	a	large
IP	datagram.	The	boxes	represent	datagrams	or	datagram	fragments	and	are	shown	to	scale.	The	original
datagram	is	12,000	bytes,	represented	by	the	large,	gray	box.	To	transmit	this	data	over	the	first	local
link,	Device	A	splits	it	into	four	fragments,	shown	on	the	left.	The	first	router	must	fragment	each	of

these	into	smaller	fragments	to	send	them	over	the	1,300-byte	MTU	link,	as	shown	on	the	bottom.	Note
that	the	second	router	does	not	reassemble	the	1,300-byte	fragments,	even	though	its	link	to	Device	B
has	an	MTU	of	3,300	bytes.	(The	"IP	Fragmentation	Process"	section	later	in	this	chapter	describes	the

process	by	which	the	fragments	in	this	example	are	created.)

Internet	Minimum	MTU:	576	Bytes
Routers	are	required	to	handle	an	MTU	of	at	least	576	bytes.	This	value	is
specified	in	RFC	791;	it	was	chosen	to	allow	a	data	block	of	at	least	512	bytes,
plus	room	for	the	standard	IP	header	and	options.	Since	this	is	the	minimum	size
specified	in	the	IP	standard,	576	bytes	has	become	a	common	default	MTU
value	used	for	IP	datagrams.	Even	if	a	host	is	connected	over	a	local	network
with	an	MTU	larger	than	576	bytes,	it	may	choose	to	use	an	MTU	value	of	576
to	ensure	that	no	further	fragmentation	will	be	required	by	intermediate	routers.

NOTE



While	intermediate	routers	may	further	fragment	an	already-fragmented	IP	message,	they	do	not
reassemble	fragments.	Reassembly	is	done	only	by	the	recipient	device.	This	has	some	advantages	and
some	disadvantages,	as	we	will	see	when	we	examine	the	reassembly	process	in	the	"IP	Message
Reassembly"	section	later	in	this	chapter.

MTU	Path	Discovery
When	we're	trying	to	send	a	great	deal	of	data,	efficiency	in	message
transmissions	becomes	important.	The	larger	the	IP	datagram	we	send,	the
smaller	the	percentage	of	bytes	wasted	for	overhead	such	as	header	fields.	This
means	that,	ideally,	we	want	to	use	the	largest	MTU	possible	without	requiring
fragmentation	for	its	transmission.

To	determine	the	optimal	MTU	to	use	for	a	route	between	two	devices,	we
would	need	to	know	the	MTU	of	every	link	on	that	route—information	that	the
endpoints	of	the	connection	simply	don't	have.	However,	the	connection
endpoint	can	determine	the	MTU	of	the	overall	route	by	using	MTU	path
discovery,	which	uses	an	error-reporting	mechanism	built	into	TCP/IP	Internet
Control	Message	Protocol	(ICMP).

One	of	the	message	types	defined	in	ICMP	version	4	(ICMPv4)	is	the
Destination	Unreachable	message	(see	Chapter	32),	which	is	returned	under
various	conditions	where	an	IP	datagram	cannot	be	delivered.	One	of	these
situations	is	when	a	datagram	is	too	large	to	be	forwarded	by	a	router	over	a
physical	link,	but	this	datagram	has	its	Don't	Fragment	(DF)	flag	set	to	prevent
fragmentation.	In	this	case,	the	datagram	must	be	discarded	and	a	Destination
Unreachable	message	sent	back	to	the	source.	A	device	can	exploit	this
capability	by	testing	the	path	with	datagrams	of	different	sizes,	to	see	how	large
they	must	be	before	they	are	rejected.

The	source	node	typically	sends	a	datagram	that	has	the	MTU	of	its	local
physical	link,	since	that	represents	an	upper	bound	for	any	path	to	or	from	that
device.	If	this	datagram	goes	through	without	any	errors,	the	device	knows	it	can
use	that	value	for	future	datagrams	to	that	destination.	If	it	gets	back	any
Destination	Unreachable	-	Fragmentation	Needed	and	DF	Set	messages,	it
knows	that	a	link	between	it	and	the	destination	has	a	smaller	MTU.	It	tries	again
using	a	smaller	datagram	size,	and	it	continues	until	it	finds	the	largest	MTU	that
can	be	used	on	the	path.



can	be	used	on	the	path.



IP	Message	Fragmentation	Process
As	explained	in	the	previous	section,	when	an	IP	datagram	is	too	large	for	the
MTU	of	the	underlying	data	link	layer	technology	used	for	the	next	leg	of	its
journey,	it	must	be	fragmented	before	it	can	be	sent	across	the	network.	The
higher-layer	message	to	be	transmitted	is	not	sent	in	a	single	IP	datagram,	but
rather	broken	down	into	fragments	that	are	sent	separately.	In	some	cases,	the
fragments	themselves	may	need	to	be	fragmented	further.

Fragmentation	is	key	to	implementing	a	network-layer	internetwork	that	is
independent	of	lower-layer	details,	but	it	introduces	significant	complexity	to	IP.
Remember	that	IP	is	an	unreliable,	connectionless	protocol.	IP	datagrams	can
take	any	of	several	routes	on	their	way	from	the	source	to	the	destination,	and
some	may	not	even	make	it	to	the	destination	at	all.	When	a	message	is
fragmented,	this	converts	a	single	datagram	into	many,	which	introduces	several
new	concerns:

Sequencing	and	Placement	The	fragments	will	typically	be	sent	in	sequential
order	from	the	beginning	of	the	message	to	the	end,	but	they	won't	necessarily
show	up	in	the	order	in	which	they	were	sent.	The	receiving	device	must	be	able
to	determine	the	sequence	of	the	fragments	to	reassemble	them	in	the	correct
order.	In	fact,	some	implementations	send	the	last	fragment	first,	so	the	receiving
device	will	immediately	know	the	full	size	of	the	original,	complete	datagram.
This	makes	keeping	track	of	the	order	of	segments	even	more	essential.

Separation	of	Fragmented	Messages	A	source	device	may	need	to	send	more
than	one	fragmented	message	at	a	time,	or	it	may	send	multiple	datagrams	that
are	fragmented	en	route.	This	means	that	the	destination	may	be	receiving
multiple	sets	of	fragments	that	must	be	put	back	together.	Imagine	a	box
containing	pieces	from	two,	three,	or	more	jigsaw	puzzles,	and	you	understand
this	issue.

Completion	The	destination	device	must	be	able	to	tell	when	it	has	received	all
of	the	fragments	so	it	knows	when	to	start	reassembly	(or	when	to	give	up	if	it
didn't	get	all	the	pieces).

To	address	these	concerns	and	allow	the	proper	reassembly	of	the	fragmented
message,	IP	includes	several	fields	in	the	IP	format	header	that	convey



message,	IP	includes	several	fields	in	the	IP	format	header	that	convey
information	from	the	source	to	the	destination	about	the	fragments.	Some	of
these	fields	contain	a	common	value	for	all	the	fragments	of	the	message;	others
are	different	for	each	fragment.

The	IP	Fragmentation	Process
The	device	performing	the	fragmentation	follows	a	specific	algorithm	to	divide
the	message	into	fragments	for	transmission.	The	exact	implementation	of	the
fragmentation	process	depends	on	the	device.	For	example,	consider	an	IP
message	12,000	bytes	wide	(including	the	20-byte	IP	header)	that	needs	to	be
sent	over	a	link	with	an	MTU	of	3,300	bytes.	Figure	22-3	depicts	a	typical
method	by	which	this	fragmentation	might	be	performed.



Figure	22-3.	IPv4	datagram	fragmentation	process	In	this	diagram,	the	MF	and	Fragment	Offset	fields
of	each	fragment	are	shown	for	reference.	The	Data	fields	are	shown	to	scale	(the	length	of	each	is

proportional	to	the	number	of	bytes	in	the	fragment).

The	four	fragments	shown	in	Figure	22-3	are	created	as	follows:

The	first	fragment	is	created	by	taking	the	first	3,300	bytes	of	the	12,000-byte
IP	datagram.	This	includes	the	original	header,	which	becomes	the	IP	header
of	the	first	fragment	(with	certain	fields	changed,	as	described	in	the	next
section).	So,	3,280	bytes	of	data	are	in	the	first	fragment.	This	leaves	8,700
bytes	(11,980–3,280)	to	encapsulate.

The	next	3,280	bytes	of	data	are	taken	from	the	8,700	bytes	that	remain	after



the	first	fragment	is	built	and	paired	with	a	new	header	to	create	the	second
fragment.	This	leaves	5,420	bytes.

The	third	fragment	is	created	from	the	next	3,280	bytes	of	data,	with	a	20-
byte	header.	This	leaves	2,140	bytes	of	data.

The	remaining	2,140	bytes	are	placed	into	the	fourth	fragment,	with	a	20-byte
header.

There	are	two	important	points	here.	First,	IP	fragmentation	does	not	work	by
fully	encapsulating	the	original	IP	message	into	the	Data	fields	of	the	fragments.
If	this	were	the	case,	the	first	20	bytes	of	the	Data	field	of	the	first	fragment
would	contain	the	original	IP	header.	(This	technique	is	used	by	some	other
protocols,	such	as	the	PPP	Multilink	Protocol,	discussed	in	Chapter	9.)	The
original	IP	header	is	transformed	into	the	IP	header	of	the	first	fragment.

Second,	note	that	the	total	number	of	bytes	transmitted	increases:	we	are	sending
12,060	bytes	(3,300*3+2,160),	instead	of	12,000	bytes.	The	extra	60	bytes	are
from	the	additional	headers	in	the	second,	third,	and	fourth	fragments.	(The
increase	in	size	could	theoretically	be	even	larger	if	the	headers	contain	options.)

Fragmentation-Related	IP	Datagram	Header
Fields
When	a	sending	device	or	router	fragments	a	datagram,	it	must	provide
information	that	will	allow	the	receiving	device	to	identify	the	fragments	and
reassemble	them	into	the	original	datagram.	This	information	is	recorded	by	the
fragmenting	device	in	a	number	of	fields	in	the	IP	datagram	header:

Total	Length	After	fragmenting,	the	Total	Length	field	indicates	the	length	of
each	fragment,	not	the	length	of	the	overall	message.	Normally,	the	fragment
size	is	selected	to	match	the	MTU	value	in	bytes.	However,	fragments	must	have
a	length	that	is	a	multiple	of	8,	to	allow	proper	offset	specification	(handled	by
the	Fragment	Offset	field).	The	last	fragment	will	usually	be	shorter	than	the
others	because	it	will	contain	a	leftover	piece,	unless	the	message	length	happens
to	be	an	exact	multiple	of	the	fragment	size.

Identification	To	solve	the	problem	of	pieces	from	many	jigsaw	puzzles	in	the
same	box,	a	unique	identifier	is	assigned	to	each	message	being	fragmented.



This	is	like	writing	a	different	number	on	the	bottom	of	each	piece	of	a	jigsaw
puzzle	before	tossing	it	in	the	box.	This	value	is	placed	in	the	Identification	field
in	the	IP	header	of	each	fragment	sent.	The	Identification	field	is	16	bits	wide,	so
a	total	of	65,536	different	identifiers	can	be	used.	Obviously,	we	want	to	make
sure	that	each	message	that	is	being	fragmented	for	delivery	has	a	different
identifier.	The	source	can	decide	how	it	generates	unique	identifiers.	This	may
be	done	through	something	as	simple	as	a	counter	that	is	incremented	each	time
a	new	set	of	fragments	is	created.

More	Fragments	The	More	Fragments	flag	is	set	to	a	1	for	all	fragments	except
the	last	one,	which	has	it	set	to	0.	When	the	fragment	with	a	value	of	0	in	the
More	Fragments	flag	is	seen,	the	destination	knows	it	has	received	the	last
fragment	of	the	message.

Fragment	Offset	The	Fragment	Offset	field	solves	the	problem	of	sequencing
fragments	by	indicating	to	the	recipient	device	where	in	the	overall	message
each	particular	fragment	should	be	placed.	The	field	is	13	bits	wide,	so	the	offset
can	be	from	0	to	8,191.	Fragments	are	specified	in	units	of	8	bytes,	which	is	why
fragment	length	must	be	a	multiple	of	8.	Uncoincidentally,	8,191*8	is	65,528,
just	about	the	maximum	size	allowed	for	an	IP	datagram.	In	the	example	shown
in	Figure	22-3,	the	first	fragment	would	have	a	Fragment	Offset	of	0,	the	second
would	have	an	offset	of	410	(3,280/8),	the	third	would	have	an	offset	of	820
(6,560/8),	and	the	fourth	would	have	an	offset	of	1,230.

An	IP	datagram	has	a	couple	of	other	fields	related	to	fragmentation.	First,	if	a
datagram	containing	options	must	be	fragmented,	some	of	the	options	may	be
copied	to	each	of	the	fragments.	This	is	controlled	by	the	Copied	flag	in	each
option	field.

Second,	in	the	IP	header,	there	is	a	flag	called	Don't	Fragment.	This	field	can	be
set	to	1	by	a	transmitting	device	to	specify	that	a	datagram	should	not	be
fragmented	in	transit.	This	may	be	used	in	certain	circumstances	where	the	entire
message	must	be	delivered	intact	for	some	reason.	It	may	also	be	used	if	the
destination	device	has	a	limited	IP	implementation	and	cannot	reassemble
fragments,	and	it	is	also	used	for	testing	the	MTU	of	a	link.	Normally,	however,
devices	don't	care	about	fragmentation,	and	this	field	is	left	at	0.

If	a	router	encounters	a	datagram	too	large	to	pass	over	the	next	physical
network	but	with	the	Don't	Fragment	bit	set	to	1,	it	cannot	fragment	the



network	but	with	the	Don't	Fragment	bit	set	to	1,	it	cannot	fragment	the
datagram	and	it	cannot	pass	it	along	either,	so	it	is	stuck.	It	will	generally	drop
the	datagram	and	return	an	ICMP	Destination	Unreachable	error	message:
"Fragmentation	Needed	and	Don't	Fragment	Bit	Set."	This	is	used	in	MTU	path
discovery,	as	described	earlier	in	this	chapter.

TIP

KEY	CONCEPT	When	an	MTU	requirement	forces	a	datagram	to	be	fragmented,	it	is	split	into	several
smaller	IP	datagrams,	each	containing	part	of	the	original.	The	header	of	the	original	datagram	is
changed	into	the	header	of	the	first	fragment,	and	new	headers	are	created	for	the	other	fragments.	Each
is	set	to	the	same	Identification	value	to	mark	them	as	part	of	the	same	original	datagram.	The	Fragment
Offset	of	each	is	set	to	the	location	where	the	fragment	belongs	in	the	original.	The	More	Fragments
field	is	set	to	1	for	all	fragments	but	the	last,	to	let	the	recipient	know	when	it	has	received	all	the
fragments.



IP	Message	Reassembly
When	a	datagram	is	fragmented,	it	becomes	multiple	fragment	datagrams.	The
destination	of	the	overall	message	must	collect	these	fragments	and	reassemble
them	into	the	original	message.

While	reassembly	is	the	complement	to	fragmentation,	the	two	processes	are	not
symmetric.	A	primary	differentiation	between	the	two	is	that	intermediate
routers	can	fragment	a	single	datagram	or	further	fragment	a	datagram	that	is
already	a	fragment,	but	intermediate	devices	do	not	perform	reassembly;
reassembly	happens	only	at	the	message's	ultimate	destination.	Thus,	if	a
datagram	at	an	intermediate	router	on	one	side	of	a	physical	network	with	an
MTU	of	1,300	bytes	causes	fragmentation	of	a	3,300-byte	datagram,	the	router
on	the	other	end	of	this	1,300	MTU	link	will	not	restore	the	3,300-byte	datagram
to	its	original	state.	It	will	send	all	the	1,300-byte	fragments	on	down	the
internetwork,	as	shown	in	Figure	22-2,	earlier	in	the	chapter.

In	IP	version	4	(IPv4),	fragmentation	can	be	performed	by	a	router	between	the
source	and	destination	of	an	IP	datagram,	but	reassembly	is	done	only	by	the
destination	device.

There	are	a	number	of	reasons	why	the	decision	was	made	to	implement	IP
reassembly	this	way.	Perhaps	the	most	important	reason	is	that	fragments	can
take	different	routes	to	get	from	the	source	to	destination,	so	any	given	router
may	not	see	all	the	fragments	in	a	message.	Another	reason	is	that	if	routers
needed	to	worry	about	reassembling	fragments,	their	complexity	would	increase.
Finally,	reassembly	of	a	message	requires	that	we	wait	for	all	fragments	before
sending	on	the	reassembled	message.	Having	routers	do	this	would	slow	down
routing.	Since	routers	don't	reassemble	messages,	they	can	immediately	forward
all	fragments	on	to	the	ultimate	recipient.

However,	there	are	drawbacks	to	this	design	as	well.	One	is	that	it	results	in
more,	smaller	fragments	traveling	over	longer	routes	than	if	intermediate
reassembly	occurred.	This	increases	the	chances	of	a	fragment	getting	lost	and
the	entire	message	being	discarded.	Another	is	a	potential	inefficiency	in	the
utilization	of	data	link	layer	frame	capacity.	In	the	example	of	a	3,300-byte
datagram	being	fragmented	for	a	1,300-byte	MTU	link,	the	1,300-byte	fragments
would	not	be	reassembled	back	into	a	3,300-byte	datagram	at	the	end	of	the



would	not	be	reassembled	back	into	a	3,300-byte	datagram	at	the	end	of	the
1,300-MTU	link.	If	the	next	link	after	that	one	also	had	an	MTU	of	3,300	bytes,
we	would	need	to	send	three	frames,	each	encapsulating	a	1,300-byte	fragment,
instead	of	a	single	larger	frame,	which	is	slightly	slower.

As	described	in	the	previous	section,	several	IP	header	fields	are	filled	in	when	a
message	is	fragmented	to	give	the	receiving	device	the	information	it	requires	to
properly	reassemble	the	fragments.	The	receiving	device	follows	a	procedure	to
keep	track	of	the	fragments	as	they	are	received	and	build	up	its	copy	of	the	total
received	message	from	the	source	device.	Most	of	its	efforts	are	geared	toward
dealing	with	the	potential	difficulties	associated	with	IP	being	an	unreliable
protocol.

The	details	of	implementation	of	the	reassembly	process	are	specific	to	each
device,	but	reassembly	generally	includes	the	following	functions:

Fragment	Recognition	and	Fragmented	Message	Identification	The	recipient
knows	it	has	received	a	message	fragment	the	first	time	it	sees	a	datagram	with
the	More	Fragments	bit	set	to	1	or	the	Fragment	Offset	a	value	other	than	0.	It
identifies	the	message	based	on	the	source	and	destination	IP	addresses,	the
protocol	specified	in	the	header,	and	the	Identification	field	generated	by	the
sender.

Buffer	Initialization	The	receiving	device	initializes	a	buffer	where	it	can	store
the	fragments	of	the	message	as	they	are	received.	It	keeps	track	of	which
portions	of	this	buffer	have	been	filled	with	received	fragments,	perhaps	using	a
special	table.	By	doing	this,	it	knows	when	the	buffer	is	partially	filled	with
received	fragments	and	when	it	is	completely	full.

Timer	Initialization	The	receiving	device	sets	up	a	timer	for	reassembly	of	the
message.	Since	it	is	possible	that	some	fragments	may	never	show	up,	this	timer
ensures	that	the	device	will	not	wait	an	infinite	time	trying	to	reassemble	the
message.

Fragment	Receipt	and	Processing	Whenever	a	fragment	of	this	message
arrives	(as	indicated	by	it	having	the	same	source	and	destination	addresses,
protocol,	and	Identification	as	the	first	fragment),	the	fragment	is	processed.	It	is
inserted	into	the	message	buffer	in	the	location	indicated	by	its	Fragment	Offset



field.	The	device	also	makes	note	of	the	fact	that	this	portion	of	the	message	has
been	received.

Reassembly	is	complete	when	the	entire	buffer	has	been	filled	and	the	fragment
with	the	More	Fragments	bit	set	to	0	is	received,	indicating	that	it	is	the	last
fragment	of	the	datagram.	The	reassembled	datagram	is	then	processed	in	the
same	way	as	a	normal,	unfragmented	datagram.	On	the	other	hand,	if	the	timer
for	the	reassembly	expires	with	any	of	the	fragments	missing,	the	message
cannot	be	reconstructed.	The	fragments	are	discarded,	and	an	ICMP	Time
Exceeded	message	is	generated.	Since	IP	is	unreliable,	it	relies	on	higher-layer
protocols	such	as	the	Transmission	Control	Protocol	(TCP)	to	determine	that	the
message	was	not	properly	received	and	then	retransmit	it.



Chapter	23.	IP	ROUTING	AND
MULTICASTING

The	essential	functions	of	Internet	Protocol	(IP)	datagram	encapsulation	and
addressing	are	sometimes	compared	to	putting	a	letter	in	an	envelope	and	then
writing	the	address	of	the	recipient	on	it.	Once	our	IP	datagram	"envelope"	is
filled	and	labeled,	it	is	ready	to	go,	but	it's	still	sitting	on	our	desk.	The	last	of	the
main	functions	of	IP	is	to	get	the	envelope	to	our	intended	recipient.	This	is	the
process	of	datagram	delivery.	When	the	recipient	is	not	on	our	local	network,
this	delivery	requires	that	the	datagram	be	routed	from	our	network	to	the	one
where	the	destination	resides.

This	chapter	concludes	our	look	at	IP	version	4	(IPv4)	with	a	discussion	of	some
of	the	particulars	of	how	it	routes	datagrams	over	an	internetwork.	I	begin	with
an	overview	of	the	process	and	contrast	direct	and	indirect	delivery	of	data
between	devices.	I	discuss	the	main	method	used	to	route	datagrams	over	the
internetwork,	and	I	explain	briefly	how	IP	routing	tables	are	built	and
maintained.	I	describe	how	the	move	from	classful	to	classless	addressing	using
Classless	Inter-Domain	Routing	(CIDR)	has	impacted	routing.

I	conclude	with	a	brief	look	at	the	issues	related	to	IP	multicasting.	Multicasting
isn't	really	a	part	of	routing,	but	many	of	the	issues	in	multicasting	are	related	to
datagram	delivery	and	routing.

TIP

RELATED	INFORMATION	This	chapter	focuses	on	routing	issues	that	are	directly	related	to	how	IP
works.	Routing	is	a	complex	and	important	topic	in	networking,	and	you'll	find	much	more	information
about	it	in	Chapters	Chapter	37	through	Chapter	41.



IP	Datagram	Delivery
The	overall	job	of	IP	is	to	transmit	messages	from	higher-layer	protocols	over	an
internetwork	of	devices.	These	messages	must	be	packaged	and	addressed,	and
fragmented	if	necessary,	and	then	they	must	be	delivered.	The	process	of
delivery	can	be	either	simple	or	complex,	depending	on	the	proximity	of	the
source	and	destination	devices.	We	can	divide	all	IP	datagram	deliveries	into	two
general	types:	direct	delivery	and	indirect	delivery.	Figure	23-1	shows	some
examples	of	IP	datagram	delivery	types.

Figure	23-1.	Direct	and	indirect	(routed)	delivery	of	IP	datagrams	This	diagram	shows	three	examples
of	IP	datagram	delivery.	The	first	transmission	(#1,	dark	arrow)	shows	a	direct	delivery	between	two
devices	on	the	local	network.	The	second	(#2,	light	arrow)	shows	indirect	delivery	within	the	local

network,	between	a	client	and	server	separated	by	a	router.	The	third	(#3,	medium	arrow)	shows	a	more
distant	indirect	delivery,	between	a	client	on	the	local	network	and	a	server	across	the	Internet.

Direct	Datagram	Delivery
When	datagrams	are	sent	between	two	devices	on	the	same	physical	network,	the
datagrams	may	be	delivered	directly	from	the	source	to	the	destination.	For
example,	if	you	wanted	to	deliver	a	letter	to	a	neighbor	on	your	street,	you	would
probably	just	put	her	name	on	the	envelope	and	stick	it	right	in	her	mailbox.

Direct	delivery	is	obviously	a	simple	delivery	method.	The	source	simply	sends
the	IP	datagram	down	to	its	data	link	layer	implementation.	The	data	link	layer
encapsulates	the	datagram	in	a	frame	that	is	sent	over	the	physical	network
directly	to	the	recipient's	data	link	layer,	which	passes	it	up	to	the	IP	layer.



directly	to	the	recipient's	data	link	layer,	which	passes	it	up	to	the	IP	layer.

Indirect	Datagram	Delivery	(Routing)
When	two	devices	are	not	on	the	same	physical	network,	the	delivery	of
datagrams	from	one	to	the	other	is	indirect.	Since	the	source	device	cannot	see
the	destination	on	its	local	network,	it	must	send	the	datagram	through	one	or
more	intermediate	devices	to	deliver	it.	Indirect	delivery	is	like	mailing	a	letter
to	a	friend	in	a	different	city.	You	don't	deliver	it	yourself;	you	use	the	postal
system.	The	letter	journeys	through	the	postal	system,	possibly	taking	several
intermediate	steps,	and	ends	up	in	your	friend's	neighborhood,	where	a	postal
carrier	puts	it	into	his	mailbox.

Indirect	delivery	is	much	more	complicated,	because	we	can't	send	the	data
straight	to	the	recipient.	In	fact,	we	usually	will	not	even	know	exactly	where	the
recipient	is.	Sure,	we	have	its	address,	but	we	may	not	know	what	network	it	is
on,	or	where	that	network	is	relative	to	our	own.	(If	I	told	you	my	address,	you
would	know	it's	somewhere	in	Bennington,	Vermont,	but	could	you	find	it?)	Just
as	we	must	rely	on	the	postal	system	in	the	envelope	analogy,	we	must	rely	on
the	internetwork	itself	to	indirectly	deliver	datagrams.	And	like	the	postal
system,	IP	doesn't	require	you	to	know	how	to	get	the	message	to	its	recipient;
you	just	put	it	into	the	system.

The	devices	that	accomplish	this	magic	of	indirect	delivery	are	generally	known
as	routers,	and	indirect	delivery	is	more	commonly	called	routing.	Like
entrusting	a	letter	to	your	local	mail	carrier	or	mailbox,	a	host	that	needs	to
deliver	a	message	to	a	distant	device	generally	sends	datagrams	to	its	local
router.	The	router	connects	to	one	or	more	other	routers,	and	they	each	maintain
information	about	where	to	send	datagrams	so	that	they	reach	their	final
destination.

Indirect	delivery	is	almost	always	required	when	communicating	with	distant
devices,	such	as	those	on	the	Internet	or	across	a	wide	area	network	(WAN)	link.
However,	it	may	also	be	needed	even	to	send	a	message	to	a	device	in	the	next
room	of	your	office,	if	that	device	is	not	connected	directly	to	your	device	at
layer	2.



NOTE

In	the	past,	routers	were	often	called	gateways.	Today,	this	term	more	generally	can	refer	to	devices	that
connect	networks	in	a	variety	of	ways.	You	will	still	sometimes	hear	routers	called	gateways,	especially
in	the	context	of	terms	like	default	gateway,	but	since	it	is	ambiguous,	the	term	router	is	preferred.

The	Relationship	Between	Datagram	Routing
and	Addressing
Each	time	a	datagram	is	to	be	sent,	the	sender	must	determine	first	whether	it	can
be	delivered	directly	or	if	routing	is	required.	IP	addressing	is	what	allows	a
device	to	quickly	determine	whether	or	not	it	is	on	the	same	network	as	its
intended	recipient.	The	following	are	the	three	main	categories	of	addressing
(see	Chapter	16):

Conventional	Classful	Addressing	We	know	the	class	of	each	address	by
looking	at	the	first	few	bits.	This	tells	us	which	bits	of	an	address	are	the	network
ID.	If	the	network	ID	of	the	destination	is	the	same	as	our	own,	the	recipient	is
on	the	same	network;	otherwise,	it	is	not.	Refer	to	Chapter	17	for	more	on
classful	addressing.

Subnetted	Classful	Addressing	We	use	our	subnet	mask	to	determine	our
network	ID	and	subnet	ID	and	that	of	the	destination	address.	If	the	network	ID
and	subnet	are	the	same,	the	recipient	is	on	the	same	subnet.	If	only	the	network
ID	is	the	same,	the	recipient	is	on	a	different	subnet	of	the	same	network.	If	the
network	ID	is	different,	the	destination	is	on	a	different	network	entirely.	See
Chapter	18	for	a	full	discussion	of	subnetting.

Classless	Addressing	The	same	basic	technique	is	used	as	for	subnetted	classful
addressing,	except	that	there	are	no	subnets.	We	use	the	slash	number	to
determine	what	part	of	the	address	is	the	network	ID	and	compare	the	source	and
destination	as	before;	see	Chapter	20.	(There	are	complications	here,	however,	as
discussed	in	the	"IP	Routing	in	a	Subnet	or	Classless	Addressing	(CIDR)
Environment"	section	later	in	this	chapter.)

TIP

KEY	CONCEPT	The	delivery	of	IP	datagrams	is	divided	into	two	categories:	direct	and	indirect.	Direct
delivery	is	possible	when	two	devices	are	on	the	same	physical	network.	When	they	are	not,	indirect



delivery,	more	commonly	called	routing,	is	required	to	get	the	datagrams	from	the	source	to	the
destination.	A	device	can	tell	which	type	of	delivery	is	required	by	looking	at	the	IP	address	of	the
destination,	in	conjunction	with	supplemental	information	such	as	the	subnet	mask,	which	tells	the
device	what	network	or	subnet	it	is	on.

The	determination	of	what	type	of	delivery	is	required	is	the	first	step	in	the
source	deciding	where	to	send	a	datagram.	If	it	realizes	the	destination	is	on	the
same	local	network,	it	will	address	the	datagram	to	the	recipient	directly	at	the
data	link	layer.	Otherwise,	it	will	send	the	datagram	to	the	data	link	layer	address
of	one	of	the	routers	to	which	it	is	connected.	The	IP	address	of	the	datagram
will	still	be	that	of	the	ultimate	destination.	Mapping	between	IP	addresses	and
data	link	layer	addresses	is	accomplished	using	the	TCP/IP	Address	Resolution
Protocol	(ARP),	which	is	discussed	in	Chapter	13.

Routing	is	done	in	indirect	delivery	to	get	the	datagram	to	the	local	network	of
the	recipient.	Once	the	datagram	has	been	routed	to	the	recipient's	physical
network,	it	is	sent	to	the	recipient	by	the	recipient's	local	router.	So,	you	could
say	that	indirect	delivery	includes	direct	delivery	as	its	final	step.

NOTE

Strictly	speaking,	any	process	of	delivery	between	a	source	and	destination	device	can	be	considered
routing,	even	if	the	devices	are	on	the	same	network.	It	is	common,	however,	for	the	process	of	routing
to	refer	more	specifically	to	indirect	delivery.



IP	Routing	Concepts	and	the	Process	of	Next-
Hop	Routing
IP's	ability	to	route	information	is	what	allows	us	to	use	it	to	create	the
equivalent	of	a	virtual	internetwork	that	spans	potentially	thousands	of	physical
networks,	allowing	devices	even	on	opposite	ends	of	the	globe	communicate.
Let's	take	a	brief	look	at	key	IP	routing	concepts.

To	continue	with	our	postal	system	analogy,	I	can	send	a	letter	from	my	home	in
the	United	States	to	someone	in,	say,	India,	and	the	postal	systems	of	both
countries	will	work	(or	should	work)	to	deliver	the	letter	to	its	destination.
However,	when	I	drop	a	letter	in	the	mailbox,	it's	not	like	someone	shows	up,
grabs	the	letter,	and	hand-delivers	it	to	the	right	address	in	India.	The	letter
travels	from	the	mailbox	to	my	local	post	office.	From	there,	it	probably	goes	to
a	regional	distribution	center,	and	then	from	there,	to	a	hub	for	international
traffic.	It	goes	to	India,	perhaps	via	an	intermediate	country.	When	it	gets	to
India,	the	Indian	postal	system	uses	its	own	network	of	offices	and	facilities	to
route	the	letter	to	its	destination.	The	envelope	hops	from	one	location	to	the
next,	until	it	reaches	its	destination.

IP	routing	works	in	very	much	the	same	manner.	Even	though	IP	lets	devices
connect	over	the	internetwork	using	indirect	delivery,	all	of	the	actual
communication	of	datagrams	occurs	over	physical	networks	using	routers.	We
don't	know	exactly	where	the	destination	device's	network	is,	and	we	certainly
don't	have	any	way	to	connect	directly	to	each	of	the	thousands	of	networks	out
there.	Instead,	we	rely	on	these	intermediate	devices—routers—that	are	each
physically	connected	to	each	other	in	a	variety	of	ways	to	form	a	mesh
containing	millions	of	paths	between	networks.	The	datagram	is	handed	off	from
one	router	to	the	next,	until	it	gets	to	the	physical	network	of	the	destination
device.	This	process	is	called	next-hop	routing,	as	illustrated	in	Figure	23-2.

This	is	a	critical	concept	in	how	IP	works:	routing	is	done	step	by	step,	one	hop
at	a	time.	When	we	decide	to	send	a	datagram	to	a	device	on	a	distant	network,
we	don't	know	the	exact	path	that	the	datagram	will	take;	we	have	only	enough
information	to	send	it	to	the	correct	router	to	which	we	are	attached.	That	router,
in	turn,	looks	at	the	IP	address	of	the	destination	and	decides	where	the	datagram
should	hop	to	next.	This	process	continues	until	the	datagram	reaches	the



should	hop	to	next.	This	process	continues	until	the	datagram	reaches	the
destination	host's	network.

At	first,	next-hop	routing	may	seem	like	a	strange	way	of	sending	datagrams
over	an	internetwork.	In	fact,	it	is	part	of	what	makes	IP	so	powerful.	On	each
step	of	the	journey	to	any	other	host,	a	router	needs	to	know	only	where	the	next
step	for	the	datagram	is.	Without	this	concept,	each	device	and	router	would
need	to	know	what	path	to	take	to	every	other	host	on	the	internetwork,	which
would	be	quite	impractical.

TIP

KEY	CONCEPT	Indirect	delivery	of	IP	datagrams	is	accomplished	using	a	process	called	next-hop
routing,	where	each	message	is	handed	from	one	router	to	the	next	until	it	reaches	the	network	of	the
destination.	The	main	advantage	of	this	is	that	each	router	needs	to	know	only	which	neighboring	router
should	be	the	next	recipient	of	a	given	datagram,	rather	than	needing	to	know	the	exact	route	to	every
destination	network.

Figure	23-2.	IP	datagram	next-hop	routing	This	is	the	same	diagram	as	that	shown	in	Figure	23-1,
except	it	explicitly	shows	the	hops	taken	by	each	of	the	three	sample	transmissions.	The	direct	delivery
of	the	first	transmission	has	only	one	hop	(remember	that	the	switch	doesn't	count	because	it	is	invisible

at	layer	3).	The	local	indirect	delivery	passes	through	one	router,	so	it	has	two	hops.	The	Internet
delivery	has	six	hops.	(Actual	Internet	routes	can	be	much	longer.)

Another	key	concept	related	to	the	principle	of	next-hop	routing	is	that	routers,
not	hosts,	are	designed	to	accomplish	routing.	Most	hosts	are	connected	to	the



rest	of	the	internetwork	(or	Internet)	using	only	one	router.	It	would	be	a
maintenance	nightmare	to	need	to	give	each	host	the	intelligence	to	know	how	to
route	to	every	other	host.	Instead,	hosts	decide	only	if	they	are	sending	to	their
own	local	network	or	to	another	network.	If	the	destination	is	another	network,	a
host	just	sends	the	datagram	to	its	router	and	says,	"Here,	you	take	care	of	this."
If	a	host	has	a	connection	to	more	than	one	router,	it	needs	to	know	only	which
router	to	use	for	certain	sets	of	distant	networks.

Again,	each	hop	consists	of	the	traversal	of	a	physical	network.	Once	a	source
sends	a	datagram	to	its	local	router,	the	data	link	layer	on	the	router	passes	it	up
to	the	router's	IP	layer.	There,	the	datagram's	header	is	examined,	and	the	router
decides	which	device	should	get	the	datagram	next.	It	then	passes	the	datagram
back	down	to	the	data	link	layer	to	be	sent	over	one	of	the	router's	physical
network	links,	typically	to	another	router.	The	router	will	have	a	record	of	the
physical	addresses	of	the	routers	to	which	it	is	connected,	or	it	will	use	ARP	to
determine	these	addresses.



IP	Routes	and	Routing	Tables
As	described	in	the	previous	section,	routers	are	responsible	for	forwarding
traffic	on	an	IP	internetwork.	Each	router	accepts	datagrams	from	a	variety	of
sources,	examines	the	IP	address	of	the	destination,	and	decides	the	next	hop	that
the	datagram	needs	to	take	to	get	it	that	much	closer	to	its	final	destination.	But
how	does	a	router	know	where	to	send	different	datagrams?

Each	router	maintains	a	set	of	information	that	provides	a	mapping	between
different	network	IDs	and	the	other	routers	to	which	it	is	connected.	This
information	is	contained	in	a	data	structure	normally	called	a	routing	table.	Each
entry	in	the	table,	called	a	routing	entry,	provides	information	about	one	network
(or	subnetwork	or	host).	It	basically	says,	"If	the	destination	of	this	datagram	is
in	the	following	network,	the	next	hop	you	should	take	is	to	the	following
device."	Each	time	a	datagram	is	received,	the	router	checks	its	destination	IP
address	against	the	routing	entries	in	its	table	to	decide	where	to	send	the
datagram	and	then	sends	it	on	to	its	next	hop.

TIP

KEY	CONCEPT	A	router	make	decisions	about	how	to	route	datagrams	using	its	internal	routing	table.
The	table	contains	entries	specifying	to	which	router	datagrams	should	be	sent	in	order	to	reach	a
particular	network.

Obviously,	the	fewer	entries	in	this	table,	the	faster	the	router	can	decide	what	to
do	with	datagrams.	(This	was	a	big	part	of	the	motivation	for	classless
addressing,	which	aggregates	routes	into	supernetworks	to	reduce	router	table
size,	as	described	in	the	next	section.)	Some	routers	have	connections	to	only
two	other	devices,	so	they	don't	have	much	of	a	decision	to	make.	Typically,	the
router	will	simply	take	datagrams	coming	from	one	of	its	interfaces	and,	if
necessary,	send	them	out	on	the	other	one.	For	example,	consider	a	small
company's	router	acting	as	the	interface	between	a	network	of	three	hosts	and	the
Internet.	Any	datagrams	sent	to	the	router	from	a	host	on	this	network	will	need
to	go	over	the	router's	connection	to	the	router	at	the	Internet	service	provider
(ISP).

When	a	router	has	connections	to	more	than	two	devices,	things	become
considerably	more	complex.	A	certain	distant	network	may	be	more	easily



considerably	more	complex.	A	certain	distant	network	may	be	more	easily
reachable	using	a	particular	connection.	The	routing	table	not	only	contains
information	about	the	networks	directly	connected	to	the	router,	but	also
information	that	the	router	has	learned	about	more	distant	networks.

Figure	23-3	shows	an	example	with	four	routers.	Routers	R1,	R2,	and	R3	are
connected	in	a	triangle,	so	that	each	router	can	send	directly	to	the	others,	as	well
as	to	its	own	local	network.	R1's	local	network	is	11.0.0.0/8,	R2's	is	12.0.0.0/8,
and	R3's	is	13.0.0.0/8.	R1	knows	that	any	datagram	it	sees	with	11	as	the	first
octet	is	on	its	local	network.	It	will	also	have	a	routing	entry	that	says	that	any	IP
address	starting	with	12	should	go	to	R2,	and	any	IP	address	starting	with	13
should	go	to	R3.	R1	also	connects	to	router	R4,	which	has	14.0.0.0/8	as	its	local
network.	R1	will	have	an	entry	for	this	local	network,	but	R2	and	R3	also	need
to	know	how	to	reach	14.0.0.0/8,	even	though	they	don't	connect	to	its	router
directly.	Most	likely,	they	will	have	an	entry	that	says	that	any	datagrams
intended	for	14.0.0.0/8	should	be	sent	to	R1.	R1	will	then	forward	them	to	R4.
Similarly,	R4	will	send	any	traffic	intended	for	12.0.0.0/8	or	13.0.0.0/8	through
R1.

Figure	23-3.	IP	routing	and	routing	tables	This	diagram	shows	a	small,	simple	internetwork	consisting
of	four	LANs	each	served	by	a	router.	The	routing	table	for	each	lists	the	router	to	which	datagrams	for
each	destination	network	should	be	sent.	Notice	that	due	to	the	triangle,	R1,	R2,	and	R3	can	send	to



each	other.	However,	R2	and	R3	must	send	through	R1	to	deliver	to	R4,	and	R4	must	use	R1	to	reach
either	of	the	others.

Now,	imagine	that	this	process	is	expanded	to	handle	thousands	of	networks	and
routers.	Not	only	do	routers	need	to	know	which	of	their	local	connections	to	use
for	each	network,	but	they	want	to	know,	if	possible,	what	is	the	best	connection
to	use	for	each	network.	Since	routers	are	interconnected	in	a	mesh,	there	are
usually	multiple	routes	between	any	two	devices,	but	we	want	to	take	the	best
route	whenever	we	can.	This	may	be	the	shortest	route,	the	least	congested	route,
or	the	route	considered	optimal	based	on	other	criteria.

Determining	which	routes	we	should	use	for	different	networks	is	an	important
but	very	complex	job.	Routers	plan	routes	and	exchange	information	about
routes	and	networks	using	IP	routing	protocols.	R2	and	R3	use	these	protocols	to
find	out	that	14.0.0.0/8	exists	and	that	it	is	connected	to	them	via	R1.	(I	discuss
these	support	protocols	in	Chapters	Chapter	37	through	Chapter	41.)

NOTE

There	is	a	difference	between	a	routable	protocol	and	a	routing	protocol.	IP	is	a	routable	protocol,	which
means	its	messages	(datagrams)	can	be	routed.	Examples	of	routing	protocols	are	the	Routing
Information	Protocol	(RIP)	and	Border	Gateway	Protocol	(BGP),	which	are	used	to	exchange	routing
information	between	routers	(see	Chapter	38	and	Chapter	40).



IP	Routing	in	a	Subnet	or	Classless	Addressing
(CIDR)	Environment
As	discussed	in	the	previous	chapters,	there	are	three	main	categories	of	IP
addressing:	classful,	subnetted	classful,	and	classless.	The	method	used	for
determining	whether	direct	or	indirect	delivery	of	a	datagram	is	required	is
different	for	each	type	of	addressing.	The	type	of	addressing	used	in	the	network
also	impacts	how	routers	decide	to	forward	traffic	in	an	internetwork.

One	of	the	main	reasons	why	the	traditional	class-based	addressing	scheme	was
created	was	that	it	made	both	addressing	and	routing	relatively	simple.
Remember	that	IPv4	was	developed	in	the	late	1970s,	when	the	cheap	and
powerful	computer	hardware	we	take	for	granted	today	was	still	science	fiction.
For	the	internetwork	to	function	properly,	routers	needed	to	be	able	to	look	at	an
IP	address	and	quickly	decide	what	to	do	with	it.

Classful	addressing	was	intended	to	make	this	possible.	There	was	only	a	two-
level	hierarchy	for	the	entire	internetwork:	network	ID	and	host	ID.	Routers
could	tell	by	looking	at	the	first	four	bits	which	of	the	bits	in	any	IP	address	were
the	network	ID	and	which	were	the	host	ID.	Then	they	needed	only	consult	their
routing	tables	to	find	the	network	ID	and	see	which	router	offered	the	best	route
to	that	network.

The	addition	of	subnetting	to	conventional	addressing	didn't	really	change	this
for	the	main	routers	on	the	Internet,	because	subnetting	is	internal	to	the
organization.	The	main	routers	handling	large	volumes	of	traffic	on	the	Internet
didn't	look	at	subnets	at	all.	The	additional	level	of	hierarchy	that	subnets
represent	existed	only	for	the	routers	within	each	organization	that	chose	to	use
subnetting.	These	routers,	when	deciding	what	to	do	with	datagrams	within	the
organization's	network,	needed	to	extract	not	only	the	network	ID	of	IP
addresses,	but	also	the	subnet	ID.	This	told	them	which	internal	physical
network	should	get	the	datagram.

Classless	addressing	is	formally	called	Classless	Inter-Domain	Routing	(CIDR).
The	fact	that	the	name	includes	routing	but	not	addressing	is	evidence	that	CIDR
was	introduced	in	large	part	to	improve	the	efficiency	of	routing.	This



improvement	occurs	because	classless	networks	use	a	multiple-level	hierarchy.
Each	network	can	be	broken	down	into	subnetworks,	sub-subnetworks,	and	so
on.	This	means	that	when	we	are	deciding	how	to	route	in	a	CIDR	environment,
we	can	also	describe	routes	in	a	hierarchical	manner.	Many	smaller	networks	can
be	described	using	a	single,	higher-level	network	description	that	represents
them	all	to	routers	in	the	rest	of	the	internetwork.	This	technique,	sometimes
called	route	aggregation,	reduces	routing	table	size.

Let's	refer	back	to	the	detailed	example	I	presented	in	Chapter	20.	An	ISP	started
with	the	block	71.94.0.0/15	and	subdivided	it	multiple	times	to	create	smaller
blocks	for	itself	and	its	customers.	To	the	customers	and	users	of	this	block,
these	smaller	blocks	must	be	differentiated;	the	ISP	obviously	needs	to	know
how	to	route	traffic	to	the	correct	customer.	To	everyone	else	on	the	Internet,
however,	these	details	are	unimportant	in	deciding	how	to	route	datagrams	to
anyone	in	that	ISP's	block.

For	example,	suppose	I	am	using	a	host	with	IP	address	211.42.113.5	and	I	need
to	send	a	message	to	71.94.1.43.	My	local	router	and	the	main	routers	on	the
Internet	don't	know	where	in	the	71.94.0.0/15	block	that	address	is,	and	they
don't	need	to	know.	They	just	know	that	anything	with	the	first	15	bits
containing	the	binary	equivalent	of	71.94	goes	to	the	router	that	handles
71.94.0.0/15,	which	is	the	aggregated	address	of	the	entire	block.	They	let	the
ISP's	routers	figure	out	which	of	its	constituent	subnetworks	contains	71.94.1.43.

Contrast	this	with	a	classful	environment.	Here,	each	of	the	customers	of	this	ISP
would	probably	have	one	or	more	Class	C	address	blocks,	each	of	which	would
require	a	separate	routing	entry,	and	these	blocks	would	need	to	be	known	by	all
routers	on	the	Internet.	Thus,	instead	of	just	one	71.94.0.0/15	entry,	there	would
be	dozens	or	even	hundreds	of	entries	for	each	customer	network.	In	the
classless	scheme,	only	one	entry	exists,	for	the	parent	ISP.

CIDR	provides	benefits	to	routing	but	also	increases	its	complexity.	Under
CIDR,	we	cannot	determine	which	bits	are	the	network	ID	and	which	are	the
host	ID	just	from	the	IP	address.	To	make	matters	worse,	we	can	have	networks,
subnetworks,	sub-subnetworks,	and	so	on	that	all	have	the	same	base	address!

In	our	example,	71.94.0.0/15	is	the	complete	network,	and	subnetwork	0	is
71.94.0.0/16.	They	have	a	different	prefix	length	(the	number	of	network	ID
bits)	but	the	same	base	address.	If	a	router	has	more	than	one	match	for	a



bits)	but	the	same	base	address.	If	a	router	has	more	than	one	match	for	a
network	ID	in	this	manner,	it	must	use	the	match	with	the	longest	network
identifier	first,	since	it	represents	a	more	specific	network	description.



IP	Multicasting
The	great	bulk	of	TCP/IP	communications	uses	IP	to	send	messages	from	one
source	device	to	one	recipient	device,	in	a	process	called	unicast	communication.
This	is	the	type	of	messaging	we	normally	use	TCP/IP	for,	so	when	you	use	the
Internet,	you	are	using	unicast	for	pretty	much	everything.

IP	does,	however,	also	support	the	ability	to	have	one	device	send	a	message	to	a
set	of	recipients.	This	is	called	multicasting.	IP	multicasting	has	been	officially
supported	since	IPv4	was	first	defined,	but	has	not	seen	widespread	use	over	the
years,	due	largely	to	lack	of	support	for	multicasting	in	many	hardware	devices.
Interest	in	multicasting	has	increased	in	recent	years,	and	support	for
multicasting	was	made	a	standard	part	of	the	next-generation	IP	version	6	(IPv6)
protocol.	Here,	we	will	take	a	brief	look	at	multicasting,	which	is	a	large	and
complex	subject.

The	idea	behind	IP	multicasting	is	to	allow	a	device	on	an	IP	internetwork	to
send	datagrams	not	to	just	one	recipient,	but	to	an	arbitrary	collection	of	other
devices.	IP	multicasting	is	modeled	after	the	similar	function	used	in	the	data
link	layer	to	allow	a	single	hardware	device	to	send	to	various	members	of	a
group.	Multicasting	is	relatively	easy	at	the	data	link	layer,	however,	because	all
the	devices	can	communicate	directly.	In	contrast,	at	the	network	layer,	we	are
connecting	together	devices	that	may	be	quite	far	away	from	each	other	and	must
route	datagrams	between	these	different	networks.	This	necessarily	complicates
multicasting	when	done	using	IP	(except	in	the	special	case	where	we	use	IP
multicasting	only	between	devices	on	the	same	data	link	layer	network).

There	are	three	primary	functions	that	must	be	performed	to	implement	IP
multicasting:	addressing,	group	management,	and	datagram	processing/routing.

Multicast	Addressing
Special	addressing	must	be	used	for	multicasting.	A	multicast	address	identifies
not	a	single	device,	but	a	multicast	group	of	devices	that	listen	for	certain
datagrams	sent	to	them.	In	IPv4,	one-sixteenth	of	the	entire	address	space	was
set	aside	for	multicast	addresses:	the	Class	D	block	of	the	original	classful
addressing	scheme.	Various	techniques	are	used	to	define	the	meaning	of



addresses	within	this	block	and	to	define	a	mapping	between	IP	multicast	and
data	link	layer	multicast	addresses.	(See	the	discussion	of	IP	multicast
addressing	in	Chapter	17;	mapping	of	IP	multicast	addresses	to	hardware	layer
multicast	addresses	is	discussed	in	Chapter	13.)

Multicast	Group	Management
Group	management	encompasses	all	of	the	activities	required	to	set	up	groups	of
devices.	Devices	must	be	able	to	dynamically	join	groups	and	leave	groups,	and
information	about	groups	must	be	propagated	around	the	IP	internetwork.	To
support	these	activities,	additional	techniques	are	required.	The	Internet	Group
Management	Protocol	(IGMP)	is	the	chief	tool	used	for	this	purpose.	It	defines	a
message	format	to	allow	information	about	groups	and	group	membership	to	be
sent	between	devices	and	routers	on	the	Internet.

Multicast	Datagram	Processing	and	Routing
Handling	and	routing	datagrams	in	a	multicast	environment	is	probably	the	most
complicated	function.	There	are	several	issues	here:

Since	we	are	sending	from	one	device	to	many,	we	need	to	actually	create
multiple	copies	of	the	datagram	for	delivery,	in	contrast	to	the	single
datagram	used	in	the	unicast	case.	Routers	must	be	able	to	tell	when	they
need	to	create	these	copies.

Routers	must	use	special	algorithms	to	determine	how	to	forward	multicast
datagrams.	Since	each	one	can	lead	to	many	copies	being	sent	to	various
places,	efficiency	is	important	to	avoid	creating	unnecessary	volumes	of
traffic.

Routers	must	be	able	to	handle	datagrams	sent	to	a	multicast	group,	even	if
the	source	is	not	a	group	member.

Routing	in	a	multicast	environment	requires	significantly	more	intelligence	on
the	part	of	router	hardware.	Several	special	protocols,	such	as	the	Distance
Vector	Multicast	Routing	Protocol	(DVMRP)	and	the	multicast	version	of	Open
Shortest	Past	First	(OSPF),	are	used	to	enable	routers	to	forward	multicast	traffic
effectively.	These	algorithms	must	balance	the	need	to	ensure	that	every	device
in	a	group	receives	a	copy	of	all	datagrams	intended	for	that	group	with	the	need



to	prevent	unnecessary	traffic	from	moving	across	the	internetwork.

TIP

KEY	CONCEPT	IP	multicasting	allows	special	applications	to	be	developed	where	one	device	sends
information	to	multiple	devices,	across	a	private	internetwork	or	the	global	Internet.	It	is	more	complex
than	conventional	unicast	IP	and	requires	special	attention,	particularly	in	the	areas	of	addressing	and
routing.

This	overview	has	only	scratched	the	surface	of	IP	multicasting.	The	complexity
involved	in	handling	groups	and	forwarding	messages	to	multicast	groups	is	one
reason	why	support	for	the	feature	has	been	quite	uneven	and,	as	a	consequence,
it	is	not	used	widely.	Another	issue	is	the	demanding	nature	of	multicasting:	It
uses	a	great	deal	of	network	bandwidth	for	copies	of	messages,	and	it	also
requires	more	work	of	already-busy	routers.



Part	II-4.	INTERNET	PROTOCOL	VERSION	6
(IPV6)
Chapter	24

Chapter	25

Chapter	26

Chapter	27

Since	1981,	TCP/IP	has	been	built	on	version	4	of	the	Internet	Protocol	(IPv4),
discussed	at	length	in	the	preceding	part.	IPv4	was	created	when	the	giant,
worldwide	Internet	we	take	for	granted	today	was	just	a	small,	experimental
network.	Considering	how	much	the	Internet	has	grown	and	changed	over	the
course	of	two	decades,	IPv4	has	done	its	job	admirably.	At	the	same	time,	it	has
been	apparent	for	many	years	that	certain	limitations	in	this	venerable	protocol
would	hold	back	the	future	growth	of	the	Internet	if	they	were	not	addressed.

Due	to	the	key	role	that	IP	plays,	changing	it	is	no	simple	feat.	It	means	a
substantial	modification	to	the	way	that	nearly	everything	in	TCP/IP	operates.
However,	even	though	we	find	change	difficult,	most	of	us	know	that	it	is
necessary.	For	the	past	several	years,	development	of	a	new	version	of	IP	has
been	under	way,	officially	called	Internet	Protocol	version	6	(IPv6)	and	also
sometimes	referred	to	as	IP	Next	Generation	or	IPng.	IPv6	is	poised	to	take	over
for	IPv4,	and	it	will	be	the	basis	for	the	Internet	of	the	future.

In	this	part,	I	provide	a	detailed	description	of	IPv6.	Since	IPv6	is	still	IP,	just
like	IPv4,	it	performs	the	same	functions:	addressing,	encapsulation,
fragmentation	and	reassembly,	and	datagram	delivery	and	routing.	For	this
reason,	this	discussion	of	IPv6	is	patterned	after	the	discussion	of	IPv4.	There
are	four	chapters:	The	first	covers	IPv6	concepts	and	issues;	the	second	discusses
IPv6	addressing;	the	third	discusses	IPv6	encapsulation	and	formatting;	and	the
fourth	discusses	IPv6	datagram	fragmentation,	reassembly,	and	routing.

Since	IPv6	represents	the	evolution	of	IP,	many	of	its	concepts	of	operation	are
built	on	those	introduced	in	IPv4.	To	avoid	unnecessary	duplication	in	this	part,
I've	assumed	you	are	familiar	with	the	operation	of	IPv4,	especially	addressing



and	how	datagrams	are	packaged	and	delivered.	If	you	have	not	read	Part	II-3,
reviewing	it	first	would	be	wise,	because	the	description	of	IPv6	focuses	on	how
it	differs	from	the	current	IP	version.

You	may	also	wish	to	refer	to	the	Part	II-6,	which	covers	the	Internet	Control
Message	Protocol	(ICMP),	part	of	which	is	ICMP	version	6—ICMP	for	IPv6,
and	the	IPv6	Neighbor	Discovery	(ND)	protocol,	since	these	are	companions	to
IPv6.



Chapter	24.	IPV6	OVERVIEW,
CHANGES,	AND	TRANSITION

Internet	Protocol	version	6	(IPv6)	is	destined	to	be	the	future	of	IP,	and	due	to
IP's	critical	importance,	it	will	form	the	basis	for	the	future	of	TCP/IP	and	the
Internet	as	well.	In	fact,	it's	been	under	development	since	the	middle	of	the	last
decade,	and	a	real	IPv6	internetwork	has	been	used	for	testing	for	a	number	of
years	as	well.	Despite	this,	many	people	don't	know	much	about	IPv6,	other	than
the	fact	that	it's	a	newer	version	of	IP.	Some	have	never	even	heard	of	it	at	all!
I'm	going	to	rectify	that,	of	course—but	before	I	delve	into	the	important
changes	made	in	IPv6	addressing,	packaging,	fragmentation,	and	other	functions,
let's	start	with	a	bird's-eye	view	of	IPv6.

In	this	chapter,	I	provide	a	brief	higher-level	overview	of	IPv6,	including	a	look
at	how	it	differs	from	IP	version	4	(IPv4)	in	general	terms.	I	begin	with	a	brief
overview	of	IPv6	and	why	it	was	created.	I	list	the	major	changes	made	in	IPv6
and	the	new	additions	to	the	protocol.	I	also	explain	some	of	the	difficulties
associated	with	transitioning	the	enormous	global	Internet	from	IPv4	to	IPv6.

IPv6	Motivation	and	Overview
"If	it	ain't	broke,	don't	fix	it."	This	is	one	of	my	favorite	pieces	of	folk	wisdom.	I
generally	like	to	stick	with	what	works,	as	do	most	people.	And	IPv4	works
pretty	darned	well.	It's	been	around	for	decades	now	and	has	survived	the	growth
of	the	Internet	from	a	small	research	network	into	a	globe-spanning	powerhouse.
So,	like	a	trusty	older	car	that	you've	operated	successfully	for	years,	why	should
you	replace	it	if	it	still	gets	the	job	done?

Like	that	older	car,	you	could	continue	to	use	IPv4	for	the	foreseeable	future.
The	question	is:	at	what	cost?	An	older	car	can	be	kept	in	good	working	order	if
you	are	willing	to	devote	the	time	and	money	it	takes	to	maintain	and	service	it.



you	are	willing	to	devote	the	time	and	money	it	takes	to	maintain	and	service	it.
However,	it	will	still	be	limited	in	some	of	its	capabilities.	Its	reliability	may	be
suspect.	It	won't	have	the	latest	features.	With	the	exception	of	those	who	like	to
work	on	cars	as	a	hobby,	it	eventually	stops	making	sense	to	keep	fixing	up	an
older	vehicle.

In	some	ways,	this	isn't	that	great	of	an	analogy.	Our	highways	aren't	all	that
much	different	than	they	were	in	the	1970s,	and	most	other	issues	related	to
driving	a	car	haven't	changed	all	that	much	in	the	past	25	years	either.	The
choice	of	updating	a	vehicle	or	not	is	based	on	practical	considerations	more
than	necessity.

In	contrast,	look	at	what	has	happened	to	the	computer	and	networking	worlds	in
the	last	25	years!	Today's	handheld	PCs	can	do	more	than	the	most	powerful
servers	could	back	then.	Networking	technologies	are	100	or	even	1,000	times	as
fast.	The	number	of	people	connecting	to	the	global	Internet	has	increased	by	an
even	larger	factor.	And	the	ways	that	computers	communicate	have,	in	many
cases,	changed	dramatically.

IPv4	could	be	considered	in	some	ways	like	an	older	car	that	has	been
meticulously	maintained	and	repaired	over	time.	It	gets	the	job	done,	but	its	age
is	starting	to	show.	The	main	problem	with	IPv4	is	its	relatively	small	address
space,	a	legacy	of	the	decision	to	use	only	32	bits	for	the	IP	address.	Under	the
original	classful	addressing	allocation	scheme,	we	would	have	probably	already
run	out	of	IPv4	addresses	by	now.	Moving	to	classless	addressing	has	helped
postpone	this,	as	have	technologies	like	IP	Network	Address	Translation	(NAT),
which	allows	privately	addressed	hosts	to	access	the	Internet.

In	the	end,	however,	these	represent	patch	jobs	and	imperfect	repairs	applied	to
keep	the	aging	IPv4	automobile	on	the	road.	The	core	problem,	the	32-bit
address	space	that	is	too	small	for	the	current	and	future	size	of	the	Internet,	can
be	solved	only	by	moving	to	a	larger	address	space.	This	was	the	primary
motivating	factor	in	creating	the	next	version	of	IP,	IPv6.

NOTE

The	reason	why	the	successor	to	IPv4	is	version	6	and	not	version	5	is	because	version	number	5	was
used	to	refer	to	an	experimental	protocol	called	the	Internet	Stream	Protocol,	which	was	never	widely
deployed.	See	Chapter	15	for	a	full	discussion	of	IP	history	and	versions.



IPv6	Standards
IPv6	represents	the	first	major	change	to	IP	since	IPv4	was	formalized	in	1981.
For	many	years,	its	core	operation	was	defined	in	a	series	of	RFCs	published	in
1998:	RFCs	2460	through	2467.	The	most	notable	of	these	are	the	main	IPv6
standard,	RFC	2460,	"Internet	Protocol,	Version	6	(IPv6)	Specification,"	and
documents	describing	the	two	helper	protocols	for	IPv6:	RFC	2461,	which
describes	the	IPv6	Neighbor	Discovery	Protocol	(ND),	and	RFC	2463,	which
describes	Internet	Control	Message	Protocol	version	6	(ICMPv6)	for	IPv6.

In	addition	to	these,	two	documents	were	also	written	in	1998.	They	discuss
more	about	IP	addressing:	RFC	2373,	"IP	Version	6	Addressing	Architecture,"
and	RFC	2374,	"An	IPv6	Aggregatable	Global	Unicast	Address	Format."	Due	to
changes	in	how	IPv6	addressing	was	to	be	implemented,	these	were	updated	in
2003	by	RFC	3513,	"Internet	Protocol	Version	6	(IPv6)	Addressing
Architecture,"	and	RFC	3587,	"IPv6	Global	Unicast	Address	Format."

Many	other	RFCs	define	more	specifics	of	how	IPv6	works,	and	many	also
describe	IPv6-compatible	versions	of	other	TCP/IP	protocols	like	the	Domain
Name	System	(DNS;	see	Chapter	52)	and	Dynamic	Host	Control	Protocol
(DHCP;	see	Chapter	61).	IPv6	is	still	very	much	a	work	in	progress,	with	new
standards	being	proposed	and	adopted	on	a	regular	basis.

Because	IPv6	is	the	version	of	IP	that's	designed	for	the	next	generation	of	the
Internet,	it	is	also	sometimes	called	IP	Next	Generation	or	IPng.	Personally,	I
don't	care	for	this	name;	it	reminds	me	too	much	of	Star	Trek:	The	Next
Generation.	Regardless	of	its	name,	IPv6	or	IPng	was	designed	to	take	TCP/IP
and	the	Internet	"where	none	have	gone	before."	(Sorry,	I	had	to!)

Design	Goals	of	IPv6
The	problem	of	addressing	was	the	main	motivation	for	creating	IPv6.
Unfortunately,	this	has	caused	many	people	to	think	that	the	address	space
expansion	is	the	only	change	made	in	IP,	which	is	definitely	not	the	case.	Since
making	a	change	to	IP	is	such	a	big	deal,	it's	something	done	rarely.	It	made
sense	to	correct	not	just	the	addressing	issue,	but	also	to	update	the	protocol	in	a



number	of	other	respects	in	order	to	ensure	its	viability.	In	fact,	even	the
addressing	changes	in	IPv6	go	far	beyond	just	adding	more	bits	to	IP	address
fields.

Some	of	the	most	important	goals	in	designing	IPv6	include	the	following:

Larger	Address	Space	IPv6	needed	to	provide	more	addresses	for	the	growing
Internet.

Better	Management	of	Address	Space	Developers	wanted	IPv6	to	include	not
only	more	addresses,	but	also	a	more	capable	way	of	dividing	the	address	space
and	using	the	bits	in	each	address.

Elimination	of	Addressing	Kludges	Technologies	like	NAT	are	effectively
kludges	that	make	up	for	the	lack	of	address	space	in	IPv4.	IPv6	eliminates	the
need	for	NAT	and	similar	work-arounds,	allowing	every	TCP/IP	device	to	have
a	public	address.

Easier	TCP/IP	Administration	The	designers	of	IPv6	hoped	to	resolve	some	of
the	current	labor-intensive	requirements	of	IPv4,	such	as	the	need	to	configure	IP
addresses.	Even	though	tools	like	DHCP	eliminate	the	need	to	manually
configure	many	hosts,	it	only	partially	solves	the	problem.

Modern	Design	for	Routing	In	contrast	to	IPv4,	which	was	designed	before
anyone	had	an	idea	what	the	modern	Internet	would	be	like,	IPv6	was	created
specifically	for	efficient	routing	in	the	current	Internet,	and	with	the	flexibility
for	the	future.

Better	Support	for	Multicasting	Multicasting	was	an	option	in	IPv4	from	the
start,	but	support	for	it	has	been	slow	in	coming.

Better	Support	for	Security	IPv4	was	designed	at	a	time	when	security	wasn't
much	of	an	issue	because	there	were	a	relatively	small	number	of	networks	on
the	Internet,	and	those	networks'	administrators	often	knew	each	other.	Today,
security	on	the	public	Internet	is	a	big	issue,	and	the	future	success	of	the
Internet	requires	that	security	concerns	be	resolved.

Better	Support	for	Mobility	When	IPv4	was	created,	there	really	was	no
concept	of	mobile	IP	devices.	The	problems	associated	with	computers	that
move	between	networks	led	to	the	need	for	Mobile	IP.	IPv6	builds	on	Mobile	IP



and	provides	mobility	support	within	IP	itself.

TIP

KEY	CONCEPT	The	new	version	of	the	IP	is	Internet	Protocol	version	6	(IPv6).	It	was	created	to
correct	some	of	the	significant	problems	of	IPv4,	especially	the	looming	deficiency	of	the	IPv4	address
space,	to	improve	the	operation	of	the	protocol	as	a	whole,	and	to	take	TCP/IP	into	the	future.

At	the	same	time	that	IPv6	was	intended	to	address	these	and	many	other	issues
with	traditional	IP,	its	changes	are	nevertheless	evolutionary,	not	revolutionary.
During	the	many	discussions	in	the	Internet	Engineering	Task	Force	(IETF)	in
the	1990s,	there	were	some	who	said	that	while	we	were	updating	IP,	perhaps	we
should	make	a	complete,	radical	change	to	a	new	type	of	internetworking
protocol	completely.	The	end	decision	was	not	to	do	this,	but	to	define	a	more
capable	version	of	the	IP	that	we've	been	using	all	along.

The	reason	for	this	is	simple:	IP,	like	our	trusted	older	car,	works.	IPv6
represents	an	update	that	strives	to	add	to	the	best	characteristics	of	IPv4,	rather
than	making	everyone	start	over	from	scratch	with	something	new	and	unproven.
This	design	ensures	that	whatever	pain	may	result	from	the	change	from	IPv4	to
IPv6	can	be	managed,	and	hopefully,	minimized.



Major	Changes	and	Additions	in	IPv6
In	the	preceding	overview,	I	explained	that	the	primary	motivation	for	creating	a
new	version	of	IP	was	to	fix	the	problems	with	addressing	under	IPv4.	But	as
you	also	saw,	numerous	other	design	goals	existed	for	the	new	protocol	as	well.
Once	the	decision	was	made	to	take	the	significant	step	of	creating	a	new	version
of	a	protocol	as	important	as	IP,	it	made	sense	to	use	the	opportunity	to	make	as
many	improvements	as	possible.

Of	course,	there	is	still	the	problem	of	the	pain	of	change	to	worry	about,	so	each
potential	change	or	addition	in	IPv6	needed	to	have	benefits	that	would	outweigh
its	costs.	The	resulting	design	does	a	good	job	of	providing	useful	advantages
while	maintaining	most	of	the	core	of	the	original	IP.	The	following	are	some	of
the	most	important	changes	between	IPv4	and	IPv6,	and	they	demonstrate	some
of	the	ways	that	the	IPv6	team	met	the	design	goals	for	the	new	protocol:

Larger	Address	Space	IPv6	addresses	are	128	bits	long	instead	of	32	bits.	This
expands	the	address	space	from	around	4	billion	addresses	to,	well,	an
astronomical	number	(over	300	trillion	trillion	trillion	addresses).

Hierarchical	Address	Space	One	reason	why	the	IPv6	address	size	was
expanded	so	much	was	to	allow	it	to	be	hierarchically	divided	to	provide	a	large
number	of	many	classes	of	addresses.

Hierarchical	Assignment	of	Unicast	Addresses	A	special	global	unicast
address	format	was	created	to	allow	addresses	to	be	easily	allocated	across	the
entire	Internet.	It	allows	for	multiple	levels	of	network	and	subnetwork
hierarchies	at	both	the	Internet	service	provider	(ISP)	and	the	organizational
level.	It	also	permits	the	generation	of	IP	addresses	based	on	underlying
hardware	interface	device	IDs	such	as	Ethernet	MAC	addresses.

Better	Support	for	Nonunicast	Addressing	Support	for	multicasting	is
improved,	and	support	for	a	new	type	of	addressing,	anycast	addressing,	has
been	added.	This	new	kind	of	addressing	basically	says,	"Deliver	this	message	to
the	easiest-to-reach	member	of	this	group,"	and	potentially	enables	new	types	of
messaging	functionality.

Autoconfiguration	and	Renumbering	A	provision	is	included	to	allow	easier



autoconfiguration	of	hosts	and	renumbering	of	the	IP	addresses	in	networks	and
subnetworks	as	needed.	A	technique	also	exists	for	renumbering	router
addresses.

New	Datagram	Format	The	IP	datagram	format	has	been	redefined	and	given
new	capabilities.	The	main	header	of	each	IP	datagram	has	been	streamlined,
and	support	has	been	added	for	the	ability	to	easily	extend	the	header	for
datagrams	that	require	more	control	information.

Support	for	Quality	of	Service	(QoS)	IPv6	datagrams	include	QoS	features
that	allow	for	better	support	for	multimedia	and	other	applications	that	require
QoS.

Security	Support	Security	support	is	designed	into	IPv6	using	the
authentication	and	encryption	extension	headers	and	other	features.

Updated	Fragmentation	and	Reassembly	Procedures	The	way	that	the
fragmentation	and	reassembly	of	datagrams	works	has	been	changed	in	IPv6.
The	improved	routing	efficiency	better	reflects	the	realities	of	today's	networks.

Modernized	Routing	Support	IPv6	is	designed	to	support	modern	routing
systems	and	allow	for	expansion	as	the	Internet	grows.

Transition	Capabilities	Since	it	was	recognized	from	the	start	that	going	from
IPv4	to	IPv6	is	a	big	move,	support	for	the	IPv4/IPv6	transition	has	been
provided	in	numerous	areas.	This	includes	a	plan	for	interoperating	IPv4	and
IPv6	networks,	for	mapping	between	IPv4	and	IPv6	addresses,	and	other
transition	support.

Changes	to	Other	Protocols	With	the	introduction	of	IPv6,	several	other
TCP/IP	protocols	that	deal	intimately	with	IP	have	also	had	to	be	updated.	One
of	these	is	ICMP,	the	most	important	support	protocol	for	IPv4,	which	has	been
revised	through	the	creation	of	ICMPv6	for	IPv6.	An	addition	to	TCP/IP	is	the
ND	protocol,	which	performs	several	functions	for	IPv6	that	were	done	by	the
Address	Resolution	Protocol	(ARP)	and	ICMP	in	version	4.

The	following	chapters	on	IPv6	provide	much	more	detail	on	these	changes	and
additions	to	IP.	You'll	notice	that	the	majority	of	these	are	related	to	addressing,
because	that	is	where	the	greatest	number	of	important	changes	were	made	in
IPv6.	Of	course,	routing	and	addressing	are	closely	related,	and	the	changes	to
addressing	have	had	a	big	impact	on	routing	as	well.
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Transition	from	IPv4	to	IPv6
IP	is	the	foundation	of	the	TCP/IP	protocol	suite	and	the	Internet,	and	thus	it's
somewhat	comparable	to	the	foundation	of	a	house	in	terms	of	its	structural
importance.	Given	this,	changing	IP	is	somewhat	analogous	to	making	a
substantial	modification	to	the	foundation	of	your	house.	Since	IP	is	used	to
connect	together	many	devices,	it	is	like	changing	not	just	your	house,	but	every
house	in	the	world!

How	do	you	change	the	foundation	of	a	house?	Very	carefully.	The	same	caution
is	required	with	the	implementation	of	IPv6.	While	most	people	think	IPv6	is
something	new,	the	reality	is	that	the	planning	and	development	of	IPv6	has
been	underway	for	nearly	a	full	decade,	and	if	we	were	starting	from	scratch,	the
protocol	would	have	been	ready	for	action	years	ago.	However,	there	is	a	truly
enormous	installed	base	of	IPv4	hardware	and	software.	This	means	the	folks
who	develop	TCP/IP	could	not	just	flip	a	switch	and	have	everyone	move	over
to	using	IPv6.	Instead,	a	transition	from	IPv4	to	IPv6	had	to	be	planned.

The	transition	is	already	under	way,	though	most	people	don't	know	about	it.	As
I	said,	development	of	IPv6	itself	is	pretty	much	complete,	though	work
continues	on	refining	the	protocol	and	also	on	the	development	of	IPv6-
compatible	versions	of	other	protocols.	The	implementation	of	IPv6	began	with
the	creation	of	development	networks	to	test	IPv6's	operation.	These	were
connected	together	to	form	an	experimental	IPv6	internetwork	called	the
6BONE	(which	is	a	contraction	of	the	phrase	IPv6	backbone).	This	internetwork
has	been	in	operation	for	several	years.

IPv4	to	IPv6	Transition:	Differences	of	Opinion
Experimental	networks	are	well	and	good,	but	the	big	issue	is	transitioning	the
Internet	to	IPv6,	and	here,	opinion	diverges	rather	quickly.	In	one	camp	are	the
corporations,	organizations,	and	individuals.	All	of	these	groups	are	quite	eager
to	transition	to	IPv6	quickly	in	order	to	gain	the	many	benefits	it	promises	in	the
areas	of	addressing,	routing,	and	security.	Others	are	taking	a	much	more
cautious	approach,	noting	that	the	dire	predictions	in	the	mid-1990s	of	IPv4's
imminent	doom	have	not	come	to	pass,	and	arguing	that	we	should	take	our	time
to	make	sure	IPv6	is	going	to	work	on	a	large	scale.



to	make	sure	IPv6	is	going	to	work	on	a	large	scale.

These	two	groups	will	continue	to	play	tug-of-war	for	the	next	few	years,	but	it
seems	that	the	tide	is	now	turning	toward	those	who	want	to	speed	up	the	now-
years-long	transition.	The	move	toward	adoption	of	IPv6	as	a	production
protocol	is	being	spearheaded	by	a	number	of	groups	and	organizations.	IPv6	has
a	lot	of	support	in	areas	outside	the	United	States,	many	of	which	are	running
short	of	IPv4	addresses	due	to	small	allocations	relative	to	their	size.	One	such
area	is	Asia,	a	region	with	billions	of	people,	rapidly	growing	Internet	use,	and	a
shortage	of	IPv4	addresses.

Within	the	United	States,	which	has	the	lion's	share	of	IPv4	addresses	(because
the	Internet	was	developed	here),	there	seems	to	be	a	bit	less	enthusiasm	for
rapid	IPv6	deployment.	Even	here,	however,	IPv6	got	a	major	shot	in	the	arm	in
July	2003	when	the	United	States	Department	of	Defense	(DoD)	announced	that
starting	in	October	of	that	year,	it	would	purchase	only	networking	products	that
included	compatibility	with	IPv6.	The	DoD	(which	was	responsible	for	the
development	of	the	Internet	in	the	first	place)	hopes	to	be	fully	transitioned	to
IPv6	by	2008.	This	will	likely	have	a	big	impact	on	the	plans	of	other
governmental	and	private	organizations	in	the	United	States.

The	creators	of	IPv6	knew	from	the	start	that	transition	was	going	to	be	an
important	issue	with	the	new	protocol.	IPv6	is	not	compatible	with	IPv4	because
the	addressing	system	and	datagram	format	are	different.	Yet	the	IPv6	designers
knew	that	since	the	transition	would	take	many	years,	it	was	necessary	that	they
provide	a	way	for	IPv4	and	IPv6	hosts	to	interoperate.	Consider	that	in	any
transition	there	are	always	stragglers.	Like	the	old	Windows	3.11	PC	in	the
corner	that	you	still	need	to	use	once	in	a	while,	some	devices	will	remain	on
IPv4,	even	when	most	of	the	Internet	is	IPv6,	because	they	were	never	upgraded.

TIP

KEY	CONCEPT	Due	to	the	many	differences	between	IPv4	and	IPv6,	and	the	fundamental	importance
of	IP	to	TCP/IP,	an	orderly	transition	has	been	planned	from	IPv4	to	IPv6	over	a	period	of	many	years.

IPv4	to	IPv6	Transition	Methods
The	IETF	has	been	working	on	specific	provisions	to	allow	a	smooth	transition
from	IPv4	to	IPv6,	and	hardware	and	software	interoperability	solutions	to	let



from	IPv4	to	IPv6,	and	hardware	and	software	interoperability	solutions	to	let
newer	IPv6	devices	access	IPv4	hosts.	A	technique	was	included	in	IPv6	to
allow	administrators	to	embed	IPv4	addresses	within	IPv6	addresses.	Special
methods	are	defined	to	handle	interoperability,	including	the	following:

Dual-Stack	Devices	Routers	and	some	other	devices	may	be	programmed	with
both	IPv4	and	IPv6	implementations	to	allow	them	to	communicate	with	both
types	of	hosts.

IPv4/IPv6	Translation	Dual-stack	devices	may	be	designed	to	accept	requests
from	IPv6	hosts,	convert	them	to	IPv4	datagrams,	send	the	datagrams	to	the	IPv4
destination,	and	then	process	the	return	datagrams	similarly.

IPv4	Tunneling	of	IPv6	IPv6	devices	that	don't	have	a	path	between	them
consisting	entirely	of	IPv6-capable	routers	may	be	able	to	communicate	by
encapsulating	IPv6	datagrams	within	IPv4.	In	essence,	they	would	be	using	IPv6
on	top	of	IPv4;	that	is,	two	network	layers.	The	encapsulated	IPv4	datagrams
would	travel	across	conventional	IPv4	routers.

Bear	in	mind	that	these	solutions	generally	address	only	backward	compatibility
to	allow	IPv6	devices	to	talk	to	IPv4	hardware.	Forward	compatibility	between
IPv4	and	IPv6	is	not	possible	because	IPv4	hosts	cannot	communicate	with	IPv6
hosts;	they	lack	the	knowledge	of	how	IPv6	works.	It	is	possible	that	certain
special	adaptations	might	be	created	to	allow	IPv4	hosts	to	access	IPv6	hosts.
But	eventually,	all	IPv4	devices	of	any	importance	will	want	to	migrate	to	IPv6.

The	IETF	has	done	such	a	good	job	in	the	past	with	introducing	new
technologies,	and	so	much	effort	has	been	put	into	the	IPv6	transition,	that	I	am
quite	confident	that	the	transition	to	IPv6	will	come	off	with	few,	if	any,
problems.	One	good	thing	about	the	transition	is	that	IPv4	is,	at	the	present	time,
still	getting	the	job	done,	so	there	is	no	big	hurry	to	make	the	move	to	IPv6.
While	technologies	such	as	CIDR	and	NAT	are	like	Band-Aids	on	IPv4,	they
have	been	very	successful	ones	in	extending	the	useful	life	of	the	aging	protocol.



Chapter	25.	IPV6	ADDRESSING

The	primary	motivation	for	creating	Internet	Protocol	version	6	(IPv6)	was	to
rectify	the	addressing	problems	in	version	4	(IPv4).	Along	with	acquiring	more
addresses,	the	IPv6	designers	desired	a	way	of	interpreting,	assigning,	and	using
addresses	in	a	way	that	was	more	consonant	with	modern	internetworking.	So,
it's	no	surprise	that	many	of	the	changes	in	IPv6	are	associated	with	IP
addressing.	The	IPv6	addressing	scheme	is	similar	in	concept	to	IPv4	addressing,
but	has	been	completely	overhauled	to	create	an	addressing	system	that's	capable
of	supporting	continued	Internet	expansion	and	new	applications	for	the
foreseeable	future.

This	chapter	describes	the	concepts	and	methods	associated	with	addressing
under	IPv6.	I	begin	with	a	look	at	some	addressing	generalities	in	IPv6,
including	the	addressing	model,	address	types'	size,	and	address	space.	I	discuss
the	unique	and	sometimes	confusing	representations	and	notations	used	for	IPv6
addresses	and	prefixes.	Then	I	look	at	how	addresses	are	arranged	and	allocated
into	types,	beginning	with	an	overall	look	at	address	space	composition	and	then
at	the	global	unicast	address	format.	I	describe	the	new	methods	used	for
mapping	IP	addresses	to	underlying	physical	network	addresses.	I	then	describe
special	IPv6	addressing	issues,	including	reserved	and	private	addresses,	IPv4
address	embedding,	anycast	and	multicast	addresses,	and	autoconfiguration	and
renumbering	of	addresses.

Addressing	under	IPv6	is	outlined	in	the	main	IPv6	RFC,	RFC	2460,	"Internet
Protocol,	Version	6	(IPv6)	Specification."	However,	most	of	the	details	of	IPv6
addressing	are	contained	in	two	other	standards:	RFC	3513,	"Internet	Protocol
Version	6	(IPv6)	Addressing	Architecture,"	and	RFC	3587,	"IPv6	Global
Unicast	Address	Format."	These	replaced	the	1998	standards	RFC	2373,	"IP
Version	6	Addressing	Architecture,"	and	RFC	2374,	"An	IPv6	Aggregatable
Global	Unicast	Address	Format."



Global	Unicast	Address	Format."

TIP

BACKGROUND	INFORMATION	As	with	the	other	IPv6	chapters	in	this	book,	my	look	at
addressing	is	based	somewhat	on	a	contrast	to	how	addressing	is	done	in	IPv4.	I	strongly	recommend	a
thorough	understanding	of	IPv4	addressing,	including	classless	addressing	using	Classless	Inter-Domain
Routing	(CIDR),	as	presented	in	Chapters	Chapter	16	through	Chapter	23,	before	proceeding	here.	As
with	the	IPv4	addressing	sections,	familiarity	with	how	binary	numbers	work,	and	conversion	between
binary	and	decimal	numbers	is	also	a	good	idea.	Chapter	4,	which	provides	some	background	on	data
representation	and	the	mathematics	of	computing,	may	be	of	assistance	in	that	respect.

IPv6	Addressing	Overview:	Addressing	Model,
Address	Types,	and	Address	Size
As	you	saw	in	the	previous	chapter,	IPv6	represents	a	significant	update	to	IP,
but	its	modifications	and	additions	are	made	without	changing	the	core	nature	of
how	IP	works.	Addressing	is	the	place	where	most	of	the	differences	between
IPv4	and	IPv6	are	seen,	but	the	changes	are	mostly	in	how	addresses	are
implemented	and	used.	The	overall	model	used	for	IP	addressing	in	IPv6	is
pretty	much	the	same	as	it	was	in	IPv4;	some	aspects	have	not	changed	at	all,
while	others	have	changed	only	slightly.

IPv6	Addressing	Model	Characteristics
Here	are	some	of	the	general	characteristics	of	the	IPv6	addressing	model	that
are	basically	the	same	as	in	IPv4:

Core	Functions	of	Addressing	The	two	main	functions	of	addressing	are	still
network	interface	identification	and	routing.	Routing	is	facilitated	through	the
structure	of	addresses	on	the	internetwork.

Network	Layer	Addressing	IPv6	addresses	are	still	the	ones	associated	with	the
network	layer	in	TCP/IP	networks	and	are	distinct	from	data	link	layer	(also
sometimes	called	physical)	addresses.

Number	of	IP	Addresses	per	Device	Addresses	are	still	assigned	to	network
interfaces,	so	a	regular	host	like	a	PC	will	usually	have	one	(unicast)	address,
and	routers	will	have	more	than	one	for	each	of	the	physical	networks	to	which	it
connects.



Address	Interpretation	and	Prefix	Representation	IPv6	addresses	are	like
classless	IPv4	addresses	in	that	they	are	interpreted	as	having	a	network
identifier	part	and	a	host	identifier	part	(a	network	ID	and	a	host	ID),	but	that	the
delineation	is	not	encoded	into	the	address	itself.	A	prefix-length	number,	using
CIDR-like	notation,	is	used	to	indicate	the	length	of	the	network	ID	(prefix
length).

Private	and	Public	Addresses	Both	types	of	addresses	exist	in	IPv6,	though
they	are	defined	and	used	somewhat	differently.

IPv6	Supported	Address	Types
One	important	change	in	the	addressing	model	of	IPv6	is	the	address	types
supported.	IPv4	supported	three	address	types:	unicast,	multicast,	and	broadcast.
Of	these,	the	vast	majority	of	actual	traffic	was	unicast.	IP	multicast	support	was
not	widely	deployed	until	many	years	after	the	Internet	was	established	and	it
continues	to	be	hampered	by	various	issues.	Use	of	broadcast	in	IP	had	to	be
severely	restricted	for	performance	reasons	(we	don't	want	any	device	to	be	able
to	broadcast	across	the	entire	Internet!).

IPv6	also	supports	three	address	types,	but	with	the	following	changes:

Unicast	Addresses	These	are	standard	unicast	addresses	as	in	IPv4,	one	per	host
interface.

Multicast	Addresses	These	are	addresses	that	represent	various	groups	of	IP
devices.	A	message	sent	to	a	multicast	address	goes	to	all	devices	in	the	group.
IPv6	includes	much	better	multicast	features	and	many	more	multicast	addresses
than	IPv4.	Since	multicast	under	IPv4	was	hampered	in	large	part	due	to	lack	of
support	of	the	feature	by	many	hardware	devices,	support	for	multicasting	is	a
required,	not	optional,	part	of	IPv6.

Anycast	Addresses	Anycast	addressing	is	used	when	a	message	must	be	sent	to
any	member	of	a	group,	but	does	not	need	to	be	sent	to	all	of	them.	Usually	the
member	of	the	group	that	is	easiest	to	reach	will	be	sent	the	message.	One
common	example	of	how	anycast	addressing	could	be	used	is	in	load	sharing
among	a	group	of	routers	in	an	organization.

Broadcast	addressing	as	a	distinct	addressing	method	is	gone	in	IPv6.	Broadcast
functionality	is	implemented	using	multicast	addressing	to	groups	of	devices.	A



functionality	is	implemented	using	multicast	addressing	to	groups	of	devices.	A
multicast	group	to	which	all	nodes	belong	can	be	used	for	broadcasting	in	a
network,	for	example.

TIP

KEY	CONCEPT	IPv6	has	unicast	and	multicast	addresses	like	IPv4.	There	is,	however,	no	distinct
concept	of	a	broadcast	address	in	IPv6.	A	new	type	of	address,	the	anycast	address,	has	been	added	to
allow	a	message	to	be	sent	to	any	one	member	of	a	group	of	devices.

An	important	implication	of	the	creation	of	anycast	addressing	is	removal	of	the
strict	uniqueness	requirement	for	IP	addresses.	Anycast	is	accomplished	by
assigning	the	same	IP	address	to	more	than	one	device.	The	devices	must	also	be
specifically	told	that	they	are	sharing	an	anycast	address,	but	the	addresses
themselves	are	structurally	the	same	as	unicast	addresses.

The	bulk	of	the	remainder	of	this	chapter	focuses	on	unicast	addressing,	since	it
is	by	far	the	most	important	type.	Multicast	and	anycast	addressing	are	given
special	attention	in	a	separate	section	later	in	this	chapter.

IPv6	Address	Size	and	Address	Space
Of	all	the	changes	introduced	in	IPv6,	easily	the	most	celebrated	is	the	increase
in	the	size	of	IP	addresses,	which	resulted	in	a	corresponding	massive	increase	in
the	size	of	the	address	space	as	well.	It's	not	surprising	that	these	sizes	were
increased	compared	to	IPv4—everyone	has	known	for	years	that	the	IPv4
address	space	was	too	small	to	support	the	future	of	the	Internet.	What's
remarkable	is	the	level	of	increase	and	the	implications	for	how	Internet
addresses	are	used.

In	IPv4,	IP	addresses	are	32	bits	long;	these	are	usually	grouped	into	4	octets	of
8	bits	each.	The	theoretical	IPv4	address	space	is	232,	or	4,294,967,296
addresses.	To	increase	this	address	space,	we	simply	increase	the	size	of
addresses;	each	extra	bit	we	give	to	the	address	size	doubles	the	address	space.
Based	on	this,	some	folks	expected	the	IPv6	address	size	to	increase	from	32	to
48	bits,	or	perhaps	64	bits.	Either	of	these	numbers	would	have	given	a	rather
large	number	of	addresses.

However,	IPv6	addressing	doesn't	use	either	of	these	figures.	Instead,	the	IP



address	size	jumps	all	the	way	to	128	bits,	or	16	8-bit	octets/bytes.	The	size	of
the	IPv6	address	space	is,	quite	literally,	astronomical.	Like	the	numbers	that
describe	the	number	of	stars	in	a	galaxy	or	the	distance	to	the	furthest	pulsars,
the	number	of	addresses	that	can	be	supported	in	IPv6	is	mind-boggling.	See
Figure	25-1	for	an	idea	of	what	I	mean	by	astronomical.

Since	IPv6	addresses	are	128	bits	long,	the	theoretical	address	space,	if	all
addresses	were	used,	is	2128	addresses.	This	number,	when	expanded	out,	is
340,282,366,920,938,463,463,374,607,431,768,211,456,	which	is	normally
expressed	in	scientific	notation	as	about	3.4*1038	addresses.	Whoa!	That's	about
340	trillion,	trillion,	trillion	addresses.	As	I	said,	it's	pretty	hard	to	grasp	just	how
large	this	number	is.	Consider	these	comparisons:

It's	enough	addresses	for	many	trillions	of	addresses	to	be	assigned	to	every
human	being	on	the	planet.

The	Earth	is	about	4.5	billion	years	old.	If	you	had	been	assigning	IPv6
addresses	at	a	rate	of	1	billion	per	second	since	the	Earth	was	formed,	you
would	have	by	now	used	up	less	than	one	trillionth	of	the	address	space.

The	Earth's	surface	area	is	about	510	trillion	square	meters.	If	a	typical
computer	has	a	footprint	of	about	one-tenth	of	a	square	meter,	you	would
have	to	stack	computers	10	billion	high—blanketing	the	entire	surface	of	the
Earth—to	use	up	that	same	trillionth	of	the	address	space.

OK,	I	think	you	get	the	idea.	It's	clear	that	one	goal	of	the	decision	to	go	to	128-
bit	addresses	is	to	make	sure	that	we	will	never	run	out	of	address	space	again,
and	it	seems	quite	likely	that	this	will	be	the	case.



Figure	25-1.	A	(poor)	representation	of	relative	IPv4	and	IPv6	address	space	sizes	I	wanted	to	make	a
cool	graphic	to	show	the	relative	sizes	of	the	IPv4	and	IPv6	address	spaces.	You	know,	where	I	would
show	the	IPv6	address	space	as	a	big	box	and	the	IPv4	address	space	as	a	tiny	one.	The	problem	is	that
the	IPv6	address	space	is	so	much	larger	than	the	IPv4	space	that	there	is	no	way	to	show	it	to	scale!	To
make	this	diagram	to	scale,	imagine	the	IPv4	address	space	is	the	1.6-inch	square	above.	In	that	case,

the	IPv6	address	space	would	be	represented	by	a	square	the	size	of	the	solar	system!

There	are	drawbacks	to	having	such	a	huge	address	space,	too.	Consider	that
even	with	a	64-bit	address,	we	would	have	a	very	large	address	space;	264	equals
18,446,744,073,709,551,616,	or	about	18	million	trillion.	These	are	still
probably	more	addresses	than	the	Internet	will	ever	need.	However,	by	going	to
128	bits	instead,	this	has	made	dealing	with	IP	addresses	unruly	(as	you'll	see	in
the	next	section).	This	has	also	increased	overhead,	since	every	datagram	header
or	other	place	where	IP	addresses	are	referenced	must	use	16	bytes	for	each
address	instead	of	the	4	bytes	that	were	needed	in	IPv4,	or	the	8	bytes	that	might
have	been	required	with	a	64-bit	address.

TIP

KEY	CONCEPT	The	IPv6	address	space	is	really,	really	big!

So	why	the	overkill	of	going	to	128	bits?	The	main	reason	is	flexibility.	Even
though	you	can	have	a	couple	zillion	addresses	if	we	allocate	them	one	at	a	time,
this	makes	assignment	difficult.	The	developers	got	rid	of	class-oriented
addressing	in	IPv4	because	it	wasted	address	space.	The	reality,	though,	is	that
being	able	to	waste	address	space	is	a	useful	luxury.

Having	128	bits	allows	us	to	divide	the	address	space	and	assign	various



Having	128	bits	allows	us	to	divide	the	address	space	and	assign	various
purposes	to	different	bit	ranges,	while	still	not	having	to	worry	about	running	out
of	space.	Later	in	this	chapter,	in	the	section	describing	the	IPv6	global	unicast
address	format,	you'll	see	one	way	that	those	128	bits	are	put	to	good	use:	They
allow	you	to	create	a	hierarchy	of	networks	while	still	saving	64	bits	for	host
IDs.	This	hierarchy	has	its	own	advantages.



IPv6	Address	and	Address	Notation	and	Prefix
Representation
Increasing	the	size	of	IP	addresses	from	32	bits	to	128	bits	expands	the	address
space	to	a	gargantuan	size,	thereby	ensuring	that	we	will	never	again	run	out	of
IP	addresses,	and	thereby	allowing	flexibility	in	how	they	are	assigned	and	used.
Unfortunately,	there	are	some	drawbacks	to	this	method,	and	one	of	them	is	that
128-bit	numbers	are	very	large.	The	size	makes	them	awkward	and	difficult	to
use.

Computers	work	in	binary,	and	they	have	no	problem	dealing	with	long	strings
of	ones	and	zeros,	but	humans	find	them	confusing.	Even	the	32-bit	addresses	of
IPv4	are	cumbersome	for	us	to	deal	with,	which	is	why	we	use	dotted	decimal
notation	for	them	unless	we	need	to	work	in	binary	(as	with	subnetting).
However,	IPv6	addresses	are	so	much	larger	than	IPv4	addresses	that	it	becomes
problematic	to	use	dotted	decimal	notation.	To	use	this	notation,	we	would	split
the	128	bits	into	16	octets	and	represent	each	with	a	decimal	number	from	0	to
255.	However,	we	would	end	up	not	with	4	of	these	numbers,	but	16.	A	typical
IPv6	address	in	this	notation	would	appear	as	follows:

128.91.45.157.220.40.0.0.0.0.252.87.212.200.31.255

The	binary	and	dotted	decimal	representations	of	this	address	are	shown	near	the
top	of	Figure	25-2.	In	either	case,	the	word	elegant	doesn't	exactly	spring	to
mind.

Figure	25-2.	Binary,	decimal,	and	hexadecimal	representations	of	IPv6	addresses	The	top	two	rows



show	binary	and	dotted	decimal	representations	of	an	IPv6	address;	neither	is	commonly	used	(other
than	by	computers	themselves!).	The	top	row	of	the	lower	table	shows	the	full	hexadecimal

representation,	while	the	next	two	rows	illustrate	zero	suppression	and	compression.	The	last	row	shows
mixed	notation,	with	the	final	32	bits	of	an	IPv6	address	shown	in	dotted	decimal	notation

(212.200.31.255).	This	is	most	commonly	used	for	embedded	IPv4	addresses.

IPv6	Address	Hexadecimal	Notation
To	make	addresses	shorter,	the	decision	was	made	in	IPv6	to	change	the	primary
method	of	expressing	addresses	to	use	hexadecimal	instead	of	decimal.	The
advantage	of	this	is	that	it	requires	fewer	characters	to	represent	an	address,	and
converting	from	hexadecimal	to	binary	and	back	again	is	much	easier	than
converting	from	binary	to	decimal	or	vice	versa.	The	disadvantage	is	that	many
people	find	hexadecimal	difficult	to	comprehend	and	work	with,	especially
because	the	notion	of	16	values	in	each	digit	is	a	bit	strange.

The	hexadecimal	notation	used	for	IPv6	addresses	is	similar	to	the	same	method
used	for	IEEE	802	MAC	addresses,	and	for	technologies	like	Ethernet.	With
these	MAC	addresses,	48	bits	are	represented	by	6	octets,	each	octet	being	a
hexadecimal	number	from	0	to	FF,	separated	by	a	dash	or	colon,	like	this:

0A-A7-94-07-CB-D0

Since	IPv6	addresses	are	larger,	they	are	instead	grouped	into	eight	16-bit	words,
separated	by	colons,	to	create	what	is	sometimes	called	colon	hexadecimal
notation,	as	shown	in	Figure	25-2.	So,	the	IPv6	address	given	in	the	previous
example	would	be	expressed	as	follows:

805B:2D9D:DC28:0000:0000:FC57:D4C8:1FFF

To	keep	the	address	size	down,	leading	zeros	can	be	suppressed	in	the	notation
so	you	can	immediately	reduce	this	to	the	following:

805B:2D9D:DC28:0:0:FC57:D4C8:1FFF

Well,	it's	definitely	shorter	than	dotted	decimal,	but	still	pretty	long.	When	you
are	dealing	with	numbers	this	big,	there's	only	so	much	you	can	do.	This	is	part
of	why	the	use	of	Domain	Name	System	(DNS)	names	for	hosts	becomes	much
more	important	under	IPv6	than	it	is	in	IPv4:	Who	could	remember	a	hex
address	that	long?



Zero	Compression	in	IPv6	Addresses
Fortunately,	there	is	a	shortcut	that	can	be	applied	to	shorten	some	addresses
even	further.	This	technique	is	sometimes	called	zero	compression.	The	method
allows	a	single	string	of	contiguous	zeros	in	an	IPv6	address	to	be	replaced	by
double	colons.	So,	for	example,	the	previous	address	could	be	expressed	as
follows:

805B:2D9D:DC28::FC57:D4C8:1FFF

You	know	how	many	zeros	are	replaced	by	the	two	colons	(::)	because	you	can
see	how	many	fully	expressed	(uncompressed)	hexadecimal	words	are	in	the
address.	In	this	case,	there	are	six,	so	the	::	represents	two	zero	words.	To
prevent	ambiguity,	the	double	colons	can	appear	only	once	in	any	IP	address,
because	if	it	appeared	more	than	once,	you	could	not	tell	how	many	zeros	were
replaced	in	each	instance.	So,	if	the	example	address	were
805B:2D9D:DC28:0:0:FC57:0:0,	you	could	replace	either	the	first	pair	of	zeros
or	the	second,	but	not	both.

Zero	compression	doesn't	make	the	example	much	shorter,	but	due	to	how	IPv6
addresses	are	structured,	long	strings	of	zeros	are	common.	For	example,
consider	this	address:

FF00:4501:0:0:0:0:0:32

With	compression,	this	could	be	shortened	as	follows:

FF00:4501::32

The	technique	works	even	better	on	special	addresses.	The	full	IPv6	loopback
address	is	written	as	follows:

0:0:0:0:0:0:0:1

With	compression,	the	loopback	address	looks	like	this:

::1

For	even	more	fun,	consider	the	especially	odd	IPv6	unspecified	address,	as
shown	here:

0:0:0:0:0:0:0:0



Apply	zero	compression	to	an	address	that	is	all	zeros,	and	what	do	you	get?

::

No	numbers	at	all!	Of	course,	thinking	of	::	as	an	address	does	take	some	getting
used	to.

TIP

KEY	CONCEPT	For	brevity,	IPv6	addresses	are	represented	using	eight	sets	of	four	hexadecimal
digits,	a	form	called	colon	hexadecimal	notation.	Additional	techniques,	called	zero	suppression	and	zero
compression,	are	used	to	reduce	the	size	of	displayed	addresses	further	by	removing	unnecessary	zeros
from	the	presentation	of	the	address.

IPv6	Mixed	Notation
There	is	also	an	alternative	notation	used	in	some	cases,	especially	for
expressing	IPv6	addresses	that	embed	IPv4	addresses	(discussed	later	in	this
chapter).	For	these,	it	is	useful	to	show	the	IPv4	portion	of	the	address	in	the
older	dotted	decimal	notation,	since	that's	what	you	use	for	IPv4.	Since
embedding	uses	the	last	32	bits	for	the	IPv4	address,	the	notation	has	the	first	96
bits	in	colon	hexadecimal	notation	and	the	last	32	bits	in	dotted	decimal.	So,	to
take	the	earlier	example	again,	in	mixed	notation	it	would	be	shown	as	follows:

805B:2D9D:DC28::FC57:212.200.31.255

This	isn't	really	a	great	example	of	mixed	notation,	because	embedding	usually
involves	long	strings	of	zeros	followed	by	the	IPv4	address.	Thus,	zero
compression	comes	in	very	handy	here.	Instead	of	seeing	something	like	this:

0:0:0:0:0:0:212.200.31.255

You	will	typically	see	this:

::212.200.31.255

At	first	glance,	this	appears	to	be	an	IPv4	address.	You	must	keep	a	close	eye	on
those	colons	in	IPv6!

TIP

KEY	CONCEPT	A	special	mixed	notation	is	defined	for	IPv6	addresses	whose	last	32	bits	contain	an



embedded	IPv4	address.	In	this	notation,	the	first	96	bits	are	displayed	in	regular	colon	hexadecimal
notation,	and	the	last	32	bits	are	displayed	in	IPv4-style	dotted	decimal.

IPv6	Address	Prefix	Length	Representation
Like	IPv4	classless	addresses,	IPv6	addresses	are	fundamentally	divided	into	a
number	of	network	ID	bits	followed	by	a	number	of	host	ID	bits.	The	network
identifier	is	called	the	prefix,	and	the	number	of	bits	used	is	the	prefix	length.
This	prefix	is	represented	by	adding	a	slash	after	the	address	and	then	putting	the
prefix	length	after	the	slash.	This	is	the	same	method	used	for	classless	IPv4
addressing	with	CIDR.	For	example,	if	the	first	48	bits	of	the	sample	address
were	the	network	ID	(prefix),	then	we	would	express	this	as
805B:2D9D:DC28::FC57:D4C8:1FFF/48.

TIP

KEY	CONCEPT	In	IPv6,	the	size	of	an	address's	prefix	is	indicated	by	the	prefix	length	that	follows
the	address,	separated	with	a	slash,	just	as	it	is	done	in	IPv4	classless	addressing.

As	in	IPv4,	specifiers	for	whole	networks	will	typically	end	in	long	strings	of
zeros.	These	can	be	replaced	by	double	colons	(::)	using	zero	compression.	For
example,	the	48-bit	network	ID	for	the	previous	example	is
805B:2D9D:DC28:0:0:0:0:0/48,	or	805B:2D9D:DC28::/48.	You	must	include
the	"::"	if	replacing	the	trailing	zeros.



IPv6	Address	Space	Allocation
After	dealing	for	so	many	years	with	the	very	small	IPv4	address	space,	the
enormous	number	of	addresses	in	IPv6	must	have	made	the	Internet	Engineering
Task	Force	(IETF)	engineers	feel	like	kids	in	a	candy	shop.	They	were	good
kids,	however,	and	didn't	run	wild,	grabbing	all	the	candy	they	could	find	and
gobbling	it	up.	They	very	carefully	considered	how	to	divide	the	address	space
for	various	uses.	Of	course,	when	you	have	this	much	candy,	sharing	becomes
pretty	easy.

As	was	the	case	with	IPv4,	the	two	primary	concerns	in	deciding	how	to	divide
the	IPv6	address	space	were	address	assignment	and	routing.	The	designers	of
IPv6	wanted	to	structure	the	address	space	to	make	allocation	of	addresses	to
Internet	service	providers	(ISPs),	organizations,	and	individuals	as	easy	as
possible.

At	first,	perhaps	ironically,	this	led	the	creators	of	IPv6	back	full	circle	to	the	use
of	specific	bit	sequences	to	identify	different	types	of	addresses,	just	like	the	old
classful	addressing	scheme.	The	address	type	was	indicated	by	a	set	of	bits	at	the
start	of	the	address,	called	the	format	prefix	(FP).	The	format	prefix	was
conceptually	identical	to	the	one	to	four	bits	used	in	IPv4	classful	addressing	to
denote	address	classes,	but	was	variable	in	length,	ranging	from	three	to	ten	bits.
Format	prefixes	were	described	in	RFC	2373.

In	the	years	following	the	publication	of	RFC	2373,	the	gurus	who	run	the
Internet	had	a	change	of	heart	regarding	how	address	blocks	should	be
considered.	They	still	wanted	to	divide	the	IPv6	address	space	into	variably	sized
blocks	for	different	purposes.	However,	they	realized	that	many	people	were
starting	to	consider	the	use	of	format	prefixes	to	be	equivalent	to	the	old	class-
oriented	IPv4	system.	Their	main	concern	was	that	implementers	might	program
into	IPv6	hardware	logic	to	make	routing	decisions	based	only	on	the	first	few
bits	of	the	address.	This	was	specifically	not	how	IPv6	is	supposed	to	work;	for
one	thing,	the	allocations	are	subject	to	change.

Thus,	one	of	the	modifications	made	in	RFC	3513	was	to	change	the	language
regarding	IPv6	address	allocations,	and	specifically,	to	remove	the	term	format
prefix	from	the	standard.	The	allocation	of	different	parts	of	the	address	space	is



still	done	based	on	particular	patterns	of	the	first	three	to	ten	bits	of	the	address
to	allow	certain	categories	to	have	more	addresses	than	others.	The	elimination
of	the	specific	term	denoting	this	is	intended	to	convey	that	these	bits	should	not
be	given	special	attention.

Table	25-1	shows	the	allocations	of	the	IPv6	address	space	and	what	fraction	of
the	total	address	space	each	represents.

Table	25-1.	IPv6	Address	Space	Allocations

Leading
Bits

Fraction	of	Total	IPv6
Address	Space

Allocation

0000
0000

1/256 Unassigned	(Includes	special	addresses	such	as	the
unspecified	and	loopback	addresses)

0000
0001

1/256 Unassigned

0000	001 1/128 Reserved	for	NSAP	address	allocation

0000	01 1/64 Unassigned

0000	1 1/32 Unassigned

0001 1/16 Unassigned

001 1/8 Global	unicast	addresses

010 1/8 Unassigned

011 1/8 Unassigned

100 1/8 Unassigned

101 1/8 Unassigned

110 1/8 Unassigned

1110 1/16 Unassigned

1111	0 1/32 Unassigned

1111	10 1/64 Unassigned

1111	110 1/128 Unassigned



1111	110 1/128 Unassigned

1111
1110	0

1/512 Unassigned

1111
1110	10

1/1024 Link-local	unicast	addresses

1111
1110	11

1/1024 Site-local	unicast	addresses

1111
1111

1/256 Multicast	addresses

This	is	more	complicated	than	the	IPv4	classful	scheme	because	there	are	so
many	more	categories	and	they	range	greatly	in	size,	even	if	most	of	them	are
currently	unassigned.

An	easier	way	to	make	sense	of	this	table	is	to	consider	the	division	of	the	IPv6
address	space	into	eighths.	Of	these	eight	groups,	one	(001)	has	been	reserved
for	unicast	addresses;	a	second	(000)	has	been	used	to	carve	out	smaller	reserved
blocks,	and	a	third	(111)	has	been	used	for	sub-blocks	for	local	and	multicast
addresses.	Five	are	completely	unassigned.

You	can	see	that	the	IPv6	designers	have	taken	great	care	to	allocate	only	the
portion	of	these	"eighths"	of	the	address	space	that	they	felt	was	needed	for	each
type	of	address.	For	example,	only	a	small	portion	of	the	part	of	the	address
space	beginning	111	was	used,	with	most	of	it	left	aside.	In	total,	only	71/512ths
of	the	address	space	is	assigned	right	now,	or	about	14	percent.	The	other	86
percent	is	unassigned	and	kept	aside	for	future	use.	(Bear	in	mind	that	even
1/1024th	of	the	IPv6	address	space	is	gargantuan—it	represents	trillions	of
trillions	of	addresses.)

Later	sections	in	this	chapter	provide	more	information	on	several	of	these
address	blocks.	Note	that	the	0000	0000	reserved	block	is	used	for	several
special	address	types,	including	the	loopback	address,	the	unspecified	address,
and	IPv4	address	embedding.	The	1111	1111	format	prefix	identifies	multicast
addresses;	this	string	is	FF	in	hexadecimal,	so	any	address	beginning	with	FF	is	a
multicast	address	in	IPv6.



IPv6	Global	Unicast	Address	Format
It	is	anticipated	that	unicast	addressing	will	be	used	for	the	vast	majority	of
Internet	traffic	under	IPv6,	as	is	the	case	for	IPv4.	It	is	for	this	reason	that	the
largest	of	the	assigned	blocks	of	the	IPv6	address	space	is	dedicated	to	unicast
addressing.	A	full	one-eighth	slice	of	the	enormous	IPv6	address	"pie"	is
assigned	to	unicast	addresses,	which	are	indicated	by	a	001	in	the	first	three	bits
of	the	address.	The	question	is:	How	do	we	use	the	remaining	125	bits	in	the
spacious	IP	addresses?

Rationale	for	a	Structured	Unicast	Address
Block
When	IPv4	was	first	created,	the	Internet	was	rather	small,	and	the	model	for
allocating	address	blocks	was	based	on	a	central	coordinator:	the	Internet
Assigned	Numbers	Authority	(IANA).	Everyone	who	wanted	address	blocks
would	go	straight	to	the	central	authority.	As	the	Internet	grew,	this	model
became	impractical.	Today,	IPv4's	classless	addressing	scheme	allows	variable-
length	network	IDs	and	hierarchical	assignment	of	address	blocks.	Big	ISPs	get
large	blocks	from	the	central	authority,	and	then	subdivide	them	and	allocate
them	to	their	customers,	and	so	on.	This	is	managed	by	today's	ISPs,	but	there	is
nothing	in	the	address	space	that	helps	manage	the	allocation	process.	In	turn,
each	organization	has	the	ability	to	further	subdivide	its	address	allocation	to	suit
its	internal	requirements.

The	designers	of	IPv6	had	the	benefit	of	this	experience	and	realized	there	would
be	tremendous	advantages	to	designing	the	unicast	address	structure	to	reflect
the	overall	topology	of	the	Internet.	These	include	the	following:

Easier	allocation	of	address	blocks	at	various	levels	of	the	Internet
topological	hierarchy.

IP	network	addresses	that	automatically	reflect	the	hierarchy	by	which	routers
move	information	across	the	Internet,	thereby	allowing	routes	to	be	easily
aggregated	for	more	efficient	routing.

Flexibility	for	organizations	like	ISPs	to	subdivide	their	address	blocks	for



customers.

Flexibility	for	end-user	organizations	to	subdivide	their	address	blocks	to
match	internal	networks,	much	as	subnetting	did	in	IPv4.

Greater	meaning	to	IP	addresses.	Instead	of	just	being	a	string	of	128	bits
with	no	structure,	it	would	become	possible	to	look	at	an	address	and	know
certain	things	about	it.

Generic	Division	of	the	Unicast	Address	Space
The	most	generic	way	of	dividing	up	the	128	bits	of	the	unicast	address	space	is
into	three	sections,	as	shown	in	Table	25-2.

Table	25-2.	Generic	IPv6	Global	Unicast	Address	Format

Field
Name

Size
(Bits)

Description

Prefix n Global	Routing	Prefix:	The	network	ID	or	prefix	of	the	address,	used	for
routing.

Subnet
ID

m Subnet	Identifier:	A	number	that	identifies	a	subnet	within	the	site.

Interface
ID

128-n-
m

Interface	Identifier:	The	unique	identifier	for	a	particular	interface	(host	or
other	device).	It	is	unique	within	the	specific	prefix	and	subnet.

The	global	routing	prefix	and	subnet	identifier	represent	the	two	basic	levels	at
which	addresses	need	to	be	hierarchically	constructed:	that	is,	global	and	site-
specific.	The	routing	prefix	consists	of	a	number	of	bits	that	can	be	further
subdivided	according	to	the	needs	of	Internet	registries	and	ISPs.	This
subdivision	reflects	the	topography	of	the	Internet	as	a	whole.	The	subnet	ID
gives	a	number	of	bits	to	site	administrators	for	creating	an	internal	network
structure	suiting	each	administrator's	needs.

IPv6	Implementation	of	the	Unicast	Address
Space
In	theory,	any	size	for	n	and	m	(see	Table	25-2)	could	be	used.	The
implementation	chosen	for	IPv6,	however,	assigns	48	bits	to	the	routing	prefix



and	16	bits	to	the	subnet	identifier.	This	means	64	bits	are	available	for	interface
identifiers,	which	are	constructed	based	on	the	IEEE	EUI-64	format,	as
described	in	the	next	section.	Thus,	the	overall	IPv6	unicast	address	format	is
constructed	as	shown	in	Table	25-3	and	illustrated	in	Figure	25-3.

Table	25-3.	IPv6	Global	Unicast	Address	Format

Field
Name

Size
(Bits)

Description

Prefix 48 Global	Routing	Prefix:	The	network	ID	or	prefix	of	the	address	that's	used
for	routing.	The	first	three	bits	are	001	to	indicate	a	unicast	address.

Subnet
ID

16 Subnet	Identifier:	A	number	that	identifies	a	subnet	within	the	site.

Interface
ID

64 Interface	ID:	The	unique	identifier	for	a	particular	interface	(host	or	other
device).	It	is	unique	within	the	specific	prefix	and	subnet.

Figure	25-3.	IPv6	global	unicast	address	format

TIP

KEY	CONCEPT	The	part	of	the	IPv6	address	space	set	aside	for	unicast	addresses	is	structured	into	an
address	format	that	uses	the	first	48	bits	for	the	routing	prefix	(like	a	network	ID),	the	next	16	bits	for	a
subnet	ID,	and	the	final	64	bits	for	an	interface	ID	(like	a	host	ID).

Due	to	this	structure,	most	end	sites	(regular	companies	and	organizations,	as
opposed	to	ISPs)	will	be	assigned	IPv6	networks	with	a	48-bit	prefix.	In
common	parlance,	these	network	identifiers	have	now	come	to	be	called	48s	or
/48s.

The	16	bits	of	subnet	ID	allow	each	site	considerable	flexibility	in	creating
subnets	that	reflect	the	site's	network	structure.	Here	are	some	example	uses	of
the	16	bits:

A	smaller	organization	can	just	set	all	the	bits	in	the	subnet	ID	to	zero	and
have	a	flat	internal	structure.



A	medium-sized	organization	could	use	all	the	bits	in	the	subnet	ID	to
perform	the	equivalent	of	straight	subnetting	under	IPv4,	thereby	assigning	a
different	subnet	ID	to	each	subnet.	There	are	16	bits	here,	and	this	allows	a
whopping	65,536	subnets!

A	larger	organization	can	use	the	bits	to	create	a	multiple-level	hierarchy	of
subnets,	exactly	like	IPv4's	Variable	Length	Subnet	Masking	(VLSM).	For
example,	the	company	could	use	two	bits	to	create	four	subnets.	It	could	then
take	the	next	three	bits	to	create	eight	sub-subnets	in	some	or	all	of	the	four
subnets.	There	would	still	be	11	more	bits	to	create	sub-sub-subnets,	and	so
forth.

Original	Division	of	the	Global	Routing	Prefix:
Aggregators
The	global	routing	prefix	is	similarly	divided	into	a	hierarchy,	but	one	that	has
been	designed	for	the	use	of	the	entire	Internet,	like	CIDR.	There	are	45	bits
available	here	(48	bits	minus	the	first	three	that	are	fixed	at	001).	That	is	a	lot.
When	the	unicast	address	structure	was	first	detailed	in	RFC	2374,	that
document	described	a	specific	division	of	the	45	bits	based	on	a	two-level
hierarchical	topology	of	Internet	registries	and	providers.	These	organizations
were	described	as	follows:

Top-Level	Aggregators	(TLAs)	These	refer	to	the	largest	Internet
organizations,	which	were	to	be	assigned	large	blocks	of	IPv6	addresses	from
registration	authorities.

Next-Level	Aggregators	(NLAs)	These	organizations	would	get	blocks	of
addresses	from	TLAs	and	divide	them	for	end-user	organizations	(sites).

The	45	bits	were	split	between	these	two	uses,	with	a	few	bits	reserved	in	the
middle	to	allow	expansion	of	either	field	if	needed.	Thus,	the	RFC	2374
structure	for	the	45	bits	appeared	as	listed	in	Table	25-4.

Table	25-4.	Historical	IPv6	Unicast	Routing	Prefix	Structure

Field
Name

Size
(Bits)

Description



TLA
ID

13 Top-Level	Aggregation	(TLA)	Identifier:	A	globally	unique	identifier	for	the
top-level	aggregator.	There	are	13	bits,	so	there	were	a	maximum	of	8,192
TLAs	allowed.

RES 8 Reserved:	These	8	bits	were	reserved	for	future	use	and	set	to	zero.	By	leaving
these	8	bits	between	the	TLA	ID	and	NLA	ID	unused,	they	could	later	be	used
to	expand	either	the	TLA	ID	or	NLA	ID	fields	as	needed.

NLA
ID

24 Next-Level	Aggregation	(NLA)	Identifier:	Each	TLA	was	given	this	24-bit
field	to	generate	blocks	of	addresses	for	allocation	to	its	customers.	The	NLA
ID	is	unique	for	each	TLA	ID.	The	use	of	the	24	bits	was	left	up	to	the	TLA
organization.

You'll	notice	my	use	of	the	past	tense	in	the	description	of	the	TLA/NLA
structure,	and	that	table	heading	is	a	pretty	big	giveaway,	too.	In	August	2003,
RFC	3587	was	published,	which	in	a	nutshell	says,	"Uh,	never	mind	about	all
that	TLA/NLA	stuff."	The	decision	was	made	that	having	this	structure
hardwired	into	an	Internet	standard	was	inflexible,	and	it	made	more	sense	to	let
the	regional	Internet	registries	(APNIC,	ARIN,	LACNIC,	and	RIPE)	decide	for
themselves	how	to	use	the	45	bits.

NOTE

The	obsoleting	of	the	TLA/NLA	structure	occurred	after	many	years	of	people	getting	used	to	it,	so	for
some	time	to	come,	you	will	still	routinely	see	those	terms	mentioned	in	IPv6	descriptions.	(This	is	why	I
included	discussion	of	them	here.)

A	Sample	Division	of	the	Global	Routing	Prefix
into	Levels
There	is	no	single	structure	for	determining	how	the	48-bit	routing	prefix	is
divided	in	the	global	unicast	hierarchy.	As	one	example,	it	might	be	possible	to
divide	it	into	three	levels,	as	shown	in	Table	25-5	and	illustrated	in	Figure	25-4.

Table	25-5.	Example	IPv6	Unicast	Routing	Prefix	Structure

Field
Name

Size
(Bits)

Description

(Unicast
Indicator)

3 Each	unicast	address	starts	with	001;	there	is	no	official	name	for	this	(it
used	to	be	called	the	format	prefix).



Level1
ID

10 Level	1	Identifier:	The	identifier	of	the	highest	level	in	the	hierarchy.	This
would	be	used	for	assigning	the	largest	blocks	of	addresses	in	the	global
hierarchy	to	the	biggest	Internet	organizations.	The	number	of	level	1
organizations	would	be	210,	or	1,024.

Level2
ID

12 Level	2	Identifier:	Each	block	assigned	to	a	level	1	organization	would	use
12	bits	to	create	4,096	address	blocks	to	divide	among	the	lower-level
organizations	it	serves.

Level3
ID

23 Level	3	Identifier:	Each	level	2	organization	has	23	bits	to	use	to	divide	its
level	2	address	block.	Thus,	it	could	create	over	8	million	individual	/48
address	blocks	to	assign	to	end-user	sites.	Alternatively,	the	23	bits	could	be
divided	further	into	still	lower	levels	to	reflect	the	structure	of	the	level	2
organization's	customers.

Figure	25-4.	Example	of	IPv6	unicast	routing	prefix	structure	The	top	row	shows	the	global	IPv6
unicast	address	format.	The	second	shows	one	way	to	divide	the	global	routing	prefix	into	three	levels
using	10,	12,	and	23	bits,	respectively.	The	third	row	shows	how	the	first	10	bits	are	used	to	create	210,
or	1,024,	different	level	1	blocks.	The	next	row	illustrates	that	for	each	of	these	13-bit	prefixes,	you
could	have	212,	or	4,096,	level	2	blocks.	Then,	within	each	25-bit	level	2	ID,	you	have	23	bits,	or
8,388,608,	level	3	blocks.	At	the	bottom,	a	level	3	or	/48	would	be	assigned	to	an	individual

organization.

This	is	just	one	possible	theoretical	way	that	the	bits	in	a	/48	network	address



could	be	assigned.	As	you	can	see,	with	so	many	bits,	there	is	a	lot	of	flexibility.
In	the	previous	scheme,	you	can	have	over	four	million	level	2	organizations,
each	of	which	can	assign	eight	million	/48	addresses.	And	each	of	those	is
equivalent	in	size	to	an	IPv4	Class	B	address	(over	65,000	hosts)!

The	removal	of	RFC	2374's	fixed	structure	for	the	global	routing	prefix	is
consistent	with	the	IPv6	development	team's	efforts	to	emphasize	that	bit	fields
and	structures	are	used	only	for	allocating	addresses	and	not	for	routing
purposes.	The	addresses	themselves,	once	created,	are	not	interpreted	by
hardware	on	an	internetwork	based	on	this	format.	To	routers,	the	only	structure
that	matters	is	the	division	between	the	network	ID	and	host	ID,	given	by	the
prefix	length	that	trails	the	IP	address,	and	this	division	can	occur	at	any	bit
boundary.	These	hardware	devices	just	see	128	bits	of	an	IP	address	and	use	it
without	any	knowledge	of	hierarchical	address	divisions	or	levels.

Incidentally,	the	key	to	obtaining	the	allocation	benefits	of	the	aggregatable
unicast	address	format	is	the	abundance	of	bits	available	to	us	under	IPv6.	The
ability	to	have	these	hierarchical	levels	while	still	allowing	64	bits	for	the
interface	identifier	is	one	of	the	main	reasons	why	IPv6	designers	went	all	the
way	from	32	bits	to	128	bits	for	address	size.	By	creating	this	structure,	we
maintain	flexibility,	while	avoiding	the	potential	chaos	of	trying	to	allocate	many
different	network	sizes	within	the	128	bits.

Note	that	anycast	addresses	are	structured	in	the	same	way	as	unicast	addresses,
so	they	are	allocated	according	to	this	same	model.	(Multicast	addresses	are	not.)



IPv6	Interface	Identifiers	and	Physical	Address
Mapping
In	IPv4,	IP	addresses	have	no	relationship	to	the	addresses	used	for	underlying
data	link	layer	network	technologies.	A	host	that	connects	to	a	TCP/IP	network
using	an	Ethernet	network	interface	card	(NIC)	has	an	Ethernet	MAC	address
and	an	IP	address,	but	the	two	numbers	are	distinct	and	unrelated	in	any	way.	IP
addresses	are	assigned	manually	by	administrators	without	any	regard	for	the
underlying	physical	address.

With	the	overhaul	of	addressing	in	IPv6,	an	opportunity	presented	itself	to	create
a	better	way	of	mapping	IP	unicast	addresses	and	physical	network	addresses.
Implementing	this	superior	mapping	technique	was	one	of	the	reasons	why	IPv6
addresses	were	made	so	large.	With	128	total	bits,	even	with	a	full	45	bits
reserved	for	the	network	prefix	and	16	bits	for	the	site	subnet,	we	are	still	left
with	64	bits	to	use	for	the	interface	identifier	(interface	ID),	which	is	analogous
to	the	host	ID	under	IPv4.

Having	so	many	bits	at	our	disposal	gives	us	great	flexibility.	Instead	of	using
arbitrary,	made-up	identifiers	for	hosts,	we	can	base	the	interface	ID	on	the
underlying	data	link	layer	hardware	address,	as	long	as	that	address	is	no	greater
than	64	bits	in	length.	Since	virtually	all	devices	use	layer	2	addresses	of	64	bits
or	fewer,	there	is	no	problem	in	using	those	addresses	for	the	interface	ID	in	IP
addresses.	This	provides	an	immediate	benefit:	It	makes	networks	easier	to
administer,	since	we	don't	need	to	record	two	arbitrary	numbers	for	each	host.
The	IP	address	can	be	derived	from	the	MAC	address	and	the	network	ID.	It	also
means	that	we	can	tell	the	IP	address	from	the	MAC	address	and	vice	versa.

The	actual	mapping	from	data	link	layer	addresses	to	IP	interface	IDs	depends
on	the	particular	technology.	It	is	essential	that	all	devices	on	the	same	network
use	the	same	mapping	technique,	of	course.	By	far,	the	most	common	type	of
layer	2	addresses	in	networking	are	IEEE	802	MAC	addresses,	which	are	used
by	Ethernet	and	other	IEEE	802	Project	networking	technologies.	These
addresses	have	48	bits,	arranged	into	two	blocks	of	24.	The	upper	24	bits	are
arranged	into	a	block	called	the	organizationally	unique	identifier	(OUI),	with
different	values	assigned	to	individual	organizations.	The	lower	24	bits	are	then



used	for	an	identifier	for	each	specific	device.

The	IEEE	has	also	defined	a	format	called	the	64-bit	extended	unique	identifier,
which	is	abbreviated	EUI-64.	It	is	similar	to	the	48-bit	MAC	format,	except	that
while	the	OUI	remains	at	24	bits,	the	device	identifier	becomes	40	bits	instead	of
24.	This	gives	each	manufacturer	65,536	times	as	many	device	addresses	within
its	OUI.

A	form	of	this	format,	called	modified	EUI-64,	has	been	adopted	for	IPv6
interface	IDs.	To	get	the	modified	EUI-64	interface	ID	for	a	device,	you	simply
take	the	EUI-64	address	and	change	the	seventh	bit	from	the	left	(the
universal/local,	or	U/L,	bit)	from	a	0	to	a	1.

Of	course,	most	devices	still	use	the	older	48-bit	MAC	address	format.	These
can	be	converted	to	EUI-64	and	then	modified	to	EUI-64	form	for	creating	an
IPv6	interface	ID.	The	process	is	as	follows:

1.	 Take	the	24-bit	OUI	portion,	the	leftmost	24	bits	of	the	Ethernet	address,
and	put	them	into	the	leftmost	24	bits	of	the	interface	ID.	Take	the	24-bit
local	portion	(the	rightmost	24	bits	of	the	Ethernet	address)	and	put	it	into
the	rightmost	24	bits	of	the	interface	ID.

2.	 In	the	remaining	16	bits	in	the	middle	of	the	interface	ID,	put	the	value
11111111	11111110,	FFFE	in	hexadecimal.

3.	 The	address	is	now	in	EUI-64	form.	Change	the	universal/local	bit	(bit	7
from	the	left,	shown	in	bold	in	Figure	25-5)	from	a	0	to	a	1.	This	gives	the
modified	EUI-64	interface	ID.

TIP

KEY	CONCEPT	The	last	64	bits	of	IPv6	unicast	addresses	are	used	for	interface	IDs,	which	are	created
in	a	special	format	called	modified	EUI-64.	A	simple	process	can	be	used	to	determine	the	interface	ID
from	the	48-bit	MAC	address	of	a	device	like	an	Ethernet	network	interface	card.	This	can	then	be
combined	with	a	network	prefix	(routing	prefix	and	subnet	ID)	to	determine	a	corresponding	IPv6
address	for	the	device.

Let's	take	as	an	example	the	Ethernet	address	of	39-A7-94-07-CB-D0.	Here	are
the	steps	for	conversion	(illustrated	in	Figure	25-5):

1.	 Take	39-A7-94,	the	first	24	bits	of	the	identifier,	and	put	it	into	the	first



(leftmost)	24	bits	of	the	address.	The	local	portion	of	07-CB-D0	becomes
the	last	24	bits	of	the	identifier.

2.	 The	middle	16	bits	are	given	the	value	FF-FE.

3.	 Change	the	seventh	bit	from	0	to	1,	which	changes	the	first	octet	from	39	to
3B.

The	identifier	thus	becomes	3B-A7-94-FF-FE-07-CB-D0,	or	in	IPv6	colon
hexadecimal	notation,	3BA7:94FF:FE07:CBD0.	The	first	64	bits	of	the	device's
address	are	supplied	using	the	global	unicast	address	format.

The	only	drawback	of	this	technique	is	that	if	the	physical	hardware	changes,	so
does	the	IPv6	address.



IPv6	Special	Addresses:	Reserved,	Private,
Unspecified,	and	Loopback
Just	as	certain	IPv4	address	ranges	are	designated	for	reserved,	private,	and	other
unusual	addresses,	a	small	part	of	the	monstrous	IPv6	address	space	has	been	set
aside	for	special	addresses.	The	purpose	of	these	addresses	and	address	blocks	is
to	provide	addresses	for	special	requirements	and	private	use	in	IPv6	networks.
Since	even	relatively	small	pieces	of	IPv6	are	still	enormous,	setting	aside	0.1
percent	of	the	address	space	for	a	particular	use	still	generally	yields	more
addresses	than	anyone	will	ever	need.

Figure	25-5.	Converting	IEEE	802	MAC	addresses	to	IPv6	modified	EUI-64	identifiers

Special	Address	Types
There	are	four	basic	types	of	special	IPv6	addresses:

Reserved	Addresses	A	portion	of	the	address	space	is	set	aside	as	reserved	for
various	uses	by	the	IETF,	both	present	and	future.	Unlike	IPv4,	which	has	many
small	reserved	blocks	in	various	locations	in	the	address	space,	the	reserved
block	in	IPv6	is	at	the	"top"	of	the	address	space,	beginning	with	0000	0000	(or
00	for	the	first	hexadecimal	octet).	This	represents	1/256th	of	the	total	address
space.	Some	of	the	special	addresses	you'll	see	shortly	come	from	this	block.



IPv4	address	embedding	is	also	done	within	this	reserved	address	area.

NOTE

Reserved	addresses	are	not	the	same	as	unassigned	addresses.	The	latter	term	just	refers	to	blocks	whose
use	has	not	yet	been	determined.

Private/Unregistered/Nonroutable	Addresses	A	block	of	addresses	is	set	aside
for	private	addresses,	just	as	in	IPv4,	except	that	like	everything	in	IPv6	the
private	address	block	in	IPv6	is	much	larger.	These	private	addresses	are	local
only	to	a	particular	link	or	site	and,	therefore,	are	never	routed	outside	a
particular	company's	network.	Private	addresses	are	indicated	by	the	address
having	"1111	1110	1"	for	the	first	nine	bits.	Thus,	private	addresses	have	a	first
octet	value	of	FE	in	hexadecimal,	with	the	next	hexadecimal	digit	being	from	8
to	F.	These	addresses	are	further	divided	into	two	types	based	on	their	scope:
site-local	and	link-local,	as	discussed	shortly.

Loopback	Address	Like	IPv4,	a	provision	has	been	made	for	a	special	loopback
address	for	testing;	datagrams	sent	to	this	address	"loop	back"	to	the	sending
device.	However,	in	IPv6,	there	is	just	one	address	for	this	function,	not	a	whole
block	(which	was	never	needed	in	the	first	place).	The	loopback	address	is
0:0:0:0:0:0:0:1,	which	is	normally	expressed	using	zero	compression	as	::1.

Unspecified	Address	In	IPv4,	an	IP	address	of	all	zeros	has	a	special	meaning:
It	refers	to	the	host	itself	and	is	used	when	a	device	doesn't	know	its	own
address.	In	IPv6,	this	concept	has	been	formalized,	and	the	all-zeros	address
(0:0:0:0:0:0:0:0)	is	named	the	unspecified	address.	It	is	typically	used	in	the
source	field	of	a	datagram	sent	by	a	device	seeking	to	have	its	IP	address
configured.	Zero	compression	can	be	applied	to	this	address;	since	it	is	all	zeros,
the	address	becomes	just	::.	(I	consider	this	confusing,	myself.	I	think	something
like	0::0	is	a	lot	clearer	and	short	enough.)

TIP

KEY	CONCEPT	In	IPv6,	a	special	loopback	address,	0:0:0:0:0:0:0:1	(::1	in	compressed	form)	is	set
aside	for	testing	purposes.	The	unspecified	address,	0:0:0:0:0:0:0:0	(::	in	compressed	form)	is	used	to
indicate	an	unknown	address.	A	block	of	private	or	local	addresses	is	defined.	This	block	is	the	set	of	all
addresses	beginning	with	1111	1110	1	as	the	first	nine	bits.



IPv6	Private	Addresses	Type	Scopes
Now	let's	take	a	closer	look	at	private	addresses.	In	IPv6,	these	are	called	local-
use	addresses,	with	the	name	conveying	clearly	what	they	are	for.	They	are	also
sometimes	called	link-layer	addresses.	You'll	recall	that	IPv4	private	addresses
were	commonly	used	when	public	addresses	could	not	be	obtained	for	all
devices,	sometimes	in	combination	with	technologies	like	Network	Address
Translation	(NAT).	In	IPv6,	trickery	like	NAT	isn't	required.	Instead,	local-use
addresses	are	intended	for	communication	that	is	inherently	designed	to	be	sent
to	local	devices	only.	For	example,	neighbor	discovery	functions	using	the	IPv6
Neighbor	Discovery	(ND)	protocol	employ	local-use	addresses.

The	scope	of	local	addresses	is	obviously	a	local	network,	not	the	global	scope
of	public	Internet	addresses.	Local	addresses	in	IPv6	are	further	divided	into	two
types,	reflecting	a	division	of	local	scope:

Site-Local	Addresses	These	addresses	have	the	scope	of	an	entire	site	or
organization.	They	allow	addressing	within	an	organization	without	having	to
use	a	public	prefix.	Routers	will	forward	datagrams	using	site-local	addresses
within	the	site,	but	not	addresses	outside	it	to	the	public	Internet.	Site-local
addresses	are	differentiated	from	link-local	addresses	by	having	a	tenth	bit	of	1
following	the	nine	starting	address	bits	that	are	common	to	all	private	IPv6
addresses.	Thus,	they	begin	with	1111	1110	11.	In	hexadecimal,	site-local
addresses	begin	with	FE,	and	then	C	to	F	for	the	third	digit.	So,	these	addresses
start	with	FEC,	FED,	FEE,	or	FEF.

Link-Local	Addresses	These	addresses	have	a	smaller	scope	than	site-local
addresses;	they	refer	only	to	a	particular	physical	link	(physical	network).
Routers	will	not	forward	datagrams	using	link-local	addresses	at	all—not	even
within	the	organization.	These	addresses	are	only	for	local	communication	on	a
particular	physical	network	segment.	They	can	be	used	for	address	configuration
or	for	ND	functions	such	as	address	resolution	and	ND.	Link-local	addresses	are
differentiated	from	site-local	addresses	by	having	a	tenth	bit	of	0	following	the
nine	initial	address	bits	common	to	all	private	IPv6	addresses:	1111	1110	1.
Thus,	site-local	addresses	begin	with	FE,	and	then	8	to	B	for	the	third
hexadecimal	digit.	So,	these	addresses	start	with	FE8,	FE9,	FEA,	or	FEB.



TIP

KEY	CONCEPT	IPv6	site-local	addresses	allow	data	to	be	sent	only	to	the	devices	within	a	site	or
organization.	They	begin	with	FEC,	FED,	FEE,	or	FEF	in	hexadecimal.	IPv6	link-loca	laddresses	are
used	only	on	a	particular	local	link	(physical	network),	typically	for	special	purposes	such	as	address
resolution	or	Neighbor	Discovery	(ND).	They	start	with	FE8,	FE9,	FEA,	or	FEB.

Note	that	site-local	IPv6	addresses	are	the	equivalent	of	IPv4	private	addresses,
since	they	are	routed	throughout	the	organization.	The	concept	of	link-local
scope	is	new	to	IPv6.



IPv6/IPv4	Address	Embedding
Due	to	the	importance	of	IP	and	the	significance	of	the	changes	made	in	IPv6,
deployment	of	the	newer	version	of	the	protocol	will	not	occur	all	at	once.	A
transition	from	IPv4	to	IPv6	will	be	required.	This	transition	requires	careful
planning.	It	is	anticipated	that	the	migration	from	IPv4	to	IPv6	will	take	many
years,	as	I	mentioned	earlier.

IPv6	is	backward-compatible	with	IPv4	provided	that	you	use	special
techniques.	For	example,	to	enable	communication	between	islands	of	IPv6
devices	connected	by	IPv4	networks,	you	may	need	to	employ	tunneling.	To
support	IPv4/IPv6	compatibility,	a	scheme	was	developed	to	allow	IPv4
addresses	to	be	embedded	within	the	IPv6	address	structure.	This	method	takes
regular	IPv4	addresses	and	puts	them	in	a	special	IPv6	format,	so	that	they	are
recognized	as	being	IPv4	addresses	by	certain	IPv6	devices.

Since	the	IPv6	address	space	is	so	much	bigger	than	the	one	in	IPv4,	embedding
the	latter	within	the	former	is	easy—it's	like	tucking	a	compact	sedan	into	the
hold	of	a	cargo	ship!	The	embedding	address	space	is	part	of	the	reserved
address	block	whose	addresses	begin	with	eight	0	bits,	but	it's	only	a	relatively
small	part.	Two	different	embedding	formats	are	used	to	indicate	the	capabilities
of	the	device	that's	using	the	embedded	address:

IPv4-Compatible	IPv6	Addresses	These	are	special	addresses	assigned	to
IPv6-capable	devices,	such	as	dual-stack	devices	that	use	both	IPv4	and	IPv6.
They	have	all	zeros	for	the	middle	16	bits;	thus,	they	start	off	with	a	string	of	96
zeros,	followed	by	the	IPv4	address.	An	example	of	such	an	address	would	be
0:0:0:0:0:0:101.45.75.219	in	mixed	notation,	or	more	succinctly,
::101.45.75.219.	Figure	25-6	illustrates	IPv4-compatible	IPv6	representation.

IPv4-Mapped	IPv6	Addresses	These	are	regular	IPv4	addresses	that	have	been
mapped	into	the	IPv6	address	space.	They	are	used	for	devices	that	are	IPv4-
capable	only.	They	have	a	set	of	16	ones	after	the	initial	string	of	80	zeros	and
then	the	IPv4	address.	So	if	an	IPv4	device	has	the	address	222.1.41.90,	such	as
the	one	shown	in	Figure	25-7,	it	would	be	represented	as
0:0:0:0:0:FFFF:222.1.41.90,	or	::FFFF:222.1.41.90.



Figure	25-6.	IPv4-compatible	embedded	IPv6	address	representation

The	difference	between	these	two	is	subtle	but	important.	Both	have	zeros	for
the	first	80	bits	of	the	address	and	put	the	embedded	IPv4	address	into	the	last	32
bits	of	the	IPv6	address	format.	They	differ	in	the	value	of	the	16	remaining	bits
in	between	(bits	81	to	96,	counting	from	the	left).	IPv4-compatible	IPv6
addresses	are	used	only	for	devices	that	are	actually	IPv6-aware;	the	IPv4-
compatible	address	is	in	addition	to	its	conventional	IPv6	address.	In	contrast,	if
the	FFFF	is	seen	for	the	16	bits	after	the	initial	80,	this	designates	a	conventional
IPv4	devices	whose	IPv4	address	has	been	mapped	into	the	IPv6	format.	It	is	not
an	IPv6-capable	device.

Figure	25-7.	IPv4-mapped	embedded	IPv6	address	representation

TIP

KEY	CONCEPT	IPv4	address	embedding	is	used	to	create	a	relationship	between	an	IPv4	address	and
an	IPv6	address	to	help	you	transition	from	IPv4	to	IPv6.	One	type,	the	IPv4-compatible	IPv6	address,	is
used	for	devices	that	are	compatible	with	both	IPv4	and	IPv6;	it	begins	with	96	zero	bits.	The	other,	the



IPv4-mapped	address,	is	used	for	mapping	IPv4	devices	that	are	not	compatible	with	IPv6	into	the	IPv6
address	space;	it	begins	with	80	zeros	followed	by	16	ones.



IPv6	Multicast	and	Anycast	Addressing
One	of	the	most	significant	modifications	in	the	general	addressing	model	in
IPv6	was	a	change	to	the	basic	types	of	addresses	and	how	they	were	used.
Unicast	addresses	are	still	the	choice	for	the	vast	majority	of	communications	as
in	IPv4,	but	the	"bulk"	addressing	methods	are	different	in	IPv6.	Broadcast	as	a
specific	addressing	type	has	been	eliminated.	Instead,	support	for	multicast
addressing	has	been	expanded	and	made	a	required	part	of	the	protocol,	and	a
new	type	of	addressing	called	anycast	has	been	implemented.

IPv6	Multicast	Addresses
Let's	start	by	looking	at	multicast	under	IPv6.	Multicasting	is	used	to	allow	a
single	device	to	send	a	datagram	to	a	group	of	recipients.	IPv4	supported
multicast	addressing	using	the	Class	D	address	block	in	the	classful	addressing
scheme	(see	Chapter	17).	Under	IPv6,	multicast	addresses	are	allocated	from	the
multicast	block.	This	is	1/256th	of	the	address	space,	and	it	consists	of	all
addresses	that	begin	with	1111	1111.	Thus,	any	address	starting	with	FF	in	colon
hexadecimal	notation	is	an	IPv6	multicast	address.

The	remaining	120	bits	of	address	space	are	enough	to	allow	the	definition	of,
well,	a	gazillion	or	three	multicast	addresses.	(OK,	it's	officially	about	1.3	trillion
trillion	trillion	addresses.)	The	allocation	of	unicast	addresses	was	organized	by
using	a	special	format	to	divide	these	many	bits,	and	the	same	thing	was	done	for
multicast	addresses.	The	format	for	multicast	addresses	is	explained	in	Table	25-
6	and	illustrated	in	Figure	25-8.

Figure	25-8.	IPv6	multicast	address	format



Table	25-6.	IPv6	Multicast	Address	Format

Field
Name

Size
(Bits)

Description

(Indicator) 8 The	first	eight	bits	are	always	1111	1111,	which	indicates	a	multicast
address.	This	used	to	be	called	the	format	prefix	before	the	term	was
dropped	(as	explained	in	the	section	about	IPv6	address	space	allocation
earlier	in	this	chapter).	The	field	now	has	no	name.

Flags 4 Four	bits	are	reserved	for	flags	that	can	be	used	to	indicate	the	nature	of
certain	multicast	addresses.	Currently,	the	first	three	of	these	are	unused
and	set	to	zero.	The	fourth	is	the	T	(Transient)	flag.	If	left	as	zero,	this
marks	the	multicast	address	as	a	permanently	assigned,	well-known
multicast	address,	as	you	will	see	shortly.	If	set	to	one,	this	means	this	is	a
transient	multicast	address,	meaning	that	it	is	not	permanently	assigned.

Scope	ID 4 These	four	bits	are	used	to	define	the	scope	of	the	multicast	address;	16
different	values	from	0	to	15	are	possible.	This	field	allows	creation	of
multicast	addresses	that	are	global	to	the	entire	Internet,	or	restricted	to
smaller	spheres	of	influence	such	as	a	specific	organization,	site,	or	link.
The	currently	defined	values	(in	decimal)	are	as	follows:

0	=	Reserved

1	=	Node-Local	Scope	2	=	Link-Local	Scope

5	=	Site-Local	Scope

8	=	Organization-Local	Scope

14	=	Global	Scope

15	=	Reserved

Group	ID 112 Defines	a	particular	group	within	each	scope	level.

Multicast	Scopes
The	notion	of	explicitly	scoping	multicast	addresses	is	important.	Globally
scoped	multicast	addresses	must	be	unique	across	the	entire	Internet,	but	locally
scoped	addresses	are	unique	only	within	the	organization.	This	provides
tremendous	flexibility,	as	every	type	of	multicast	address	actually	comes	in
several	versions:	one	that	multicasts	only	within	a	node,	one	that	multicasts	on
the	local	link	(local	network),	one	that	multicasts	on	the	local	site,	and	so	on.
The	scope	also	allows	routers	to	immediately	determine	how	broadly	they	should
propagate	multicast	datagrams	in	order	to	improve	efficiency	and	eliminate



problems	with	traffic	being	sent	outside	the	are	a	for	which	it	is	intended.
Figure	25-9	illustrates	the	notion	of	multicast	scope	graphically.

TIP

KEY	CONCEPT	Multicast	addresses	are	used	to	send	data	to	a	number	of	devices	on	an	internetwork
simultaneously.	In	IPv6,	each	multicast	address	can	be	specified	for	a	variety	of	different	scopes,	thereby
allowing	a	transmission	to	be	targeted	to	either	a	wide	or	a	narrow	audience	of	recipient	devices.

Figure	25-9.	IPv6	multicast	scope	This	diagram	shows	how	the	notion	of	scope	allows	IPv6	multicasts
to	be	limited	to	specific	spheres	of	influence.	The	tightest	scope	is	node-local	scope,	with	a	scope	ID

value	of	1.	As	the	scope	ID	value	increases,	the	scope	expands	to	cover	the	local	network,	site,
organization,	and	finally,	entire	Internet.

Well-Known	Multicast	Addresses
The	Transient	flag	allows	for	the	explicit	determination	of	which	multicast
addresses	are	available	for	normal	use	compared	to	which	ones	are	set	aside	as
well	known.	Several	well-known	multicast	addresses	are	defined	by	setting	aside
certain	group	IDs	that	are	used	for	a	number	of	different	scope	ID	values.
Table	25-7	shows	these	values;	the	x	in	the	multicast	address	pattern	is	the
hexadecimal	digit	corresponding	to	the	four-bit	scope	ID	field.

The	all-nodes	and	all-routers	multicast	addresses	enable	the	equivalent	function
of	what	broadcast	used	to	perform	in	IPv4.	Again,	the	concept	of	scope	is



important	in	a	multicast	of	this	type,	because	we	don't	want	to	try	to	send	a
message	to	all	nodes	on	the	global	Internet,	for	example.	So	when	the	all-routers
address	is	used	with	a	scope	value	of	2,	it	means	"all	routers	on	the	local	link."	If
it	is	used	with	a	value	of	5,	it	means	"all	routers	in	this	site."

Solicited-Node	Multicast	Addresses
In	addition	to	the	regular	multicast	addresses,	each	unicast	address	has	a	special
multicast	address	called	its	solicited-node	address.	This	address	is	created
through	a	special	mapping	from	the	device's	unicast	address.	Solicited-node
addresses	are	used	by	the	IPv6	ND	protocol	(see	Chapter	36)	to	provide	more
efficient	address	resolution	than	the	Address	Resolution	Protocol	(ARP;	see
Chapter	13)	technique	used	in	IPv4.

Table	25-7.	Important	IPv6	Well-Known	Multicast	Addresses

Multicast
Address
Pattern

Valid
Scope
Values
(Decimal)

Designation Description

FF0x:0:0:0:0:0:0 0	to	15 Reserved All	multicast	addresses	where	the	112-bit	group
ID	is	zero	are	reserved.

FF0x:0:0:0:0:0:1 1,	2 All	Nodes When	the	group	ID	is	equal	to	exactly	1,	this	is
a	multicast	to	all	nodes.	Both	node-local
(FF01:0:0:0:0:0:1)	and	link-local
(FF02:0:0:0:0:0:1)	all-nodes	multicast	addresses
are	possible.

FF0x:0:0:0:0:0:2 1,	2,	5 All	Routers When	the	group	ID	is	equal	to	exactly	2,	this
designates	all	routers	within	a	specific	scope	as
the	recipients.	Valid	scope	values	are	node-
local,	link-local,	and	site-local.

All	solicited-node	addresses	have	their	T	flag	set	to	zero	and	a	scope	ID	of	2,	so
they	start	with	FF02.	The	112-bit	group	ID	is	broken	down	as	follows	(see
Figure	25-10):

Eighty	bits	consisting	of	79	zeros	followed	by	a	single	one.	This	means	that
the	next	five	hexadecimal	values	are	0000:0000:0000:0000:0001	in	colon



hexadecimal	notation,	or	more	succinctly,	0:0:0:0:1.

Eight	ones:	FF.

Twenty-four	bits	taken	from	the	bottom	24	bits	of	its	unicast	address.

So,	these	addresses	start	with	FF02:0:0:0:0:1:FF,	followed	by	the	bottom	24	bits
of	the	unicast	address.	Thus,	the	node	with	IP	address
805B:2D9D:DC28:0:0:FC57:D4C8:1FFF	would	have	a	solicited-node	address
of	FF02:0:0:0:0:1:FFC8:1FFF	(or	FF02::1:FFC8:1FFF).

Figure	25-10.	IPv6	solicited-node	address	calculation	The	solicited-node	multicast	address	is	calculated
from	a	unicast	address	by	taking	the	last	24	bits	of	the	address	and	prepending	them	with	the	IPv6

partial	address	FF02:0:0:0:0:1:FF.	This	shows	the	example	address	from	Figure	25-2	converted	to	its
solicited-node	address,	FF02::1:FFC8:1FFF.

TIP

KEY	CONCEPT	Each	unicast	address	has	an	equivalent	solicited-node	multicast	address	that	is	created
from	the	unicast	address	and	used	when	other	devices	need	to	reach	it	on	the	local	network.

IPv6	Anycast	Addresses
Anycast	addresses	are	a	unique	type	of	address	that	is	new	to	IP	in	IPv6.	The
IPv6	implementation	is	based	on	the	material	in	RFC	1546,	"Host	Anycasting
Service."	Anycast	addresses	can	be	considered	a	conceptual	cross	between
unicast	and	multicast	addressing.	Where	unicast	says,	"Send	this	to	one	address,"
and	multicast	says,	"Send	this	to	every	member	of	this	group,"	anycast	says,
"Send	this	to	any	one	member	of	this	group."	Naturally,	in	choosing	which
member	to	send	to,	we	would,	for	efficiency,	normally	send	to	the	closest	one—
that	is,	the	closest	in	routing	terms.	So,	we	can	normally	also	consider	anycast	to



mean,	"Send	this	to	the	closest	member	of	this	group."

The	idea	behind	anycast	is	to	enable	functionality	that	was	previously	difficult	to
implement	in	TCP/IP.	Anycast	was	specifically	intended	to	provide	flexibility	in
situations	where	we	need	a	service	that	is	provided	by	a	number	of	different
servers	or	routers	but	don't	really	care	which	one	provides	it.	In	routing,	anycast
allows	datagrams	to	be	sent	to	whichever	router	in	a	group	of	equivalent	routers
is	closest,	and	to	allow	load	sharing	among	routers	and	dynamic	flexibility	if
certain	routers	go	out	of	service.	Datagrams	sent	to	the	anycast	address	will
automatically	be	delivered	to	the	device	that	is	easiest	to	reach.

Perhaps	surprisingly,	there	is	no	special	anycast-addressing	scheme.	Anycast
addresses	are	the	same	as	unicast	addresses.	An	anycast	address	is	created
automatically	when	a	unicast	address	is	assigned	to	more	than	one	interface.

TIP

KEY	CONCEPT	Anycast	addresses	are	new	in	IPv6	and	can	be	used	to	set	up	a	group	of	devices,	any
one	of	which	can	respond	to	a	request	sent	to	a	single	IP	address.

Like	multicast,	anycast	creates	more	work	for	routers,	because	it	is	more
complicated	than	unicast	addressing.	In	particular,	the	further	apart	the	devices
that	share	the	anycast	address	are,	the	more	complexity.	Anycasting	across	the
global	Internet	would	be	potentially	difficult	to	implement,	and	IPv6	anycasting
was	designed	for	devices	that	are	proximate	to	each	other,	generally	within	the
same	network.	Also,	at	present,	due	to	the	Internet	community's	relative
inexperience	with	anycast,	only	routers,	not	individual	hosts,	use	anycast
addresses.



IPv6	Autoconfiguration	and	Renumbering
One	of	the	most	interesting	and	potentially	valuable	addressing	features
implemented	in	IPv6	is	a	facility	that	allows	devices	on	an	IPv6	network	to
actually	configure	themselves	independently.	In	IPv4,	hosts	were	originally
configured	manually.	Later,	host	configuration	protocols	like	the	Dynamic	Host
Configuration	Protocol	(DHCP;	see	Chapter	61)	enabled	servers	to	allocate	IP
addresses	to	hosts	that	joined	the	network.	IPv6	takes	this	a	step	further	by
defining	a	method	for	some	devices	to	automatically	configure	their	IP	address
and	other	parameters	without	the	need	for	a	server.	It	also	defines	a	method
whereby	the	IP	addresses	on	a	network	can	be	renumbered	(changed	en	masse).
These	are	the	sorts	of	features	that	make	TCP/IP	network	administrators	drool.

The	IPv6	autoconfiguration	and	renumbering	feature	is	defined	in	RFC	2462,
"IPv6	Stateless	Address	Autoconfiguration."	The	word	stateless	contrasts	this
method	to	the	server-based	method	using	something	like	DHCPv6,	which	is
called	stateful.	(This	word,	like	classful,	makes	me	cringe.)	This	method	is	called
stateless	because	it	begins	with	no	information	(or	state)	at	all	for	the	host	to
work	with.	It	has	no	need	for	a	DHCP	server.

IPv6	Stateless	Autoconfiguration
Stateless	autoconfiguration	exploits	several	other	new	features	in	IPv6,	including
link-local	addresses,	multicasting,	the	ND	protocol,	and	the	ability	to	generate
the	interface	ID	of	an	address	from	the	underlying	data	link	layer	address.	The
general	idea	is	to	have	a	device	generate	a	temporary	address	until	it	can
determine	the	characteristics	of	the	network	it	is	on,	and	then	create	a	permanent
address	it	can	use	based	on	that	information.	In	the	case	of	multihomed	devices,
autoconfiguration	is	performed	for	each	interface	separately.

The	following	is	a	summary	of	the	steps	a	device	takes	when	using	stateless
autoconfiguration:

1.	 Link-Local	Address	Generation	The	device	generates	a	link-local
address.	You'll	recall	that	this	is	one	of	the	two	types	of	local-use	IPv6
addresses.	Link-local	addresses	have	1111	1110	10	for	the	first	10	bits.	The
generated	address	uses	those	10	bits,	followed	by	54	zeros	and	then	the	64-



bit	interface	ID.	Typically,	this	will	be	derived	from	the	data	link	layer
(MAC)	address	as	explained	in	the	"IPv6	Interface	Identifiers	and	Physical
Address	Mapping"	section	earlier	in	this	chapter,	or	it	may	be	a	"token"
generated	in	some	other	manner.

2.	 Link-Local	Address	Uniqueness	Test	The	node	tests	to	ensure	that	the
address	it	generated	isn't	already	in	use	on	the	local	network.	(This	is	very
unlikely	to	be	an	issue	if	the	link-local	address	came	from	a	MAC	address;
it	is	more	likely	that	the	address	is	already	in	use	if	it	was	based	on	a
generated	token.)	It	sends	a	Neighbor	Solicitation	message	using	the	ND
protocol.	In	response,	it	listens	for	a	Neighbor	Advertisement,	which
indicates	that	another	device	is	already	using	its	link-local	address.	If	so,
either	a	new	address	must	be	generated	or	autoconfiguration	fails,	and
another	method	must	be	employed.

3.	 Link-Local	Address	Assignment	Assuming	the	uniqueness	test	passes,
the	device	assigns	the	link-local	address	to	its	IP	interface.	This	address
can	be	used	for	communication	on	the	local	network,	but	not	on	the	wider
Internet	(since	link-local	addresses	are	not	routed).

4.	 Router	Contact	The	node	next	attempts	to	contact	a	local	router	for	more
information	on	continuing	the	configuration.	This	is	done	either	by
listening	for	Router	Advertisement	messages	sent	periodically	by	routers	or
by	sending	a	specific	Router	Solicitation	message	to	ask	a	router	for
information	on	what	to	do	next.	This	process	is	described	in	the	section	on
the	IPv6	ND	protocol,	in	Chapter	36.

5.	 Router	Direction	The	router	provides	direction	to	the	node	about	how	to
proceed	with	the	autoconfiguration.	It	may	tell	the	node	that	on	this
network	stateful	autoconfiguration	is	in	use,	and	it	may	give	it	the	address
of	a	DHCP	server	to	use.	Alternatively,	it	will	tell	the	host	how	to
determine	its	global	Internet	address.

6.	 Global	Address	Configuration	Assuming	that	stateless	autoconfiguration
is	in	use	on	the	network,	the	host	will	configure	itself	with	its	globally
unique	Internet	address.	This	address	is	generally	formed	from	a	network
prefix	provided	to	the	host	by	the	router.	The	prefix	is	combined	with	the
device's	identifier,	as	generated	in	step	1.



Clearly,	this	method	has	numerous	advantages	over	both	manual	and	server-
based	configuration.	It	is	particularly	helpful	in	supporting	the	mobility	of	IP
devices,	because	they	can	move	to	new	networks	and	get	a	valid	address	without
any	knowledge	of	local	servers	or	network	prefixes.	At	the	same	time,	it	still
allows	for	the	management	of	IP	addresses	using	the	(IPv6-compatible)	version
of	DHCP,	if	that	is	desired.	Routers	on	the	local	network	will	typically	tell	hosts
which	type	of	autoconfiguration	is	supported	using	special	flags	in	Internet
Control	Message	Protocol	version	6	(ICMPv6)	Router	Advertisement	messages
(see	Chapter	35).

TIP

KEY	CONCEPT	IPv6	includes	an	interesting	feature	called	stateless	address	autoconfiguration,	which
allows	a	host	to	actually	determine	its	own	IPv6	address	from	its	layer	2	address	by	following	a	special
procedure.

IPv6	Device	Renumbering
The	renumbering	of	devices	is	a	method	related	to	autoconfiguration.	Like	host
configuration,	it	can	be	implemented	using	protocols	like	DHCP	through	the	use
of	IP	address	leases	that	expire	after	a	period	of	time.	Under	IPv6,	networks	can
be	renumbered	by	having	routers	specify	an	expiration	interval	for	network
prefixes	when	autoconfiguration	is	done.	Later,	they	can	send	a	new	prefix	to	tell
devices	to	regenerate	their	IP	addresses.	Devices	can	actually	maintain	the	old
deprecated	address	for	a	while,	and	then	move	over	to	the	new	address.

RFC	2894	defined	a	similar	technique	for	renumbering	router	addresses.	It	uses
special	ICMPv6	messages	and	is	described	in	Chapter	35.



Chapter	26.	IPV6	DATAGRAM
ENCAPSULATION	AND
FORMATTING

Delivery	of	data	over	Internet	Protocol	version	6	(IPv6)	internetworks	is
accomplished	by	encapsulating	higher-layer	data	into	IPv6	datagrams.	These
serve	the	same	general	purpose	for	IPv6	as	IPv4	datagrams	do	in	the	older
version	of	the	protocol.	However,	they	have	been	redesigned	as	part	of	the
overall	changes	represented	by	IPv6.	IPv6	datagrams	have	a	flexible	structure,
and	their	format	better	matches	the	needs	of	current	IP	networks.

In	this	chapter,	I	take	a	look	at	the	format	used	for	IPv6	datagrams.	I	begin	with
an	overview	of	the	general	structure	of	IPv6	datagrams,	describe	the	major
changes,	and	show	how	main	and	extension	headers	are	arranged	in	the
datagram.	I	then	describe	the	format	of	the	main	header,	and	define	and	describe
the	various	extension	header	types.	I	conclude	with	a	brief	explanation	of	IPv6
options	and	how	they	are	implemented.

TIP

BACKGROUND	INFORMATION	This	chapter	assumes	basic	understanding	of	IPv6	addressing
concepts	(see	the	previous	chapter)	and	general	familiarity	with	the	IPv4	datagram	format	(described	in
Chapter	21).

IPv6	Datagram	Overview	and	General	Structure
The	method	by	which	IPv6	encapsulates	data	received	from	higher-layer
protocols	for	transmission	across	the	internetwork	is	basically	the	same	as	the
one	used	by	IPv4.	The	data	received	from	the	transport	or	higher	layers	is	made



the	payload	of	an	IPv6	datagram,	which	has	one	or	more	headers	that	control	the
delivery	of	the	message.	These	headers	provide	information	to	routers	in	order	to
enable	them	to	move	the	datagram	across	the	network.	They	also	provide
information	to	hosts	so	they	can	tell	which	datagrams	they	are	intended	to
receive.

While	the	basic	use	of	datagrams	hasn't	changed	since	IPv4,	many	modifications
were	made	to	their	structure	and	format	when	IPv6	was	created.	This	was	done
partly	out	of	necessity:	IPv6	addresses	are	different	from	IPv4	addresses,	and	IP
addresses	go	in	the	datagram	header.	The	increase	in	the	size	of	IP	addresses
from	32	bits	to	128	bits	adds	a	whopping	extra	192	bits,	or	24	bytes,	of
information	to	the	header.	This	led	to	an	effort	to	remove	fields	that	weren't
strictly	necessary	in	order	to	compensate	for	the	necessary	increase	in	size.
However,	changes	were	also	made	to	IPv6	datagrams	to	add	features	to	them	and
to	make	them	better	suit	the	needs	of	modern	internetworking.

The	following	is	a	list	of	the	most	significant	overall	changes	to	datagrams	in
IPv6:

Multiple-Header	Structure	Rather	than	a	single	header	that	contains	all	fields
for	the	datagram	(possibly	including	options),	the	IPv6	datagram	supports	a	main
header	and	then	extension	headers	for	additional	information	when	needed.

Streamlined	Header	Format	Several	fields	have	been	removed	from	the	main
header	to	reduce	its	size	and	increase	efficiency.	Only	the	fields	that	are	truly
required	for	pretty	much	all	datagrams	remain	in	the	main	header;	others	are	put
into	extension	headers	and	used	as	needed.	Some	were	removed	because	they
were	no	longer	needed,	such	as	the	Internet	Header	Length	field.	The	IPv6
header	is	of	fixed	length.	I'll	examine	this	more	thoroughly	in	a	moment.

Renamed	Fields	Some	fields	have	been	renamed	to	better	reflect	their	actual	use
in	modern	networks.

Greater	Flexibility	The	extension	headers	allow	for	a	great	deal	of	extra
information	that	will	accompany	datagrams	when	needed.	Options	are	also
supported	in	IPv6.

Elimination	of	Checksum	Calculation	In	IPv6,	a	checksum	is	no	longer
computed	on	the	header.	This	saves	both	the	calculation	time	spent	by	every



device	that	packages	IP	datagrams	(hosts	and	routers)	and	the	space	the
checksum	field	took	up	in	the	IPv4	header.

Improved	Quality	of	Service	Support	A	new	field,	the	Flow	Label,	is	defined
to	help	support	the	prioritization	of	traffic.

TIP

KEY	CONCEPT	IPv6	datagrams	use	a	general	structure	that	begins	with	a	mandatory	main	header
that's	40	bytes	in	length,	followed	by	optional	extension	headers,	and	then	a	variable-length	Data	area.
This	structure	was	created	to	allow	the	main	header	to	be	streamlined,	while	allowing	devices	to	add
extra	information	to	datagrams	when	needed.

As	I	mentioned	previously,	IPv6	datagrams	now	include	a	main	header	format
(which	has	no	official	name	in	the	standards;	it's	just	"the	header")	and	zero	or
more	extension	headers.	The	overall	structure	of	an	IPv6	datagram	is	shown	in
Table	26-1	and	illustrated	in	Figure	26-1.

Table	26-1.	IPv6	General	Datagram	Structure

Component Number	of
Components
per	Datagram

Size
(Bytes)

Description

Main	Header 1 40 Contains	the	source	and	destination	addresses,	and
important	information	that's	required	for	every
datagram.

Extension
Headers

0	or	more Variable Each	contains	one	type	of	extra	information	that
supports	various	features,	including	fragmentation,
source	routing,	security,	and	options.

Data 1 Variable The	payload	from	the	upper	layer	that	will	be
transmitted	in	the	datagram.



Figure	26-1.	IPv6	general	datagram	structure

Note	that	as	with	IPv4,	large	payloads	may	be	fragmented	prior	to	encapsulation
in	order	to	ensure	that	the	total	size	of	the	datagram	doesn't	exceed	the	maximum
size	permitted	on	an	underlying	network.	However,	the	details	of	fragmentation
in	IPv6	are	different	than	in	IPv4,	as	explained	in	Chapter	27.



IPv6	Datagram	Main	Header	Format
IPv6	datagrams	use	a	structure	that	includes	a	regular	header	and,	optionally,	one
or	more	extension	headers.	This	regular	header	is	like	the	header	of	IPv4
datagrams,	though	it	has	a	different	format,	as	you	will	see	shortly.	The
standards	don't	give	this	header	a	name;	it	is	just	"the	IPv6	header."	To
differentiate	it	from	IPv6	extension	headers,	I	call	it	the	main	header.

The	IPv6	main	header	is	required	for	every	datagram.	It	contains	addressing	and
control	information	that	are	used	to	manage	the	processing	and	routing	of	the
datagram.	The	main	header	format	of	IPv6	datagrams	is	described	in	Table	26-2
and	illustrated	in	Figure	26-2.

Table	26-2.	IPv6	Main	Header	Format

Field
Name

Size
(Bytes)

Description

Version 1/2	(4
bits)

This	identifies	the	version	of	IP	that's	used	to	generate	the	datagram.
This	field	is	used	the	same	way	as	in	IPv4,	except	that	it	carries	the
value	6	(0110	binary).

Traffic
Class

1 This	field	replaces	the	Type	of	Service	(TOS)	field	in	the	IPv4	header.	It
is	used	not	in	the	original	way	that	the	TOS	field	was	defined	(with
Precedence,	D,	T,	and	R	bits),	but	rather,	using	the	new	Differentiated
Services	(DS)	method	defined	in	RFC	2474.	That	RFC	actually
specifies	quality-of-service	(QoS)	techniques	for	both	IPv4	and	IPv6;
see	the	IPv4	format	description	(Chapter	21)	for	a	bit	more	information.

Flow	Label 2	1/2
(20	bits)

This	large	field	was	created	to	provide	additional	support	for	real-time
datagram	delivery	and	QoS	features.	The	concept	of	a	flow	is	defined	in
RFC	2460	as	a	sequence	of	datagrams	sent	from	a	source	device	to	one
or	more	destination	devices.	A	unique	flow	label	is	used	to	identify	all
the	datagrams	in	a	particular	flow,	so	that	routers	between	the	source
and	destination	all	handle	them	the	same	way.	This	helps	to	ensure
uniformity	in	how	the	datagrams	in	the	flow	are	delivered.	For	example,
if	a	video	stream	is	being	sent	across	an	IP	internetwork,	the	datagrams
containing	the	stream	could	be	identified	with	a	flow	label	to	ensure	that
they	are	delivered	with	minimal	latency.	Not	all	devices	and	routers
may	support	flow	label	handling,	and	the	use	of	the	field	by	a	source
device	is	entirely	optional.	Also,	the	field	is	still	somewhat	experimental
and	may	be	refined	over	time.



Payload
Length

2 This	field	replaces	the	Total	Length	field	from	the	IPv4	header,	but	it	is
used	differently.	Rather	than	measuring	the	length	of	the	whole
datagram,	it	contains	only	the	number	of	bytes	of	the	payload.	However,
if	extension	headers	are	included,	their	length	is	counted	here	as	well.	In
simpler	terms,	this	field	measures	the	length	of	the	datagram	less	the	40
bytes	of	the	main	header	itself.

Next
Header

1 This	field	replaces	the	Protocol	field	and	has	two	uses.	When	a
datagram	has	extension	headers,	this	field	specifies	the	identity	of	the
first	extension	header,	which	is	the	next	header	in	the	datagram.	When	a
datagram	has	just	this	"main"	header	and	no	extension	headers,	it	serves
the	same	purpose	as	the	old	IPv4	Protocol	field	and	has	the	same	values,
though	new	numbers	are	used	for	the	IPv6	versions	of	common
protocols.	In	this	case	the	"next	header"	is	the	header	of	the	upper	layer
message	the	IPv6	datagram	is	carrying.	I'll	discuss	this	in	more	detail	a
bit	later	in	this	chapter.

Hop	Limit 1 This	replaces	the	Time	to	Live	(TTL)	field	in	the	IPv4	header;	its	name
better	reflects	the	way	that	TTL	is	used	in	modern	networks	(because
TTL	is	really	used	to	count	hops,	not	time).

Source
Address

16 The	128-bit	IP	address	of	the	originator	of	the	datagram.	As	with	IPv4,
this	is	always	the	device	that	originally	sent	the	datagram.

Destination
Address

16 The	128-bit	IP	address	of	the	intended	recipient	of	the	datagram:
unicast,	anycast,	or	multicast.	Again,	even	though	devices	such	as
routers	may	be	the	intermediate	targets	of	the	datagram,	this	field	is
always	for	the	ultimate	destination.

Figure	26-2.	IPv6	main	header	format



IPv6	Next	Header	Field
The	Next	Header	field	is	one	of	the	most	important	additions	to	the	IPv6
datagram	format.	When	an	IPv6	datagram	uses	extension	headers,	this	field
contains	an	identifier	for	the	first	extension	header,	which,	in	turn,	uses	its	own
Next	Header	field	to	point	to	the	next	header,	and	so	on.	The	last	extension
header	then	references	the	encapsulated	higher-layer	protocol.	Because	the
higher-layer	protocol's	header	appears	at	the	start	of	the	IPv6	Data	field,	it	is	like
the	"next	header"	to	the	device	receiving	the	datagram.	For	some	folks,	this	is	a
bit	tough	to	see	conceptually;	you	can	find	more	detail	on	how	the	field	works
(including	a	useful	illustration,	Figure	26-3)	in	the	"IPv6	Header	Chaining	Using
the	Next	Header	Field"	section	later	in	this	chapter.

Some	of	the	most	common	values	for	the	Next	Header	field	in	IPv6	are	shown	in
Table	26-3.

Table	26-3.	Common	IPv6	Next	Header	Values

Value
(Hexadecimal)

Value
(Decimal)

Protocol/Extension	Header

00 0 Hop-By-Hop	Options	Extension	Header	(Note	that	this	value
was	"Reserved"	in	IPv4)

01 1 Internet	Control	Message	Protocol	version	4	(ICMPv4)

02 2 Internet	Group	Management	Protocol	version	4	(IGMPv4)

04 4 IP-in-IP	Encapsulation

06 6 Transmission	Control	Protocol	(TCP)

08 8 Exterior	Gateway	Protocol	(EGP)

11 17 User	Datagram	Protocol	(UDP)

29 41 IPv6

2B 43 Routing	Extension	Header

2C 44 Fragmentation	Extension	Header



2E 46 Resource	Reservation	Protocol	(RSVP)

32 50 Encrypted	Security	Payload	(ESP)	Extension	Header

33 51 Authentication	Header	(AH)	Extension	Header

3A 58 ICMPv6

3B 59 No	Next	Header

3C 60 Destination	Options	Extension	Header

The	total	length	of	the	main	IPv6	header	format	is	40	bytes.	This	is	double	the
size	of	the	IPv4	header	without	options,	largely	because	of	the	extra	24	bytes
needed	for	the	monstrous	IPv6	addresses.	There	are	only	8	bytes	of	nonaddress
header	fields	in	the	IPv6	main	header,	compared	to	12	in	the	IPv4	header.

Key	Changes	to	the	Main	Header	Between	IPv4
and	IPv6
To	summarize,	the	IPv6	main	header	compares	to	the	IPv4	header	as	follows:

Unchanged	Fields	Three	fields	are	used	the	same	way,	and	they	retain	the	same
name	(though	they	have	different	content	and/or	size):	Version,	Source	Address,
and	Destination	Address.

Renamed	Fields	Two	fields	are	used	the	same	way,	but	they	are	renamed:
Traffic	Class	and	Hop	Limit.

Modified	Fields	Two	fields	are	used	in	a	way	similar	way	to	their	IPv4
predecessors,	but	they	are	slightly	different	in	meaning	and	also	renamed:
Payload	Length	and	Next	Header.

Added	Field	There	is	one	new	field:	Flow	Label.

Removed	Fields	To	cut	down	on	header	length	and	unnecessary	work,	five	IPv4
header	fields	are	removed	from	the	IPv6	header:

The	Internet	Header	Length	field	is	no	longer	needed,	because	the	main	IPv6
header	is	fixed	in	length	at	40	bytes.

The	Identification,	Flags,	and	Fragment	Offset	fields	are	used	for
fragmentation,	which	is	done	less	in	IPv6	than	IPv4,	so	these	fields	are	now



found	only	when	needed	in	the	Fragmentation	extension	header.

The	Header	Checksum	field	is	no	longer	needed,	because	the	decision	was
made	to	eliminate	header	checksum	calculations	in	IPv6.	It	was	viewed	as
redundant	with	higher-layer	error-checking	and	data	link	layer	CRC
calculations.	This	saves	processing	time	for	routers	and	2	bytes	in	the
datagram	header.

In	addition,	while	options	were	formerly	considered	part	of	the	main	header	in
IPv4,	they	are	separate	in	IPv6.



IPv6	Datagram	Extension	Headers
After	the	mandatory	main	header	in	an	IPv6	datagram,	one	or	more	extension
headers	may	appear	before	the	encapsulated	payload.	These	headers	were
created	in	an	attempt	to	provide	both	flexibility	and	efficiency	in	the	creation	of
IPv6	datagrams.	All	the	fields	that	are	needed	for	only	special	purposes	are	put
into	extension	headers	and	placed	in	the	datagram	when	needed.	This	allows	the
size	of	the	main	datagram	header	to	be	made	small	and	streamlined,	containing
only	those	fields	that	really	must	be	present	all	the	time.

There	is	often	confusion	regarding	the	role	of	extension	headers,	especially	when
compared	to	datagram	options.	The	IPv4	datagram	had	only	one	header,	but	it
included	a	provision	for	options,	and	IPv6	also	has	options,	so	why	bother	with
extension	headers?

It	would	have	been	possible	to	do	everything	using	options.	However,	it	was
deemed	a	better	design	to	employ	extension	headers	for	certain	sets	of
information	that	are	needed	for	common	functions	such	as	fragmenting.	Options
are	indeed	still	supported	in	IPv6;	they	are	used	to	supply	even	more	flexibility
by	providing	variable-length	fields	that	can	be	used	for	any	purpose.	They	are
themselves	defined	using	extension	headers,	as	you	will	see	shortly.

When	extension	headers	are	included	in	an	IPv6	datagram,	they	appear	one	after
the	other	following	the	main	header.	Each	extension	header	type	has	its	own
internal	structure	of	fields.

IPv6	Header	Chaining	Using	the	Next	Header
Field
The	only	field	common	to	all	extension	header	types	is	the	Next	Header	field,
which	actually	appears	at	the	end	of	one	header	type,	the	ESP	header.	The	8-bit
Next	Header	field	is	used	to	logically	link	all	the	headers	in	an	IPv6	datagram,	as
follows:

The	Next	Header	field	in	the	main	header	contains	a	reference	number	for	the
first	extension	header	type.

The	Next	Header	field	in	the	first	extension	header	contains	the	number	of	the



second	extension	header	type,	if	there	is	a	second	one.	If	there's	a	third,	the
second	header's	Next	Header	points	to	it,	and	so	on.

The	Next	Header	field	of	the	last	extension	header	contains	the	protocol
number	of	the	encapsulated	higher-layer	protocol.	In	essence,	this	field	points
to	the	"next	header"	within	the	payload	itself.

For	example,	suppose	a	datagram	that	encapsulates	TCP	has	a	Hop-By-Hop
Options	extension	header	and	a	Fragment	extension	header.	Then,	the	Next
Header	fields	of	these	headers	would	contain	the	following	values:

The	main	header	would	have	a	Next	Header	value	of	0,	indicating	the	Hop-
By-Hop	Options	header.

The	Hop-By-Hop	Options	header	would	have	a	Next	Header	value	of	44
(decimal),	which	is	the	value	for	the	Fragment	extension	header.

The	Fragment	header	would	have	a	Next	Header	value	of	6.

This	is	illustrated	in	Figure	26-3.

Figure	26-3.	IPv6	extension	header	linking	using	the	Next	Header	field	The	Next	Header	field	allows	a
device	to	more	easily	process	the	headers	in	a	received	IPv6	datagram.	When	a	datagram	has	no

extension	headers,	the	"next	header"	is	actually	the	header	at	the	start	of	the	IP	Data	field,	which,	in	this
case,	is	a	TCP	header	with	a	value	of	6.	This	is	the	same	way	the	Protocol	field	is	used	in	IPv4.	When
extension	headers	do	appear,	the	Next	Header	value	of	each	header	contains	a	number	indicating	the

type	of	the	following	header	in	the	datagram,	so	they	logically	chain	together	the	headers.

TIP



KEY	CONCEPT	The	IPv6	Next	Header	field	is	used	to	chain	together	the	headers	in	an	IPv6	datagram.
The	Next	Header	field	in	the	main	header	contains	the	number	of	the	first	extension	header;	its	Next
Header	contains	the	number	of	the	second,	and	so	forth.	The	last	header	in	the	datagram	contains	the
number	of	the	encapsulated	protocol	that	begins	the	Data	field.

Summary	of	IPv6	Extension	Headers
Table	26-4	lists	the	different	extension	headers,	showing	each	one's	Next	Header
value,	length,	defining	RFC,	and	a	brief	description	of	how	it	is	used.

Table	26-4.	IPv6	Extension	Headers

Next
Header
Value
(Decimal)

Extension
Header
Name

Length
(Bytes)

Description Defining
RFC

0 Hop-By-Hop
Options

Variable Defines	an	arbitrary	set	of	options	that	are
intended	to	be	examined	by	all	devices	on
the	path	from	the	source	to	destination
device(s).	This	is	one	of	two	extension
headers	used	to	define	variable-format
options.

2460

43 Routing Variable Defines	a	method	for	allowing	a	source
device	to	specify	the	route	for	a	datagram.
This	header	type	actually	allows	the
definition	of	multiple	routing	types.	The
IPv6	standard	defines	the	Type	0	Routing
extension	header,	which	is	equivalent	to	the
"loose"	source	routing	option	in	IPv4.	It's
used	in	a	similar	way.	See	the	"IPv6
Routing	Extension	Header"	section	in	this
chapter	for	the	format	of	this	extension
header.

2460

44 Fragment 8 When	a	datagram	contains	only	a	fragment
of	the	original	message,	contains	the
Fragment	Offset,	Identification,	and	More
Fragment	fields	that	were	removed	from	the
main	header.	See	the	"IPv6	Fragment
Extension	Header"	section	in	this	chapter
for	the	format	of	this	extension	header,	and
the	topic	on	fragmentation	and	reassembly
(Chapter	27)	for	details	on	how	the	fields

2460



(Chapter	27)	for	details	on	how	the	fields
are	used.

50 Encapsulating
Security
Payload	(ESP)

Variable Carries	encrypted	data	for	secure
communications.	This	header	is	described	in
detail	in	Chapter	29,	which	covers	IPsec.

2406

51 Authentication
Header	(AH)

Variable Contains	information	used	to	verify	the
authenticity	of	encrypted	data.	This	header
is	described	in	detail	in	Chapter	29.

2402

60 Destination
Options

Variable Defines	an	arbitrary	set	of	options	that	are
intended	to	be	examined	only	by	the
destination(s)	of	the	datagram.	This	is	one
of	two	extension	headers	used	to	define
variable-format	options.

2460

Note	that	the	Next	Header	value	of	the	IPv6	main	header	is	41;	that	of	an	IPv4
header	is	4	(its	protocol	number).	There	is	also	a	"dummy"	extension	header
called	No	Next	Header	that	has	a	value	of	59.	This	is	a	placeholder	that,	when
found	in	the	Next	Header	field,	indicates	that	there	is	nothing	after	that	extension
header.

As	mentioned	in	Table	26-4,	the	formats	for	several	of	the	headers	are	provided
in	other	areas	of	this	book.	I	will	describe	two	of	them	here,	however:	the
Routing	extension	header	and	the	Fragment	extension	header.

IPv6	Routing	Extension	Header
The	Routing	extension	header	is	used	to	perform	source	routing	in	IPv6.	It	is
described	in	Table	26-5	and	illustrated	in	Figure	26-4.

Table	26-5.	IPv6	Routing	Extension	Header	Format

Field
Name

Size
(Bytes)

Description

Next
Header

1 Contains	the	protocol	number	of	the	next	header	after	the	Routing
header.	Used	to	link	headers	together,	as	described	earlier	in	this
chapter.

Hdr	Ext
Len

1 For	Header	Extension	Length,	specifies	the	length	of	the	Routing
header	in	8-byte	units,	not	including	the	first	8	bytes	of	the	header.	For
a	Routing	Type	field	of	0,	this	value	is	thus	two	times	the	number
addresses	embedded	in	the	header.



addresses	embedded	in	the	header.

Routing
Type

1 Allows	multiple	routing	types	to	be	defined;	at	present,	the	only	value
used	is	0.

Segments
Left

1 Specifies	the	number	of	explicitly	named	nodes	remaining	in	the	route
until	the	destination.

Reserved 4 Not	used;	set	to	zeros.

Address1…
AddressN

Variable
(Multiple
of	16)

A	set	of	IPv6	addresses	that	specify	the	route	to	be	used.

Figure	26-4.	IPv6	Routing	extension	header	format

IPv6	Fragment	Extension	Header
The	Fragment	extension	header	is	included	in	fragmented	datagrams	to	provide
the	information	that's	necessary	to	allow	the	fragments	to	be	reassembled.	It	is
described	in	Table	26-6	and	illustrated	in	Figure	26-5.

Table	26-6.	IPv6	Fragment	Extension	Header	Format

Field	Name Size
(Bytes)

Description

Next	Header 1 Contains	the	protocol	number	of	the	next	header	after	the	Fragment



Next	Header 1 Contains	the	protocol	number	of	the	next	header	after	the	Fragment
header.	Used	to	link	headers	together,	as	described	earlier	in	this
chapter.

Reserved 1 Not	used;	set	to	zeros.

Fragment
Offset

13/8	(13
bits)

Specifies	the	offset,	or	position,	in	the	overall	message	where	the	data
in	this	fragment	goes.	It	is	specified	in	units	of	8	bytes	(64	bits)	and
used	in	a	manner	very	similar	to	the	field	of	the	same	name	in	the
IPv4	header.

Res 1/4	(2
bits)

Not	used;	set	to	zeros.

M	Flag 1/8	(1
bit)

For	More	Fragments	Flag,	same	as	the	flag	of	the	same	name	in	the
IPv4	header.	When	set	to	0,	indicates	the	last	fragment	in	a	message;
when	set	to	1,	indicates	that	more	fragments	are	yet	to	come	in	the
fragmented	message.

Identification 4 Same	as	the	field	of	the	same	name	in	the	IPv4	header,	but	expanded
to	32	bits.	It	contains	a	specific	value	that	is	common	to	each	of	the
fragments	belonging	to	a	particular	message.	This	ensures	that	pieces
from	different	fragmented	messages	are	not	mixed	together.

Figure	26-5.	IPv6	Fragment	extension	header	format

IPv6	Extension	Header	Order
Each	extension	header	appears	only	once	in	any	datagram	(with	one	exception,
as	you'll	see	shortly).	Also,	only	the	final	recipients	of	the	datagram	examine
extension	headers,	not	intermediate	devices	(again	with	one	exception,	which
you	will	see	momentarily).

RFC	2460	specifies	that	when	multiple	headers	appear,	they	should	be	in	the
following	order,	after	the	main	header	and	before	the	higher-layer	encapsulated



following	order,	after	the	main	header	and	before	the	higher-layer	encapsulated
header	in	the	IPv6	datagram	payload:

1.	 Hop-By-Hop	Options

2.	 Destination	Options	(for	options	to	be	processed	by	the	destination	as	well
as	devices	specified	in	a	Routing	header)

3.	 Routing

4.	 Fragmentation

5.	 Authentication	Header

6.	 Encapsulating	Security	Payload

7.	 Destination	Options	(for	options	processed	only	by	the	final	destination)

Now	let's	look	at	those	exceptions.	The	only	header	that	can	appear	twice	is
Destination	Options.	Normally,	it	appears	as	the	last	header.	However,	the
datagram	may	also	have	a	Destination	Options	header	that	contains	options	that
must	be	examined	by	a	list	of	devices	specified	in	a	source	route,	in	addition	to
the	destination.	In	this	case,	the	Destination	Options	header	for	these	options	is
placed	before	the	Routing	header.	A	second	such	header	containing	options	for
only	the	final	destination	may	also	appear.

TIP

KEY	CONCEPT	Each	extension	header	may	appear	only	once	in	an	IPv6	datagram,	and	each	one	must
appear	in	a	fixed	order.	The	exception	is	the	Destination	Options	header,	which	may	appear	twice:	near
the	start	of	the	datagram	for	options	to	be	processed	by	devices	en	route	to	the	destination	and	at	the	end
of	the	extension	headers	for	options	intended	for	only	the	final	destination.

The	only	header	normally	examined	by	all	intermediate	devices	is	the	Hop-By-
Hop	Options	extension	header.	It	is	used	specifically	to	convey	management
information	to	all	routers	in	a	route.	The	Hop-By-Hop	Options	extension	header
must	appear	as	the	first	extension	header	if	present.	Since	it	is	the	only	one	that
every	router	must	read	(and	this	represents	a	performance	drain	on	routers),	it	is
given	top	billing	to	make	it	easier	and	faster	to	find	and	process.

Finally,	note	that	all	extension	headers	must	be	a	multiple	of	eight	bytes	in
length	for	alignment	purposes.	Also,	remember	that	the	Next	Header	value	for	a
particular	extension	header	appears	in	the	Next	Header	field	of	the	preceding
header,	not	the	header	itself.



header,	not	the	header	itself.



IPv6	Datagram	Options
In	IPv4,	all	extra	information	required	for	various	purposes	is	placed	into	the
datagram	in	the	form	of	options	that	appear	in	the	IPv4	header.	In	IPv6,	the	new
concept	of	extension	headers	is	introduced,	as	you	just	saw.	These	headers	take
the	place	of	many	of	the	predefined	IPv4	options.	However,	the	concept	of
options	is	still	maintained	in	IPv6	for	a	slightly	different	purpose.

Options	allow	the	IPv6	datagram	to	be	supplemented	with	arbitrary	sets	of
information	that	aren't	defined	in	the	regular	extension	headers.	They	provide
maximum	flexibility,	thereby	allowing	the	basic	IPv6	protocol	to	be	extended	in
ways	the	designers	never	anticipated,	with	the	goal	of	reducing	the	chance	of	the
protocol	becoming	obsolete	in	the	future.

I	said	that	IPv6	options	supplement	extension	headers;	in	fact,	they	are	actually
implemented	as	extension	headers.	There	are	two	different	ones	used	to	encode
options.	These	two	headers	differ	only	in	terms	of	how	devices	will	process	the
options	they	contain;	otherwise,	they	are	formatted	the	same	and	used	in	the
same	way.

The	two	extension	header	types	are	as	follows:

Destination	Options	Contains	options	that	are	intended	only	for	the	ultimate
destination	of	the	datagram	(and	perhaps	a	set	of	routers	in	a	Routing	header,	if
present).

Hop-By-Hop	Options	Contains	options	that	carry	information	for	every	device
(router)	between	the	source	and	destination.

Each	of	these	header	types	has	a	one-byte	Next	Header	field,	and	a	one-byte
Header	Extension	Length	field	that	indicates	the	header's	overall	length.	The	rest
of	the	header	has	one	or	more	option	fields.

Figure	26-6	illustrates	the	overall	format	of	these	two	headers.	The	format	of
each	option	is	similar	to	that	of	IPv4	options,	as	shown	in	Tables	Table	26-7	and
Table	26-8.



Figure	26-6.	IPv6	Hop-By-Hop	Options	and	Destination	Options	header	formats	Each	of	these
extension	headers	begins	with	two	fixed	fields,	Next	Header	and	Header	Extension	Length.	The	rest	of
the	header	consists	of	a	sequence	of	variable-length	options.	Each	option	has	a	structure	that	consists	of

a	type/length/value	triplet,	shown	in	Table	26-7.

Table	26-7.	IPv6	Option	Format

Subfield
Name

Size
(Bytes)

Description

Option
Type

1 This	field	indicates	the	type	of	option.	The	bits	are	interpreted	according
to	the	sub-subfield"	structure,	described	in	Table	26-8.

Opt	Data
Len

1 Specifies	the	length	of	the	Option	Data	subfield.	Note	that	this	is	a	change
in	semantics	from	IPv4,	where	the	Length	field	indicated	the	size	of	the
entire	option;	in	IPv6	the	length	of	the	Option	Type	and	Option	Data
Length	fields	are	not	included.

Option
Data

Variable The	data	to	be	sent	as	part	of	the	option,	which	is	specific	to	the	option
type.	Also	sometimes	referred	to	as	the	Option	Value.

Table	26-8.	IPv6	Option	Type	Subfields

Sub-
Subfield
Name

Size
(Bytes)

Description

Unrecognized 2/8	(2 The	first	two	bits	specify	what	action	should	be	taken	if	the	device



Unrecognized
Option
Action

2/8	(2
bits)

The	first	two	bits	specify	what	action	should	be	taken	if	the	device
processing	the	option	doesn't	recognize	the	Option	Type.	The	four
values	are	as	follows:

00:	Skip	option;	process	rest	of	header.
0:	Discard	datagram;	do	nothing	else.

10:	Discard	datagram	and	send	an	ICMP	Parameter	Problem	message
with	code	2	back	to	the	datagram	source.

11:	Discard	datagram	and	send	the	ICMP	message	as	for	value	10,
only	if	destination	was	not	a	multicast	address.

Option
Change
Allowed	Flag

1/8	(1
bit)

Set	to	1	if	the	Option	Data	can	change	while	the	datagram	is	en	route,
or	left	at	0	if	it	cannot.

Remainder	of
Option	Type

5/8	(5
bits)

Five	remaining	bits	that	allow	the	specification	of	32	different
combinations	for	each	combination	of	the	three	preceding	bits.

NOTE

The	Option	Type	subfield	is	a	bit	strange	in	terms	of	how	it	is	interpreted.	Even	though	it	has	a
substructure	with	three	sub-subfields	(as	shown	in	Table	26-8,	that	structure	is	informal—the	eight	bits
of	this	field	are	taken	as	a	single	entity.	Despite	the	special	meaning	of	the	three	highest-order	bits,	the
entire	field	is	called	the	Option	Type,	not	just	the	last	five	bits,	and	the	whole	is	used	as	a	single	value
from	0	to	255.	In	fact,	the	sub-subfield	names	aren't	even	specified	in	the	standard;	I	made	them	up.

Since	each	option	has	a	subfield	for	type,	length,	and	value	(data),	the	options
are	sometimes	said	to	be	TLV-encoded.	If	there	are	multiple	options,	they	are
placed	one	after	each	other	in	the	header.	At	the	end	of	all	the	options,	in	a	Hop-
By-Hop	Options	or	Destination	Options	extension	header,	a	device	may	place
padding	to	ensure	that	the	header	is	a	multiple	of	eight	bytes	in	length.

TIP

KEY	CONCEPT	Two	IPv6	extension	header	types,	Hop-By-Hop	Options	and	Destination	Options,	are
used	to	carry	arbitrary	optional	information	in	IPv6	datagrams.	Each	consists	of	a	set	of	variable-length
options	that	are	defined	using	three	subfields	that	indicate	the	option's	type,	length,	and	value.



Chapter	27.	IPV6	DATAGRAM
SIZE,	FRAGMENTATION,
REASSEMBLY,	AND	ROUTING

Internet	Protocol	version	6	(IPv6)	changes	many	of	the	operating	details	of	IP,
but	most	of	the	basics	are	the	same.	In	particular,	devices	still	need	to	deliver
datagrams	over	an	internetwork	that	may	use	different	underlying	network
technologies.	This	means	that	we	must	be	concerned	here,	as	we	were	in	IPv4,
with	the	mechanics	of	datagram	sizing,	handling	fragmentation	and	reassembly,
and	dealing	with	issues	related	to	routing.

In	this	chapter,	I	complete	the	discussion	of	IPv6	by	examining	these	matters,
with	an	eye	toward	contrasting	how	they	work	in	IPv6.	This	includes	a	look	at
IPv6	datagram	sizing,	changes	to	the	maximum	transmission	unit	(MTU),	and
fragmentation	and	reassembly.	I	also	briefly	discuss	areas	where	IPv6	routing	is
performed	in	the	same	way	as	in	IPv4,	as	well	as	where	routing	has	changed.

Overview	of	IPv6	Datagram	Sizing	and
Fragmentation
The	job	of	IP	is	to	convey	messages	across	an	internetwork	of	connected
networks.	When	datagrams	are	sent	between	hosts	on	distant	networks,	they	are
carried	along	their	journey	by	routers,	one	hop	at	a	time,	over	many	physical
network	links.	On	each	step	of	this	journey,	the	datagram	is	encoded	in	a	data
link	layer	frame	for	transmission.

In	order	for	a	datagram	to	be	successfully	carried	along	a	route,	its	size	must	be
small	enough	to	fit	within	the	lower-layer	frame	at	each	step	of	the	way.	The



term	maximum	transmission	unit	(MTU)	describes	the	size	limit	for	any	given
physical	network.	If	a	datagram	is	too	large	for	the	MTU	of	a	network,	it	must	be
broken	into	pieces—a	process	called	fragmentation—and	then	the	pieces	are
reassembled	at	the	destination	device.	This	has	been	a	requirement	since	IPv4,
and	I	explain	the	concepts	and	issues	related	to	datagram	size,	MTUs,
fragmentation,	and	reassembly	in	detail	in	the	associated	IPv4	discussion,	in
Chapter	22.

All	of	these	issues	apply	to	sending	datagrams	in	IPv6	as	much	as	they	did	in
IPv4.	However,	as	in	other	areas	of	the	protocol,	some	important	details	of	how
fragmentation	and	reassembly	are	done	have	changed.	These	changes	were	made
to	improve	the	efficiency	of	the	routing	process	and	to	reflect	the	realities	of
current	networking	technologies:	Most	can	handle	average	IP	datagrams	without
needing	fragmentation.

The	most	important	differences	between	IPv4	and	IPv6	with	respect	to	datagram
size,	MTU,	and	fragmentation	and	reassembly	are	as	follows:

Increased	Default	MTU	In	IPv4,	the	minimum	MTU	that	routers	and	physical
links	were	required	to	handle	was	576	bytes.	In	IPv6,	all	links	must	handle	a
datagram	size	of	at	least	1280	bytes.	This	more	than	doubling	in	size	improves
efficiency	by	increasing	the	ratio	of	maximum	payload	to	header	length	and
reduces	the	frequency	with	which	fragmentation	is	required.

Elimination	of	en	Route	Fragmentation	In	IPv4,	datagrams	may	be
fragmented	by	either	the	source	device	or	by	routers	during	delivery.	In	IPv6,
only	the	source	node	can	fragment;	routers	do	not.	The	source	must	fragment	to
the	size	of	the	smallest	MTU	on	the	route	before	transmission.	This	has	both
advantages	and	disadvantages,	as	you	will	see.	Reassembly	is	still	done	only	by
the	destination,	as	in	IPv4.

MTU	Size	Error	Feedback	Since	routers	cannot	fragment	datagrams,	they	must
drop	them	if	they	are	forced	to	try	to	send	a	too-large	datagram	over	a	physical
link.	Using	the	Internet	Control	Message	Protocol	version	6	(ICMPv6;	see
Chapter	31),	a	feedback	process	has	been	defined	that	allows	routers	to	tell
source	devices	that	they	are	using	datagrams	that	are	too	large	for	the	route.

Path	MTU	Discovery	Since	source	devices	must	decide	on	the	correct	size	of



fragments,	it	is	helpful	if	they	have	a	mechanism	for	determining	what	this
should	be.	This	capability	is	provided	through	a	special	technique	called	Path
MTU	Discovery,	which	was	originally	defined	for	IPv4	but	has	been	refined	for
IPv6.

Movement	of	Fragmentation	Header	Fields	To	reflect	the	decreased
importance	of	fragmentation	in	IPv4,	the	permanent	fields	related	to	the	process
that	were	in	the	IPv4	header	have	been	farmed	out	to	a	Fragment	extension
header	and	are	included	only	when	needed.



Implications	of	IPv6's	Source-Only
Fragmentation	Rule
I	find	the	changes	in	the	fragmentation	and	reassembly	process	interesting.
While	many	other	changes	in	IPv6	represent	a	shift	in	responsibility	for
functions	from	host	devices	to	routers,	this	one	is	the	opposite.	In	IPv4,	a	source
node	can	send	a	datagram	of	any	size	that	its	local	link	can	handle,	and	let	the
routers	take	care	of	fragmenting	it	as	needed.	This	seems	like	a	sensible	model;
nodes	communicate	on	a	large,	virtual	network,	and	the	details	of	splitting
messages	as	needed	for	physical	links	are	handled	invisibly.

The	problem	with	this	is	that	it	represents	a	performance	drag	on	routing.	It	is
much	faster	for	a	router	to	forward	a	datagram	intact	than	to	spend	time
fragmenting	it.	In	some	cases,	fragmentation	would	need	to	occur	multiple	times
during	the	transmission	of	a	datagram,	and	remember	that	this	must	happen	for
every	datagram	on	a	route.	It	is	a	lot	more	efficient	for	the	source	to	just	send
datagrams	that	are	the	right	size	in	the	first	place.

Of	course,	there's	a	problem	here:	How	does	the	source	know	what	size	to	use?
The	source	has	no	understanding	of	the	physical	networks	used	by	the	route
datagrams	will	take	to	a	destination;	in	fact,	it	doesn't	even	know	what	the	routes
are!	Thus,	it	has	no	idea	of	what	MTU	would	be	best.	It	has	two	choices:

Use	the	Default	MTU	The	first	option	is	simply	to	use	the	default	MTU	of	1280
bytes,	which	all	physical	networks	must	be	able	to	handle.	This	is	a	good	choice,
especially	for	short	communications	or	for	sending	small	amounts	of	data.

Use	Path	MTU	Discovery	The	alternative	is	to	make	use	of	the	Path	MTU
Discovery	feature,	as	described	later	in	the	chapter.	This	feature,	defined	in	RFC
1981,	defines	a	method	whereby	a	node	sends	messages	over	a	route	to
determine	what	the	overall	minimum	MTU	for	the	path	is.	It's	a	technique	that's
very	similar	to	the	way	it	is	done	in	IPv4,	as	discussed	in	Chapter	22.

Since	routers	can't	fragment	in	IPv6,	if	a	datagram	is	sent	by	a	source	that	is	too
large	for	a	router,	it	must	drop	the	datagram.	It	will	then	send	back	to	the	source
feedback	about	this	occurrence,	in	the	form	of	an	ICMPv6	Packet	Too	Big
message.	This	tells	the	source	that	its	datagram	was	dropped	and	that	it	must



fragment	(or	reduce	the	size	of	its	fragments).

This	feedback	mechanism	is	also	used	in	discovering	path	MTUs.	The	source
node	sends	a	datagram	that	has	the	MTU	of	its	local	physical	link,	since	that
represents	an	upper	bound	on	the	MTU	of	the	path.	If	this	goes	through	without
any	errors,	it	knows	it	can	use	that	value	for	future	datagrams	to	that	destination.
If	it	gets	back	any	Packet	Too	Big	messages,	it	tries	again	using	a	smaller
datagram	size.	The	advantage	of	this	over	the	1280	default	is	that	it	may	allow	a
large	communication	to	proceed	with	a	higher	MTU,	which	improves
performance.

TIP

KEY	CONCEPT	In	IPv6,	fragmentation	is	performed	only	by	the	device	that's	sending	a	datagram,	not
by	routers.	If	a	router	encounters	a	datagram	too	large	to	send	over	a	physical	network	with	a	small
MTU,	the	router	sends	an	ICMPv6	Packet	Too	Big	message	back	to	the	source	of	the	datagram.	This	can
be	used	as	part	of	a	process	called	Path	MTU	Discovery	to	determine	the	minimum	MTU	of	an	entire
route.

One	drawback	of	the	decision	to	only	fragment	at	the	source	is	that	it	introduces
the	potential	for	problems	if	there	is	more	than	one	route	between	devices	or	if
routes	change.	In	IPv4,	fragmentation	is	dynamic	and	automatic;	it	happens	on
its	own	and	adjusts	as	routes	change.	Path	MTU	Discovery	is	a	good	feature,	but
it	is	static.	It	requires	that	hosts	keep	track	of	MTUs	for	different	routes	and
update	them	regularly.	IPv6	does	this	by	redoing	Path	MTU	Discovery	if	a	node
receives	a	Packet	Too	Big	message	on	a	route	for	which	it	has	previously
performed	Path	MTU	Discovery.	However,	this	takes	time.



The	IPv6	Fragmentation	Process
The	actual	mechanics	of	fragmentation	in	IPv6	are	similar	to	those	in	IPv4,	with
the	added	complication	that	extension	headers	must	be	handled	carefully.	For
purposes	of	fragmentation,	IPv6	datagrams	are	broken	into	the	following	two
pieces:

Unfragmentable	Part	This	includes	the	main	header	of	the	original	datagram,
as	well	as	any	extension	headers	that	need	to	be	present	in	each	fragment.	This
means	the	main	header,	and	any	of	the	following	headers,	if	present:	Hop-By-
Hop	Options,	Destination	Options	(for	those	options	to	be	processed	by	devices
along	a	route),	and	Routing.

Fragmentable	Part	This	includes	the	data	portion	of	the	datagram,	along	with
the	other	extension	headers,	if	present—Authentication	Header,	Encapsulating
Security	Payload,	and/or	Destination	Options	(for	options	to	be	processed	only
by	the	final	destination).

The	Unfragmentable	Part	must	be	present	in	each	fragment,	while	the
Fragmentable	Part	is	split	up	among	the	fragments.	So	to	fragment	a	datagram,	a
device	creates	a	set	of	fragment	datagrams,	each	of	which	contains	the
following,	in	order:

1.	 Unfragmentable	Part	The	full	Unfragmentable	Part	of	the	original
datagram,	with	its	Payload	Length	changed	to	the	length	of	the	fragment
datagram.

2.	 Fragment	Header	A	Fragment	header	with	the	Fragment	Offset,
Identification,	and	M	flags	set	in	the	same	way	they	are	used	in	IPv4.

3.	 Fragment	A	fragment	of	the	Fragmentable	Part	of	the	original	datagram.
Note	that	each	fragment	must	have	a	length	that	is	a	multiple	of	8	bytes,
because	the	value	in	the	Fragment	Offset	field	is	specified	in	multiples	of	8
bytes.

TIP

KEY	CONCEPT	Fragmentation	is	done	in	IPv6	in	a	manner	similar	to	that	of	IPv4,	except	that
extension	headers	must	be	handled	specially.	Certain	extension	headers	are	considered	unfragmentable
and	appear	in	each	fragment;	others	are	fragmented	along	with	the	data.



Let's	use	an	example	to	illustrate	how	IPv6	fragmentation	works.	Suppose	you
have	an	IPv6	datagram	exactly	320	bytes	wide,	consisting	of	a	40-byte	IP
header,	four	30-byte	extension	headers,	and	160	bytes	of	data.	Two	of	the
extension	headers	are	unfragmentable,	while	two	are	fragmentable.	(In	practice
you	would	never	need	to	fragment	such	a	small	datagram,	but	I	am	trying	to
keep	the	numbers	simple.)	Suppose	you	need	to	send	this	over	a	link	with	an
MTU	of	only	230	bytes.	You	would	actually	require	three	fragments,	not	the	two
you	might	expect,	because	of	the	need	to	put	the	two	30-byte	unfragmentable
extension	headers	in	each	fragment,	and	the	requirement	that	each	fragment	be	a
length	that	is	a	multiple	of	8.	Here	is	how	the	fragments	would	be	structured	(see
Figure	27-1):

1.	 First	Fragment	The	first	fragment	would	consist	of	the	100-byte
Unfragmentable	Part,	followed	by	a	30-byte	Fragment	header	and	the	first
96	bytes	of	the	Fragmentable	Part	of	the	original	datagram.	This	would
contain	the	two	fragmentable	extension	headers	and	the	first	36	bytes	of
data.	This	leaves	124	bytes	of	data	to	send.

2.	 Second	Fragment	This	would	also	contain	the	100-byte	Unfragmentable
Part,	followed	by	a	Fragment	header,	and	96	bytes	of	data	(bytes	36	to
131).	This	would	leave	28	bytes	of	data	remaining.

3.	 Third	Fragment	The	last	fragment	would	contain	the	100-byte
Unfragmentable	Part,	a	Fragment	header,	and	the	final	28	bytes	of	data.



Figure	27-1.	IPv6	datagram	fragmentation	In	this	illustration,	a	320-byte	IPv6	datagram,	containing	four
30-byte	extension	headers,	is	broken	into	three	fragments.	The	sizes	of	the	fields	are	shown	to	scale.	The

Unfragmentable	Part,	shown	in	lighter	shading	on	the	left,	begins	each	fragment,	followed	by	the
Fragment	header.	Then,	portions	of	the	Fragmentable	Part	are	placed	into	each	fragment	in	sequence.

The	Authentication	and	Destination	Options	extension	headers	are	part	of	the	Fragmentable	Part,	so	that
they	appear	as	part	of	the	first	fragment.

The	M	(More	Fragments)	flag	would	be	set	to	1	in	the	first	two	fragments	and	0
in	the	third,	and	the	Fragment	Offset	values	would	be	set	appropriately.	See
Chapter	22,	which	covers	IPv4	fragmentation,	for	more	on	how	these	fields	are
used.

The	receiving	device	reassembles	by	taking	the	Unfragmentable	Part	from	the
first	fragment	and	then	assembling	the	Fragment	data	from	each	fragment	in
sequence.



IPv6	Datagram	Delivery	and	Routing
IP	functions	such	as	addressing,	datagram	encapsulation,	and,	if	necessary,
fragmentation	and	reassembly,	all	lead	up	to	the	ultimate	objective	of	the
protocol:	the	actual	delivery	of	datagrams	from	a	source	device	to	one	or	more
destination	devices.	Most	of	the	concepts	related	to	how	datagram	delivery	is
accomplished	in	IPv6	are	the	same	as	in	IPv4:

Datagrams	are	delivered	directly	when	the	source	and	destination	nodes	are
on	the	same	network.	When	they	are	on	different	networks,	delivery	is
indirect,	using	routing	to	the	destination's	network,	and	then	direct	to	the
destination.

Routers	look	at	IP	addresses	and	determine	which	portion	is	the	network
identifier	(network	ID)	and	which	is	the	host	identifier	(host	ID).	IPv6	does
this	in	the	same	basic	way	as	in	classless	IPv4,	despite	the	fact	that	IPv6
unicast	addresses	are	assigned	using	a	special	hierarchical	format.

Routing	is	still	done	on	a	next-hop	basis,	with	sources	generally	not	knowing
how	datagrams	get	from	point	A	to	point	B.

Routing	is	performed	by	devices	called	routers,	which	maintain	tables	of
routes	that	tell	them	where	to	forward	datagrams	to	reach	different	destination
networks.

Routing	protocols	are	used	to	allow	routers	to	exchange	information	about
routes	and	networks.

Most	of	the	changes	in	routing	in	IPv6	are	directly	related	to	changes	in	other
areas	of	the	protocol,	as	discussed	in	the	previous	chapters.	Some	of	the	main
issues	of	note	related	to	routing	and	routers	in	IPv6	include	the	following:

Hierarchical	Routing	and	Aggregation	One	of	the	goals	of	the	structure	used
for	organizing	unicast	addresses	was	to	improve	routing.	The	unicast	addressing
format	is	designed	to	provide	a	better	match	between	addresses	and	Internet
topology	and	to	facilitate	route	aggregation.	Classless	addressing	using	CIDR	in
IPv4	was	an	improvement	but	lacked	any	formal	mechanism	for	creating	a
scalable	hierarchy.



Scoped	Local	Addresses	Local-use	addresses,	including	site-local	and	link-local
addresses,	are	defined	in	IPv6,	and	routers	must	be	able	to	recognize	them.	They
must	route	them	or	not	route	them	when	appropriate.	Multicast	addresses	also
have	various	levels	of	scope.

Multicast	and	Anycast	Routing	Multicast	is	standard	in	IPv6,	not	optional	as	in
IPv4,	so	routers	must	support	it.	Anycast	addressing	is	a	new	type	of	addressing
in	IPv6.

More	Support	Functions	Capabilities	must	be	added	to	routers	to	support	new
features	in	IPv6.	For	example,	routers	play	a	key	role	in	implementing
autoconfiguration	without	the	help	of	a	server	and	Path	MTU	Discovery	in	the
new	IPv6	fragmentation	scheme.

New	Routing	Protocols	Routing	protocols	such	as	RIP	must	be	updated	to
support	IPv6.

Transition	Issues	Last,	but	certainly	not	least,	routers	play	a	major	role	in
supporting	the	transition	from	IPv4	to	IPv6.	They	will	be	responsible	for
connecting	together	IPv6	"islands"	and	performing	translation	to	allow	IPv4	and
IPv6	devices	to	communicate	with	each	other	during	the	multiyear	migration	to
the	new	protocol.



Part	II-5.	IP-RELATED	FEATURE	PROTOCOLS
Chapter	28

Chapter	29

Chapter	30

The	previous	two	parts	thoroughly	explored	versions	4	and	6	of	the	Internet
Protocol	(IP).	IP	is	a	very	capable	protocol	that	provides	the	functionality
necessary	to	address,	package,	and	deliver	information	on	TCP/IP	internetworks.
However,	IP	was	intentionally	designed	to	be	simple,	without	a	lot	of	bells	and
whistles.	To	deal	with	special	needs,	a	number	of	other	protocols	have	been
created	to	enhance	or	expand	on	IP's	capabilities.	I	call	these	IP-related	feature
protocols.

This	part	contains	three	chapters	that	provide	complete	explanations	of	three	of
the	more	important	IP-related	feature	protocols.	The	first	chapter	describes	IP
Network	Address	Translation	(IP	NAT	or	NAT),	which	allows	private	networks
to	be	accessed	on	the	Internet	and	IP	addresses	to	be	shared.	The	second	chapter
explores	IP	Security	(IPsec),	a	set	of	subprotocols	that	allows	IP	datagrams	to	be
authenticated	and/or	encrypted.	The	third	chapter	covers	the	Mobile	IP	protocol,
which	corrects	some	of	the	problems	associated	with	using	TCP/IP	with	mobile
hosts.

This	part	assumes	that	you	have	a	good	understanding	of	the	operation	of	IP,
discussed	in	Parts	II-3	and	II-4.



Chapter	28.	IP	NETWORK
ADDRESS	TRANSLATION	(NAT)
PROTOCOL

To	help	extend	the	life	of	the	Internet	Protocol	version	4	(IPv4)	addressing
scheme	while	the	newer	IPv6	protocol	is	developed	and	deployed,	other
technologies	have	been	developed.	One	of	the	most	important	of	these	is	IP
Network	Address	Translation	(NAT).	This	technology	allows	a	small	number	of
public	IP	addresses	to	be	shared	by	a	large	number	of	hosts	using	private
addresses.	This	essential	work-around	allows	the	global	Internet	to	actually	have
far	more	hosts	on	it	than	its	address	space	would	normally	support.	At	the	same
time,	it	provides	some	security	benefits	by	making	hosts	more	difficult	to
address	directly	by	foreign	machines	on	the	public	Internet.

In	this	chapter,	I	provide	a	description	of	the	concepts	behind	IP	NAT	and	an
explanation	of	operation	of	IP	NAT	types.	I	begin	with	an	overview	of	the
protocol	and	discussion	of	its	advantages	and	disadvantages.	I	describe	the
address	terminology	that	you	need	to	know	in	order	to	understand	how	NAT
functions	and	the	differences	between	various	translation	techniques.	I	explain
the	way	that	address	mappings	are	performed	and	the	difference	between	static
and	dynamic	address	mapping.

I	then	explain	the	operation	of	the	four	main	types	of	NAT:	unidirectional,
bidirectional,	port-based,	and	overlapping.	I	conclude	with	a	bit	more
information	on	compatibility	issues	associated	with	NAT.

NAT	was	developed	in	large	part	to	deal	with	the	address	shortage	problem	in
IPv4,	so	it	is	associated	and	used	with	IPv4.	It	is	possible	to	implement	an	IPv6-
compatible	version	of	NAT,	but	address	translation	isn't	nearly	as	important	in
IPv6,	which	was	designed	to	give	every	TCP/IP	device	its	own	unique	address.



IPv6,	which	was	designed	to	give	every	TCP/IP	device	its	own	unique	address.
For	this	reason,	in	this	chapter,	I	focus	in	on	the	use	of	NAT	with	IPv4.

NOTE

Incidentally,	most	people	just	call	this	technology	Network	Address	Translation	without	the	IP.
However,	this	sounds	to	me	rather	generic,	and	since	the	version	I'm	discussing	here	is	specific	to	IP,	I
prefer	to	make	it	clear	that	this	is	an	IP	feature.	That	said,	for	simplicity	I	often	just	say	"NAT,"	too,
since	that's	shorter.	I	should	also	point	out	that	there	are	quite	a	few	people	who	don't	consider	NAT	to
be	a	protocol	in	the	strictest	sense	of	the	word.

IP	NAT	Overview
The	decision	to	make	IP	addresses	only	32	bits	long	as	part	of	the	original	design
of	IP	led	to	a	serious	problem	when	the	Internet	exploded	in	popularity	beyond
anyone's	expectations:	the	exhaustion	of	the	address	space.	Classless	addressing
helped	make	better	use	of	the	address	space,	and	IPv6	was	created	to	ensure	that
we	will	never	run	out	of	addresses	again.	However,	classless	addressing	has	only
slowed	the	consumption	of	the	IPv4	address	space,	and	IPv6	has	taken	years	to
develop	and	will	require	years	more	to	deploy.

The	shortage	of	IP	addresses	promised	to	grow	critical	by	the	end	of	the	1990s
unless	some	sort	of	solution	was	implemented	until	the	transition	to	IPv6	was
completed.	Creative	engineers	on	the	Internet	Engineering	Task	Force	(IETF)
were	up	to	the	challenge.	They	created	a	technique	that	would	not	only	forestall
the	depletion	of	the	address	space,	but	could	also	be	used	to	address	the
following	two	other	growing	issues	in	the	mid-	to	late	1990s:

Increasing	Cost	of	IP	Addresses	As	any	resource	grows	scarce,	it	becomes
more	expensive.	Even	when	IP	addresses	were	available,	it	cost	more	to	get	a
larger	number	from	a	service	provider	than	a	smaller	number.	It	was	desirable	to
conserve	them	not	only	for	the	sake	of	the	Internet	as	a	whole,	but	to	save
money.

Growing	Concerns	over	Security	As	Internet	use	increased	in	the	1990s,	more
bad	guys	started	using	the	network	also.	The	more	machines	a	company	had
directly	connected	to	the	Internet,	the	greater	their	potential	exposure	to	security
risks.



One	solution	to	these	problems	was	to	set	up	a	system	whereby	a	company's
network	was	not	connected	directly	to	the	Internet,	but	rather	indirectly.	Setting
up	a	network	this	way	is	possible	due	to	the	following	important	characteristics
of	how	most	organizations	use	the	Internet:

Most	Hosts	Are	Client	Devices	The	Internet	is	client/server	based,	and	the
majority	of	hosts	are	clients.	Client	devices	generally	don't	need	to	be	made
publicly	accessible.	For	example,	when	using	your	local	PC	to	access	the	World
Wide	Web,	you	issue	requests	to	servers	and	they	respond	back,	but	servers	don't
have	any	reason	to	try	to	initiate	contact	with	you.	Clients,	not	servers,	begin
most	correspondence,	by	definition.

Few	Hosts	Access	the	Internet	Simultaneously	When	you	have	a	large	number
of	hosts	that	are	connected	to	the	Internet	on	the	same	network,	usually	only	a
small	number	of	those	hosts	are	trying	to	access	the	Internet	at	any	given	time.	It
isn't	necessary	to	assume	they	will	all	need	to	access	servers	at	once.	Even	while
you	actively	browse	the	Web,	you	pause	for	a	number	of	seconds	to	read
information	from	time	to	time;	you	are	only	accessing	the	web	server	for	the
time	it	takes	to	perform	a	transaction.

Internet	Communications	Are	Routed	Communications	between	an
organization's	network	and	the	Internet	go	through	a	router,	which	acts	as	a
control	point	for	traffic	flows.

The	best	way	to	explain	why	these	attributes	matter	is	to	draw	an	analogy	to	how
telephones	are	used	an	organization,	because	many	of	the	same	attributes	apply
there.	Most	of	the	telephones	in	a	typical	organization	are	used	to	let	employees
make	calls	out.	Usually	there	is	no	need	to	have	any	way	to	call	employees
directly;	instead,	one	system	or	person	can	handle	all	incoming	calls.	Only	a	few
employees	are	ever	making	a	call	to	the	outside	world	at	any	given	time.	And	all
calls	are	routed	through	a	central	point	that	manages	the	telephone	system.

For	these	reasons,	to	save	money,	organizations	don't	run	separate	public
telephone	lines	to	every	employee's	desk.	Instead,	they	set	up	a	telephone	system
whereby	each	employee	gets	an	extension,	which	is	basically	a	local	telephone
number	valid	only	within	the	organization.	A	small	number	of	outside	lines	is
made	available	in	a	pool	for	employees	to	share,	and	the	telephone	system
matches	the	inside	extensions	to	the	outside	lines	as	needed.	A	voice	mail	system



and	human	receptionist	handle	the	routing	of	calls	into	the	organization.	(Yes,	of
course	some	companies	have	a	direct	mapping	between	extension	numbers	and
real	telephone	numbers.)

A	very	similar	technique	can	be	used	for	connecting	an	organization's	computers
to	the	Internet.	In	TCP/IP	networks,	this	technology	was	first	formalized	in	RFC
1631,	"The	IP	Network	Address	Translator	(NAT),"	which	was	adopted	in	May
1994.	The	word	translator	refers	to	the	device	(router)	that	implements	NAT.
More	commonly,	the	technology	as	a	whole	is	called	IP	Network	Address
Translation	(IP	NAT	or	NAT).

NOTE

The	document	status	of	RFC	1631	is	informational.	This	means	that,	technically,	IP	NAT	is	not	an
official	Internet	standard.

A	basic	implementation	of	NAT	involves	setting	up	an	organization's	internal
network	using	one	of	the	private	addressing	ranges	set	aside	for	local	IP
networks.	One	or	more	public	(Internet)	addresses	are	also	assigned	to	the
organization	as	well,	and	one	or	more	NAT-capable	routers	are	installed	between
the	local	network	and	the	public	Internet.	The	public	IP	addresses	are	like
outside	lines	in	the	telephone	system,	and	the	private	addresses	are	like	internal
extensions.

The	NAT	router	plays	the	role	of	telephone	system	computer	and	receptionist.	It
maps	internal	extensions	to	outside	lines	as	needed,	and	also	handles	"incoming
calls"	when	required.	It	does	this	by	not	just	routing	IP	datagrams,	but	also	by
modifying	them	as	needed,	thereby	translating	addresses	in	datagrams	from	the
private	network	into	public	addresses	for	transmission	on	the	Internet,	and	back
again.

TIP

KEY	CONCEPT	IP	Network	Address	Translation	(IP	NAT	or	NAT)	is	a	technique	that	allows	an
organization	to	set	up	a	network	using	private	addresses,	while	still	allowing	for	communication	on	the
public	Internet.	A	NAT-capable	router	translates	private	to	public	addresses	and	vice	versa	as	needed.
This	allows	a	small	number	of	public	IP	addresses	to	be	shared	among	a	large	number	of	devices	and
provides	other	benefits	as	well,	but	it	also	has	some	drawbacks.



Over	time,	newer	versions	of	NAT	have	also	been	created.	They	solve	other
problems	or	provide	additional	capabilities.	Port-Based	NAT	allows	for	the
sharing	of	even	more	hosts	on	a	limited	number	of	IP	addresses	by	letting	two	or
more	devices	share	one	IP	address	at	a	time.	So-called	twice	NAT	helps	with	the
implementation	of	virtual	private	networks	(VPNs)	by	translating	both	source
and	destination	addresses	in	both	incoming	and	outgoing	datagrams.

Advantages	of	IP	NAT
NAT	is	one	of	those	technologies	that	has	a	long	list	of	advantages	and
disadvantages.	This	means	it	can	be	extremely	useful	in	a	variety	of	scenarios,
but	also	problematic	in	others.	The	main	advantages	are	as	follows:

Public	IP	Address	Sharing	A	large	number	of	hosts	can	share	a	small	number
of	public	IP	addresses.	This	saves	money	and	also	conserves	IP	address	space.

Easier	Expansion	Since	local	network	devices	are	privately	addressed	and	a
public	IP	address	isn't	needed	for	each	one,	it	is	easy	to	add	new	clients	to	the
local	network.

Greater	Local	Control	Administrators	get	all	the	benefits	of	control	that	come
with	a	private	network,	but	can	still	connect	to	the	Internet.

Greater	Flexibility	in	Internet	Service	Provider	(ISP)	Service	Changing	the
organization's	ISP	is	easier,	because	only	the	public	addresses	change.	It	isn't
necessary	to	renumber	all	the	client	machines	on	the	network.

Increased	Security	The	NAT	translation	represents	a	level	of	indirection.	Thus,
it	automatically	creates	a	type	of	firewall	between	the	organization's	network	and
the	public	Internet.	It	is	more	difficult	for	any	client	devices	to	be	accessed
directly	by	someone	malicious	because	the	clients	don't	have	publicly	known	IP
addresses.

(Mostly)	Transparent	NAT	implementation	is	mostly	transparent,	because	the
changes	take	place	in	one	or	perhaps	a	few	routers.	The	dozens	or	hundreds	of
hosts	themselves	don't	need	to	be	changed.

Disadvantages	of	IP	NAT
The	previously	listed	advantages	are	all	good	reasons	to	use	NAT,	but	there	are
drawbacks	to	the	technique	as	well:



drawbacks	to	the	technique	as	well:

Complexity	NAT	represents	one	more	complexity	in	terms	of	setting	up	and
managing	the	network.	It	also	makes	troubleshooting	more	confusing	due	to
address	substitutions.

Problems	Due	to	Lack	of	Public	Addresses	Certain	functions	won't	work
properly	due	to	lack	of	a	real	IP	address	in	the	client	host	machines.

Compatibility	Problems	with	Certain	Applications	I	said	earlier	that	NAT
was	only	mostly	transparent.	There	are,	in	fact,	compatibility	issues	with	certain
applications	that	arise	because	NAT	tinkers	with	the	IP	header	fields	in
datagrams	but	not	in	the	application	data.	This	means	tools	like	the	File	Transfer
Protocol	(FTP;	see	Chapter	72),	which	pass	IP	addresses	and	port	numbers	in
commands,	must	be	specially	handled,	and	some	applications	may	not	work.

Problems	with	Security	Protocols	Protocols	like	IPsec	are	designed	to	detect
modifications	to	headers	and	commonly	balk	at	the	changes	that	NAT	makes,
since	they	cannot	differentiate	those	changes	from	malicious	datagram	hacking.
It	is	still	possible	to	combine	NAT	and	IPsec,	but	this	becomes	more
complicated.

Poor	Support	for	Client	Access	The	lack	of	a	public	IP	address	for	each	client
is	a	double-edged	sword;	it	protects	against	hackers	trying	to	access	a	host,	but	it
also	makes	it	difficult	for	legitimate	access	to	clients	on	the	local	network.	Peer-
to-peer	applications	are	harder	to	set	up,	and	something	like	an	organizational
website	(accessed	from	the	Internet	as	a	whole)	usually	needs	to	be	set	up
without	NAT.

Performance	Reduction	Each	time	a	datagram	transitions	between	the	private
network	and	the	Internet,	an	address	translation	is	required.	In	addition,	other
work	must	be	done	as	well,	such	as	recalculating	header	checksums.	Each
individual	translation	takes	little	effort,	but	when	you	add	it	up,	you	are	giving
up	some	performance.

Some	of	these	cancel	out	some	of	the	benefits	of	certain	items	in	the	previous
list.	However,	many	organizations	feel	that	the	advantages	outweigh	the
disadvantages,	especially	if	they	use	the	Internet	in	primarily	a	client/server
fashion,	as	most	do.	For	this	reason,	NAT	has	become	quite	popular.	However,



bear	in	mind	that	the	main	problem	that	led	to	NAT	is	lack	of	address	space.
IPv6	fixes	this	problem,	while	NAT	merely	finds	a	clever	work-around	for	it.
For	this	reason,	many	people	consider	NAT	a	kludge.	Once	IPv6	is	deployed,	it
will	no	longer	be	needed,	and	some	folks	don't	like	it	even	for	IPv4.	On	the	other
hand,	some	feel	its	other	benefits	make	it	worthy	of	consideration	even	in	IPv6.

NOTE

A	kludge	(or	kluge)	is	something	that	is	used	to	address	a	problem	in	an	inelegant	way,	like	hammering	a
nail	using	the	side	of	an	adjustable	wrench.



IP	NAT	Address	Terminology
As	its	name	clearly	indicates,	IP	NAT	is	all	about	the	translation	of	IP	addresses.
When	datagrams	pass	between	the	private	network	of	an	organization	and	the
public	Internet,	the	NAT	router	changes	one	or	more	of	the	addresses	in	these
datagrams.	This	translation	means	that	every	transaction	in	a	NAT	environment
involves	not	just	a	source	address	and	a	destination	address,	but	also	potentially
multiple	addresses	for	each	of	the	source	and	destination.

In	order	to	make	clearer	the	explanation	of	how	NAT	operates,	several	special
designations	have	been	developed	to	refer	to	the	different	types	of	addresses	that
can	be	found	in	an	IP	datagram	when	NAT	is	used.	Unfortunately,	the
terminology	used	for	addressing	in	NAT	can	be	confusing,	because	it's	hard	to
visualize	what	the	differences	are	between	the	(often	similar-sounding)	names.
However,	without	knowing	what	these	addresses	mean,	a	proper	understanding
of	NAT	operation	is	impossible.

The	first	way	that	addresses	are	differentiated	is	based	on	where	the	device	is	in
the	network	that	the	address	is	referring	to,	as	follows:

Inside	Address	Any	device	on	the	organization's	private	network	that	is	using
NAT	is	said	to	be	on	the	inside	network.	Thus,	any	address	that	refers	to	a	device
on	the	local	network	in	any	form	is	called	an	inside	address.

Outside	Address	The	public	Internet—that	is,	everything	outside	the	local
network—is	considered	the	outside	network.	Any	address	that	refers	to	a	public
Internet	device	is	an	outside	address.

TIP

KEY	CONCEPT	In	NAT,	the	terms	inside	and	outside	are	used	to	identify	the	location	of	devices.
Inside	addresses	refer	to	devices	on	the	organization's	private	network.	Outside	addresses	refer	to	devices
on	the	public	Internet.

An	inside	device	always	has	an	inside	address;	an	outside	device	always	has	an
outside	address.	However,	there	are	two	different	ways	of	addressing	either	an
inside	or	an	outside	device,	depending	on	the	part	of	the	network	in	which	the
address	appears	in	a	datagram:



Local	Address	This	term	describes	an	address	that	appears	in	a	datagram	on	the
inside	network,	whether	it	refers	to	an	inside	or	outside	address.

Global	Address	This	term	describes	an	address	that	appears	in	a	datagram	on
the	outside	network,	again	whether	it	refers	to	an	inside	or	outside	address.

TIP

KEY	CONCEPT	In	NAT,	the	terms	local	and	global	are	used	to	indicate	in	what	network	a	particular
address	appears.	Local	addresses	are	used	on	the	organization's	private	network	(whether	to	refer	to	an
inside	device	or	an	outside	device).	Global	addresses	are	used	on	the	public	Internet	(again,	whether
referring	to	an	inside	or	outside	device).

This	is	a	bit	confusing,	so	I	will	try	to	explain	further.	The	NAT	translating
router	has	the	job	of	interfacing	the	inside	network	to	the	outside	network	(the
Internet).	Inside	devices	need	to	be	able	to	talk	to	outside	devices	and	vice	versa,
but	inside	devices	can	use	only	addressing	consistent	with	the	local	network-
addressing	scheme.	Similarly,	outside	devices	cannot	use	local	addressing.	Thus,
both	inside	and	outside	devices	can	be	referred	to	with	local	or	global	address
versions.	This	yields	four	different	specific	address	types:

Inside	Local	Address	An	address	of	a	device	on	the	local	network,	expressed
using	its	normal	local	device	representation.	So,	for	example,	if	you	had	a	client
on	a	network	using	the	10.0.0.0	private	address	block	and	assigned	it	address
10.0.0.207,	this	would	be	its	inside	local	address.

Inside	Global	Address	This	is	a	global,	publicly	routable	IP	address	that's	used
to	represent	an	inside	device	to	the	outside	world.	In	a	NAT	configuration,	inside
global	addresses	are	those	real	IP	addresses	assigned	to	an	organization	for	use
by	the	NAT	router.	Let's	say	that	device	10.0.0.207	wants	to	send	an	HTTP
request	to	an	Internet	server	located	at	address	204.51.16.12.	It	forms	the
datagram	using	10.0.0.207	as	the	source	address.	However,	if	this	datagram	is
sent	out	to	the	Internet	as	is,	the	server	cannot	reply	back	because	10.0.0.207	is
not	a	publicly	routable	IP	address.	So	the	NAT	router	will	translate	10.0.0.207	in
the	datagram	into	one	of	the	organization's	registered	IP	addresses,	let's	say,
194.54.21.10.	This	is	the	inside	global	address	that	corresponds	to	10.0.0.207.	It
will	be	used	as	the	destination	when	the	server	sends	its	HTTP	response.	Note
that,	in	some	situations,	the	inside	local	address	and	outside	local	address	may	be



the	same.

Outside	Global	Address	An	address	of	an	external	(public	Internet)	device	as	it
is	referred	to	on	the	global	Internet.	This	is	basically	a	regular,	publicly
registered	address	of	a	device	on	the	Internet.	In	the	previous	example,
204.51.16.12	is	an	outside	global	address	of	a	public	server.

Outside	Local	Address	An	address	of	an	external	device	as	it	is	referred	to	by
devices	on	the	local	network.	In	some	situations,	this	may	be	identical	to	the
outside	global	address	of	that	outside	device.

Phew,	it's	still	confusing,	isn't	it?	Let's	try	another	way	of	looking	at	this.	Of
these	four	addresses,	two	types	are	the	addresses	as	they	are	known	natively	by
either	an	inside	or	outside	device,	while	the	other	two	are	translated	addresses.
Here	is	a	summary:

Inside	Device	Designations	For	an	inside	device,	the	inside	local	address	is	its
normal,	or	native,	address.	The	inside	global	address	is	a	translated	address	used
to	represent	the	inside	device	on	the	outside	network,	when	necessary.

Outside	Device	Designations	For	an	outside	device,	the	outside	global	address
is	its	normal,	or	native,	address.	The	outside	local	address	is	a	translated	address
used	to	represent	the	outside	device	on	the	inside	network,	when	necessary.

So	what	NAT	does	then	is	translate	the	identity	of	either	inside	or	outside
devices	from	local	representations	to	global	representations	and	vice	versa.
Which	addresses	are	changed	and	how	will	depend	on	the	specific	type	of	NAT
employed.	For	example,	in	traditional	NAT,	inside	devices	refer	to	outside
devices	using	their	proper	(global)	representation,	so	the	outside	global	and
outside	local	addresses	of	these	outside	devices	are	the	same.

TIP

KEY	CONCEPT	A	NAT	router	translates	local	addresses	to	global	ones	and	vice	versa.	Thus,	an	inside
local	address	is	translated	to	an	inside	global	address	(and	vice	versa)	and	an	outside	local	address	is
translated	to	an	outside	global	address	(and	vice	versa).

And	after	all	that,	it's	still	confusing!	One	of	the	big	problems	is	that	the	words
inside	and	local	are	somewhat	synonymous,	as	are	outside	and	global,	yet	they
mean	different	things	in	NAT.	And	the	typical	paradox	in	trying	to	explain



networking	concepts	rears	its	ugly	head	here	again:	I	wanted	to	define	these
addresses	to	make	describing	NAT	operation	easier,	but	find	myself	wanting	to
use	an	example	of	NAT	operation	to	clarify	how	the	addresses	are	used.

Even	after	writing	this	material	I	find	these	terms	confusing,	so	I	created
Figure	28-1,	which	shows	this	same	terminology	in	graphical	form	and	may	be
of	some	help.	That	diagram	is	also	used	as	a	template	for	the	illustrations	of	each
of	the	different	types	of	NAT	in	the	rest	of	this	chapter.	As	you	read	about	NAT
operation,	look	back	here	if	you	want	to	double-check	the	meaning	of	address
types.	Don't	get	discouraged	if	it	takes	a	couple	of	times	to	get	the	addresses
straight.

Figure	28-1.	IP	Network	Address	Translation	(NAT)	terminology	Hopefully	this	diagram	will	help	you
to	better	understand	the	whole	"inside/outside/local/global"	thing.



IP	NAT	Static	and	Dynamic	Address	Mappings
NAT	allows	you	to	connect	a	private	(inside)	network	to	a	public	(outside)
network	such	as	the	Internet	by	using	an	address	translation	algorithm
implemented	in	a	router	that	connects	the	two.	Each	time	a	NAT	router
encounters	an	IP	datagram	that	crosses	the	boundary	between	the	two	networks,
it	must	translate	addresses	as	appropriate.	But	how	does	it	know	what	to	translate
and	what	to	use	for	the	translated	address?

The	NAT	software	in	the	router	must	maintain	a	translation	table	to	tell	it	how	to
operate.	The	translation	table	contains	information	that	maps	the	inside	local
addresses	of	internal	devices	(their	regular	addresses)	to	inside	global	address
representations	(the	special	public	addresses	used	for	external	communication).
It	may	also	contain	mappings	between	outside	global	addresses	and	outside	local
addresses	for	inbound	transactions,	if	appropriate.

There	are	two	basic	ways	that	entries	can	be	added	to	the	NAT	translation	table:
statically	or	dynamically.

Static	Mappings
A	static	mapping	represents	a	permanent,	fixed	relationship	defined	between	a
global	and	a	local	representation	of	the	address	of	either	an	inside	or	an	outside
device.	For	example,	you	can	use	a	static	translation	if	you	want	the	internal
device	with	an	inside	local	address	of	10.0.0.207	to	always	use	the	inside	global
address	of	194.54.21.10.	Whenever	10.0.0.027	initiates	a	transaction	with	the
Internet,	the	NAT	router	will	replace	that	address	with	194.54.21.10.

Dynamic	Mappings
With	dynamic	mapping,	global	and	local	address	representations	are	generated
automatically	by	the	NAT	router,	which	is	used	as	needed	and	then	discarded.
The	most	common	way	that	this	is	employed	is	in	allowing	a	pool	of	inside
global	addresses	to	be	shared	by	a	large	number	of	inside	devices.

For	example,	say	you	were	using	dynamic	mapping	with	a	pool	of	inside	global
addresses	available	from	194.54.21.1	through	194.54.21.20.	When	10.0.0.207
sent	a	request	to	the	Internet,	it	would	not	automatically	have	its	source	address



replaced	by	194.54.21.10.	One	of	the	20	addresses	in	the	pool	would	be	chosen
by	the	NAT	router.	The	router	would	then	watch	for	replies	back	using	that
address	and	translate	them	back	to	10.0.0.207.	When	the	session	was	completed,
it	would	discard	the	entry	to	return	the	inside	global	address	to	the	pool.

Choosing	Between	Static	and	Dynamic	Mapping
The	trade-offs	between	static	and	dynamic	NAT	mappings	are	pretty	much	the
same	as	they	always	are	when	the	choice	is	between	static	and	dynamic.	For
example,	the	same	issues	arises	in	Address	Resolution	Protocol	(ARP)	caching;
see	Chapter	13.

Static	mappings	are	permanent	and	therefore	ideal	for	devices	that	need	to	be
always	represented	with	the	same	public	address	on	the	outside	network.	They
may	also	be	used	to	allow	inbound	traffic	to	a	particular	device;	that	is,	they	can
be	used	for	transactions	initiated	on	the	public	network	that	send	to	a	special
server	on	the	inside	network.	However,	they	require	manual	setup	and
maintenance,	and	they	don't	allow	IP	sharing	on	the	internal	network.

Dynamic	mapping	is	normally	used	for	regular	clients	in	order	to	facilitate
public	IP	address	sharing—a	prime	goal	of	most	NAT	implementations.	It	is
more	complicated	than	static	mapping,	but	once	you	set	it	up,	it's	automatic.

It	is	possible	to	mix	dynamic	and	static	mapping	on	the	same	system,	of	course.
You	can	designate	certain	devices	that	are	statically	mapped	and	let	the	rest	use
dynamic	mapping.	You	just	have	to	make	sure	that	the	static	mappings	don't
overlap	with	the	pool	used	for	dynamic	assignment.

Incidentally,	another	way	you	can	perform	dynamic	mapping	of	global	and	local
addressing	is	through	domain	name	resolution	using	the	Domain	Name	System
(DNS;	see	Chapter	52).	This	is	particularly	common	when	external	devices
access	internal	hosts	using	bidirectional	NAT	(inbound	transactions).	Since	hosts
on	the	public	Internet	know	nothing	about	the	organization's	private	network,
they	issue	a	request	for	the	DNS	name	of	the	device	they	want	to	access.	This
causes	the	generation	of	a	NAT	translation	entry	that	maps	the	inside	local
public	address	of	the	host	to	an	inside	global	address	for	use	by	those	outside	the
network.	See	the	description	of	bidirectional	NAT	later	in	this	chapter	for	more
details	on	how	this	works.



IP	NAT	Unidirectional	(Traditional/Outbound)
Operation
Now	it's	time	to	get	down	to	the	nitty	gritty	of	how	it	works.	There	are	many
different	flavors	of	NAT,	and	four	common	ones	are	covered	in	this	chapter.	It
makes	sense	to	start	by	looking	at	the	original	variety	of	NAT	described	in	RFC
1631.	This	is	the	simplest	NAT	method,	and	therefore	the	easiest	one	to	explain.

NAT	was	designed	to	allow	hosts	on	a	private	network	to	share	public	IP
addresses	in	accessing	an	Internet.	Since	most	hosts	are	clients	that	initiate
transactions,	NAT	was	designed	under	the	assumption	that	a	client/server
request/response	communication	would	begin	with	a	datagram	sent	from	the
inside	network	to	the	outside.	For	this	reason,	this	first	type	of	NAT	is
sometimes	called	unidirectional	or	outbound	NAT.	Since	it	is	the	oldest	flavor,	it
is	also	now	called	traditional	NAT	to	differentiate	it	from	newer	varieties.

To	show	how	unidirectional	NAT	works,	I	will	use	an	example.	Let's	assume	the
inside	network	has	250	hosts	that	use	private	(inside	local)	addresses	from	the
10.0.0.0/8	address	range	(which	I	selected	because	it	has	small	numbers!).	These
hosts	use	dynamic	NAT	sharing	a	pool	of	20	inside	global	addresses	from
194.54.21.1	through	194.54.21.20.

In	this	example,	device	10.0.0.207	wants	to	access	the	World	Wide	Web	server
at	public	address	204.51.16.12.	Table	28-1	shows	the	four	basic	steps	that	are
involved	in	this	(simplified)	transaction.	I	did	this	in	table	form	so	I	could	show
you	explicitly	what	happens	to	the	addresses	in	both	the	request	datagram	(in
steps	1	and	2)	and	the	response	datagram	(steps	3	and	4).	I	have	also	highlighted
the	translated	address	values	for	clarity,	and	provided	Figure	28-2,	which	shows
the	process	graphically.

Table	28-1.	Operation	of	Unidirectional	(Traditional/Outbound)	NAT

Step
#

Description Datagram
Type

Datagram
Source
Address

Datagram
Destination
Address

1 Inside	Client	Generates	Request	and
Sends	to	NAT	Router:	Device	10.0.0.207

Request
(from

10.0.0.207
(inside	local)

204.51.16.12
(outside



Sends	to	NAT	Router:	Device	10.0.0.207
generates	an	HTTP	request	that	is	eventually
passed	down	to	IP	and	encapsulated	in	an	IP
datagram.	The	source	address	is	itself,
10.0.0.207,	and	the	destination	is
204.51.16.12.	The	datagram	is	sent	to	the
NAT-capable	router	that	connects	the
organization's	internal	network	to	the
Internet.

(from
inside
client	to
outside
server)

(inside	local) (outside
local)

2 NAT	Router	Translates	Source	Address
and	Sends	to	Outside	Server:	The	NAT
router	realizes	that	10.0.0.207	is	an	inside
local	address	and	knows	it	must	substitute	an
inside	global	address	in	order	to	let	the
public	Internet	destination	respond.	It
consults	its	pool	of	addresses	and	sees	the
next	available	one	is	194.54.21.11.	It
changes	the	source	address	in	the	datagram
from	10.0.0.207	to	194.54.21.11.	The
destination	address	is	not	translated	in
traditional	NAT.	In	other	words,	the	outside
local	address	and	outside	global	address	are
the	same.

The	NAT	router	puts	the	mapping	from
10.0.0.207	to	194.54.21.11	into	its	translation
table.	It	sends	out	the	modified	datagram,
which	is	eventually	routed	to	the	server	at
204.51.16.12.

	 194.54.21.11
(inside
global)

204.51.16.12
(outside
global)

3 Outside	Server	Generates	Response	and
Sends	Back	to	NAT	Router:	The	server	at
204.51.16.12	generates	an	HTTP	response.	It
has	no	idea	that	NAT	was	involved;	it	sees
194.54.21.11	in	the	request	sent	to	it,	so
that's	where	it	sends	back	the	response.	It	is
then	routed	back	to	the	original	client's	NAT
router.

Response
(from
outside
server	to
inside
client)

204.51.16.12
(outside
global)

194.54.21.11
(inside
global)

4 NAT	Router	Translates	Destination
Address	and	Delivers	Datagram	to	Inside
Client:	The	NAT	router	sees	194.54.21.11	in
the	response	that	arrived	from	the	Internet.	It
consults	its	translation	table	and	knows	this
datagram	is	intended	for	10.0.0.207.	This
time,	the	destination	address	is	changed	but
not	the	source.	It	then	delivers	the	datagram
back	to	the	originating	client.

	 204.51.16.12
(outside
local)

10.0.0.207
(inside	local)



Figure	28-2.	Operation	of	unidirectional	(traditional/outbound)	NAT	You	can	see	the	four	steps	in	this
process	by	following	the	steps	in	clockwise	order.	Translated	addresses	are	shown	in	bold.	Refer	to

Table	28-1	and	Figure	28-1	for	an	explanation	of	the	four	address	types.

As	you	can	see,	this	really	isn't	rocket	science,	and	it's	fairly	easy	to	understand
what	is	going	on	as	soon	as	you	get	used	to	the	terminology	and	concepts.	In
unidirectional	NAT,	the	source	address	is	translated	on	outgoing	datagrams	and
the	destination	address	is	translated	on	incoming	ones.	Traditional	NAT	supports
only	this	sort	of	outbound	transaction,	which	is	started	by	a	device	on	the	inside
network.	It	cannot	handle	a	device	that	sends	a	request	to	a	private	address	on
the	public	Internet.

TIP

KEY	CONCEPT	In	unidirectional	(traditional)	NAT,	the	NAT	router	translates	the	source	address	of	an
outgoing	request	from	inside	local	to	inside	global	form.	It	then	transforms	the	destination	address	of	the
response	from	inside	global	to	inside	local.	The	outside	local	and	outside	global	addresses	are	the	same
in	both	request	and	reply.

Also	note	that	even	though	I	am	focusing	on	the	changes	that	the	NAT	router
makes	to	addresses,	it	also	must	make	other	changes	to	the	datagram.	Changing
any	field	in	the	IP	header	means	that	the	IP	Header	Checksum	field	will	need	to
be	recalculated.	User	Datagram	Protocol	(UDP)	and	Transmission	Control
Protocol	(TCP)	checksums	need	to	be	recalculated,	and	depending	on	the	nature



Protocol	(TCP)	checksums	need	to	be	recalculated,	and	depending	on	the	nature
of	the	data	in	the	datagram,	other	changes	may	also	be	required.	I	discuss	these
issues	in	the	section	on	NAT	compatibility	issues,	at	the	end	of	this	chapter.

Incidentally,	this	simplified	example	assumes	the	existence	of	just	one	router
between	the	private	and	public	networks.	It	is	possible	to	have	more	than	one
router	between	these	networks.	If	this	configuration	is	used,	however,	it	is
essential	that	they	both	use	the	same	translation	table.	Otherwise,	if	Router	R1
processes	the	request,	but	Router	R2	receives	the	response,	Router	R2	won't
know	how	to	translate	back	the	destination	address	on	the	incoming	datagram.
This	makes	dynamic	mapping	extremely	difficult:	Routers	would	have	to
coordinate	their	address	mappings.



IP	NAT	Bidirectional	(Two-Way/Inbound)
Operation
Traditional	NAT	is	designed	to	handle	only	outbound	transactions;	clients	on	the
local	network	initiate	requests	and	devices	on	the	Internet	and	send	back
responses.	However,	in	some	circumstances,	we	may	want	to	go	in	the	opposite
direction.	That	is,	we	may	want	to	have	a	device	on	the	outside	network	initiate	a
transaction	with	one	on	the	inside.	To	permit	this,	we	need	a	more	capable	type
of	NAT	than	the	traditional	version.	This	enhancement	goes	by	various	names,
most	commonly	Bidirectional	NAT,	Two-Way	NAT,	and	Inbound	NAT.	All	of
these	convey	the	concept	that	this	kind	of	NAT	allows	both	the	type	of
transaction	you	saw	in	the	previous	topic	and	also	transactions	initiated	from	the
outside	network.

Performing	NAT	on	inbound	transactions	is	more	difficult	than	conventional
outbound	NAT.	To	understand	why,	remember	that	the	network	configuration
when	using	NAT	is	inherently	asymmetric:	The	inside	network	generally	knows
the	IP	addresses	of	outside	devices,	since	they	are	public,	but	the	outside
network	doesn't	know	the	private	addresses	of	the	inside	network.	Even	if	they
did	know	them,	they	could	never	be	specified	as	the	target	of	an	IP	datagram
initiated	from	outside	since	they	are	not	routable—there	would	be	no	way	to	get
them	to	the	private	network's	local	router.

Why	does	this	matter?	Well,	consider	the	case	of	outbound	NAT	from	Device	A
on	the	inside	network	to	Device	B	on	the	outside.	The	local	client,	A,	always
starts	the	transaction,	so	Device	A's	NAT	router	is	able	to	create	a	mapping
between	Device	A's	inside	local	and	inside	global	address	during	the	request.
Device	B	is	the	recipient	of	the	already-translated	datagram,	so	the	fact	that
Device	A	is	using	NAT	is	hidden.	Device	B	responds	back,	and	the	NAT	router
does	the	reverse	translation	without	Device	B	ever	even	knowing	NAT	was	used
for	Device	A.

Now	let's	look	at	the	inbound	case.	Here,	Device	B	is	trying	to	send	to	Device	A,
which	is	using	NAT.	Device	B	can't	send	to	Device	A's	private	(inside	local)
address.	It	needs	Device	A's	inside	global	address	in	order	to	start	the	ball
rolling.	However,	Device	A's	NAT	router	isn't	proximate	to	Device	B.	In	fact,
Device	B	probably	doesn't	even	know	the	identity	of	Device	A's	NAT	router!



Device	B	probably	doesn't	even	know	the	identity	of	Device	A's	NAT	router!

This	leaves	only	two	methods.	One	is	to	use	static	mapping	for	devices	like
servers	on	the	inside	network	that	need	to	be	accessed	from	the	outside.	When
static	mapping	is	employed,	the	global	address	of	the	device	that	is	using	the
static	mapping	will	be	publicly	known,	which	solves	the	"where	do	I	send	my
request	to"	problem.

The	other	solution	is	to	make	use	of	DNS.	As	explained	in	detail	in	the	section
on	DNS	(see	Part	III-1),	this	protocol	allows	requests	to	be	sent	as	names	instead
of	IP	addresses.	The	DNS	server	translates	these	names	to	their	corresponding
addresses.	It	is	possible	to	integrate	DNS	and	NAT	so	they	work	together.	This
process	is	described	in	RFC	2694,	"DNS	Extensions	to	Network	Address
Translators	(DNS_ALG)."

In	this	technique,	an	outside	device	can	make	use	of	dynamic	mapping.	The
basic	process	(highly	simplified)	is	as	follows:

1.	 The	outside	device	sends	a	DNS	request	using	the	name	of	the	device	on
the	inside	network	it	wishes	to	reach.	For	example,	it	might	be
www.ilikenat.com.

2.	 The	DNS	server	for	the	internal	network	resolves	the	www.ilikenat.com
name	into	an	inside	local	address	for	the	device	that	corresponds	to	this
DNS	entry.

3.	 The	inside	local	address	is	passed	to	NAT	and	used	to	create	a	dynamic
mapping	between	the	inside	local	address	of	the	server	being	accessed
from	the	outside,	and	an	inside	global	address.	This	mapping	is	put	into	the
NAT	router's	translation	table.

4.	 When	the	DNS	server	sends	back	the	name	resolution,	it	tells	the	outside
device	the	inside	global	(public)	address	mapped	in	the	previous	step,	not
the	inside	local	(private)	address	of	the	server	being	sought.

Once	the	inside	global	address	of	the	device	on	the	inside	network	is	known	by
the	outside	device,	the	transaction	can	begin.	Let's	use	the	same	example	as	in
the	previous	section,	but	let's	reverse	it	so	that	the	outside	device	204.51.16.12	is
initiating	a	request	(and	is	thus	now	the	client	)	to	inside	device	10.0.0.207
(which	is	the	server	).	Let's	say	that	either	static	mapping	or	DNS	has	been	used
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so	that	the	outside	device	knows	the	inside	global	address	of	10.0.0.207	is
actually	194.54.21.6.	Table	28-2	describes	the	transaction	in	detail,	and	it	is
illustrated	Figure	28-3.

Figure	28-3.	Operation	of	bidirectional	(two-way/inbound)	NAT	This	figure	is	very	similar	to
Figure	28-2,	except	that	the	transaction	is	in	reverse,	so	start	at	the	upper	right	and	go	counterclockwise.
Translated	addresses	are	shown	in	bold.	Table	28-2	contains	a	complete	explanation	of	the	four	steps.

Refer	to	Figure	28-1	for	an	explanation	of	address	types.

Table	28-2.	Operation	of	Bidirectional	(Two-Way/Inbound)	NAT

Step
#

Description Datagram
Type

Datagram
Source
Address

Datagram
Destination
Address

1 Outside	Client	Generates	Request	and
Sends	to	NAT	Router:	Device	204.51.16.12
generates	a	request	to	the	inside	server.	It
uses	the	inside	global	address	194.54.21.6	as
the	destination.	The	datagram	will	be	routed
to	the	address's	local	router,	which	is	the
NAT	router	that	services	the	inside	network
where	the	server	is	located.

Request
(from
outside
client	to
inside
server)

204.51.16.12
(outside
global)

194.54.21.6
(inside
global)

2 NAT	Router	Translates	Destination
Address	and	Sends	to	Inside	Server:	The
NAT	router	already	has	a	mapping	from	the
inside	global	address	to	the	inside	local
address	of	the	server.	It	replaces	the

	 204.51.16.12
(outside
local)

10.0.0.207
(inside	local)



address	of	the	server.	It	replaces	the
194.54.21.6	destination	address	with
10.0.0.207,	and	performs	checksum
recalculations	and	other	work	as	necessary.

The	source	address	is	not	translated.	The
router	then	delivers	the	modified	datagram	to
the	inside	server	at	10.0.0.207.

3 Inside	Server	Generates	Response	and
Sends	Back	to	NAT	Router:	The	server	at
10.0.0.207	generates	a	response,	which	it
addresses	to	204.51.16.12	since	that	was	the
source	of	the	request	to	it.	This	is	then	routed
to	the	server's	NAT	router.

Response
(from
inside
server	to
outside
client)

10.0.0.207
(inside	local)

204.51.16.12
(outside
local)

4 NAT	Router	Translates	Source	Address
and	Routes	Datagram	to	Outside	Client:
The	NAT	router	sees	the	private	address
10.0.0.207	in	the	response	and	replaces	it
with	194.54.21.6.	It	then	routes	this	back	to
the	original	client	on	the	outside	network.

	 194.54.21.6
(inside
global)

204.51.16.12
(outside
global)

As	you	can	see,	once	the	outside	device	knows	the	inside	device's	inside	global
address,	you'll	find	that	inbound	NAT	is	very	similar	to	outbound	NAT.	It	just
does	the	exact	opposite	translation.	Instead	of	modifying	the	source	address	on
the	outbound	request	and	the	destination	on	the	inbound	response,	the	router
changes	the	destination	on	the	inbound	request	and	the	source	on	the	outbound
reply.

TIP

KEY	CONCEPT	In	traditional	NAT,	a	transaction	must	begin	with	a	request	from	a	client	on	the	local
network,	but	in	bidirectional	(two-way/inbound)	NAT,	it	is	possible	for	a	device	on	the	public	Internet	to
access	a	local	network	server.	This	requires	the	use	of	either	static	mapping	or	DNS	to	provide	to	the
outside	client	the	address	of	the	server	on	the	inside	network.	Then	the	NAT	transaction	is	pretty	much
the	same	as	in	the	unidirectional	case,	except	in	reverse:	The	incoming	request	has	its	destination	address
changed	from	inside	global	to	inside	local;	the	response	has	its	source	changed	from	inside	local	to
inside	global.



IP	NAT	Port-Based	(Overloaded)	Operation
Both	traditional	NAT	and	bidirectional	NAT	work	by	swapping	inside	network
and	outside	network	addresses	as	needed	in	order	to	allow	a	private	network	to
access	a	public	one.	For	each	transaction,	there	is	a	one-to-one	mapping	between
the	inside	local	address	of	a	device	on	the	private	network	and	the	inside	global
address	that	represents	it	on	the	public	network.	We	can	use	dynamic	address
assignment	to	allow	a	large	number	of	private	hosts	to	share	a	small	number	of
registered	public	addresses.

However,	there	is	a	potential	snag	here.	Consider	the	earlier	NAT	example,
where	250	hosts	share	20	inside	global	(public)	addresses.	If	20	hosts	already
have	transactions	in	progress,	what	happens	when	the	21st	tries	to	access	the
Internet?	There	aren't	any	inside	global	addresses	available	for	it	to	use,	so	it
won't	be	able	to.

Fortunately,	there	is	a	mechanism	already	built	into	TCP/IP	that	can	help	us
alleviate	this	situation.	The	two	TCP/IP	transport	layer	protocols,	TCP	and	UDP,
both	make	use	of	additional	addressing	components	called	ports.	The	port
number	in	a	TCP	or	UDP	message	helps	identify	individual	connections	between
two	addresses.	It	is	used	to	allow	many	different	applications	on	a	TCP/IP	client
and	server	to	talk	to	each	simultaneously,	without	interference.	For	example,	you
use	this	capability	when	you	open	multiple	browser	windows	to	access	more
than	one	web	page	on	the	same	site	at	the	same	time.	This	sharing	of	IP
addresses	among	many	connections	is	called	multiplexing.	Chapter	43,	which
describes	TCP	and	UDP	ports,	covers	all	of	this	in	much	more	detail.

Now	let's	come	back	to	NAT.	We	are	already	translating	IP	addresses	as	we	send
datagrams	between	the	public	and	private	portions	of	the	internetwork.	What	if
we	could	also	translate	port	numbers?	Well,	we	can!	The	combination	of	an
address	and	port	uniquely	identifies	a	connection.	As	a	datagram	passes	from	the
private	network	to	the	public	one,	we	can	change	not	just	the	IP	address,	but	also
the	port	number	in	the	TCP	or	UDP	header.	The	datagram	will	be	sent	out	with	a
different	source	address	and	port.	The	response	will	come	back	to	this	same
address	and	port	combination	(called	a	socket)	and	can	be	translated	back	again.

This	method	goes	by	various	names.	Since	it	is	a	technique	that	can	have



multiple	inside	local	addresses	share	a	single	inside	global	address,	it	is	called
overloading	of	an	inside	global	address,	or	alternatively,	just	overloaded	NAT.
More	elegant	names	that	better	indicate	how	the	technique	works	include	Port-
Based	NAT,	Network	Address	Port	Translation	(NAPT),	and	Port	Address
Translation	(PAT).

TIP

KEY	CONCEPT	Port-Based	or	overloaded	NAT	is	an	enhancement	of	regular	NAT	that	allows	a	large
number	of	devices	on	a	private	network	to	simultaneously	share	a	single	inside	global	address	by
changing	the	port	numbers	used	in	TCP	and	UDP	messages.

Whatever	its	name,	the	use	of	ports	in	translation	has	tremendous	advantages.	It
can	allow	all	250	hosts	on	the	private	network	to	use	only	20	IP	addresses—and
potentially	even	fewer	than	that.	In	theory,	you	could	even	have	all	250	share	a
single	public	IP	address	at	once!	You	don't	want	to	share	so	many	local	hosts
that	you	run	out	of	port	numbers,	but	there	are	thousands	of	port	numbers	to
choose	from.

Port-Based	NAT	requires	a	router	that	is	programmed	to	make	the	appropriate
address	and	port	mappings	for	datagrams	as	it	transfers	them	between	networks.
The	disadvantages	of	the	method	include	this	greater	complexity,	and	also	the
potential	for	more	compatibility	issues	(such	as	with	applications	like	FTP),
since	you	must	now	watch	for	port	numbers	at	higher	layers	and	not	just	IP
addresses.

The	operation	of	NAPT/PAT	is	very	similar	to	the	way	regular	NAT	works,
except	that	port	numbers	are	also	translated.	For	a	traditional	outbound
transaction,	the	source	port	number	is	changed	on	the	request	at	the	same	time
that	the	source	address	is	modified;	the	destination	port	number	is	modified	on
the	response	with	the	destination	address.

Let's	consider	again	the	example	you	looked	at	in	the	topic	on	traditional	NAT,
but	this	time	in	a	PAT	environment.	Device	10.0.0.207	was	one	of	250	hosts	on
a	private	network	accessing	the	World	Wide	Web	server	at	204.51.16.12.	Let's
say	that	because	PAT	is	being	used,	in	order	to	save	money,	all	250	hosts	are
sharing	a	single	inside	global	address,	194.54.21.7,	instead	of	a	pool	of	20.	The
transaction	would	proceed	as	described	in	Table	28-3	and	illustrated	in	Table	28-



3.

TIP

KEY	CONCEPT	In	Port-Based	NAT,	the	NAT	router	translates	the	source	address	and	port	of	an
outgoing	request	from	inside	local	to	inside	global	form.	It	then	transforms	the	destination	address	and
port	of	the	response	from	inside	global	to	inside	local.	The	outside	local	and	outside	global	addresses	are
the	same	in	both	request	and	reply.

One	other	issue	related	to	NAPT/PAT	is	worth	mentioning:	It	assumes	that	all
traffic	uses	either	UDP	or	TCP	at	the	transport	layer.	Although	this	is	generally
the	case,	it	may	not	always	be	true.	If	there	is	no	port	number,	port	translation
cannot	be	done	and	the	method	will	not	work.

Figure	28-4.	Operation	of	Port-Based	(overloaded)	NAT	This	figure	is	very	similar	to	Table	28-3,
except	that	the	source	and	destination	port	numbers	have	been	shown,	since	they	are	used	in	this	type	of
NAT.	Translated	addresses	and	ports	are	in	bold.	Table	28-3	contains	a	complete	explanation	of	the	four

steps	in	Port-Based	NAT.	Refer	to	Figure	28-1	for	an	explanation	of	address	types.

Table	28-3.	Operation	of	Port-Based	(Overloaded)	NAT

Step
#

Description Datagram
Type

Datagram
Source
Address:Port

Datagram
Destination
Address:Port

1 Inside	Client	Generates	Request Request 10.0.0.207:7000 204.51.16.12:80



1
and	Sends	to	NAT	Router:	Device
10.0.0.207	generates	an	HTTP
request	to	the	server	at	204.51.16.12.
The	standard	server	port	for	WWW

is	80,	so	the	destination	port	of	the
request	is	80;	let's	say	the	source
port	on	the	client	is	7000.	The
datagram	is	sent	to	the	NAT-capable
router	that	connects	the
organization's	internal	network	to
the	Internet.

Request
(from
inside
client	to
outside
server)

10.0.0.207:7000
(inside	local)

204.51.16.12:80
(outside	local)

2 NAT	Router	Translates	Source
Address	and	Port	and	Sends	to
Outside	Server:	The	NAT	router
realizes	that	10.0.0.207	is	an	inside
local	address	and	knows	it	must
substitute	an	inside	global	address.
Here	though,	there	are	multiple	hosts
sharing	the	single	inside	global
address	194.54.21.7.	Lets	say	that
port	7000	is	already	in	use	for	that
address	by	another	private	host
connection.	The	router	substitutes
the	inside	global	address	and	also
chooses	a	new	source	port	number,
say	7224,	for	this	request.	The
destination	address	and	port	are	not
changed.

The	NAT	router	puts	the	address	and
port	mapping	into	its	translation
table.	It	sends	the	modified	datagram
out,	which	arrives	at	the	server	at
204.51.16.12.

	 194.54.21.7:7224
(inside	global)

204.51.16.12
(outside	global)

3 Outside	Server	Generates
Response	and	Sends	Back	to	NAT
Router:	The	server	at	204.51.16.12
generates	an	HTTP	response.	It	has
no	idea	that	NAT	was	involved;	it
sees	an	address	of	194.54.21.7	and
port	of	7224	in	the	request	sent	to	it,
so	it	sends	back	to	that	address	and
port.

Response
(from
outside
server	to
inside
client)

204.51.16.12:80
(outside	global)

194.54.21.7:7224
(inside	global)

4 NAT	Router	Translates
Destination	Address	and	Port	and
Delivers	Datagram	to	Inside

	 204.51.16.12:80
(outside	local)

10.0.0.207:7000
(inside	local)



Delivers	Datagram	to	Inside
Client:	The	NAT	router	sees	the
address	94.54.21.7	and	port	7224	in
the	response	that	arrived	from	the

Internet.	It	consults	its	translation
table	and	knows	this	datagram	is
intended	for	10.0.0.207,	port	7000.
This	time,	the	destination	address
and	port	are	changed	but	not	the
source.	The	router	then	delivers	the
datagram	back	to	the	originating
client.



IP	NAT	Overlapping/Twice	NAT	Operation
All	three	of	the	versions	of	NAT	discussed	so	far—traditional,	bidirectional,	and
Port-Based—are	normally	used	to	connect	a	network	using	private,	nonroutable
addresses	to	the	public	Internet,	which	uses	unique,	registered,	routable
addresses.	With	these	kinds	of	NAT,	there	will	normally	be	no	overlap	between
the	address	spaces	of	the	inside	and	outside	network,	since	the	former	are	private
and	the	latter	are	public.	This	enables	the	NAT	router	to	be	able	to	immediately
distinguish	inside	addresses	from	outside	addresses	just	by	looking	at	them.

In	the	examples	you've	seen	so	far,	the	inside	addresses	were	all	from	the	RFC
1918	block	10.0.0.0.	These	can't	be	public	Internet	addresses,	so	the	NAT	router
knew	any	address	referenced	by	a	request	from	the	inside	network	within	this
range	was	a	local	reference	within	the	inside	network.	Similarly,	any	addresses
outside	this	range	are	easy	to	identify	as	belonging	to	the	outside	world.

There	are	circumstances,	however,	in	which	there	may	indeed	be	an	overlap
between	the	addresses	used	for	the	inside	network,	and	the	addresses	used	for
part	of	the	outside	network.	Consider	the	following	cases:

Private	Network–to–Private	Network	Connections	The	example	network
using	10.0.0.0	block	addresses	might	want	to	connect	to	another	network	using
the	same	method.	This	situation	might	occur	if	two	corporations	merged	and
happened	to	be	using	the	same	addressing	scheme	(and	there	aren't	that	many
private	IP	blocks,	so	this	isn't	that	uncommon).

Invalid	Assignment	of	Public	Address	Space	to	Private	Network	Some
networks	might	have	been	set	up,	not	by	using	a	designated	private	address
block,	but	rather	by	using	a	block	containing	valid	Internet	addresses.	For
example,	suppose	an	administrator	decided	that	the	network	he	was	setting	up
would	never	be	connected	to	the	Internet	(ha!),	and	numbered	the	whole	thing
using	18.0.0.0	addresses,	which	belong	to	the	Massachusetts	Institute	of
Technology	(MIT).	Then	later,	this	administrator's	shortsightedness	would
backfire	when	the	network	did	indeed	need	to	be	connected	to	the	Internet.

Stale	Public	Address	Assignment	Company	A	might	have	been	using	a
particular	address	block	for	years	that	was	reassigned	or	reallocated	for	whatever



reason	to	Company	B.	Company	A	might	not	want	to	go	through	the	hassle	of
renumbering	its	network,	and	would	then	keep	its	addresses,	even	while
Company	B	started	using	them	on	the	Internet.

What	these	situations	all	have	in	common	is	that	the	inside	addresses	used	in	the
private	network	overlap	with	addresses	on	the	public	network.	When	a	datagram
is	sent	from	within	the	local	network,	the	NAT	router	can't	tell	if	the	intended
destination	is	within	the	inside	network	or	the	outside	network.	For	example,	if
you	want	to	connect	host	10.0.0.207	in	the	private	network	to	host	10.0.0.199	in
a	different	network,	and	you	put	10.0.0.199	in	the	destination	of	the	datagram
and	send	it,	how	does	the	router	know	if	you	mean	10.0.0.199	on	your	own	local
network	or	the	remote	one?	For	that	matter,	you	might	need	to	send	a	request	to
10.0.0.207	in	the	other	private	network,	your	own	address!	Take	the	network	that
was	numbered	with	MIT's	address	block.	How	does	the	router	know	when	a
datagram	is	actually	being	sent	to	MIT	as	opposed	to	another	device	on	the
private	network?

The	solution	to	this	dilemma	is	to	use	a	more	sophisticated	form	of	NAT.	The
other	versions	you	have	seen	so	far	always	translate	either	the	source	address	or
the	destination	address	as	a	datagram	passes	from	the	inside	network	to	the
outside	network	or	vice	versa.	To	cope	with	overlapping	addresses,	we	must
translate	both	the	source	address	and	the	destination	address	on	each	transition
from	the	inside	to	the	outside	or	the	other	direction.	This	technique	is	called
overlapping	NAT	in	reference	to	the	problem	it	solves,	or	Twice	NAT	due	to
how	it	solves	it.	(Incidentally,	despite	the	latter	name,	regular	NAT	is	not	called
Once	NAT.)

Twice	NAT	functions	by	creating	a	set	of	mappings	not	only	for	the	private
network	the	NAT	router	serves,	but	also	for	the	overlapping	network	(or
networks)	that	conflict	with	the	inside	network's	address	space.	In	order	for	this
to	function,	Twice	NAT	relies	on	the	use	of	DNS,	just	as	does	bidirectional
NAT.	This	lets	the	inside	network	send	requests	to	the	overlapping	network	in	a
way	that	can	be	uniquely	identified.	Otherwise,	the	router	can't	tell	what
overlapping	network	our	inside	network	is	trying	to	contact.

Let's	try	a	new	example.	Suppose	the	network	has	been	improperly	numbered	so
that	it	is	not	in	the	10.0.0.0	private	block	but	in	the	18.0.0.0	block	used	by	MIT.



A	client	on	our	private	network,	18.0.0.18,	wants	to	send	a	request	to	the	server
www.twicenat.mit.edu,	which	has	the	address	18.1.2.3	at	MIT.	The	client	can't
just	make	a	datagram	with	18.1.2.3	as	the	destination	and	send	out,	as	the	router
will	think	it's	on	the	local	network	and	not	route	it.	Instead,	18.0.0.18	uses	a
combination	of	DNS	and	NAT	to	get	the	outside	device	address,	as	follows:

1.	 The	client	on	the	local	network	(18.0.0.18)	sends	a	DNS	request	to	get	the
address	of	www.twicenat.mit.edu.

2.	 The	(Twice-NAT	compatible)	NAT	router	serving	the	local	network
intercepts	this	DNS	request.	It	then	consults	its	tables	to	find	a	special
mapping	for	this	outside	device.	Let's	say	that	it	is	programmed	to	translate
www.twicenat.mit.edu	into	the	address	172.16.44.55.	This	is	a	private,
nonroutable	RFC	1918	address.

3.	 The	NAT	router	returns	this	value,	172.16.44.55,	to	the	source	client,
which	uses	it	for	the	destination.

Once	the	client	has	the	translated	address,	it	initiates	a	transaction	just	as	before.
NAT	will	now	perform	translation	of	the	inside	devices	and	the	outside	devices
as	well.	The	outside	device	address	must	be	translated	because	the	inside	device
is	using	172.16.44.55,	which	isn't	a	valid	address	for	the	server	it	is	trying	to
reach.	The	inside	device	address	must	still	be	translated	as	in	regular	NAT
because	18.0.0.18	is	not	a	valid	public	address	for	you.	It	may	refer	to	a	real
machine	in	MIT	and	you	aren't	supposed	to	be	using	it	on	the	Internet!

Let's	say	that	you	are	still	using	the	pool	of	20	inside	global	addresses	from
194.54.21.1	through	194.54.21.20	for	inside	addresses,	and	let's	further	suppose
that	the	NAT	router	chooses	194.54.21.12	for	this	particular	exchange.	The
transaction	sequence	would	be	roughly	as	described	in	Table	28-4	and	illustrated
in	Figure	28-5.

Overlapping	NAT	is	used	in	situations	where	both	the	source	and	destination
addresses	in	a	datagram	are	private	addresses	or	otherwise	cannot	be	used
regularly	on	the	public	Internet.	In	this	case,	unlike	with	the	other	types	of	NAT,
the	NAT	router	translates	both	the	source	and	destination	addresses	of	incoming
and	outgoing	datagrams.	On	outgoing	messages,	inside	local	addresses	are
changed	to	inside	global	and	outside	local	to	outside	global;	on	incoming

http://www.twicenat.mit.edu
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messages,	inside	global	addresses	are	changed	to	inside	local	and	outside	global
addresses	are	changed	to	outside	local.

Table	28-4.	Operation	of	Overlapping	NAT/Twice	NAT

Step
#

Description Datagram
Type

Datagram
Source
Address

Datagram
Destination
Address

1 Inside	Client	Generates	Request	and
Sends	to	NAT	Router:	Device	18.0.0.18
generates	a	request	using	the	destination
172.16.44.55,	which	it	got	from	the	(NAT-
intercepted)	DNS	query	for
www.twicenat.mit.edu.	The	datagram	is	sent
to	the	NAT	router	for	the	local	network.

Request
(from
inside
client	to
outside
server)

18.0.0.18
(inside	local)

172.16.44.55
(outside
local)

2 NAT	Router	Translates	Source	Address
and	Destination	Address	and	Sends	to
Outside	Server:	The	NAT	router	makes	two
translations.	First,	it	substitutes	the	18.0.0.18
address	with	a	publicly	registered	address,
which	is	194.54.21.12	for	this	example.	It
then	translates	the	bogus	172.16.44.55	back
to	the	real	MIT	address	for
www.twicenat.mit.edu.	It	routes	the
datagram	to	the	outside	server.

	 194.54.21.12
(inside
global)

18.1.2.3
(outside
global)

3 Outside	Server	Generates	Response	and
Sends	Back	to	NAT	Router:	The	MIT
server	at	18.1.2.3	generates	a	response	and
sends	it	back	to	194.54.21.12,	which	causes
it	to	arrive	back	at	the	NAT	router.

Response
(from
outside
server	to
inside
client)

18.1.2.3
(outside
global)

194.54.21.12
(inside
global)

4 NAT	Router	Translates	Source	Address
and	Destination	Address	and	Delivers
Datagram	to	the	Inside	Client:	The	NAT
router	translates	back	the	destination	address
to	the	actual	address	that's	being	used	for	the
inside	client,	as	in	regular	NAT.	It	also
substitutes	back	in	the	172.16.44.55	value	it
is	using	as	a	substitute	for	the	real	address	of
www.twicenat.mit.edu.

	 172.16.44.55
(outside
local)

18.0.0.18
(inside	local)

http://www.twicenat.mit.edu
http://www.twicenat.mit.edu
http://www.twicenat.mit.edu


As	you	can	see,	in	this	example,	the	outside	local	and	outside	global	addresses
are	different,	unlike	in	the	preceding	NAT	examples.	Twice	NAT	can	also
handle	an	inbound	transaction	by	watching	for	datagrams	coming	in	from	the
Internet	that	overlap	with	the	addresses	used	on	the	local	network	and	doing
double	substitutions	as	required.



IP	NAT	Compatibility	Issues	and	Special
Handling	Requirements
In	a	perfect	world	NAT	could	be	made	transparent	to	the	devices	using	it.	We
would	like	to	be	able	to	have	a	NAT	router	change	IP	addresses	in	request
datagrams	as	they	leave	the	network	and	change	them	back	in	responses	that
come	back,	and	have	none	of	the	hosts	be	any	wiser.	Unfortunately,	this	isn't	a
perfect	world.

Figure	28-5.	Operation	of	Overlapping	NAT/Twice	NAT	This	figure	is	very	similar	to	Figure	28-2,
except	that	as	you	can	see,	the	NAT	router	translates	both	source	and	destination	addresses	each	time
(shown	in	bold).	Table	28-4	contains	a	complete	explanation	of	the	four	steps	in	overlapping	NAT.

Refer	to	Figure	28-1	for	an	explanation	of	address	types.

It	is	not	possible	for	NAT	to	be	completely	transparent	to	the	devices	that	use	it.
There	are	potential	compatibility	problems	that	arise	if	NAT	doesn't	perform
certain	functions.	These	functions	go	beyond	simply	swapping	IP	addresses	and
possibly	port	numbers	in	the	IP	header.	The	main	problem	is	that	even	though	IP
addresses	are	supposedly	the	domain	of	IP,	they	are	really	used	by	other
protocols	as	well,	both	at	the	network	layer	and	in	higher	layers.	When	NAT
changes	the	IP	address	in	an	IP	datagram,	it	must	often	also	change	addresses	in
other	places	to	make	sure	that	the	addresses	in	various	headers	and	payloads	still



match.

These	compatibility	issues	require	that	even	though	NAT	should	theoretically
work	only	at	the	level	of	IP	at	the	network	layer,	in	practical	terms,	NAT	routers
must	be	aware	of	many	more	protocols	and	perform	special	operations	as
required.	Some	are	required	for	all	datagrams	that	are	translated;	others	only
apply	to	certain	datagrams	and	not	others.	And	even	when	these	techniques	are
added	to	NAT	routers,	some	things	still	may	not	work	properly	in	a	NAT
environment.

Let's	take	a	look	at	some	of	the	main	issues	and	requirements:

TCP	and	UDP	Checksum	Recalculations	Changing	the	IP	addresses	in	the	IP
header	means	that	the	IP	header	checksum	must	be	calculated.	Since	both	UDP
and	TCP	also	have	checksums,	and	these	checksums	are	computed	over	a	pseudo
header	that	contains	the	IP	source	and	destination	address	as	well,	they	too,	must
be	recalculated	each	time	a	translation	is	made.

ICMP	Manipulations	Since	NAT	works	so	intimately	with	IP	headers,	and
since	IP	is	closely	related	to	its	"assistant"	protocol	the	Internet	Control
Management	Protocol	(ICMP;	see	Chapter	31),	NAT	must	also	look	for	certain
ICMP	messages	and	make	changes	to	addresses	contained	within	them.	Many
ICMP	messages,	such	as	Destination	Unreachable	and	Parameter	Problem,
contain	the	original	IP	header	of	the	datagram	that	lead	to	the	ICMP	message	as
data.	Since	NAT	is	translating	addresses	in	IP	headers,	it	must	watch	for	these
messages	and	translate	addresses	in	included	headers	as	required.

Applications	That	Embed	IP	Addresses	A	number	of	TCP/IP	applications
embed	IP	addresses	within	the	actual	application	data	payload.	The	most
notorious	example	of	this	is	FTP,	which	actually	sends	address	and	port
assignments	as	text	information	in	datagrams	between	devices	during	a
connection.	In	order	for	NAT	to	support	FTP,	it	must	be	specifically
programmed	with	algorithms	to	look	for	this	information	and	make	changes	as
needed.	The	level	of	complication	can	go	even	beyond	this.	Consider	what
happens	when	an	FTP	message	containing	these	text	addresses	or	port	numbers
is	fragmented.	Part	of	the	address	that	will	be	translated	may	be	in	two	different
IP	datagrams	and	may	be	hard	to	recognize!



Additional	Issues	with	Port	Translation	When	Port-Based	NAT	(PAT)	is
used,	the	previous	issues	that	apply	to	addresses	now	apply	to	ports	as	well,
making	even	more	work	for	the	router	to	perform.

Cascading	Impact	of	Changes	to	Address	or	Port	Numbers	Take	the	example
of	an	FTP	datagram	encoding	an	IP	address	that	NAT	must	change.	The	address
being	substituted	might	require	more	characters	than	the	original;	in	the	first
example,	10.0.0.207	(10	ASCII	characters)	is	replaced	by	194.54.21.11	(12
ASCII	characters).	Making	this	substitution	changes	the	size	of	the	payload!
This	means	that	TCP	sequence	numbers	(see	Chapter	46)	also	must	be	modified.
In	these	situations,	NAT	itself	is	supposed	to	take	care	of	any	additional	work
that	may	be	required.

Problems	with	IPsec	When	IPsec	is	used	in	transport	mode,	both	the
Authentication	Header	(AH)	and	Encapsulating	Security	Payload	(ESP)
protocols	use	an	integrity	check	that	is	based	on	the	value	of	the	entire	payload.
When	NAT	tries	to	update	the	TCP	or	UDP	checksum	in	the	IP	datagram,	this
changes	the	value	of	data	that	the	receiving	device	uses	in	performing	the	AH	or
ESP	integrity	check.	The	check	will	fail.	Thus,	NAT	can't	be	used	in	IPsec
transport	mode.	It	may	still	work	in	tunnel	mode,	but	there	can	be	complications
here	as	well.

Most	NAT	implementations	do	take	at	least	some	of	the	previous	issues	into
account.	Certainly,	common	applications	like	FTP	are	widely	supported	by	NAT
routers,	or	no	one	would	want	to	use	NAT.	That	said,	there	might	be	some
applications	that	will	not	work	over	NAT.	The	fact	that	NAT	really	isn't
transparent	and	must	do	these	extra	sorts	of	"hacks"	to	other	protocol	headers
and	even	payloads	is	a	big	part	of	the	reason	why	many	people	refer	to	NAT	as	a
kludge;	elegant	solutions	don't	have	so	many	special	cases	that	need	special
handling.



Chapter	29.	IP	SECURITY	(IPSEC)
PROTOCOLS

One	of	the	weaknesses	of	the	original	Internet	Protocol	(IP)	is	that	it	lacks	any
sort	of	general-purpose	mechanism	for	ensuring	the	authenticity	and	privacy	of
data	as	it	is	passed	over	the	internetwork.	Since	IP	datagrams	must	usually	be
routed	between	two	devices	over	unknown	networks,	any	information	in	them	is
subject	to	being	intercepted	and	even	possibly	changed.	With	the	increased	use
of	the	Internet	for	critical	applications,	security	enhancements	were	needed	for
IP.	To	this	end,	a	set	of	protocols	called	IP	Security	or	IPsec	was	developed.

In	this	chapter,	I	provide	a	brief	description	of	IPsec	concepts	and	protocols.	I
begin	with	an	overview	of	IPsec,	including	a	discussion	of	the	history	of	the
technology	and	a	definition	of	the	standards.	I	describe	the	main	components	and
protocols	of	the	IPsec	suite	and	its	different	architectures	and	methods	for
implementation.	I	then	move	to	actually	discussing	how	IPsec	works,	beginning
with	a	description	of	the	two	IPsec	modes	(transport	and	tunnel)	and	how	they
differ.	I	describe	security	associations	and	related	constructs	such	as	the	Security
Parameter	Index	(SPI).	The	last	three	topics	cover	the	three	main	IPsec
protocols:	IPsec	Authentication	Header	(AH),	IPsec	Encapsulating	Security
Payload	(ESP),	and	the	IPsec	Internet	Key	Exchange	(IKE).

NOTE

IPsec	was	initially	developed	with	IPv6	in	mind,	but	has	been	engineered	to	provide	security	for	both
IPv4	and	IPv6	networks,	and	operation	in	both	versions	is	similar.	There	are	some	differences	in	the
datagram	formats	used	for	AH	and	ESP.	These	differences	depend	on	whether	you	use	IPsec	in	IPv4	or
IPv6,	because	the	two	versions	have	different	datagram	formats	and	addressing.	I	highlight	these
differences	where	appropriate.



IPsec	Overview,	History,	and	Standards
The	big	problem	with	the	original	IP	version	(IPv4)	is	the	pending	exhaustion	of
its	address	space.	This	situation	arose	due	to	the	rapid	expansion	of	the	Internet
beyond	anyone's	expectations	when	IPv4	was	developed.	This	same	mismatch
between	how	the	Internet	was	when	IPv4	was	created	and	how	it	is	now	has	led
to	another	major	problem	with	IP:	the	lack	of	a	definitive	means	of	ensuring
security	on	IP	internetworks.

The	security	problem	arose	because	25	years	ago,	the	Internet	was	tiny	and
relatively	private.	Today	it	is	enormous	and	truly	public.	As	the	Internet	has
grown,	the	need	for	security	has	grown	with	it.	Consider	that	TCP/IP	and	the
early	Internet	precursors	were	developed	as	very	small	networks	used	by
government	researchers	at	the	United	States	Defense	Advanced	Research
Projects	Agency	(DARPA	or	ARPA).	People	who	were	well	known	and	would
generally	have	had	security	clearance	controlled	all	the	hardware.	In	such	a
network,	you	don't	need	to	build	security	in	to	the	protocols—you	build	it	into
the	building!	It's	easier	to	use	locks	and	guards	to	ensure	security	than	fancy
encryption.	The	easiest	way	to	keep	someone	from	snooping	or	tampering	with
data	on	the	network	is	simply	to	deny	them	access	to	the	hosts	that	connect	to	the
network.

This	worked	fine	at	first	when	there	were	only	a	few	dozen	machines	on	the
Internet.	And	even	when	the	Internet	first	started	to	grow,	it	was	used	pretty
much	only	to	connect	together	researchers	and	other	networking	professionals.
New	sites	were	added	to	the	network	slowly	at	first,	and	at	least	someone	knew
the	identity	of	each	new	site	added	to	the	growing	internetwork.	However,	as	the
Internet	continued	to	increase	in	size	and	was	eventually	opened	to	the	public,
maintaining	security	of	the	network	as	a	whole	became	impossible.	Today,	the
"great	unwashed	masses"	are	on	the	Internet.	Many	routers—owned	by	"who
knows"	and	administered	by	"who	knows"—stand	between	you	and	most	other
devices	you	want	to	connect	with.	You	cannot	assume	that	the	data	you	send	or
receive	is	secure.

A	number	of	methods	have	evolved	over	the	years	to	address	the	need	for
security.	Most	of	these	are	focused	at	the	higher	layers	of	the	OSI	protocol	stack
in	order	to	compensate	for	IP's	lack	of	security.	These	solutions	are	valuable	for
certain	situations,	but	they	can't	be	generalized	easily	because	they	are	particular



certain	situations,	but	they	can't	be	generalized	easily	because	they	are	particular
to	various	applications.	For	example,	we	can	use	Secure	Sockets	Layer	(SSL)	for
certain	applications	like	World	Wide	Web	access	or	File	Transfer	Protocol
(FTP),	but	there	are	dozens	of	applications	that	this	type	of	security	was	never
intended	to	work	with.

What	was	really	needed	was	a	solution	to	allow	security	at	the	IP	level	so	all
higher-layer	protocols	in	TCP/IP	could	take	advantage	of	it.	When	the	decision
was	made	to	develop	a	new	version	of	IP	(IPv6),	this	was	the	golden	opportunity
to	resolve	not	just	the	addressing	problems	in	the	older	IPv4,	but	the	lack	of
security	as	well.	New	security	technology	was	developed	with	IPv6	in	mind,	but
since	IPv6	has	taken	years	to	develop	and	roll	out,	and	the	need	for	security	is
now,	the	solution	was	designed	to	be	usable	for	both	IPv4	and	IPv6.

The	technology	that	brings	secure	communications	to	the	IP	is	called	IP
Security,	commonly	abbreviated	IPsec.	The	capitalization	of	this	abbreviation	is
variable,	so	you'll	see	IPSec	and	IPSEC.

Overview	of	IPsec	Services	and	Functions
IPsec	is	not	a	single	protocol,	but	rather	a	set	of	services	and	protocols	that
provide	a	complete	security	solution	for	an	IP	network.	These	services	and
protocols	combine	to	provide	various	types	of	protection.	Since	IPsec	works	at
the	IP	layer,	it	can	provide	these	protections	for	any	higher-layer	TCP/IP
application	or	protocol	without	the	need	for	additional	security	methods,	which
is	a	major	strength.	Some	of	the	kinds	of	protection	services	offered	by	IPsec
include	the	following:

Encryption	of	user	data	for	privacy

Authentication	of	the	integrity	of	a	message	to	ensure	that	it	is	not	changed	en
route

Protection	against	certain	types	of	security	attacks,	such	as	replay	attacks

The	ability	for	devices	to	negotiate	the	security	algorithms	and	keys	required
to	meet	their	security	needs

Two	security	modes,	tunnel	and	transport,	to	meet	different	network	needs



TIP

KEY	CONCEPT	IPsec	is	a	contraction	of	IP	Security,	and	it	consists	of	a	set	of	services	and	protocols
that	provide	security	to	IP	networks.	It	is	defined	by	a	sequence	of	several	Internet	standards.

IPsec	Standards
Since	IPsec	is	actually	a	collection	of	techniques	and	protocols,	it	is	not	defined
in	a	single	Internet	standard.	Instead,	a	collection	of	RFCs	defines	the
architecture,	services,	and	specific	protocols	used	in	IPsec.	Some	of	the	most
important	of	these	are	shown	in	Table	29-1,	all	of	which	were	published	in
November	1998.

Table	29-1.	Important	IP	Security	(IPsec)	Standards

RFC
Number

Name Description

2401 Security	Architecture
for	the	Internet	Protocol

The	main	IPsec	document,	describing	the	architecture	and
general	operation	of	the	technology,	and	showing	how	the
different	components	fit	together.

2402 IP	Authentication
Header

Defines	the	IPsec	Authentication	Header	(AH)	protocol,
which	is	used	for	ensuring	data	integrity	and	origin
verification.

2403 The	Use	of	HMAC-
MD5-96	within	ESP
and	AH

Describes	a	particular	encryption	algorithm	for	use	by	the
AH	and	Encapsulation	Security	Payload	(ESP)	protocols
called	Message	Digest	5	(MD5),	HMAC	variant.

2404 The	Use	of	HMAC-
SHA-1-96	within	ESP
and	AH

Describes	a	particular	encryption	algorithm	for	use	by	AH
and	ESP	called	Secure	Hash	Algorithm	1	(SHA-1),
HMAC	variant.

2406 IP	Encapsulating
Security	Payload	(ESP)

Describes	the	IPsec	ESP	protocol,	which	provides	data
encryption	for	confidentiality.

2408 Internet	Security
Association	and	Key
Management	Protocol
(ISAKMP)

Defines	methods	for	exchanging	keys	and	negotiating
security	associations.

2409 The	Internet	Key
Exchange	(IKE)

Describes	the	IKE	protocol	that's	used	to	negotiate
security	associations	and	exchange	keys	between	devices



Exchange	(IKE) security	associations	and	exchange	keys	between	devices
for	secure	communications.	Based	on	ISAKMP	and
OAKLEY.

2412 The	OAKLEY	Key
Determination	Protocol

Describes	a	generic	protocol	for	key	exchange.

Deployment	of	IPsec	has	only	really	started	to	take	off	in	the	last	few	years.	A
major	use	of	the	technology	is	in	implementing	virtual	private	networks	(VPNs).
It	appears	that	the	future	is	bright	for	IPsec,	as	more	and	more	individuals	and
companies	decide	that	they	need	to	take	advantage	of	the	power	of	the	Internet,
while	also	protecting	the	security	of	the	data	they	transport	over	it.



IPsec	General	Operation,	Components,	and
Protocols
IPsec	isn't	the	only	difficult	topic	in	this	book,	but	it	is	definitely	a	subject	that
baffles	many.	Most	discussions	of	it	jump	straight	to	describing	the	mechanisms
and	protocols,	without	providing	a	general	description	of	what	it	does	and	how
the	pieces	fit	together.	Well,	I	recognized	that	IPsec	is	important,	and	I	don't	shy
away	from	a	challenge.	Thus,	here's	my	attempt	to	provide	a	framework	for
understanding	IPsec's	various	bits	and	pieces.

So	what	exactly	does	IPsec	do,	and	how	does	it	do	it?	In	general	terms,	it
provides	security	services	at	the	IP	layer	for	other	TCP/IP	protocols	and
applications	to	use.	What	this	means	is	that	IPsec	provides	the	tools	that	devices
on	a	TCP/IP	network	need	in	order	to	communicate	securely.	When	two	devices
(either	end-user	hosts	or	intermediate	devices	such	as	routers	or	firewalls)	want
to	engage	in	secure	communications,	they	set	up	a	secure	path	between
themselves	that	may	traverse	across	many	insecure	intermediate	systems.	To
accomplish	this,	they	must	perform	(at	least)	the	following	tasks:

They	must	agree	on	a	set	of	security	protocols	to	use	so	that	each	one	sends
data	in	a	format	the	other	can	understand.

They	must	decide	on	a	specific	encryption	algorithm	to	use	in	encoding	data.

They	must	exchange	keys	that	are	used	to	"unlock"	data	that	has	been
cryptographically	encoded.

Once	this	background	work	is	completed,	each	device	must	use	the	protocols,
methods,	and	keys	previously	agreed	upon	to	encode	data	and	send	it	across
the	network.

IPsec	Core	Protocols
To	support	these	activities,	a	number	of	different	components	make	up	the	total
package	known	as	IPsec,	as	shown	in	Figure	29-1.	The	two	main	pieces	are	a
pair	of	technologies	sometimes	called	the	core	protocols	of	IPsec,	which	actually
do	the	work	of	encoding	information	to	ensure	security:

IPsec	Authentication	Header	(AH)	This	protocol	provides	authentication



services	for	IPsec.	It	allows	the	recipient	of	a	message	to	verify	that	the	supposed
originator	of	a	message	was	actually	fact	the	one	that	sent	it.	It	also	allows	the
recipient	to	verify	that	intermediate	devices	en	route	haven't	changed	any	of	the
data	in	the	datagram.	It	also	provides	protection	against	so-called	replay	attacks,
whereby	a	message	is	captured	by	an	unauthorized	user	and	resent.

Encapsulating	Security	Payload	(ESP)	AH	ensures	the	integrity	of	the	data	in
datagram,	but	not	its	privacy.	When	the	information	in	a	datagram	is	"for	your
eyes	only,"	it	can	be	further	protected	using	ESP,	which	encrypts	the	payload	of
the	IP	datagram.

Figure	29-1.	Overview	of	IPsec	protocols	and	components	IPsec	consists	of	two	core	protocols,	AH	and
ESP,	and	three	supporting	components.

IPsec	Support	Components
AH	and	ESP	are	commonly	called	protocols,	though	this	is	another	case	where
the	use	of	this	term	is	debatable.	They	are	not	really	distinct	protocols	but	are
implemented	as	headers	that	are	inserted	into	IP	datagrams,	as	you	will	see.	They
thus	do	the	"grunt	work"	of	IPsec,	and	can	be	used	together	to	provide	both
authentication	and	privacy.	However,	they	cannot	operate	on	their	own.	To
function	properly,	they	need	the	support	of	several	other	protocols	and	services
(see	Figure	29-1).	The	most	important	of	these	include	the	following:

Encryption/Hashing	Algorithms	AH	and	ESP	are	generic	and	do	not	specify
the	exact	mechanism	used	for	encryption.	This	gives	them	the	flexibility	to	work
with	a	variety	of	such	algorithms	and	to	negotiate	which	one	to	use	as	needed.
Two	common	ones	used	with	IPsec	are	Message	Digest	5	(MD5)	and	Secure
Hash	Algorithm	1	(SHA-1).	These	are	also	called	hashing	algorithms	because



they	work	by	computing	a	formula	called	a	hash	based	on	input	data	and	a	key.

Security	Policies,	Security	Associations,	and	Management	Methods	Since
IPsec	provides	flexibility	in	letting	different	devices	decide	how	they	want	to
implement	security,	they	require	some	means	to	keep	track	of	the	security
relationships	between	themselves.	This	is	done	in	IPsec	using	constructs	called
security	policies	and	security	associations,	and	by	providing	ways	to	exchange
security	association	information.

Key	Exchange	Framework	and	Mechanism	For	two	devices	to	exchange
encrypted	information,	they	need	to	be	able	to	share	keys	for	unlocking	the
encryption.	They	also	need	a	way	to	exchange	security	association	information.
In	IPsec,	a	protocol	called	the	Internet	Key	Exchange	(IKE)	provides	these
capabilities.

TIP

KEY	CONCEPT	IPsec	consists	of	a	number	of	different	components	that	work	together	to	provide
security	services.	The	two	main	ones	are	protocols	called	the	Authentication	Header	(AH)	and
Encapsulating	Security	Payload	(ESP),	which	provide	authenticity	and	privacy	to	IP	data	in	the	form	of
special	headers	added	to	IP	datagrams.

Well,	that's	at	least	a	start	at	providing	a	framework	for	understanding	what
IPsec	is	all	about	and	how	the	pieces	fit	together.	You'll	examine	these
components	and	protocols	in	more	detail	as	you	proceed	through	this	chapter.



IPsec	Architectures	and	Implementation
Methods
The	main	reason	that	IPsec	is	so	powerful	is	that	it	provides	security	to	IP,	which
is	the	basis	for	all	other	TCP/IP	protocols.	In	protecting	IP,	you	are	protecting
pretty	much	everything	else	in	TCP/IP	as	well.	An	important	issue,	then,	is	how
exactly	do	you	get	IPsec	into	IP?	There	are	several	implementation	methods	for
deploying	IPsec.	These	represent	different	ways	that	IPsec	may	modify	the
overall	layer	architecture	of	TCP/IP.

Three	different	implementation	architectures	are	defined	for	IPsec	in	RFC	2401.
The	one	you	use	depends	on	various	factors	including	the	version	of	IP	used
(IPv4	or	IPv6),	the	requirements	of	the	application,	and	other	factors.	These,	in
turn,	rest	on	a	primary	implementation	decision:	Should	IPsec	be	programmed
into	all	hosts	on	a	network,	or	just	into	certain	routers	or	other	intermediate
devices?	This	is	a	design	decision	that	must	be	based	on	the	requirements	of	the
network:

End-Host	Implementation	Putting	IPsec	into	all	host	devices	provides	the	most
flexibility	and	security.	It	enables	end-to-end	security	between	any	two	devices
on	the	network.	However,	there	are	many	hosts	on	a	typical	network,	so	this
means	far	more	work	than	just	implementing	IPsec	in	routers.

Router	Implementation	This	option	is	much	less	work	because	it	means	you
make	changes	to	only	a	few	routers	instead	of	hundreds	or	thousands	of	clients.
It	provides	protection	only	between	pairs	of	routers	that	implement	IPsec,	but
this	may	be	sufficient	for	certain	applications	such	as	VPNs.	The	routers	can	be
used	to	provide	protection	for	just	the	portion	of	the	route	that	datagrams	take
outside	the	organization,	thereby	leaving	connections	between	routers	and	local
hosts	unsecured	(or	possibly,	secured	by	other	means).

Three	different	architectures	are	defined	that	describe	methods	for	how	to	get
IPsec	into	the	TCP/IP	protocol	stack:	integrated,	bump	in	the	stack,	and	bump	in
the	wire.

Integrated	Architecture



Under	ideal	circumstances,	we	would	integrate	IPsec's	protocols	and	capabilities
directly	into	IP	itself.	This	is	the	most	elegant	solution,	because	it	allows	all
IPsec	security	modes	and	capabilities	to	be	provided	just	as	easily	as	regular	IP.
No	extra	hardware	or	architectural	layers	are	needed.

IPv6	was	designed	to	support	IPsec.	Thus,	it's	a	viable	option	for	hosts	or
routers.	With	IPv4,	integration	would	require	making	changes	to	the	IP
implementation	on	each	device,	which	is	often	impractical	(to	say	the	least!).

Bump	in	the	Stack	(BITS)	Architecture
In	the	bump	in	the	stack	(BITS)	technique,	IPsec	is	made	a	separate	architectural
layer	between	IP	and	the	data	link	layer.	The	cute	name	refers	to	the	fact	that
IPsec	is	an	extra	element	in	the	networking	protocol	stack,	as	you	can	see	in
Figure	29-2.	IPsec	intercepts	IP	datagrams	as	they	are	passed	down	the	protocol
stack,	provides	security,	and	passes	them	to	the	data	link	layer.

Figure	29-2.	IPsec	bump	in	the	stack	(BITS)	architecture	In	this	type	of	IPsec	implementation,	IPsec
becomes	a	separate	layer	in	the	TCP/IP	stack.	It	is	implemented	as	software	that	sits	below	IP	and	adds

security	protection	to	datagrams	created	by	the	IP	layer.

The	advantage	of	this	technique	is	that	IPsec	can	be	retrofitted	to	any	IP	device,
since	the	IPsec	functionality	is	separate	from	IP.	The	disadvantage	is	that	there	is



a	duplication	of	effort	compared	to	the	integrated	architecture.	BITS	is	generally
used	for	IPv4	hosts.

Bump	in	the	Wire	(BITW)	Architecture
In	the	bump	in	the	wire	(BITW)	method,	we	add	a	hardware	device	that	provides
IPsec	services.	For	example,	suppose	we	have	a	company	with	two	sites.	Each
has	a	network	that	connects	to	the	Internet	using	a	router	that	is	not	capable	of
IPsec	functions.	We	can	interpose	a	special	IPsec	device	between	the	router	and
the	Internet	at	both	sites,	as	shown	in	Figure	29-3.	These	devices	will	then
intercept	outgoing	datagrams,	add	IPsec	protection	to	them,	and	strip	it	off
incoming	datagrams.

Figure	29-3.	IPsec	bump	in	the	wire	(BITW)	architecture	In	this	IPsec	architecture,	IPsec	is	actually
implemented	in	separate	devices	that	sit	between	the	devices	that	wish	to	communicate	securely.	These

repackage	insecure	IP	datagrams	for	transport	over	the	public	Internet.

Just	as	BITS	lets	you	add	IPsec	to	legacy	hosts,	BITW	can	retrofit	non-IPsec
routers	to	provide	security	benefits.	The	disadvantages	are	complexity	and	cost.

TIP

KEY	CONCEPT	Three	different	architectures	or	implementation	models	are	defined	for	IPsec.	The	best
is	integrated	architecture,	in	which	IPsec	is	built	into	the	IP	layer	of	devices	directly.	The	other	two	are
bump	in	the	stack	(BITS)	and	bump	in	the	wire	(BITW),	which	are	ways	of	layering	IPsec	underneath
regular	IP,	using	software	and	hardware	solutions,	respectively.

As	you	will	see	in	the	next	section,	the	choice	of	architecture	has	an	important
impact	on	which	of	the	two	IPsec	modes	can	be	used.	Incidentally,	even	though
BITS	and	BITW	seem	quite	different,	they	are	actually	do	the	same	thing.	In	the



BITS	and	BITW	seem	quite	different,	they	are	actually	do	the	same	thing.	In	the
case	of	BITS,	we	have	an	extra	software	layer	that	adds	security	to	existing	IP
datagrams;	in	BITW,	distinct	hardware	devices	do	this	same	job.	In	both	cases,
the	result	is	the	same,	and	the	implications	on	the	choice	of	IPsec	mode	is
likewise	the	same.



IPsec	Modes:	Transport	and	Tunnel
You	just	saw	that	three	different	basic	implementation	architectures	could	be
used	to	provide	IPsec	facilities	to	TCP/IP	networks.	The	choice	of	which
implementation	you	use,	as	well	as	whether	you	implement	in	end	hosts	or
routers,	impacts	the	specific	way	that	IPsec	functions.	Two	specific	modes	of
operation	that	are	related	to	these	architectures	are	defined	for	IPsec.	They	are
called	transport	mode	and	tunnel	mode.

IPsec	modes	are	closely	related	to	the	function	of	the	two	core	protocols,	AH	and
ESP.	Both	of	these	protocols	provide	protection	by	adding	a	header	(and
possibly	other	fields)	containing	security	information	to	a	datagram.	The	choice
of	mode	does	not	affect	the	method	by	which	each	generates	its	header,	but
rather,	changes	what	specific	parts	of	the	IP	datagram	are	protected	and	how	the
headers	are	arranged	to	accomplish	this.	In	essence,	the	mode	really	describes,
not	prescribes,	how	AH	or	ESP	do	their	thing.	It	is	used	as	the	basis	for	defining
other	constructs,	such	as	security	associations	(SAs).

Transport	Mode
As	its	name	suggests,	in	transport	mode,	the	protocol	protects	the	message
passed	down	to	IP	from	the	transport	layer.	The	message	is	processed	by	AH
and/or	ESP,	and	the	appropriate	header(s)	are	added	in	front	of	the	transport
(UDP	or	TCP)	header.	The	IP	header	is	then	added	in	front	of	that	by	IP.

Another	way	of	looking	at	this	is	as	follows:	Normally,	the	transport	layer
packages	data	for	transmission	and	sends	it	to	IP.	From	IP's	perspective,	this
transport	layer	message	is	the	payload	of	the	IP	datagram.	When	IPsec	is	used	in
transport	mode,	the	IPsec	header	is	applied	only	over	this	IP	payload,	not	the	IP
header.	The	AH	and	ESP	headers	appear	between	the	original,	single	IP	header
and	the	IP	payload.	This	is	illustrated	in	Figure	29-4.

Tunnel	Mode
In	tunnel	mode,	IPsec	is	used	to	protect	a	completely	encapsulated	IP	datagram
after	the	IP	header	has	already	been	applied	to	it.	The	IPsec	headers	appear	in
front	of	the	original	IP	header,	and	then	a	new	IP	header	is	added	in	front	of	the



IPsec	header.	That	is	to	say,	the	entire	original	IP	datagram	is	secured	and	then
encapsulated	within	another	IP	datagram.	This	is	shown	in	Figure	29-5.

Comparing	Transport	and	Tunnel	Modes
The	bottom	line	in	understanding	the	difference	between	the	two	IPsec	modes	is
this:	Tunnel	mode	protects	the	original	IP	datagram	as	a	whole,	header	and	all,
while	transport	mode	does	not.	Thus,	in	general	terms,	the	order	of	the	headers	is
as	follows:

Transport	Mode	IP	header,	IPsec	headers	(AH	and/or	ESP),	IP	payload
(including	transport	header)

Tunnel	Mode	New	IP	header,	IPsec	headers	(AH	and/or	ESP),	old	IP	header,	IP
payload

Figure	29-4.	IPsec	transport	mode	operation	When	IPsec	operates	in	transport	mode,	it	is	integrated	with
IP	and	used	to	transport	the	upper	layer	(TCP/UDP)	message	directly.	After	processing,	the	datagram
has	just	one	IP	header	that	contains	the	AH	and	ESP	IPsec	headers.	Contrast	this	to	tunnel	mode,	shown

in	Figure	29-5.

Again,	this	is	a	simplified	view	of	how	IPsec	datagrams	are	constructed;	the



reality	is	significantly	more	complex.	The	exact	way	that	the	headers	are
arranged	in	an	IPsec	datagram	in	both	transport	and	tunnel	modes	depends	on
which	version	of	IP	is	being	used.	IPv6	uses	extension	headers	that	must	be
arranged	in	a	particular	way	when	IPsec	is	used.	The	header	placement	also
depends	on	which	IPsec	protocol	is	being	used,	AH	or	ESP.	Note	that	it	is	also
possible	to	apply	both	AH	and	ESP	to	the	same	datagram;	if	so,	the	AH	header
always	appears	before	the	ESP	header.

There	are	thus	three	variables	and	eight	basic	combinations	of	mode	(tunnel	or
transport),	IP	version	(IPv4	or	IPv6)	and	protocol	(AH	or	ESP).	The	coming
discussions	of	AH	and	ESP	describe	the	four	format	combinations	of
transport/tunnel	mode	and	IPv4/IPv6	applicable	to	each	protocol.	Note	that	ESP
also	includes	an	ESP	trailer	that	goes	after	the	data	protected.

You	could	probably	tell	by	reading	these	descriptions	how	the	two	modes	relate
to	the	choice	of	IPsec	architecture	you	looked	at	earlier.	Transport	mode	requires
that	IPsec	be	integrated	into	IP,	because	AH/ESP	must	be	applied	as	the	original
IP	packaging	is	performed	on	the	transport	layer	message.	This	is	often	the
choice	for	implementations	requiring	end-to-end	security	with	hosts	that	run
IPsec	directly.



Figure	29-5.	IPsec	tunnel	mode	operation	IPsec	tunnel	mode	is	so	named	because	it	represents	an
encapsulation	of	a	complete	IP	datagram,	thereby	forming	a	virtual	tunnel	between	IPsec-capable
devices.	The	IP	datagram	is	passed	to	IPsec,	where	a	new	IP	header	is	created	with	the	AH	and	ESP

IPsec	headers	added.	Contrast	this	to	transport	mode,	shown	in	Figure	29-4.

Tunnel	mode	represents	an	encapsulation	of	IP	within	the	combination	of	IP	plus
IPsec.	Thus,	it	corresponds	with	the	BITS	and	BITW	implementations,	where
IPsec	is	applied	after	IP	has	processed	higher-layer	messages	and	has	already
added	its	header.	Tunnel	mode	is	a	common	choice	for	VPN	implementations,
which	are	based	on	the	tunneling	of	IP	datagrams	through	an	unsecured	network
such	as	the	Internet.

TIP

KEY	CONCEPT	IPsec	has	two	basic	modes	of	operation.	In	transport	mode,	IPsec	AH	and	ESP
headers	are	added	as	the	original	IP	datagram	is	created.	Transport	mode	is	associated	with	integrated
IPsec	architectures.	In	tunnel	mode,	the	original	IP	datagram	is	created	normally,	and	then	the	entire
datagram	is	encapsulated	into	a	new	IP	datagram	containing	the	AH/ESP	IPsec	headers.	Tunnel	mode	is
most	commonly	used	with	bump	in	the	stack	(BITS)	and	bump	in	the	wire	(BITW)	implementations.





IPsec	Security	Constructs
Important	IPsec	security	constructs	include	security	associations,	the	security
association	database,	security	policies,	the	security	policy	database,	selectors,
and	the	security	parameter	index.	These	items	are	all	closely	related	and	essential
to	understand	before	you	begin	looking	at	the	core	IPsec	protocols.	These
constructs	are	used	to	guide	the	operation	of	IPsec	in	a	general	way	and
particularly	to	guide	exchanges	between	devices.	The	constructs	control	how
IPsec	works	and	ensure	that	each	datagram	coming	into	or	leaving	an	IPsec-
capable	device	is	treated	properly.

Security	Policies,	Security	Associations,	and
Associated	Databases
Let's	begin	by	considering	the	problem	of	how	to	apply	security	in	a	device	that
may	be	handling	many	different	exchanges	of	datagrams	with	others.	There	is
overhead	involved	in	providing	security,	so	you	do	not	want	to	do	it	for	every
message	that	comes	in	or	out.	Some	types	of	messages	may	need	more	security;
others	may	need	less.	Also,	exchanges	with	certain	devices	may	require	different
processing	than	others.

To	manage	all	of	this	complexity,	IPsec	is	equipped	with	a	flexible,	powerful
way	of	specifying	how	different	types	of	datagrams	should	be	handled.	To
understand	how	this	works,	you	must	first	define	the	following	two	important
logical	concepts:

Security	Policies	and	the	Security	Policy	Database	(SPD)	A	security	policy	is
a	rule	that	is	programmed	into	the	IPsec	implementation.	It	tells	the
implementation	how	to	process	different	datagrams	received	by	the	device.	For
example,	security	policies	decide	if	a	particular	packet	needs	to	be	processed	by
IPsec	or	not.	AH	and	ESP	entirely	bypass	those	that	do	not	need	processing.	If
security	is	required,	the	security	policy	provides	general	guidelines	for	how	it
should	be	provided,	and	if	necessary,	links	to	more	specific	detail.	Security
policies	for	a	device	are	stored	in	the	device's	security	policy	database	(SPD).

Security	Associations	(SAs)	and	the	Security	Association	Database	(SAD)	A



security	association	(SA)	is	a	set	of	security	information	that	describes	a
particular	kind	of	secure	connection	between	one	device	and	another.	You	can
consider	it	a	contract,	if	you	will,	that	specifies	the	particular	security
mechanisms	that	are	used	for	secure	communications	between	the	two.	A
device's	security	associations	are	contained	in	its	security	association	database
(SAD).

It's	often	hard	to	distinguish	between	the	SPD	and	the	SAD,	because	they	are
similar	in	concept.	The	main	difference	between	them	is	that	security	policies	are
general,	while	security	associations	are	more	specific.	To	determine	what	to	do
with	a	particular	datagram,	a	device	first	checks	the	SPD.	The	security	policies
in	the	SPD	may	reference	a	particular	SA	in	the	SAD.	If	so,	the	device	will	look
up	that	SA	and	use	it	for	processing	the	datagram.

Selectors
One	issue	I	haven't	covered	yet	is	how	a	device	determines	what	security	policies
or	SAs	to	use	for	a	specific	datagram.	Again	here,	IPsec	defines	a	very	flexible
system	that	lets	each	security	association	define	a	set	of	rules	for	choosing
datagrams	that	the	SA	applies	to.	Each	of	these	rule	sets	is	called	a	selector.	For
example,	you	might	define	a	selector	that	says	that	a	particular	range	of	values	in
the	Source	Address	of	a	datagram,	combined	with	another	value	in	the
Destination	Address,	means	that	a	specific	SA	must	be	used	for	the	datagram.

Security	Association	Triples	and	Security
Parameter	Index	(SPI)
Each	secure	communication	that	a	device	makes	to	another	requires	that	an	SA
be	established.	SAs	are	unidirectional,	so	each	one	only	handles	either	inbound
or	outbound	traffic	for	a	particular	device.	This	allows	the	level	of	security	for	a
flow	from	Device	A	to	Device	B	to	be	different	than	the	level	for	traffic	coming
from	Device	B	to	Device	A.	In	a	bidirectional	communication	of	this	sort,	both
Device	A	and	Device	B	would	have	two	SAs;	Device	A	would	have	SAs	that
you	could	call	SAdeviceBin	and	SAdeviceBout.	Device	B	would	have	SAs
SAdeviceAin	and	SAdeviceAout.

SAs	don't	actually	have	names,	however.	They	are	instead	defined	by	a	set	of



three	parameters,	called	a	triple:

Security	Parameter	Index	(SPI)	A	32-bit	number	that	is	chosen	to	uniquely
identify	a	particular	SA	for	any	connected	device.	The	SPI	is	placed	in	AH	or
ESP	datagrams	and	thus	links	each	secure	datagram	to	the	security	association.	It
is	used	by	the	recipient	of	a	transmission	so	it	knows	what	SA	governs	the
datagram.

IP	Destination	Address	The	address	of	the	device	for	which	the	SA	is
established.

Security	Protocol	Identifier	Specifies	whether	this	association	is	for	AH	or
ESP.	If	both	are	in	use	with	this	device,	they	have	separate	SAs.

As	you	can	see,	the	two	security	protocols	AH	and	ESP	are	dependent	on	SAs,
security	policies,	and	the	various	databases	that	control	the	operation	of	those
SAs	and	policies.	Management	of	these	databases	is	important,	but	it's	another
complex	subject	entirely.	Generally,	SAs	can	either	be	set	up	manually	(which	is
of	course	extra	work)	or	you	can	deploy	an	automated	system	using	a	protocol
like	IKE	(discussed	near	the	end	of	this	chapter).

Confused?	I	don't	blame	you,	despite	my	best	efforts,	and	remember	that	this	is
all	highly	simplified.	Welcome	to	the	wonderful	world	of	networking	security.	If
you	are	ever	besieged	by	insomnia,	I	highly	recommend	RFC	2401!



IPsec	Authentication	Header	(AH)
As	I	mentioned	earlier	in	this	chapter,	AH	is	one	of	the	two	core	security
protocols	in	IPsec.	This	is	another	protocol	whose	name	has	been	well	chosen.	It
provides	authentication	of	either	all	or	part	of	the	contents	of	a	datagram	through
the	addition	of	a	header	that	is	calculated	based	on	the	values	in	the	datagram.
The	parts	of	the	datagram	that	are	used	for	the	calculation,	and	the	placement	of
the	header,	depend	on	the	mode	(tunnel	or	transport)	and	the	version	of	IP	(IPv4
or	IPv6).

The	operation	of	AH	is	surprisingly	simple,	especially	for	any	protocol	that	has
anything	to	do	with	network	security.	The	simplicity	is	analogous	to	the
algorithms	used	to	calculate	checksums	or	perform	cyclic	redundancy	(CRC)
checks	for	error	detection.	In	those	cases,	the	sender	uses	a	standard	algorithm	to
compute	a	checksum	or	CRC	code	based	on	the	contents	of	a	message.	This
computed	result	is	transmitted	along	with	the	original	data	to	the	destination,
which	repeats	the	calculation	and	discards	the	message	if	any	discrepancy	is
found	between	its	calculation	and	the	one	done	by	the	source.

This	is	the	same	idea	behind	AH,	except	that	instead	of	using	a	simple	algorithm
known	to	everyone,	it	uses	a	special	hashing	algorithm	and	a	specific	key	known
only	to	the	source	and	the	destination.	An	SA	between	two	devices	specifies
these	particulars,	so	that	the	source	and	destination	know	how	to	perform	the
computation	but	nobody	else	can.	On	the	source	device,	AH	performs	the
computation	and	puts	the	result	(called	the	integrity	check	value,	or	ICV)	into	a
special	header	with	other	fields	for	transmission.	The	destination	device	does	the
same	calculation	using	the	key	that	the	two	devices	share.	This	enables	the
device	to	see	immediately	if	any	of	the	fields	in	the	original	datagram	were
modified	(due	to	either	error	or	malice).

Just	as	a	checksum	doesn't	change	the	original	data,	neither	does	the	ICV
calculation	change	the	original	data.	The	presence	of	the	AH	header	allows	us	to
verify	the	integrity	of	the	message,	but	doesn't	encrypt	it.	Thus,	AH	provides
authentication	but	not	privacy	(that's	what	ESP	is	for).

AH	Datagram	Placement	and	Linking



The	calculation	of	AH	is	similar	for	both	IPv4	and	IPv6.	One	difference	is	in	the
exact	mechanism	used	for	placing	the	header	into	the	datagram	and	for	linking
the	headers	together.	I'll	describe	IPv6	first	because	it	is	simpler,	and	because
AH	was	really	designed	to	fit	into	its	mechanism	for	this.

IPv6	AH	Placement	and	Linking
In	IPv6,	the	AH	is	inserted	into	the	IP	datagram	as	an	extension	header,
following	the	normal	IPv6	rules	for	extension	header	linking.	It	is	linked	by	the
previous	header	(extension	or	main),	which	puts	the	assigned	value	for	the	AH
header	(51)	into	its	Next	Header	field.	The	AH	header	then	links	to	the	next
extension	header	or	the	transport	layer	header	using	its	Next	Header	field.

In	transport	mode,	the	AH	is	placed	into	the	main	IP	header	and	appears	before
any	Destination	Options	header	that	contains	options	intended	for	the	final
destination,	and	before	an	ESP	header	if	present,	but	after	any	other	extension
headers.	In	tunnel	mode,	it	appears	as	an	extension	header	of	the	new	IP
datagram	that	encapsulates	the	original	one	being	tunneled.	This	is	shown
graphically	in	Figure	29-6.



Figure	29-6.	IPv6	datagram	format	with	IPsec	Authentication	Header	(AH)	This	is	an	example	of	an
IPv6	datagram	with	two	extension	headers	that	are	linked	using	the	standard	IPv6	mechanism	(see
Figure	26-3	in	Chapter	26).	When	AH	is	applied	in	transport	mode,	it	is	simply	added	as	a	new

extension	header	(as	shown	in	dark	shading)	that	goes	between	the	Routing	extension	header	and	the
Destination	Options	header.	In	tunnel	mode,	the	entire	original	datagram	is	encapsulated	into	a	new

IPv6	datagram	that	contains	the	AH	header.	In	both	cases,	the	Next	Header	fields	are	used	to	link	each
header	one	to	the	next.	Note	the	use	of	Next	Header	value	41	in	tunnel	mode,	which	is	the	value	for	the

encapsulated	IPv6	datagram.

IPv4	AH	Placement	and	Linking
In	IPv4,	a	method	that	is	similar	to	the	IPv6	header-linking	technique	is
employed.	In	an	IPv4	datagram,	the	Protocol	field	indicates	the	identity	of	the
higher-layer	protocol	(typically	TCP	or	UDP)	that's	carried	in	the	datagram.	As
such,	this	field	points	to	the	next	header,	which	is	at	the	front	of	the	IP	payload.
AH	takes	this	value	and	puts	it	into	its	Next	Header	field,	and	then	places	the
protocol	value	for	AH	itself	(51	in	dotted	decimal)	into	the	IP	Protocol	field.



This	makes	the	IP	header	point	to	the	AH,	which	then	points	to	whatever	the	IP
datagram	pointed	to	before.

Again,	in	transport	mode,	the	AH	header	is	added	after	the	main	IP	header	of	the
original	datagram;	in	tunnel	mode	it	is	added	after	the	new	IP	header	that
encapsulates	the	original	datagram	that's	being	tunneled.	This	is	shown	in
Figure	29-7.

Figure	29-7.	IPv4	datagram	format	with	IPsec	AH	Here	is	an	example	of	an	IPv4	datagram;	it	may	or
may	not	contain	IPv4	options	(which	are	not	distinct	entities	as	they	are	in	IPv6).	In	transport	mode,	the
AH	header	is	added	between	the	IP	header	and	the	IP	data;	the	Protocol	field	of	the	IP	header	points	to
it,	while	its	Next	Header	field	contains	the	IP	header's	prior	protocol	value	(in	this	case	6,	for	TCP).	In
tunnel	mode,	the	IPv4	datagram	is	encapsulated	into	a	new	IPv4	datagram	that	includes	the	AH	header.
Note	that	in	tunnel	mode,	the	AH	header	uses	the	value	4	(which	means	IPv4)	in	its	Next	Header	field.

TIP

KEY	CONCEPT	The	IPsec	Authentication	Header	(AH)	protocol	allows	the	recipient	of	a	datagram	to
verify	its	authenticity.	It	is	implemented	as	a	header	that's	added	to	an	IP	datagram	that	contains	an
integrity	check	value	(ICV),	which	is	computed	based	on	the	values	of	the	fields	in	the	datagram.	The



recipient	can	use	this	value	to	ensure	that	the	data	has	not	been	changed	in	transit.	AH	does	not	encrypt
data	and	thus	does	not	ensure	the	privacy	of	transmissions.

AH	Format
The	format	of	AH	is	described	in	Table	29-2	and	illustrated	in	Figure	29-8.

Table	29-2.	IPsec	Authentication	Header	(AH)	Format

Field	Name Size
(Bytes)

Description

Next	Header 1 Contains	the	protocol	number	of	the	next	header	after	the	AH.	Used
to	link	headers	together.

Payload	Len 1 Despite	its	name,	this	field	measures	the	length	of	the	authentication
header	itself,	not	the	payload.	(I	wonder	what	the	history	is	behind
that!)	It	is	measured	in	32-bit	units,	with	2	subtracted	for	consistency
with	how	header	lengths	are	normally	calculated	in	IPv6.

Reserved 2 Not	used;	set	to	zeros.

SPI 4 A	32-bit	value	that,	when	combined	with	the	destination	address	and
security	protocol	type	(which	is	obviously	the	one	for	AH	here),
identifies	the	security	association	(SA)	that	will	be	used	for	this
datagram.	(SAs	are	discussed	earlier	in	this	chapter.)

Sequence
Number

4 A	counter	field	that	is	initialized	to	zero	when	an	SA	is	formed
between	two	devices,	and	then	incremented	for	each	datagram	sent
using	that	SA.	This	uniquely	identifies	each	datagram	on	an	SA	and
is	used	to	provide	protection	against	replay	attacks	by	preventing	the
retransmission	of	captured	datagrams.

Authentication
Data

Variable Contains	the	result	of	the	hashing	algorithm,	called	the	integrity
check	value	(ICV),	performed	by	the	AH	protocol.



Figure	29-8.	IPsec	Authentication	Header	(AH)	format

The	size	of	the	Authentication	Data	field	is	variable	to	support	different
datagram	lengths	and	hashing	algorithms.	Its	total	length	must	be	a	multiple	of
32	bits.	Also,	the	entire	header	must	be	a	multiple	of	either	32	bits	(for	IPv4)	or
64	bits	(for	IPv6),	so	additional	padding	may	be	added	to	the	Authentication
Data	field	if	necessary.

You	may	also	notice	that	no	IP	addresses	appear	in	the	header,	which	is	a
prerequisite	for	it	being	the	same	for	both	IPv4	and	IPv6.



IPsec	Encapsulating	Security	Payload	(ESP)
The	IPsec	AH	provides	integrity	authentication	services	to	IPsec-capable	devices
so	that	they	can	verify	that	messages	are	received	intact	from	other	devices.	For
many	applications,	however,	this	is	only	one	piece	of	the	puzzle.	We	want	to	not
only	protect	against	intermediate	devices	changing	the	datagrams,	but	also	to
protect	against	them	examining	their	contents	as	well.	For	this	level	of	private
communication,	AH	is	not	enough;	we	need	to	use	the	ESP	protocol.

The	main	job	of	ESP	is	to	provide	the	privacy	we	seek	for	IP	datagrams	by
encrypting	them.	An	encryption	algorithm	combines	the	data	in	the	datagram
with	a	key	to	transform	it	into	an	encrypted	form.	This	is	then	repackaged	using
a	special	format	that	you	will	see	shortly,	and	then	transmitted	to	the	destination,
which	decrypts	it	using	the	same	algorithm.	ESP	also	sports	its	own
authentication	scheme	like	the	one	used	in	AH,	or	it	can	be	used	in	conjunction
with	AH.

ESP	Fields
ESP	has	several	fields	that	are	the	same	as	those	used	in	AH,	but	it	packages	its
fields	in	a	very	different	way.	Instead	of	having	just	a	header,	it	divides	its	fields
into	three	components:

ESP	Header	This	contains	two	fields,	SPI	and	Sequence	Number,	and	comes
before	the	encrypted	data.	Its	placement	depends	on	whether	ESP	is	used	in
transport	mode	or	tunnel	mode,	as	explained	earlier	in	this	chapter.

ESP	Trailer	This	section	is	placed	after	the	encrypted	data.	It	contains	padding
that	is	used	to	align	the	encrypted	data	through	a	Padding	and	Pad	Length	field.
Interestingly,	it	also	contains	the	Next	Header	field	for	ESP.

ESP	Authentication	Data	This	field	contains	an	ICV	that's	computed	in	a
manner	that's	similar	to	how	the	AH	protocol	works.	The	field	is	used	when
ESP's	optional	authentication	feature	is	employed.

There	are	two	reasons	why	these	fields	are	broken	into	pieces	like	this.	The	first
is	that	some	encryption	algorithms	require	the	data	to	be	encrypted	to	have	a
certain	block	size,	and	so	padding	must	appear	after	the	data	and	not	before	it.



That's	why	padding	appears	in	the	ESP	Trailer	field.	The	second	is	that	the	ESP
Authentication	Data	appears	separately	because	it	is	used	to	authenticate	the	rest
of	the	encrypted	datagram	after	encryption.	This	means	that	it	cannot	appear	in
the	ESP	Header	or	ESP	Trailer.

ESP	Operations	and	Field	Use
This	is	still	a	bit	boggling	so	I'm	going	to	try	to	explain	this	procedurally	by
considering	three	basic	steps	performed	by	ESP:	calculating	the	header,	then	the
trailer,	and	then	the	Authentication	field.

Header	Calculation	and	Placement
The	first	thing	to	consider	is	how	the	ESP	header	is	placed.	This	is	similar	to
how	AH	works	and	depends	on	the	IP	version,	as	follows:

IPv6	The	ESP	Header	field	is	inserted	into	the	IP	datagram	as	an	extension
header,	following	the	normal	IPv6	rules	for	extension-header	linking.	In
transport	mode,	it	appears	before	a	Destination	Options	header	that	contains
options	intended	for	the	final	destination,	but	after	any	other	extension	headers,
if	present.	In	tunnel	mode,	it	appears	as	an	extension	header	of	the	new	IP
datagram	that	encapsulates	the	original	one	being	tunneled.	This	is	shown	in
Figure	29-9.

IPv4	As	with	AH,	the	ESP	Header	field	is	placed	after	the	normal	IPv4	header.
In	transport	mode,	it	appears	after	the	IP	header	of	the	original	datagram;	in
tunnel	mode,	it	appears	after	the	IP	header	of	the	new	IP	datagram	that's
encapsulating	the	original	one.	You	can	see	this	in	Figure	29-10.

Trailer	Calculation	and	Placement
The	ESP	Trailer	field	is	appended	to	the	data	that	will	be	encrypted.	ESP	then
performs	the	encryption.	The	payload	(TCP/UDP	message	or	encapsulated	IP
datagram)	and	the	ESP	trailer	are	both	encrypted,	but	the	ESP	header	is	not.
Note	again	that	any	other	IP	headers	that	appear	between	the	ESP	header	and	the
payload	are	also	encrypted.	In	IPv6,	this	can	include	a	Destination	Options
extension	header.

Normally,	the	Next	Header	field	would	appear	in	the	ESP	Header	and	would	be
used	to	link	the	ESP	Header	to	the	header	that	comes	after	it.	However,	the	Next



Header	field	in	ESP	appears	in	the	trailer	and	not	the	header,	which	makes	the
linking	seem	a	bit	strange	in	ESP.	The	method	is	basically	the	same	as	what's
used	in	AH	and	in	IPv6	in	general,	with	the	Next	Header	and	Protocol	fields
being	used	to	tie	everything	together.	However,	in	ESP	the	Next	Header	field
appears	after	the	encrypted	data,	and	so	it	points	back	to	one	of	the	following:	a
Destination	Options	extension	header	(if	present),	a	TCP/UDP	header	(in
transport	mode),	or	an	IPv4/IPv6	header	(in	tunnel	mode).	This	is	also	shown	in
Figures	Figure	29-9	and	Figure	29-10.

ESP	Authentication	Field	Calculation	and	Placement
If	the	optional	ESP	authentication	feature	is	being	used,	it	is	computed	over	the
entire	ESP	datagram	(except	the	Authentication	Data	field	itself,	of	course).	This
includes	the	ESP	header,	payload,	and	trailer.

TIP

KEY	CONCEPT	The	IPsec	ESP	protocol	allows	the	contents	of	a	datagram	to	be	encrypted,	which
ensures	that	only	the	intended	recipient	is	able	to	see	the	data.	ESP	is	implemented	using	three
components:	an	ESP	Header	that's	added	to	the	front	of	a	protected	datagram,	an	ESP	Trailer	that
follows	the	protected	data,	and	an	optional	ESP	Authentication	Data	field	that	provides	authentication
services	similar	to	those	provided	by	AH.



Figure	29-9.	IPv6	datagram	format	with	IPsec	ESP	Here	is	the	same	example	of	an	IPv6	datagram	with
two	extension	headers	that	you	saw	in	Figure	29-6.	When	ESP	is	applied	in	transport	mode,	the	ESP
Header	field	is	added	to	the	existing	datagram	as	in	AH,	and	the	ESP	Trailer	and	ESP	Authentication
Data	fields	are	placed	at	the	end.	In	tunnel	mode,	the	ESP	Header	and	Trailer	fields	bracket	the	entire
encapsulated	IPv6	datagram.	Note	the	encryption	and	authentication	coverage	in	each	case,	and	also

how	the	Next	Header	field	points	back	into	the	datagram	since	it	appears	in	the	ESP	Trailer.



Figure	29-10.	IPv4	datagram	format	with	IPsec	ESP	Here	is	the	same	sample	IPv4	datagram	that	you
saw	in	Figure	29-7.	When	ESP	processes	this	datagram	in	transport	mode,	the	ESP	Header	field	is
placed	between	the	IPv4	header	and	data,	with	the	ESP	Trailer	and	ESP	Authentication	Data	fields

following.	In	tunnel	mode,	the	entire	original	IPv4	datagram	is	surrounded	by	these	ESP	components,
rather	than	just	the	IPv4	data.	Again,	as	in	Figure	29-9,	note	the	encryption	and	authentication	coverage,
and	how	the	Next	Header	field	points	back	to	specify	the	identity	of	the	encrypted	data	or	datagram.

ESP	Format
The	format	of	the	ESP	sections	and	fields	is	described	in	Table	29-3	and
illustrated	in	Figure	29-11.	In	both	the	figure	and	the	table,	I	have	shown	the
encryption	and	authentication	coverage	of	the	fields	explicitly,	to	clarify	how	it
all	works.

Table	29-3.	IPsec	Encapsulating	Security	Payload	(ESP)	Format



Section Field
Name

Size	(Bytes) Description Encryption
Coverage

Authentication
Coverage

ESP	Header SPI 4 A	32-bit	value
that	is	combined
with	the
destination
address	and
security	protocol
type	to	identify
the	SA	that	will
be	used	for	this
datagram.	(SAs
are	discussed
earlier	in	this
chapter.)

	

Sequence
Number

4 A	counter	field
initialized	to
zero	when	an
SA	is	formed
between	two
devices,	and
then
incremented	for
each	datagram
that's	sent	using
that	SA.	This	is

	 	 	



that	SA.	This	is
used	to	provide
protection
against	replay
attacks.

Payload Payload
Data

Variable The	encrypted
payload	data,
which	consists
of	a	higher-layer
message	or
encapsulated	IP
datagram.	It
may	also
include	support
information
such	as	an
initialization
vector	that's
required	by
certain
encryption
methods.

	

ESP	Trailer Padding Variable	(0	to
255)

Additional
padding	bytes
are	included	as
needed	for
encryption	or
for	alignment.

	 	

	 Pad
Length

1 The	number	of
bytes	in	the
preceding
Padding	field.

	 	

	 Next
Header

1 Contains	the
protocol	number
of	the	next
header	in	the

	 	



header	in	the
datagram.	Used
to	chain	together
headers.

ESP
Authentication
Data

Variable Contains	the
ICV	resulting
from	the
application	of
the	optional
ESP
authentication
algorithm.

	 	 	

Figure	29-11.	IPsec	ESP	format	Note	that	most	of	the	fields	and	sections	in	this	format	are	variable
length.	The	exceptions	are	the	SPI	and	Sequence	Number	fields,	which	are	four	bytes	long,	and	the	Pad

Length	and	Next	Header	fields,	which	are	one	byte	each.

The	Padding	field	is	used	when	encryption	algorithms	require	it.	Padding	is	also
used	to	make	sure	that	the	ESP	Trailer	field	ends	on	a	32-bit	boundary.	That	is,
the	size	of	the	ESP	Header	field	plus	the	Payload	field,	plus	the	ESP	Trailer	field
must	be	a	multiple	of	32	bits.	The	ESP	Authentication	Data	field	must	also	be	a
multiple	of	32	bits.



IPsec	Internet	Key	Exchange	(IKE)
IPsec,	like	many	secure	networking	protocol	sets,	is	based	on	the	concept	of	a
shared	secret.	Two	devices	that	want	to	send	information	securely	encode	and
decode	it	using	a	piece	of	information	that	only	the	devices	know.	Anyone	who
isn't	in	on	the	secret	is	able	to	intercept	the	information	but	is	prevented	either
from	reading	it	(if	ESP	is	used	to	encrypt	the	payload)	or	from	tampering	with	it
undetected	(if	AH	is	used).	Before	either	AH	or	ESP	can	be	used,	however,	it	is
necessary	for	the	two	devices	to	exchange	the	secret	that	the	security	protocols
themselves	will	use.	The	primary	support	protocol	used	for	this	purpose	in	IPsec
is	called	Internet	Key	Exchange	(IKE).

IKE	is	defined	in	RFC	2409,	and	it	is	one	of	the	more	complicated	of	the	IPsec
protocols	to	comprehend.	In	fact,	it	is	simply	impossible	to	truly	understand
more	than	a	real	simplification	of	its	operation	without	significant	background	in
cryptography.	I	don't	have	a	background	in	cryptography,	and	I	must	assume	that
you,	my	reader,	do	not	either.	So	rather	than	fill	this	topic	with	baffling
acronyms	and	unexplained	concepts,	I	will	just	provide	a	brief	outline	of	IKE
and	how	it	is	used.

IKE	Overview
The	purpose	of	IKE	is	to	allow	devices	to	exchange	information	that's	required
for	secure	communication.	As	the	title	suggests,	this	includes	cryptographic	keys
that	are	used	for	encoding	authentication	information	and	performing	payload
encryption.	IKE	works	by	allowing	IPsec-capable	devices	to	exchange	SAs,
which	populate	their	SADs.	These	SADs	are	then	used	for	the	actual	exchange
of	secured	datagrams	with	the	AH	and	ESP	protocols.

IKE	is	considered	a	hybrid	protocol	because	it	combines	(and	supplements)	the
functions	of	three	other	protocols.	The	first	of	these	is	the	Internet	Security
Association	and	Key	Management	Protocol	(ISAKMP).	This	protocol	provides	a
framework	for	exchanging	encryption	keys	and	security	association	information.
It	operates	by	allowing	security	associations	to	be	negotiated	through	a	series	of
phases.

ISAKMP	is	a	generic	protocol	that	supports	many	different	key	exchange



methods.	In	IKE,	the	ISAKMP	framework	is	used	as	the	basis	for	a	specific	key
exchange	method	that	combines	features	from	two	key	exchange	protocols:

OAKLEY	Describes	a	specific	mechanism	for	exchanging	keys	through	the
definition	of	various	key	exchange	modes.	Most	of	the	IKE	key	exchange
process	is	based	on	OAKLEY.

SKEME	Describes	a	different	key	exchange	mechanism	than	OAKLEY.	IKE
uses	some	features	from	SKEME,	including	its	method	of	public	key	encryption
and	its	fast	rekeying	feature.

IKE	Operation
IKE	doesn't	strictly	implement	either	OAKLEY	or	SKEME	but	takes	bits	of
each	to	form	its	own	method	of	using	ISAKMP.	Clear	as	mud,	I	know.	Because
IKE	functions	within	the	framework	of	ISAKMP,	its	operation	is	based	on	the
ISAKMP	phased-negotiation	process.	There	are	two	phases,	as	follows:

ISAKMP	Phase	1	The	first	phase	is	a	setup	stage	where	two	devices	agree	on
how	to	exchange	further	information	securely.	This	negotiation	between	the	two
units	creates	an	SA	for	ISAKMP	itself:	an	ISAKMP	SA.	This	security
association	is	then	used	for	securely	exchanging	more	detailed	information	in
Phase	2.

ISAKMP	Phase	2	In	this	phase,	the	ISAKMP	SA	established	in	Phase	1	is	used
to	create	SAs	for	other	security	protocols.	Normally,	this	is	where	the	parameters
for	the	"real"	SAs	for	the	AH	and	ESP	protocols	would	be	negotiated.

An	obvious	question	is	why	IKE	bothers	with	this	two-phased	approach.	Why
not	just	negotiate	the	SA	for	AH	or	ESP	in	the	first	place?	Well,	even	though	the
extra	phase	adds	overhead,	multiple	Phase	2	negotiations	can	be	conducted	after
one	Phase	1,	which	amortizes	the	extra	cost	of	the	two-phase	approach.	It	is	also
possible	to	use	a	simpler	exchange	method	for	Phase	2	once	the	ISAKMP	SA
has	been	established	in	Phase	1.

The	ISAKMP	SA	negotiated	during	Phase	1	includes	the	negotiation	of	the
following	attributes	used	for	subsequent	negotiations:

An	encryption	algorithm,	such	as	the	Data	Encryption	Standard	(DES)

A	hash	algorithm	(MD5	or	SHA,	as	used	by	AH	or	ESP)



An	authentication	method,	such	as	authentication	using	previously	shared
keys

A	Diffie-Hellman	group

NOTE

Diffie	and	Hellman	were	two	pioneers	in	the	industry	who	invented	public-key	cryptography.	In	this
method,	instead	of	encrypting	and	decrypting	with	the	same	key,	data	is	encrypted	using	a	public	key
that	anyone	can	know,	and	decrypted	using	a	private	key	that	is	kept	secret.	A	Diffie-Hellman	group
defines	the	attributes	of	how	to	perform	this	type	of	cryptography.	Four	predefined	groups	derived	from
OAKLEY	are	specified	in	IKE,	and	provision	is	allowed	for	defining	new	groups	as	well.

Note	that	even	though	SAs	in	general	are	unidirectional,	the	ISAKMP	SA	is
established	bidirectionally.	Once	Phase	1	is	complete,	either	device	can	set	up	a
subsequent	SA	for	AH	or	ESP	using	the	ISAKMP	SA.



Chapter	30.	INTERNET
PROTOCOL	MOBILITY	SUPPORT
(MOBILE	IP)

The	Internet	Protocol	(IP)	is	the	most	successful	network	layer	protocol	in
computing	due	to	its	many	strengths,	but	it	also	has	some	weaknesses,	most	of
which	have	become	more	important	as	networks	has	evolved	over	time.
Technologies	like	classless	addressing	and	Network	Address	Translation	(NAT)
combat	the	exhaustion	of	the	IP	version	4	(IPv4)	address	space,	while	IPsec
provides	it	with	the	secure	communications	it	lacks.	Another	weakness	of	IP	is
that	it	was	not	designed	with	mobile	computers	in	mind.

While	mobile	devices	can	certainly	use	IP,	the	way	that	devices	are	addressed
and	datagrams	routed	causes	a	problem	when	they	are	moved	from	one	network
to	another.	At	the	time	IP	was	developed,	computers	were	large	and	rarely
moved.	Today,	we	have	millions	of	notebook	computers	and	smaller	devices,
some	of	which	even	use	wireless	networking	to	connect	to	the	wired	network.
The	importance	of	providing	full	IP	capabilities	for	these	mobile	devices	has
grown	dramatically.	To	support	IP	in	a	mobile	environment,	a	new	protocol
called	IP	Mobility	Support,	or	more	simply,	Mobile	IP,	was	developed.

In	this	chapter,	I	describe	the	special	protocol	that	was	developed	to	overcome
the	problems	with	mobile	computers	attaching	to	IP	internetworks.	I	begin	with
an	overview	of	Mobile	IP	and	a	more	detailed	description	of	why	it	was	created.
I	discuss	important	concepts	that	define	Mobile	IP	and	its	general	mode	of
operation.	I	then	move	on	to	some	of	the	specifics	of	how	Mobile	IP	works.	This
includes	a	description	of	the	special	Mobile	IP	addressing	scheme,	an
explanation	of	how	agents	are	discovered	by	mobile	devices,	a	discussion	of	the
process	of	registration	with	the	device's	home	agent,	and	finally,	an	explanation



process	of	registration	with	the	device's	home	agent,	and	finally,	an	explanation
of	how	data	is	encapsulated	and	routed.	I	discuss	the	impact	that	Mobile	IP	has
on	the	operation	of	the	TCP/IP	Address	Resolution	Protocol	(ARP).	I	end	the
chapter	by	examining	some	of	the	efficiency	and	security	issues	that	come	into
play	when	Mobile	IP	is	used.

NOTE

This	section	specifically	describes	how	IP	mobility	support	is	provided	for	IPv4	networks.	It	does	not
deal	with	the	more	specific	details	for	how	mobility	is	implemented	in	IPv6.

TIP

BACKGROUND	INFORMATION	If	you	are	not	familiar	with	the	basics	of	IP	addressing	and	routing,
I	strongly	suggest	reading	at	least	Chapters	Chapter	16	and	Chapter	23	before	reading	about	Mobile	IP.

Mobile	IP	Overview,	History,	and	Motivation
Mobile	computing	has	greatly	increased	in	popularity	over	the	past	several	years,
largely	due	to	advances	in	miniaturization.	Today,	we	can	get	the	power	that
once	required	a	hulking	behemoth	of	a	machine	in	a	notebook	PC	or	even	a
handheld	computer.	We	also	have	wireless	LAN	(WLAN)	technologies	that
easily	let	a	device	move	from	place	to	place	and	retain	networking	connectivity
at	the	data	link	layer.	Unfortunately,	IP	was	developed	back	in	the	era	of	the
behemoths,	and	it	isn't	designed	to	deal	gracefully	with	computers	that	move
around.	To	understand	why	IP	doesn't	work	well	in	a	mobile	environment,	you
must	take	a	look	back	at	how	IP	addressing	and	routing	work.

The	Problem	with	Mobile	Nodes	in	TCP/IP
If	you've	read	any	of	the	materials	in	this	book	on	IP	addressing—and	I	certainly
hope	that	you	have—you	know	that	IP	addresses	are	fundamentally	divided	into
two	portions:	a	network	identifier	(network	ID)	and	a	host	identifier	(host	ID).
The	network	ID	specifies	which	network	a	host	is	on,	and	the	host	ID	uniquely
specifies	hosts	within	a	network.	This	structure	is	fundamental	to	datagram
routing,	because	devices	use	the	network	ID	portion	of	the	destination	address	of
a	datagram	to	determine	if	the	recipient	is	on	a	local	network	or	a	remote	one,
and	routers	use	it	to	determine	how	to	route	the	datagram.



This	is	a	great	system,	but	it	has	one	critical	flaw:	The	IP	address	is	tied	tightly
to	the	network	where	the	device	is	located.	Most	devices	never	(or	at	least	rarely)
change	their	attachment	point	to	the	network,	so	this	is	not	a	problem	for	them,
but	it	is	certainly	an	issue	for	a	mobile	device.	When	the	mobile	device	travels
away	from	its	home	location,	the	system	of	routing	based	on	IP	address	breaks.
This	is	illustrated	in	Figure	30-1.

The	tight	binding	of	network	ID	and	host	IP	address	means	that	there	are	only
two	real	options	under	conventional	IP	when	a	mobile	device	moves	from	one
network	to	another:

Change	IP	Address	We	can	change	the	IP	address	of	the	host	to	a	new	address
that	includes	the	network	ID	of	the	network	to	which	it	is	moving.

Decouple	IP	Routing	from	Address	We	can	change	the	way	routing	is	done	for
the	device,	so	that	instead	of	routers	sending	datagrams	to	a	device	based	on	its
network	ID,	they	route	based	on	its	entire	address.

Figure	30-1.	The	main	problem	with	mobile	devices	on	IP	internetworks	In	this	example,	a	mobile
device	(the	notebook	PC)	has	been	moved	from	its	home	network	in	London	to	another	network	in

Tokyo.	A	remote	client	(upper	left)	decides	to	send	a	datagram	to	the	mobile	device.	However,	it	has	no
idea	the	device	has	moved.	Since	it	sends	by	using	the	mobile	node's	home	address,	71.13.204.20,	its
request	is	routed	to	the	router	responsible	for	that	network,	which	is	in	London.	The	mobile	device	isn't
there,	so	the	router	can't	deliver	it.	Mobile	IP	solves	this	problem	by	giving	mobile	devices	and	routers

the	capability	to	forward	datagrams	from	one	location	to	another.



These	both	seem	like	viable	options	at	first	glance,	and	if	only	a	few	devices
tried	them,	they	might	work.	Unfortunately,	they	are	both	inefficient,	often
impractical,	and	neither	is	scalable	(practical	when	thousands	or	millions	of
devices	try	them)	for	these	reasons:

Changing	the	IP	address	each	time	a	device	moves	is	time-consuming	and
normally	requires	manual	intervention.	In	addition,	the	entire	TCP/IP	stack
would	need	to	be	restarted,	thereby	breaking	any	existing	connections.

If	we	change	the	mobile	device's	IP	address,	how	do	we	communicate	the
change	of	address	to	other	devices	on	the	Internet?	These	devices	will	only
have	the	mobile	node's	original	home	address,	which	means	they	won't	be
able	to	find	it,	even	if	we	give	it	a	new	address	matching	its	new	location.

Routing	based	on	the	entire	address	of	a	host	would	mean	the	entire	Internet
would	be	flooded	with	routing	information	for	each	and	every	mobile
computer.	Considering	how	much	trouble	has	gone	into	developing
technologies	like	classless	addressing	to	reduce	routing	table	entries,	it's
obvious	this	is	a	Pandora's	box	no	one	wants	to	touch.
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KEY	CONCEPT	The	basic	problem	with	supporting	mobile	devices	in	IP	internetworks	is	that	routing
is	performed	using	the	IP	address.	This	means	the	IP	address	of	a	device	is	tied	to	the	network	where	that
the	device	is	located.	If	a	device	changes	networks,	data	sent	to	its	old	address	cannot	be	delivered	by
conventional	means.	Traditional	work-arounds,	such	as	routing	by	the	full	IP	address	or	changing	IP
addresses	manually,	often	create	more	problems.

The	Solution:	Mobile	IP
The	solution	to	these	difficulties	was	to	define	a	new	protocol	especially	to
support	mobile	devices,	which	adds	to	the	original	IP.	This	protocol,	called	IP
Mobility	Support	for	IPv4,	was	first	defined	in	RFC	2002,	was	updated	in	RFC
3220,	and	is	now	described	in	RFC	3344.	The	formal	name	given	in	that
document	title	is	rather	long;	the	technology	is	more	commonly	called	Mobile
IP,	both	in	the	RFC	itself	and	by	networking	professionals.

To	ensure	its	success,	Mobile	IP's	designers	had	to	meet	a	number	of	important
goals.	The	resulting	protocol	has	these	key	attributes	and	features:



Seamless	Device	Mobility	Using	Existing	Device	Address	Mobile	devices	can
change	their	physical	network	attachment	method	and	location	while	continuing
to	use	their	existing	IP	address.

No	New	Addressing	or	Routing	Requirements	The	overall	scheme	for
addressing	and	routing	as	in	regular	IP	is	maintained.	IP	addresses	are	still
assigned	in	the	conventional	way	by	the	owner	of	each	device.	No	new	routing
requirements	are	placed	on	the	internetwork,	such	as	host-specific	routes.

Interoperability	Mobile	IP	devices	can	still	send	to	and	receive	from	existing	IP
devices	that	do	not	know	how	Mobile	IP	works,	and	vice	versa.

Layer	Transparency	The	changes	made	by	Mobile	IP	are	confined	to	the
network	layer.	Transport	layer	and	higher-layer	protocols	and	applications	are
able	to	function	as	in	regular	IPv4,	and	existing	connections	can	even	be
maintained	across	a	move.

Limited	Hardware	Changes	Changes	are	required	to	the	mobile	device's
software	as	well	as	to	routers	used	directly	by	the	mobile	device.	Other	devices,
however,	do	not	need	changes,	including	routers	between	the	ones	on	the	home
and	visited	networks.

Scalability	Mobile	IP	allows	a	device	to	change	from	any	network	to	any	other,
and	supports	this	for	an	arbitrary	number	of	devices.	The	scope	of	the	connection
change	can	be	global;	you	could	detach	a	notebook	from	an	office	in	London	and
move	it	to	Australia	or	Brazil,	for	example,	and	it	will	work	the	same	as	if	you
took	it	to	the	office	next	door.

Security	Mobile	IP	works	by	redirecting	messages,	and	includes	authentication
procedures	to	prevent	an	unauthorized	device	from	causing	problems.

Mobile	IP	accomplishes	these	goals	by	implementing	a	forwarding	system	for
mobile	devices.	When	a	mobile	unit	is	on	its	home	network,	it	functions
normally.	When	it	moves	to	a	different	network,	datagrams	are	sent	from	its
home	network	to	its	new	location.	This	allows	normal	hosts	and	routers	that
don't	know	about	Mobile	IP	to	continue	to	operate	as	if	the	mobile	device	had
not	moved.	Special	support	services	are	required	to	implement	Mobile	IP;	these
services	allow	activities	such	as	letting	a	mobile	device	determine	where	it	is,
telling	the	home	network	where	to	forward	messages,	and	more.
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KEY	CONCEPT	Mobile	IP	solves	the	problems	associated	with	devices	that	change	network	locations
by	setting	up	a	system	whereby	datagrams	sent	to	the	mobile	node's	home	location	are	forwarded	to	it
wherever	it	may	be	located.	It	is	particularly	useful	for	wireless	devices,	but	can	be	used	for	any	device
that	moves	between	networks	periodically.

Mobile	IP	is	often	associated	with	wireless	networks,	since	devices	using
WLAN	technology	can	move	so	easily	from	one	network	to	another.	However,	it
wasn't	designed	specifically	for	wireless.	It	can	be	equally	useful	for	moving
from	an	Ethernet	network	in	one	building	to	a	network	in	another	building,	city,
or	country.	Mobile	IP	can	be	of	great	benefit	in	numerous	applications	for
traveling	salespeople,	consultants	who	visit	client	sites,	administrators	who	walk
around	a	campus	troubleshooting	problems,	and	many	more.

Limitations	of	Mobile	IP
It's	important	to	realize	that	Mobile	IP	has	certain	limitations	in	its	usefulness	in
a	wireless	environment.	It	was	designed	to	handle	the	mobility	of	devices,	but
only	relatively	infrequent	mobility.	This	is	due	to	the	work	involved	with	each
change.	This	overhead	isn't	a	big	deal	when	you	move	a	computer	once	a	week,
once	a	day,	or	even	once	an	hour.	It	can	be	an	issue	for	"real-time"	mobility,
such	as	roaming	in	a	wireless	network,	where	handoff	functions	operating	at	the
data	link	layer	may	be	more	suitable.	Mobile	IP	was	designed	under	the	specific
assumption	that	the	attachment	point	would	not	change	more	than	once	per
second.

Mobile	IP	is	intended	to	be	used	with	devices	that	maintain	a	static	IP
configuration.	Since	the	device	needs	to	be	able	to	always	know	the	identity	of
its	home	network	and	normal	IP	address,	it	is	much	more	difficult	to	use	it	with	a
device	that	obtains	an	IP	address	dynamically,	using	something	like	the	Dynamic
Host	Configuration	Protocol	(DHCP).



Mobile	IP	Concepts	and	General	Operation
I	like	analogies	because	they	provide	a	way	of	explaining	often	dry	technical
concepts	in	terms	that	you	can	relate	to.	The	problem	of	mobile	devices	in	an	IP
internetwork	can	easily	be	compared	to	a	real-life	mobility	and	information
transmission	problem:	mail	delivery	for	those	who	travel.

Suppose	you	are	a	consultant	working	for	a	large	corporation	with	many	offices.
Your	home	office	is	in	London,	England,	and	you	spend	about	half	your	time
there.	The	rest	of	the	time	is	split	between	other	offices	in,	say,	Rome,	Tokyo,
New	York	City,	and	Toronto.	You	also	occasionally	visit	client	sites	that	can	be
just	about	anywhere	in	the	world.	You	may	be	at	these	remote	locations	for
weeks	at	a	time.

The	problem	is	how	do	you	arrange	things	so	that	you	can	receive	your	mail
regardless	of	your	location?	You	have	the	same	problem	that	regular	IP	has	with
a	mobile	device,	and	without	taking	special	steps,	you	have	the	same	two
unsatisfactory	options	for	resolving	it:	address	changing	or	decoupling	routing
from	your	address.	You	can't	change	your	address	each	time	you	move	because
you	would	be	modifying	it	constantly;	by	the	time	you	told	everyone	about	your
new	address,	it	would	change	again.	And	you	certainly	can't	"decouple"	the
routing	of	mail	from	your	address,	unless	you	want	to	set	up	your	own	postal
system!

The	solution	to	this	dilemma	is	mail	forwarding.	Let's	say	that	you	leave	London
for	Tokyo	for	a	couple	of	months.	You	tell	the	London	post	office	(PO)	that	you
will	be	in	Tokyo.	They	intercept	mail	headed	for	your	normal	London	address,
relabel	it,	and	forward	it	to	Tokyo.	Depending	on	where	you	are	staying,	this
mail	might	be	redirected	either	straight	to	a	new	address	in	Tokyo	or	to	a	Tokyo
PO	where	you	can	pick	it	up.	If	you	leave	Tokyo	to	go	to	another	city,	you	just
call	the	London	PO	and	tell	them	your	new	location.	When	you	come	home,	you
cancel	the	forwarding	and	get	your	mail	as	always.	(Yes,	I'm	assuming	London
and	Tokyo	each	have	only	one	PO.)

The	advantages	of	this	system	are	many.	It	is	relatively	simple	to	understand	and
implement.	It	is	also	transparent	to	everyone	who	sends	you	mail;	they	still	send
to	you	in	London	and	it	gets	wherever	it	needs	to	go.	And	handling	of	the
forwarding	mechanism	is	done	only	by	the	London	PO	and	possibly	the	PO



forwarding	mechanism	is	done	only	by	the	London	PO	and	possibly	the	PO
where	you	are	presently	located;	the	rest	of	the	postal	system	doesn't	even	know
anything	out	of	the	ordinary	is	going	on.

There	are	some	disadvantages,	too.	The	London	PO	may	allow	occasional
forwarding	for	free,	but	would	probably	charge	you	if	you	did	this	on	a	regular
basis.	You	might	also	need	a	special	arrangement	in	the	city	you	travel	to.	You
need	to	keep	communicating	with	your	home	PO	each	time	you	move.	And
every	piece	of	mail	must	be	sent	through	the	system	twice—first	to	London	and
then	to	wherever	you	are	located—which	is	inefficient.

Mobile	IP	works	in	a	manner	very	similar	to	the	mail-forwarding	system	I	just
described.	The	traveling	consultant	is	the	device	that	goes	from	network	to
network.	Each	network	can	be	considered	like	a	different	city,	and	the
internetwork	of	routers	is	like	the	postal	system.	The	router	that	connects	any
network	to	the	Internet	is	like	that	network's	post	office,	from	an	IP	perspective.

The	mobile	node	is	normally	resident	on	its	home	network,	which	is	the	one	that
is	indicated	by	the	network	ID	in	its	IP	address.	Devices	on	the	internetwork
always	route	using	this	address,	so	the	pieces	of	"mail"	(datagrams)	always
arrive	at	a	router	at	the	device's	"home."	When	the	device	travels	to	another
network,	the	home	router	("post	office")	intercepts	these	datagrams	and	forwards
them	to	the	device's	current	address.	It	may	send	them	straight	to	the	device
using	a	new,	temporary	address,	or	it	may	send	them	to	a	router	on	the	device's
current	network	(the	"other	post	office"	or	Tokyo	in	our	analogy)	for	final
delivery.	You	can	see	an	overview	of	Mobile	IP	operation	in	Figure	30-2.



Figure	30-2.	General	operation	of	Mobile	IP	This	diagram	is	similar	to	Figure	30-1,	except	that	it	shows
Mobile	IP	implemented.	The	mobile	node's	home	router	serves	as	home	agent,	and	the	router	in	Tokyo
serves	as	the	foreign	agent.	The	mobile	has	been	assigned	a	temporary	"care-of"	address	to	use	while	in
Tokyo	(which	in	this	case	is	a	co-located	care-of	address,	meaning	that	it	is	assigned	directly	to	the
mobile	node.	Figure	30-3	shows	the	same	example	using	the	other	type	of	care-of	address).	In	step	1,
the	remote	client	sends	a	datagram	to	the	mobile	using	its	home	address,	as	in	normal	TCP/IP.	It	arrives
in	London	as	usual.	In	step	2,	the	home	agent	encapsulates	that	datagram	in	a	new	one	and	sends	it	to

the	mobile	node	in	Tokyo.

Mobile	IP	Device	Roles
As	you	can	see,	just	as	mail	forwarding	requires	support	from	one	or	more	POs,
Mobile	IP	requires	the	help	of	two	routers.	The	following	special	names	are
given	to	the	three	main	players	that	implement	the	protocol	(also	shown	in
Figure	30-2):

Mobile	Node	This	is	the	mobile	device,	the	one	moving	around	the
internetwork.

Home	Agent	This	is	a	router	on	the	home	network	that	is	responsible	for
catching	datagrams	intended	for	the	mobile	node	and	forwarding	them	to	it	when
it	is	traveling.	It	also	implements	other	support	functions	that	are	necessary	to
run	the	protocol.

Foreign	Agent	This	is	a	router	on	the	network	to	which	the	mobile	node	is



currently	attached.	It	serves	as	a	"home	away	from	home"	for	the	mobile	node,
and	normally	acts	as	its	default	router	and	implements	Mobile	IP	functions.
Depending	on	the	mode	of	operation,	it	may	receive	forwarded	datagrams	from
the	home	agent	and	forward	them	to	the	mobile	node.	It	also	supports	the	sharing
of	mobility	information	to	make	Mobile	IP	operate.	The	foreign	agent	may	not
be	required	in	some	Mobile	IP	implementations	but	is	usually	considered	part	of
how	the	protocol	operates.

TIP

KEY	CONCEPT	Mobile	IP	operates	by	setting	up	the	TCP/IP	equivalent	of	a	mail-forwarding	system.
A	router	on	a	mobile	node's	home	network	serves	as	the	mobile	device's	home	agent,	and	one	on	its
current	network	acts	as	the	foreign	agent.	The	home	agent	receives	datagrams	destined	for	the	mobile's
normal	IP	address	and	forwards	them	to	the	mobile	node's	current	location,	either	directly	or	by	sending
the	datagrams	to	the	foreign	agent.	The	home	agent	and	foreign	agent	are	also	responsible	for	various
communication	and	setup	activities	that	are	required	for	Mobile	IP	to	work.

Mobile	IP	Functions
An	important	difference	between	Mobile	IP	and	this	mail-forwarding	example	is
one	that	represents	the	classic	distinction	between	people	and	computers:	People
are	smart,	and	computers	are	not.	When	the	consultant	is	traveling	in	Tokyo,	he
always	knows	he's	in	Tokyo	and	that	his	mail	is	being	forwarded.	He	knows	that
he	must	deal	with	the	Tokyo	PO	to	get	his	mail.	The	PO	in	London	knows	what
forwarding	is	all	about	and	how	to	do	it.	The	traveler	and	the	POs	can
communicate	easily	using	the	telephone.

In	contrast,	in	the	computer	world,	when	a	device	travels	using	Mobile	IP,	things
are	more	complicated.	Let's	suppose	the	consultant	flies	to	Tokyo,	turns	on	his
notebook,	and	plugs	it	in	to	the	network.	When	the	notebook	is	first	turned	on,	it
has	no	clue	what	is	going	on.	The	notebook	has	to	figure	out	that	it	is	in	Tokyo.
It	needs	to	find	a	foreign	agent	in	Tokyo.	It	needs	to	know	what	address	to	use
while	in	Tokyo.	It	needs	to	communicate	with	its	home	agent	back	in	London	to
tell	it	that	it	is	in	Tokyo	and	that	the	agent	should	start	forwarding	datagrams.
Furthermore,	it	must	accomplish	its	communication	without	any	telephone.

To	this	end,	Mobile	IP	includes	a	host	of	special	functions	that	are	used	to	set	up
and	manage	datagram	forwarding.	To	see	how	these	support	functions	work,	let's
look	at	the	general	operation	of	Mobile	IP	as	a	simplified	series	of	steps:



look	at	the	general	operation	of	Mobile	IP	as	a	simplified	series	of	steps:

1.	 Agent	Communication	The	mobile	node	finds	an	agent	on	its	local
network	by	engaging	in	the	Agent	Discovery	process.	It	listens	for	Agent
Advertisement	messages	that	are	sent	out	by	agents,	and	from	this	it	can
determine	where	it	is	located.	If	it	doesn't	hear	these	messages	it	can	ask
for	one	using	an	Agent	Solicitation	message.

2.	 Network	Location	Determination	The	mobile	node	determines	whether	it
is	on	its	home	network	or	on	a	foreign	one	by	looking	at	the	information	in
the	Agent	Advertisement	message.

If	it	is	on	its	home	network,	it	functions	using	regular	IP.	To	show	how	the	rest
of	the	process	works,	let's	say	the	device	sees	that	it	just	moved	to	a	foreign
network.	The	remaining	steps	are	as	follows:

1.	 Care-Of	Address	Acquisition	The	device	obtains	a	temporary	address
called	a	care-of	address.	This	either	comes	from	the	Agent	Advertisement
message	from	the	foreign	agent	or	through	some	other	means.	This	address
is	used	only	as	the	destination	point	for	forwarding	datagrams,	and	for	no
other	purpose.

2.	 Agent	Registration	The	mobile	node	informs	the	home	agent	on	its	home
network	of	its	presence	on	the	foreign	network	and	enables	datagram
forwarding	by	registering	with	the	home	agent.	This	may	be	done	either
directly	between	the	node	and	the	home	agent	or	indirectly	using	the
foreign	agent	as	a	conduit.

3.	 Datagram	Forwarding	The	home	agent	captures	datagrams	intended	for
the	mobile	node	and	forwards	them.	It	may	send	them	either	directly	to	the
node	or	indirectly	to	the	foreign	agent	for	delivery,	depending	on	the	type
of	care-of	address	in	use.

Datagram	forwarding	continues	until	the	current	agent	registration	expires.	The
device	can	then	renew	it.	If	it	moves	again,	it	repeats	the	process	to	get	a	new
care-of	address	and	then	registers	its	new	location	with	the	home	agent.	When
the	mobile	node	returns	to	its	home	network,	it	deregisters	to	cancel	datagram
forwarding	and	resumes	normal	IP	operation.

The	following	sections	look	in	more	detail	at	the	functions	summarized	in	each
of	the	previous	steps.



of	the	previous	steps.



Mobile	IP	Addressing:	Home	and	Care-Of
Addresses
Just	as	most	of	us	have	only	a	single	address	used	for	mail,	most	IP	devices	have
only	a	single	address.	Our	traveling	consultant,	however,	needs	to	have	two
addresses;	a	normal	one	and	one	that	is	used	while	he	is	away.	Continuing	the
earlier	analogy,	the	Mobile	IP–equipped	notebook	the	consultant	carries	needs	to
have	two	addresses:

Home	Address	The	normal,	permanent	IP	address	assigned	to	the	mobile	node.
This	is	the	address	used	by	the	device	on	its	home	network,	and	the	one	to	which
datagrams	intended	for	the	mobile	node	are	always	sent.

Care-Of	Address	A	secondary,	temporary	address	used	by	a	mobile	node	while
it	is	traveling	away	from	its	home	network.	It	is	a	normal	32-bit	IP	address	in
most	respects,	but	is	used	only	by	Mobile	IP	for	forwarding	IP	datagrams	and	for
administrative	functions.	Higher	layers	never	use	it,	nor	do	regular	IP	devices
when	creating	datagrams.

The	care-of	address	is	a	slightly	tricky	concept.	There	are	two	different	types,
which	correspond	to	two	distinctly	different	methods	of	forwarding	datagrams
from	the	home	agent	router.

Foreign	Agent	Care-Of	Address
The	care-of	address	is	provided	by	a	foreign	agent	in	its	Agent	Advertisement
message.	It	is,	in	fact,	the	IP	address	of	the	foreign	agent	itself.	When	this	type
of	care-of	address	is	used,	all	datagrams	captured	by	the	home	agent	are	not
relayed	directly	to	the	mobile	node,	but	indirectly	to	the	foreign	agent,	which	is
responsible	for	final	delivery.	In	this	arrangement,	the	mobile	node	has	no
distinct	IP	address	valid	on	the	foreign	network,	so	this	is	typically	done	using	a
layer	2	technology.	This	arrangement	is	illustrated	in	Figure	30-3.



Figure	30-3.	Mobile	IP	operation	with	a	foreign	agent	care-of	address	This	diagram	is	similar	to
Figure	30-2,	except	that	instead	of	the	mobile	node	having	a	co-located	(distinct)	IP	address,	here	the
mobile	node	is	using	a	foreign	agent	care-of	address.	This	means	that	the	node's	care-of	address	is
actually	that	of	the	foreign	agent	itself.	Step	1	is	the	same	as	in	Figure	30-2,	but	in	step	2,	the	home
agent	forwards	not	to	the	mobile	node	directly,	but	to	the	foreign	agent	(since	that	router	is	the	one

whose	IP	address	the	mobile	is	using).	In	step	3,	the	foreign	agent	strips	off	the	home	agent's	packaging
and	delivers	the	original	datagram	to	the	mobile	node.	This	is	typically	done	using	whatever	layer	2

(LAN	or	WLAN)	technology	connects	the	mobile	node	and	foreign	agent.

In	the	consultant	analogy,	this	type	of	care-of	address	is	like	forwarding	from	the
London	PO	to	the	Tokyo	PO.	The	London	personnel	would	take	a	letter	for	John
Smith	sent	to	his	London	address,	and	repackage	it	for	delivery	to	John	Smith,
care	of	the	Tokyo	post	office.	The	Tokyo	PO	(or	John	Smith	himself)	would
need	to	worry	about	the	last	leg	of	the	delivery.

Co-Located	Care-Of	Address
The	co-located	care-of	address	is	assigned	directly	to	the	mobile	node	using
some	means	that	is	external	to	Mobile	IP.	For	example,	it	may	be	assigned	on	the
foreign	network	manually,	or	it	may	be	assigned	automatically	using	DHCP.	In
this	situation,	the	care-of	address	is	used	to	forward	traffic	from	the	home	agent
directly	to	the	mobile	node.	This	was	the	type	of	address	shown	earlier	in
Figure	30-2.

In	the	consultant	analogy,	this	is	like	John	Smith	obtaining	a	temporary	address
for	his	use	while	in	Tokyo.	The	London	PO	would	forward	directly	to	his	Tokyo



for	his	use	while	in	Tokyo.	The	London	PO	would	forward	directly	to	his	Tokyo
address.	They	would	not	specifically	send	it	to	the	Tokyo	PO	(although	that	PO
would	handle	the	mail	at	some	point).

TIP

KEY	CONCEPT	In	Mobile	IP,	each	mobile	device	uses	a	temporary	care-of	address	while	on	a	foreign
network.	A	co-located	care-of	address	is	one	that	is	assigned	directly	to	the	mobile	node	and	enables
direct	delivery	of	datagrams	to	the	node.	The	alternative	is	to	use	a	foreign	agent	care-of	address.	In	this
situation,	the	mobile	node	actually	uses	the	IP	address	of	the	foreign	agent.	Datagrams	are	sent	to	the
foreign	agent,	which	delivers	them	to	the	mobile	node.

Advantages	and	Disadvantages	of	the	Care-Of
Address	Types
The	foreign	agent	care-of	address	is	considered	the	type	used	in	classic	Mobile
IP,	where	there	is	both	a	home	agent	and	a	foreign	agent.	While	it	seems	less
efficient	than	the	co-located	address	method,	it	offers	some	important
advantages,	a	key	one	being	that	the	same	foreign	agent	care-of	address	can	be
used	for	all	mobile	nodes	visiting	that	network.	Datagrams	for	all	mobile	nodes
on	that	network	are	sent	to	the	foreign	agent,	which	completes	the	delivery	to	the
individual	nodes.	Since	the	mobile	nodes	use	the	foreign	agent's	address,	no
extra	addresses	or	extra	work	is	required	for	each	mobile	node.

The	co-located	care-of	address	has	the	advantage	that	traffic	can	be	forwarded
directly	from	the	home	agent	to	the	mobile	node.	In	this	type	of	arrangement,	it
is	possible	for	a	Mobile	IP	device	to	travel	to	a	foreign	network	where	there	is	no
Mobile	IP–aware	router	to	act	as	a	foreign	agent.	This	does	mean,	however,	that
the	Mobile	IP	implementation	must	include	all	the	functions	of	communicating
with	the	home	agent	that	the	foreign	agent	normally	performs.

When	co-located	care-of	addresses	are	used,	an	issue	is	how	the	temporary
address	is	obtained.	In	many	foreign	networks,	automatic	assignment	of	an	IP
address	using	something	like	DHCP	may	be	possible,	but	if	not,	a	temporary	IP
address	would	need	to	be	assigned.	Either	way,	some	of	the	foreign	network's
limited	IP	address	space	would	need	to	be	set	aside	for	mobile	nodes,	each	of
which	would	use	an	address	while	present	on	the	network.	In	some	cases,	this
could	lead	to	an	address	depletion	issue.



Foreign	agent	care-of	addressing	is	usually	preferred	due	to	its	more	automatic
nature,	when	a	foreign	agent	is	present	on	the	visited	network.	Considering	that
all	datagrams	will	need	to	go	through	some	router	on	the	foreign	network	to
reach	the	mobile	node	anyway,	we	might	as	well	save	the	extra	IP	addresses.	Co-
located	care-of	addresses	would	be	used	when	there	is	no	foreign	agent,	or	might
be	practical	for	long-term	connections	even	when	a	foreign	agent	is	present.

TIP

KEY	CONCEPT	In	Mobile	IP,	co-located	care-of	addresses	have	the	advantage	of	flexibility,	but
require	each	device	to	have	a	unique	IP	address	on	the	remote	network.	Foreign	agent	care-of	addresses
have	the	chief	advantage	of	allowing	many	mobile	devices	on	a	foreign	network	without	each	requiring	a
distinct	IP	address.

Remember	that	the	care-of	address	represents	only	the	destination	to	which
mobile	node	datagrams	are	forwarded.	Foreign	agents	provide	services	other
than	forwarding,	so	it	is	possible	for	a	mobile	node	to	use	a	co-located	care-of
address	even	when	a	foreign	agent	is	present,	while	continuing	to	take	advantage
of	the	other	foreign	agent	services.

For	more	information	on	how	datagrams	are	forwarded	between	the	home	agent
and	the	mobile	node's	care-of	address,	see	the	section	on	Mobile	IP
encapsulation	and	tunneling,	later	in	this	chapter.



Mobile	IP	Agent	Discovery
When	a	mobile	node	is	first	turned	on,	it	cannot	assume	that	it	is	still	at	home,
the	way	normal	IP	devices	do.	It	must	first	determine	where	it	is,	and	if	it	is	not
at	home,	begin	the	process	of	setting	up	datagram	forwarding	from	its	home
network.	This	process	is	accomplished	by	communicating	with	a	local	router
that's	serving	as	an	agent	through	the	process	called	Agent	Discovery.

Agent	Discovery	Process
Agent	discovery	encompasses	the	first	three	steps	in	the	simplified	five-step
Mobile	IP	operational	summary	I	gave	earlier	in	discussing	general	Mobile	IP
operation.	The	main	goals	of	Agent	Discovery	include	the	following:

Agent/Node	Communication	Agent	Discovery	is	the	method	by	which	a
mobile	node	first	establishes	contact	with	an	agent	on	the	local	network	to	which
it	is	attached.	Messages	containing	important	information	about	the	agent	are
sent	from	the	agent	to	the	node.	A	message	can	also	be	sent	from	the	node	to	the
agent	asking	for	this	information	to	be	sent.

Orientation	The	node	uses	the	Agent	Discovery	process	to	determine	where	it
is.	Specifically,	it	learns	whether	it	is	on	its	home	network	or	a	foreign	network
by	identifying	the	agent	that	sends	it	messages.

Care-Of	Address	Assignment	The	Agent	Discovery	process	is	the	method	used
to	tell	a	mobile	node	the	care-of	address	it	should	use,	when	foreign	agent	care-
of	addressing	is	used.

Mobile	IP	agents	are	routers	that	have	been	given	additional	programming	to
make	them	Mobile	IP-aware.	The	communication	between	a	mobile	node	and
the	agent	on	its	local	network	is	basically	the	same	as	the	normal	communication
required	between	a	device	on	an	IP	network	and	its	local	router,	except	more
information	needs	to	be	sent	when	the	router	is	an	agent.

Agent	Advertisement	and	Agent	Solicitation
Messages
Provision	already	exists	for	exchanges	of	data	between	a	router	and	a	node	in	the



form	of	Internet	Control	Message	Protocol	(ICMP)	messages	that	are	used	for
the	regular	IP	Router	Discovery	process.	Two	messages	are	used	for	this
purpose:	Router	Advertisement	messages	that	let	routers	tell	local	nodes	that
they	exist	and	describe	their	capabilities,	and	Router	Solicitation	messages	that
let	a	node	prompt	a	router	to	send	an	advertisement.	These	are	described	in
Chapter	33.

Given	the	similarity	to	normal	Router	Discovery,	it	made	sense	to	implement
Agent	Discovery	as	a	modification	to	the	existing	process	rather	than	set	up	a
whole	new	system.	The	messages	used	in	the	Agent	Discovery	process	are	as
follows:

Agent	Advertisement	This	is	a	message	transmitted	regularly	by	a	router	acting
as	a	Mobile	IP	agent.	It	consists	of	a	regular	Router	Advertisement	message	that
has	one	or	more	extensions	added	that	contain	Mobile	IP–specific	information
for	mobile	nodes.

Agent	Solicitation	This	message	can	be	sent	by	a	Mobile	IP	device	to	nudge	a
local	agent	to	send	an	Agent	Advertisement	message.

The	use	of	these	messages	is	described	in	the	Mobile	IP	standard	in	detail,	and
unsurprisingly,	is	very	similar	to	how	regular	Router	Advertisement	and	Router
Solicitation	messages	are	employed.	Agents	are	normally	configured	to	send	out
Agent	Advertisements	on	a	regular	basis,	with	the	rate	set	to	ensure	reasonably
fast	contact	with	mobile	nodes	without	consuming	excessive	network	bandwidth.
They	are	required	to	respond	to	any	Agent	Solicitation	messages	they	receive	by
sending	an	Advertisement.	It	is	possible	that	some	agents	may	be	configured	to
send	Advertisements	only	upon	receipt	of	a	Solicitation.

Mobile	nodes	are	required	to	accept	and	process	Agent	Advertisements.	They
distinguish	these	from	regular	Router	Advertisements	by	looking	at	the	size	of
the	message.	They	then	parse	the	extension(s)	to	learn	the	capabilities	of	the
local	agent.	They	determine	whether	they	are	on	their	home	network	or	a	foreign
network,	and	in	the	case	of	a	foreign	agent,	how	the	agent	should	be	used.
Mobile	nodes	are	required	to	use	Agent	Advertisements	to	detect	when	they
have	moved,	using	one	of	two	algorithms	defined	in	the	standard.	Mobile	nodes
are	also	required	to	detect	when	they	have	returned	to	their	home	network	after
they	have	been	traveling.	Finally,	they	are	also	required	to	be	able	to	send	Agent
Solicitation	messages	if	they	don't	receive	an	Agent	Advertisement	after	a



Solicitation	messages	if	they	don't	receive	an	Agent	Advertisement	after	a
certain	period	of	time.	They	are	restricted	to	sending	these	only	infrequently,
however,	in	order	to	keep	traffic	manageable.

Now	let's	look	at	the	formats	of	the	two	message	types.

Agent	Solicitation	Message	Format
The	Agent	Solicitation	message	is	simple.	In	fact,	there	is	no	new	message
format	defined	for	this	at	all;	it	is	identical	to	the	format	of	a	Router	Solicitation
message	(see	Chapter	33).

The	reason	no	new	message	type	is	required	here	is	that	a	solicitation	is	an
extremely	simple	message:	"Hey,	if	there	are	any	routers	out	there,	please	tell	me
who	you	are	and	what	you	can	do."	No	extra	Mobile	IP	information	needs	to	be
sent.	When	a	regular	IP	router	receives	a	Router	Solicitation,	it	will	send	a
Router	Advertisement,	but	a	Mobile	IP	router	automatically	sends	the	longer
Agent	Advertisement	instead	when	prompted	by	any	solicitation,	whether	it
comes	from	a	Mobile	IP	node	or	a	regular	IP	device.

Agent	Advertisement	Message	Format
The	Agent	Advertisement	begins	with	the	normal	fields	of	an	ICMP	Router
Advertisement	message	(see	Chapter	33).	The	destination	of	the	message	is
either	the	"all	devices"	multicast	address	(224.0.0.1)	if	multicast	is	supported	on
the	local	network,	or	the	broadcast	address	(255.255.255.255)	otherwise.	The
Router	Address	fields	are	filled	in	with	the	address(es)	of	the	agent.

NOTE

It	is	possible	that	a	device	may	wish	to	advertise	its	ability	to	handle	Mobile	IP	messages,	but	not	act	as	a
regular	router.	In	this	case	it	changes	the	normal	Code	field	in	the	header	of	the	Router	Advertisement
message	from	0	to	16.

Following	the	regular	fields,	one	or	more	extensions	are	added:

Mobility	Agent	Advertisement	Extension	This	is	the	main	extension	used	to
convey	Mobile	IP	capabilities	of	the	agent	to	mobile	nodes	on	the	local	network.
This	field	is	described	in	Tables	Table	30-1	and	Table	30-2	and	illustrated	in
Figure	30-4.



Prefix-Lengths	Extension	This	is	an	optional	extension	that	tells	a	mobile	node
the	prefix	length(s)	of	the	router	address(es)	contained	in	the	regular	portion	of
the	Agent	Advertisement	message;	that	is,	the	Router	Address	field	in	the	regular
Router	Advertisement	part	of	the	message.	The	prefix	length	is	another	term	for
the	number	of	bits	of	a	network	ID	in	an	address,	so	this	specifies	the	network	ID
in	the	router	addresses.	This	field	is	described	in	Table	30-3	and	illustrated	in
Figure	30-5.

One-Byte	Padding	Extension	Some	implementations	require	ICMP	messages
to	be	an	even	number	of	bytes,	so	a	byte	of	padding	is	needed.	This	field	is	just	a
single	byte	of	all	zeros.

TIP

KEY	CONCEPT	Mobile	IP	Agent	Discovery	is	the	process	by	which	a	mobile	node	determines	where
it	is	located	and	establishes	contact	with	a	home	or	foreign	agent.	To	indicate	their	capabilities,	routers
that	can	function	as	agents	regularly	send	Agent	Advertisement	messages,	which	are	modified	versions
of	regular	Router	Advertisements.	To	request	the	sending	of	an	Advertisement,	a	mobile	node	can	also
send	an	Agent	Solicitation,	which	is	the	same	as	a	regular	Router	Solicitation.

I	should	point	out	that	Mobile	IP	does	not	include	any	provisions	for	the
authentication	of	Agent	Advertisement	and	Agent	Solicitation	messages.	They
may	be	authenticated	using	IPsec,	if	that	has	been	implemented.

Figure	30-4.	Mobile	IP	Mobility	Agent	Advertisement	Extension	format	This	extension	appears	after
the	normal	fields	of	a	Router	Advertisement	message,	as	shown	in	Chapter	33.



Table	30-1.	Mobile	IP	Mobility	Agent	Advertisement	Extension	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	Agent	Advertisement	extension	type.	For	the	Mobility
Agent	Advertisement	Extension,	it	is	set	to	16.

Length 1 Length	of	the	extension	in	bytes,	excluding	the	Type	and	Length	fields.
Thus,	it	is	equal	to	6	plus	4	for	each	care-of	address	in	the	message.

Sequence
Number

2 A	sequential	counter	is	set	to	zero	when	the	router	initializes	and	then
incremented	for	each	advertisement	sent	out.

Registration
Lifetime

2 The	maximum	length	of	time,	in	seconds,	that	the	agent	is	willing	to
accept	for	registration	requests.	A	value	of	65,535	(all	ones)	means
infinite.	Note	that	this	field	is	for	registration	only	and	has	no	relation
to	the	regular	Lifetime	field	in	the	regular	Router	Advertisement	part	of
the	message.

Flags 1 A	one-byte	field	containing	several	informational	flags	that	convey
specific	information	about	the	agent's	capabilities	and	status.	There	are
seven	one-bit	flags,	which,	when	set,	convey	the	meanings	shown	in
Table	30-2.

Reserved 1 Sent	as	zero	and	ignored	by	recipient.

Care-Of
Addresses

Variable
(4	per
address)

Zero	or	more	addresses	provided	by	a	foreign	agent	for	a	mobile	node
to	use	as	a	foreign	agent	care-of	address.	A	foreign	agent	must	always
provide	at	least	one	address	in	its	advertisement.	A	router	that	cannot
act	as	a	foreign	agent	will	typically	omit	this	field.

Table	30-2.	Mobile	IP	Mobility	Agent	Advertisement	Extension	Flags

Subfield
Name

Size
(Bytes)

Description

R 1/8	(1
bit)

Registration	Required:	The	mobile	node	must	register	through	the	foreign
agent,	even	when	using	a	co-located	care-of	address.

B 1/8	(1
bit)

Busy:	The	agent	is	currently	too	busy	to	accept	further	registrations	from
mobile	nodes.

H 1/8	(1
bit)

Home	Agent:	The	agent	is	willing	to	function	as	a	home	agent	on	this	link
(it	will	forward	datagrams,	and	so	on).	Note	that	a	device	can	offer
services	as	both	a	home	agent	and	a	foreign	agent.



services	as	both	a	home	agent	and	a	foreign	agent.

F 1/8	(1
bit)

Foreign	Agent:	The	agent	is	willing	to	function	as	a	foreign	agent.	Again,
a	device	can	act	as	both	a	home	agent	and	a	foreign	agent	simultaneously.

M 1/8	(1
bit)

Minimal	Encapsulation:	The	agent	can	receive	tunneled	datagrams	using
minimal	encapsulation.

G 1/8
(1bit)

GRE	Encapsulation:	The	agent	can	receive	tunneled	datagrams	using
GRE	encapsulation.

r 1/8	(1
bit)

Reserved:	Not	used;	sent	as	zero.

T 1/8	(1
bit)

Reverse	Tunneling:	The	agent	supports	reverse	tunneling.

Table	30-3.	Mobile	IP	Prefix-Lengths	Extension	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	Agent	Advertisement	extension	type.	For	the	Prefix-
Lengths	Extension,	it	is	set	to	19.

Length 1 Length	of	the	extension	in	bytes,	excluding	the	Type	and	Length	fields.
Thus,	it	is	equal	to	the	number	of	prefix	lengths	(since	each	takes	1	byte).

Prefix
Lengths

Variable
(1	per
length)

One	prefix	length	number	for	each	router	address	in	the	regular,	Router
Advertisement	portion	of	the	Agent	Advertisement.

Figure	30-5.	Mobile	IP	Prefix-Lengths	Extension	format	This	extension	appears	after	the	normal	fields
of	a	Router	Advertisement	message,	as	shown	in	Chapter	33.

See	the	section	on	Mobile	IP	encapsulation	later	in	this	chapter	for	details	on
minimal	and	Generic	Routing	Encapsulation	(GRE)	encapsulation	and	reverse
tunneling.



Mobile	IP	Home	Agent	Registration	and
Registration	Messages
Once	a	mobile	node	has	completed	Agent	Discovery,	it	knows	whether	it	is	on
its	home	network	or	a	foreign	network.	If	it's	on	its	home	network,	it
communicates	as	a	regular	IP	device,	but	if	it's	on	a	foreign	network,	it	must
activate	Mobile	IP.	This	requires	that	it	communicate	with	its	home	agent	so	that
information	and	instructions	can	be	exchanged	between	the	two.	This	process	is
called	home	agent	registration,	or	more	simply,	just	registration.

The	main	purpose	of	registration	is	to	actually	start	Mobile	IP	working.	The
mobile	node	must	contact	the	home	agent	and	tell	it	that	it	is	on	a	foreign
network	and	request	that	datagram	forwarding	be	turned	on.	It	also	must	let	the
home	agent	know	its	care-of	address	so	the	home	agent	knows	where	to	send	the
forwarded	datagrams.	The	home	agent	needs	to	communicate	various	types	of
information	back	to	the	mobile	node	when	registration	is	performed.	Note	that
the	foreign	agent	is	not	really	involved	in	registration,	except	perhaps	to	relay
messages.

Mobile	Node	Registration	Events
Successful	registration	establishes	what	is	called	in	the	standard	a	mobility
binding	between	a	home	agent	and	a	mobile	node.	For	the	duration	of	the
registration,	the	mobile	node's	regular	home	address	is	tied	to	its	current	care-of
address,	and	the	home	agent	will	encapsulate	and	forward	datagrams	addressed
to	the	home	address	over	to	the	care-of	address.	The	mobile	node	is	supposed	to
manage	its	registration	and	handle	various	events	using	the	following	actions:

Registration	The	mobile	node	initiates	a	registration	when	it	first	detects	it	has
moved	from	its	home	network	to	a	foreign	network.

Deregistration	When	the	mobile	node	returns	home,	it	should	tell	the	home
agent	to	cancel	forwarding—a	process	called	deregistration.

Reregistration	If	the	mobile	node	moves	from	one	foreign	network	to	another,
or	if	its	care-of	address	changes,	it	must	update	its	registration	with	the	home
agent.	It	also	must	do	so	if	its	current	registration	is	about	to	expire,	even	if	it



remains	stationary	on	one	foreign	network.

Each	registration	is	established	only	for	a	specific	length	of	time,	which	is	why
regular	reregistration	is	required	whether	or	not	the	device	moves.	Registrations
are	time-limited	to	ensure	that	they	do	not	become	stale.	If,	for	example,	a	node
forgets	to	deregister	when	it	returns	home,	the	datagram	forwarding	will
eventually	stop	when	the	registration	expires.

Registration	Request	and	Registration	Reply
Messages
To	perform	registration,	two	new	message	types	have	been	defined	in	Mobile	IP:
the	Registration	Request	and	the	Registration	Reply.	Each	of	these	does	what
you	would	expect	from	its	name.	Interestingly,	these	are	not	ICMP	messages	like
the	ones	used	in	Agent	Discovery;	they	are	User	Datagram	Protocol	(UDP)
messages.	Thus,	technically	speaking,	registration	is	performed	at	a	higher	layer
than	the	rest	of	Mobile	IP	communication.	Agents	listen	for	Registration
Requests	on	well-known	UDP	port	434,	and	respond	back	to	mobile	nodes	using
whatever	ephemeral	port	the	node	used	to	send	the	message.

Registration	Process
There	are	two	different	procedures	defined	for	registration,	depending	on	the
type	of	care-of	address	used	by	the	mobile	node,	and	other	specifics	that	I	will
get	into	shortly.	The	first	is	the	direct	registration	method,	which	has	only	two
steps:

1.	 The	mobile	node	sends	a	Registration	Request	to	the	home	agent.

2.	 The	home	agent	sends	a	Registration	Reply	back	to	the	mobile	node.

In	some	cases,	however,	a	slightly	more	complex	process	is	required,	whereby
the	foreign	agent	conveys	messages	between	the	home	agent	and	the	mobile
node.	In	this	situation,	the	process	has	four	steps:

1.	 The	mobile	node	sends	a	Registration	Request	to	the	foreign	agent.

2.	 The	foreign	agent	processes	a	Registration	Request	and	forwards	it	to	the
home	agent.



3.	 The	home	agent	sends	a	Registration	Reply	to	a	foreign	agent.

4.	 The	foreign	agent	processes	a	Registration	Reply	and	sends	back	to	the
mobile	node.

The	first,	simpler	method	is	normally	used	when	a	mobile	node	is	using	a	co-
located	care-of	address.	In	that	situation,	the	node	can	easily	communicate
directly	with	the	home	agent,	and	the	mobile	node	is	also	set	up	to	directly
receive	information	and	datagrams	from	the	home	agent.	When	there	is	no
foreign	agent,	this	is	obviously	the	only	method	available.	It	is	also	obviously	the
only	method	when	a	mobile	node	is	deregistering	with	its	home	agent	after	it
arrives	back	on	the	home	network.

The	second	method	is	required	when	a	mobile	node	is	using	a	foreign	care-of
address.	You'll	recall	that	in	this	situation,	the	mobile	node	doesn't	have	its	own
unique	IP	address	at	all;	it	is	using	a	shared	address	that	was	given	to	it	by	the
foreign	agent,	which	precludes	direct	communication	between	the	node	and	the
home	agent.	Also,	if	a	mobile	node	receives	an	Agent	Advertisement	with	the	R
flag	set,	it	also	should	go	through	the	foreign	agent,	even	if	it	has	a	co-located
care-of	address.

Note	that	the	foreign	agent	really	is	just	a	middleman;	the	exchange	is	still	really
between	the	home	agent	and	the	mobile	node.	However,	the	foreign	agent	can
deny	registration	if	the	request	violates	whatever	rules	are	in	place	for	using	the
foreign	network.	It	is	for	this	reason	that	some	foreign	agents	may	require	that
they	be	the	conduits	for	registrations	even	if	the	mobile	node	has	a	co-located
care-of	address.	Of	course,	if	the	foreign	agent	can't	contact	the	home	agent	the
registration	will	not	be	able	to	proceed.

TIP

KEY	CONCEPT	Mobile	IP	home	agent	registration	is	the	process	by	which	a	mobility	binding	is
created	between	a	home	agent	and	a	traveling	mobile	node	to	enable	datagram	forwarding	to	be
performed.	The	mobile	node	that	sends	a	Registration	Request	message	performs	registration,	and	the
home	agent	returns	a	Registration	Reply.	The	foreign	agent	may	be	required	to	act	as	a	middleman	in
order	to	facilitate	the	transaction,	but	is	otherwise	not	involved.

The	previous	description	is	really	a	highly	simplified	explanation	of	the	basics	of
registration.	The	Mobile	IP	standard	specifies	many	more	details	on	exactly	how
agents	and	nodes	perform	registration,	including	particulars	on	when	requests



agents	and	nodes	perform	registration,	including	particulars	on	when	requests
and	replies	are	sent,	how	to	handle	various	special	conditions	such	as	invalid
requests,	rules	for	how	home	agents	maintain	a	table	of	mobility	bindings,	and
much	more.	The	standard	covers	the	definition	of	extensions	to	the	regular
registration	messages	that	support	authentication,	which	is	required	for	secure
communications	(see	the	section	on	security	issues	later	in	this	chapter	for	more
details).	It	also	includes	the	ability	to	have	a	mobile	node	that	maintains	more
than	one	concurrent	binding,	when	needed.

Registration	Request	Message	Format
Registration	Request	messages	have	the	format	shown	in	Tables	Table	30-4	and
Table	30-5	and	illustrated	in	Figure	30-6.	See	the	section	on	Mobile	IP
encapsulation	later	in	this	chapter	for	details	on	minimal	and	GRE	encapsulation
and	reverse	tunneling.

Table	30-4.	Mobile	IP	Registration	Request	Message	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	registration	message	type.	For	a	request,	this	field	is	1.

Flags 1 A	one-byte	field	containing	several	informational	flags	that	convey
specific	requests	that	are	being	made	by	the	mobile	node	to	the	home
agent.	When	set,	the	flags	conveys	the	meanings	shown	in	Table	30-5.

Lifetime 2 Length	of	time,	in	seconds,	that	the	mobile	node	requests	from	the
home	agent	for	this	registration.

Home
Address

4 The	home	(normal)	IP	address	of	the	mobile	node	when	on	its	home
network.	Uniquely	identifies	the	device	regardless	of	how	the	request
is	conveyed	to	the	home	agent.

Home	Agent 4 The	IP	address	of	the	device	acting	as	the	mobile	node's	home	agent.

Care-Of
Address

4 The	IP	address	being	used	by	the	mobile	node	as	its	care-of	address.

Identification 8 A	64-bit	number	that	uniquely	identifies	the	Registration	Request	and
is	used	to	match	requests	to	replies.	It	also	provides	protection	against
replay	attacks;	see	the	section	on	Mobile	IP	security	issues	later	in	this
chapter	for	more	information.



Extensions Variable Extension	fields	are	included	here	for	authentication	of	the	request.
Other	extensions	may	also	be	included.

Table	30-5.	Registration	Request	Flags

Subfield
Name

Size
(Bytes)

Description

S 1/8	(1
bit)

Simultaneous	Bindings:	Mobile	node	requests	that	prior	mobility	bindings
be	retained	in	addition	to	the	one	in	the	current	request.

B 1/8	(1
bit)

Broadcast	Datagrams:	Mobile	node	requests	that	broadcasts	on	the	home
network	be	forwarded	to	it.

D 1/8	(1
bit)

Decapsulation	by	Mobile	Node:	Mobile	node	is	telling	the	home	agent
that	it	will	itself	decapsulate	encapsulated	datagrams,	as	opposed	to	a
foreign	agent.	In	other	words,	when	this	is	one,	the	mobile	node	is	using	a
co-located	care-of	address;	when	zero,	it	is	using	a	foreign	agent	care-of
address.

M 1/8	(1
bit)

Minimal	Encapsulation:	Mobile	node	requests	that	home	agent	use
minimal	encapsulation	for	forwarded	datagrams.

G 1/8	(1
bit)

GRE	Encapsulation:	Mobile	node	requests	that	home	agent	use	GRE
encapsulation	for	forwarded	datagrams.

r 1/8
(1bit)

Reserved:	Not	used;	sent	as	zero.

T 1/8	(1
bit)

Reverse	Tunneling:	Mobile	node	requests	that	reverse	tunneling	be	used
by	the	home	agent.

x 1/8	(1
bit)

Reserved:	Not	used;	sent	as	zero.



Figure	30-6.	Mobile	IP	Registration	Request	message	format	This	message	is	carried	in	the	payload	of	a
User	Datagram	Protocol	(UDP)	message,	the	headers	of	which	are	not	shown.

Registration	Reply	Message	Format
Registration	Reply	messages	are	formatted	as	shown	in	Table	30-6	and
illustrated	in	Figure	30-7.

Table	30-6.	Mobile	IP	Registration	Reply	Message	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	registration	message	type.	For	a	reply,	this	field	is	3.

Code 1 Indicates	the	result	of	the	registration	request.	This	field	is	set	to	0	if
the	registration	was	accepted,	1	if	it	was	accepted	but	simultaneous
bindings	were	requested	and	are	not	supported.	If	the	registration	was
denied,	a	different	reason	code	is	provided	that	indicates	the	reason
for	the	rejection,	as	well	as	whether	it	was	the	home	agent	or	foreign
agent	that	denied	it.

Lifetime 2 If	the	registration	was	accepted,	this	represents	the	length	of	time	in
seconds	until	the	registration	expires.	This	may	be	a	different	value
than	the	mobile	node	requested.

Home 4 The	home	(normal)	IP	address	of	the	mobile	node	when	it's	on	its



Home
Address

4 The	home	(normal)	IP	address	of	the	mobile	node	when	it's	on	its
home	network.	Uniquely	identifies	the	device	regardless	of	how	the
request	is	conveyed	to	the	home	agent	so	that	the	message	can	be
delivered	to	it	if	the	same	foreign	agent	serves	multiple	mobile	nodes.

Home	Agent 4 The	IP	address	of	the	device	acting	as	the	mobile	node's	home	agent.

Identification 8 A	64-bit	number	that	uniquely	identifies	the	Registration	Reply	and	is
matched	to	the	Identification	field	of	the	request	that	precipitated	it.

Extensions Variable Extension	fields	are	included	here	for	the	authentication	of	the	reply.
Other	extensions	may	also	be	included.

Figure	30-7.	Mobile	IP	Registration	Reply	Message	format	This	message	is	carried	in	the	payload	of	a
UDP	message,	the	headers	of	which	are	not	shown.



Mobile	IP	Data	Encapsulation	and	Tunneling
Once	a	mobile	node	on	a	foreign	network	has	completed	a	successful	registration
with	its	home	agent,	the	Mobile	IP	datagram	forwarding	process	described
earlier	in	this	chapter	will	be	fully	"activated."	The	home	agent	will	intercept
datagrams	intended	for	the	mobile	node	as	they	are	routed	to	its	home	network,
and	forward	them	to	the	mobile	node.	Encapsulating	the	datagrams,	and	then
sending	them	to	the	node's	care-of	address,	does	this.

Encapsulation	is	required	because	each	datagram	that	you	intercept	and	forward
needs	to	be	resent	over	the	network	to	the	device's	care-of	address.	In	theory,	the
designers	might	conceivably	have	done	this	by	just	having	the	home	agent
change	the	destination	address	and	stick	it	back	out	on	the	network,	but	there	are
various	complications	that	make	this	unwise.	It	makes	more	sense	to	take	the
entire	datagram	and	wrap	it	in	a	new	set	of	headers	before	retransmitting.	In	my
mail-forwarding	analogy,	this	is	comparable	to	taking	a	letter	received	for	the
traveling	consultant	and	putting	it	into	a	fresh	envelope	for	forwarding,	as
opposed	to	just	crossing	off	the	original	address	and	putting	a	new	one	on.

The	default	encapsulation	process	used	in	Mobile	IP	is	called	IP	Encapsulation
within	IP,	which	is	as	it's	defined	in	RFC	2003.	It's	commonly	abbreviated	IP-in-
IP.	It	is	a	relatively	simple	method	that	describes	how	to	take	an	IP	datagram	and
make	it	the	payload	of	another	IP	datagram.	In	Mobile	IP,	the	new	headers
specify	how	to	send	the	encapsulated	datagram	to	the	mobile	node's	care-of
address.

In	addition	to	IP-in-IP,	the	following	two	encapsulation	methods	may	be
optionally	used:	Minimal	Encapsulation	within	IP,	which	is	defined	in	RFC
2004,	and	Generic	Routing	Encapsulation	(GRE),	which	is	defined	in	RFC	1701.
To	use	either	of	these,	the	mobile	node	must	request	the	appropriate	method	in
its	Registration	Request,	and	the	home	agent	must	agree	to	use	it.	If	foreign
agent	care-of	addressing	is	used,	the	foreign	agent	also	must	support	the	method
desired.

Mobile	IP	Conventional	Tunneling
The	encapsulation	process	creates	a	logical	construct	called	a	tunnel	between	the



device	that	encapsulates	and	the	one	that	decapsulates.	This	is	the	same	idea	of	a
tunnel	used	in	discussions	of	virtual	private	networks	(VPNs),	IPsec	tunnel
mode,	or	the	various	other	tunneling	protocols	used	for	security.	The	tunnel
represents	a	conduit	over	which	datagrams	are	forwarded	across	an	arbitrary
internetwork,	with	the	details	of	the	encapsulated	datagram	(meaning	the	original
IP	headers)	temporarily	hidden.

In	Mobile	IP,	the	start	of	the	tunnel	is	the	home	agent,	which	does	the
encapsulation.	The	end	of	the	tunnel	depends	on	which	of	the	two	types	of	care-
of	address	is	being	used:

Foreign	Agent	Care-Of	Address	The	foreign	agent	is	the	end	of	the	tunnel.	It
receives	encapsulated	messages	from	the	home	agent,	strips	off	the	outer	IP
header,	and	then	delivers	the	datagram	to	the	mobile	node.	This	is	generally	done
using	layer	2,	because	the	mobile	node	and	foreign	agent	are	on	the	same	local
network,	and	the	mobile	node	does	not	have	its	own	IP	address	on	that	network,
because	it	is	using	the	foreign	agent's	address.

Co-Located	Care-Of	Address	The	mobile	node	itself	is	the	end	of	the	tunnel
and	strips	off	the	outer	header.

Normally,	the	tunnel	described	previously	is	used	only	for	datagrams	that	have
been	sent	to	the	mobile	node	and	captured	by	the	home	agent.	When	the	mobile
node	wants	to	send	a	datagram,	it	doesn't	tunnel	it	back	to	the	home	agent;	this
would	be	needlessly	inefficient.	Instead,	it	just	sends	out	the	datagram	directly
using	whatever	router	it	can	find	on	its	current	network,	which	may	or	may	not
be	a	foreign	agent.	When	it	does	this,	it	uses	its	own	home	address	as	the	source
address	for	any	requests	it	sends.	As	a	result,	any	response	to	those	requests	will
go	back	to	the	home	network.	This	sets	up	a	triangle	of	three	transmissions	for
these	kinds	of	transactions	(illustrated	in	Figure	30-8):

1.	 The	mobile	node	sends	a	request	from	the	foreign	network	to	some	third-
party	device	somewhere	on	the	internetwork.

2.	 The	third-party	device	responds	back	to	the	mobile	node.	However,	this
sends	the	reply	back	to	the	model	node's	home	address	on	its	home
network.

3.	 The	home	agent	intercepts	the	response	on	the	home	network	and	tunnels	it



back	to	the	mobile	node.

Figure	30-8.	Mobile	IP	encapsulation	and	tunneling	This	example	illustrates	how	a	typical	request/reply
message	exchange	in	Mobile	IP	results	in	a	triangle	of	communication.	In	step	1,	the	mobile	node	sends
a	request	to	a	remote	server	somewhere	on	the	Internet.	It	uses	its	own	home	address	as	the	source	for
this	request,	so	in	step	2,	the	reply	goes	back	to	the	home	agent.	Step	3	consists	of	the	home	agent

tunneling	the	reply	back	to	the	mobile	node.

The	reverse	transaction	would	be	pretty	much	the	same,	except	in	the	reverse
order.	In	that	case,	the	third-party	(Internet)	device	would	send	a	request	to
mobile	node,	which	would	be	received	and	forwarded	by	the	home	agent.	The
mobile	node	would	reply	back	directly	to	the	Internet	host.

TIP

KEY	CONCEPT	Once	Mobile	IP	is	set	up	and	operational,	it	works	by	having	the	home	agent
encapsulate	and	tunnel	received	datagrams	to	the	mobile	node.	The	mobile	device	normally	sends
datagrams	directly	to	Internet	hosts,	which	respond	back	to	the	mobile's	home	agent,	which	forwards
those	datagrams	to	the	mobile	node.	This	means	a	request/reply	communication	takes	three
transmissions.

Mobile	IP	Reverse	Tunneling
There	may	be	situations	where	it	is	not	feasible	or	desired	to	have	the	mobile
node	send	datagrams	directly	to	the	internetwork	using	a	router	on	the	foreign



network,	as	you	just	saw.	In	this	case,	an	optional	feature	called	reverse
tunneling	may	be	deployed	if	it	is	supported	by	the	mobile	node,	the	home	agent,
and,	if	relevant,	the	foreign	agent.	When	this	is	done,	a	reverse	tunnel	that
complements	the	normal	one	is	set	up	between	the	mobile	node	and	the	home
agent,	or	between	the	foreign	agent	and	the	home	agent,	depending	on	the	care-
of	address	type.	All	transmissions	from	the	mobile	node	are	tunneled	back	to	the
home	network	where	the	home	agent	transmits	them	over	the	internetwork,
thereby	resulting	in	a	more	symmetric	operation	as	opposed	to	the	triangle	just
described.	This	is	basically	what	I	described	earlier	as	being	needlessly
inefficient,	because	it	means	each	communication	requires	four	steps.	Thus,	it	is
used	only	when	necessary.

One	situation	for	which	reverse	tunneling	may	be	required	is	if	the	network
where	the	mobile	node	is	located	has	implemented	certain	security	measures	that
prohibit	the	node	from	sending	datagrams	using	its	normal	IP	address.	In
particular,	a	network	may	be	set	up	to	disallow	outgoing	datagrams	with	a	source
address	that	doesn't	match	its	network	prefix.	This	is	often	done	to	prevent
spoofing	(impersonating	another's	IP	address).

TIP

KEY	CONCEPT	An	optional	feature	called	reverse	tunneling	may	be	used	in	certain	cases,	such	as
when	a	network	does	not	allow	outgoing	datagrams	with	a	foreign	source	IP	address.	When	enabled,
rather	than	sending	datagrams	directly,	the	mobile	node	tunnels	all	transmissions	back	to	the	home	agent,
which	sends	them	on	the	Internet.

Note	that	everything	I've	just	discussed	is	applicable	to	normal—meaning
unicast—datagrams	that	are	sent	to	and	from	the	mobile	node.	Broadcast
datagrams	on	the	home	network,	which	would	normally	be	intended	for	the
mobile	node	if	it	were	at	home,	are	not	forwarded	unless	the	node	specifically
asks	for	this	service	during	registration.	Multicast	operation	on	the	foreign
network	is	also	supported,	but	extra	work	is	required	by	the	mobile	node	to	set	it
up.



Mobile	IP	and	TCP/IP	Address	Resolution
Protocol	(ARP)	Operation
Mobile	IP	is	a	protocol	that	does	a	good	job	of	implementing	a	difficult	function:
It	transparently	allows	an	IP	device	to	travel	to	a	different	network.
Unfortunately,	a	problem	with	any	protocol	that	tries	to	change	how	IP	works	is
dealing	with	special	cases.	Having	a	home	agent	intercept	datagrams	and	tunnel
them	to	the	mobile	node	works	well	in	general	terms,	but	there	are	some
instances	in	which	extra	work	is	required.	One	of	these	is	the	use	of	ARP,	which
breaks	under	Mobile	IP	unless	we	take	special	steps.

TIP

BACKGROUND	INFORMATION	Some	understanding	of	how	ARP	works	in	general	terms	is
assumed	in	this	topic.	This	includes	ARP	proxying,	which	is	described	in	Chapter	13.

To	understand	what	the	problem	is	with	ARP,	consider	a	mobile	node	that	is	on
a	foreign	network	and	has	successfully	registered	with	its	home	agent.	The	home
agent	will	intercept	all	datagrams	that	come	onto	the	home	network,	particularly
the	ones	intended	for	the	mobile	node,	and	then	encapsulate	and	forward	them.
For	this	to	happen,	though,	the	home	agent	(home	router)	must	see	the	datagram.
This	normally	occurs	only	when	a	datagram	comes	onto	the	home	network	from
the	outside	and	is	processed	by	the	router.

What	happens	when	a	local	device	on	the	home	network	itself	wants	to	transmit
to	a	mobile	node	that	has	traveled	elsewhere?	Remember	that	this	device	may
not	be	mobile	itself	and	probably	knows	nothing	about	Mobile	IP.	It	will	follow
the	standard	process	for	deciding	what	to	do	with	a	datagram	that	it	needs	to
send,	as	explained	in	Chapter	23.	It	will	compare	its	network	ID	to	that	of	the
mobile	node	and	realize	that	it	doesn't	need	to	route	its	datagram;	it	can	send	it
directly	to	the	mobile	node.

The	local	host	will	attempt	to	use	ARP	to	find	the	data	link	layer	address	of	the
mobile	node	so	that	it	can	send	the	datagram	to	it	directly.	The	host	will	start	by
looking	in	its	ARP	cache,	and	if	it	finds	the	node's	data	link	layer	address	there,
it	will	use	it	to	send	at	layer	2.	The	mobile	node	is	no	longer	on	the	local	network
segment,	so	the	message	will	never	be	received.	If	there	is	no	ARP	cache	entry,



segment,	so	the	message	will	never	be	received.	If	there	is	no	ARP	cache	entry,
the	host	on	the	home	network	will	attempt	to	send	an	ARP	Request	to	the	mobile
node	to	determine	its	layer	2	address.	Again,	the	mobile	node	has	traveled	away,
so	this	request	will	go	unanswered.

Solving	this	problem	requires	the	intervention	of,	you	guessed	it,	the	home
agent.	It	must	perform	two	tasks	to	enable	local	hosts	to	send	to	the	mobile	node:

ARP	Proxying	The	home	agent	must	listen	for	any	ARP	Requests	that	are	sent
by	nodes	on	the	same	network	as	any	of	the	mobile	nodes	that	are	currently
registered	to	it.	When	it	hears	one,	it	replies	in	the	mobile	node's	stead,	and
specifies	its	own	data	link	layer	address	as	the	binding	for	the	mobile	node's	IP
address.	This	will	cause	hosts	on	the	home	network	to	send	any	datagrams	that
are	intended	for	the	mobile	node	to	the	home	agent	where	they	can	be	forwarded.
This	process	is	illustrated	in	Figure	30-9.

Gratuitous	ARP	Proxying	helps	with	ARP	Requests,	but	what	about	devices
that	already	have	cache	entries	for	the	mobile	node?	As	soon	as	the	mobile	node
leaves	the	network,	these	become	automatically	stale.	To	correct	them,	the	home
agent	sends	what	is	called	a	gratuitous	ARP	message,	which	tells	devices	on	the
local	network	to	associate	the	mobile	node's	IP	address	with	the	home	agent's
data	link	layer	address.	The	term	gratuitous	refers	to	the	fact	that	the	device	isn't
sending	the	message	in	order	to	perform	an	actual	address	resolution,	but	merely
to	cause	caches	to	be	updated.	It	may	be	sent	more	than	once	to	ensure	that	every
device	gets	the	message.



Figure	30-9.	ARP	proxying	by	Mobile	IP	home	agent	The	home	agent	must	take	special	steps	to	deal
with	transmissions	from	devices	on	the	local	network	to	the	mobile	node.	In	this	example	(using	short
hardware	addresses	for	simplicity),	the	hardware	address	of	the	mobile	node	is	48	and	the	home	agent	is
63.	A	local	client	on	the	home	network	with	hardware	address	97	sends	an	ARP	Request	to	find	out	the
hardware	address	of	the	mobile	node.	The	home	agent	responds	on	the	mobile's	behalf,	specifying	not
hardware	address	48	but	rather	its	own	address:	63.	The	client	will	thus	send	to	the	home	agent,	which

can	then	forward	the	data	to	the	mobile	node	on	the	foreign	network.

TIP

KEY	CONCEPT	In	theory,	problems	can	occur	with	hosts	on	the	mobile	node's	home	network	that	are
trying	to	send	datagrams	to	the	host	at	layer	2.	To	address	these	issues,	the	home	agent	is	required	to	use
proxy	ARP	to	direct	such	devices	to	send	to	the	home	agent	so	they	can	be	forwarded.	It	must	also	use
gratuitous	ARP	to	update	any	existing	ARP	caches	to	that	effect.

Once	these	steps	are	taken,	ARP	should	function	normally	on	the	home	link.
When	the	mobile	device	returns	back	to	the	home	network,	the	process	must	be
reversed.	Upon	deregistration	with	the	home	agent,	the	mobile	device	will	stop
proxying	for	the	mobile	node.	Both	the	mobile	node	and	the	home	agent	will
also	send	gratuitous	ARP	broadcasts	that	update	local	device	caches.	These	will
again	associate	the	mobile	node's	IP	address	with	its	own	layer	2	address,	instead
of	the	layer	2	address	of	the	home	agent.



Mobile	IP	Efficiency	Issues
Having	the	home	agent	forward	all	datagrams	to	the	mobile	node	wherever	it
may	be	is	a	convenient	solution	to	mobility,	but	it's	also	a	rather	inefficient	one.
Since	the	device	must	send	every	datagram	first	to	the	home	network	and	then
forward	it	to	the	mobile	node,	the	datagrams	are	going	to	travel	over	some	part
of	the	internetwork	twice.	The	degree	of	inefficiency	represented	by	forwarding
can	be	significant	and	may	lead	to	problems	with	certain	applications.

To	see	what	the	problem	is,	let's	consider	a	traveling	mobile	Node	M	and	a
regular	device	that	wants	to	send	to	it,	Device	A.	The	degree	of	the	inefficiency
of	Mobile	IP	is	a	function	of	the	internetwork	distance	between	Device	A	and
Node	M's	home	network,	compared	to	the	internetwork	distance	between	Device
A	and	Node	M's	current	network.	By	distance,	I	mean	the	term	as	it	is	used	in
determining	routes	on	an	internetwork.	Two	devices	are	closer	when	it	takes	less
time	and	fewer	hops	to	communicate	between	them,	and	they	are	farther	when
more	hops	are	required.	(I	use	geography	in	the	following	examples	to	represent
this	notion	of	distance,	but	remember	that	geographical	distance	is	only	one
factor	in	internetwork	distance.)

Let's	consider	the	case	in	which	mobile	Node	M	is	on	a	foreign	network	that's
quite	far	from	home,	and	Device	A	wants	to	send	a	datagram	using	Node	M's
home	IP	address.	Suppose	the	home	network	is	in	London	and	the	device	is
again	in	Tokyo.	Let's	look	at	the	inefficiency	factor	of	Mobile	IP,	compared	to
the	alternative	of	having	the	mobile	node	just	get	a	new	temporary	IP	address	on
the	foreign	network	and	not	use	Mobile	IP.	The	following	examples	are	arranged
in	order	of	increasing	inefficiency:

Sending	Device	on	Home	Network	In	this	situation,	Device	A	will	send	a
datagram	that	is	immediately	intercepted	by	the	home	agent	on	the	home
network	and	forwarded	to	the	mobile	node.	There	is	really	no	inefficiency	here
at	all	(except	for	overhead	for	encapsulation	and	such),	because	even	if	Device	A
did	send	the	datagram	directly	to	the	mobile	node	with	a	new	foreign	address,
the	datagram	would	probably	be	routed	through	the	home	agent	router	anyway.

Sending	Device	on	Network	Close	to	Home	Network	Let's	say	a	device	in
Paris	wants	to	send	to	the	mobile	node.	The	datagram	goes	from	Paris	to	London



and	then	to	Tokyo.	That's	not	too	bad.

Sending	Device	on	Network	Close	to	Foreign	Network	Now	suppose	the
sending	device	is	in	Taipei,	Taiwan.	In	this	situation,	Mobile	IP	becomes	quite
inefficient.	The	datagram	must	be	sent	from	Taipei	all	the	way	to	London,	and
then	all	the	way	back	to	Tokyo.

Sending	Device	on	Foreign	Network	The	greatest	inefficiency	occurs	when	the
sending	device	is	actually	on	the	foreign	network	that	the	mobile	node	is
visiting.	If	Device	A	is	on	the	mobile	node's	current	network	in	Tokyo,	it	must
send	all	the	way	to	London,	and	then	have	the	result	forwarded	all	the	way	back
again	to	Tokyo.	Without	Mobile	IP,	all	you	would	need	to	do	is	use	ARP	and
then	deliver	directly	at	layer	2	without	needing	routing	at	all!	This	scenario	is
illustrated	in	Figure	30-10.

Unfortunately,	the	worst-case	scenario	of	the	sending	device	on	a	foreign
network	is	one	that	occurs	quite	often.	It's	common	for	a	mobile	device	to
connect	with	a	foreign	network	in	order	for	it	to	communicate	specifically	with
the	hosts	on	that	network.

Figure	30-10.	A	Mobile	IP	inefficiency	worst-case	scenario	This	diagram	shows	the	worst	possible	case
of	Mobile	IP	inefficiency.	When	a	device	on	the	foreign	network	where	the	mobile	is	located	tries	to
send	data	to	the	mobile	device.	The	sender	here,	210.4.79.11,	uses	the	mobile	node's	home	address	so
that	the	transmission	must	be	routed	all	the	way	back	to	London,	and	then	forwarded	back	to	Tokyo,

even	though	the	two	devices	might	be	sitting	on	the	same	desk!



To	make	matters	worse,	consider	what	happens	if	reverse	tunneling	is	used!
Here,	tunneling	is	done	not	just	for	datagrams	sent	to	the	mobile	node,	but	for
datagrams	sent	from	the	device	as	well.	In	the	worst-case	example,	a
request/reply	pair	from	the	mobile	node	to	another	device	on	the	foreign	network
requires	two	complete	round-trips	from	Tokyo	to	London	and	back.	Clearly,	this
is	far	from	ideal.

TIP

KEY	CONCEPT	Since	datagrams	are	sent	to	a	Mobile	IP	at	its	home	address,	each	datagram	sent	to	the
mobile	device	must	first	go	back	to	its	home	network	and	then	be	forwarded	to	its	current	location.	The
level	of	inefficiency	that	results	depends	on	how	far	the	sender	is	from	the	mobile's	home	network.	The
worst	case	actually	occurs	if	the	sender	and	mobile	are	on	the	same	foreign	network,	in	which	case	each
transmission	must	make	a	round-trip	to	the	mobile's	home	network	and	then	back	again.

There	really	isn't	any	solution	to	this	problem	within	Mobile	IP	itself;	it's	just	a
natural	consequence	of	how	the	protocol	works.	The	only	way	to	really	improve
things	is	to	"hack	in"	a	solution	that	ultimately	boils	down	to	one	of	the	two
options	we	always	have	in	IP	without	mobility	support:	Either	give	the	mobile
device	a	temporary	real	IP	address	on	the	foreign	network,	or	use	a	host-specific
route	for	the	mobile	device	while	it's	on	the	foreign	network.

You've	already	seen	that	these	both	have	problems,	which	is	why	Mobile	IP	was
created	in	the	first	place.	There	may	be	situations,	however,	in	which	efficiency
is	more	important	than	the	transparent	portability	that	Mobile	IP	provides.	For	a
long-term	deployment	on	a	foreign	network	far	from	the	home	network,	or	for
applications	where	efficiency	is	paramount,	it	may	make	sense	to	employ	one	of
these	techniques.	For	example,	a	corporation	that	has	a	small	number	of	offices
in	different	cities	that	are	connected	using	the	Internet	might	set	up	special
routing.	This	would	let	mobile	devices	visiting	from	other	cities	talk	directly	to
nodes	that	are	local	to	the	foreign	part	of	the	network	without	being	routed
across	the	Internet.



Mobile	IP	Security	Considerations
Security	is	always	a	concern	in	any	internetworking	environment	these	days,	but
is	especially	important	with	Mobile	IP.	There	are	a	number	of	reasons	for	this.
The	reasons	are	related	to	both	how	the	protocol	is	used	and	the	specific
mechanisms	by	which	it	is	implemented.

In	terms	of	use,	security	was	kept	in	mind	during	Mobile	IP's	development
because	mobile	devices	often	use	wireless	networking	technologies.	Wireless
communication	is	inherently	less	secure	than	wired	communication,	because
transmissions	are	sent	out	in	the	open,	where	they	can	be	intercepted.	It's	also
easier	for	malicious	users	to	disrupt	the	operation	of	wireless	devices.

In	terms	of	operation,	Mobile	IP	has	a	number	of	risks	due	to	the	fact	that	it	uses
a	registration	system	and	then	forwards	datagrams	across	an	unsecured
internetwork.	A	malicious	device	could	interfere	with	registration	process,
thereby	causing	the	datagrams	intended	for	a	mobile	device	to	be	diverted.	A	bad
guy	might	also	interfere	with	the	data	forwarding	process	itself	by	encapsulating
a	bogus	datagram	to	trick	a	mobile	node	into	thinking	it	was	sent	something	that
it	never	was.

For	these	reasons,	the	Mobile	IP	standard	includes	a	limited	number	of	explicit
provisions	to	safeguard	against	various	security	risks.	One	security	measure	was
considered	sufficiently	important	that	it	was	built	into	the	Mobile	IP	standard
directly:	the	authentication	of	Registration	Request	and	Registration	Reply
messages.	This	authentication	process	is	accomplished	in	a	manner	that's
somewhat	similar	to	how	the	IPsec	Authentication	Header	(AH)	operates,	as
described	in	Chapter	29.	Its	goal	is	to	prevent	unauthorized	devices	from
intercepting	traffic	by	tricking	an	agent	into	setting	up,	renewing,	or	canceling	a
registration	improperly.

All	Mobile	IP	devices	are	required	to	support	authentication.	Nodes	must	use	it
for	requests,	and	agents	must	use	it	for	replies.	Keys	must	be	assigned	manually
because	there	is	no	automated	system	for	secure	key	distribution.	The	default
authentication	method	uses	HMAC-MD5	(specified	in	RFC	2403),	which	is	one
of	two	hashing	algorithms	used	by	IPsec.



Another	concern	is	a	security	problem	called	a	replay	attack.	In	this	type	of
attack,	a	third	party	intercepts	a	datagram,	holds	on	to	it,	and	then	resends	it	later
on.	This	seems	fairly	harmless,	but	consider	the	importance	of	timing.	Imagine	a
mobile	node	that	registers	with	its	home	agent,	and	then	later	returns	home	and
deregisters.	If	a	malicious	device	captures	a	copy	of	the	original	Registration
Request	and	resends	it,	the	home	agent	might	be	fooled	into	thinking	the	node
has	traveled	away	from	home	when	it	has	not.	It	could	then	intercept	the
forwarded	datagrams.

The	Identification	field	used	in	Registration	Request	and	Registration	Reply
messages	is	designed	to	prevent	replay	attacks.	Since	each	request	has	a	different
Identification	number,	nodes	and	agents	can	match	up	requests	with	replies	and
reject	any	datagrams	they	receive	that	are	repeats	of	ones	they	have	seen	already.
The	Mobile	IP	standard	also	specifies	alternative	methods	for	protecting	against
replays.

While	Mobile	IP	includes	authentication	measures	for	registration	messages,	it
does	not	for	other	types	of	messages.	It	also	doesn't	specify	authentication	of
encapsulated	datagrams	being	forwarded	from	the	home	agent	to	the	mobile
node.	Encryption	is	also	not	provided	to	safeguard	the	privacy	of	either	control
messages	or	forwarded	datagrams.	The	obvious	solution	when	stronger
assurances	of	privacy	or	authenticity	are	required	is	to	make	use	of	the	IPsec	AH
and/or	Encapsulating	Security	Payload	(ESP)	protocols	(described	in
Chapter	29).



Part	II-6.	IP	SUPPORT	PROTOCOLS
Chapter	31
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The	Internet	Protocol	(IP)	is	the	key	network	layer	protocol	that	implements	the
TCP/IP	protocol	suite.	Since	IP	is	the	protocol	that	provides	the	mechanism	for
delivering	datagrams	between	devices,	it	is	designed	to	be	relatively	basic.	For
example,	it	lacks	provisions	for	some	way	to	allow	errors	to	be	reported	back	to
a	transmitting	device,	and	for	tests	and	special	tasks	to	be	accomplished.	These
auxiliary	capabilities	are	necessary	for	the	operation	of	an	internetwork,
however,	so	TCP/IP	includes	support	protocols	that	help	IP	perform	these	tasks.
This	part	examines	the	two	main	IP	support	protocols:	the	Internet	Control
Message	Protocol	(ICMP)	and	the	Neighbor	Discovery	(ND)	protocol.

The	bulk	of	this	part	thoroughly	describes	ICMP,	which	was	initially	developed
to	be	a	companion	to	the	original	IP	version	4	(IPv4).	With	the	creation	of	IP
version	6	(IPv6),	a	new	version	of	ICMP,	called	ICMP	version	6	(ICMPv6),	was
created	as	well.	The	original	ICMP	is	now	sometimes	called	ICMPv4	to
differentiate	it,	just	as	the	original	IP	is	now	often	called	IPv4.

The	two	versions	of	ICMP	have	some	differences	in	their	specifics,	but	they	are
very	similar	in	overall	operation.	For	this	reason,	I	have	integrated	the	general
operation	description	of	both	versions	of	ICMP	in	the	first	chapter	of	this	part.
The	area	where	ICMPv4	and	ICMPv6	most	differ	is	in	specific	message	types
and	formats,	so	these	have	been	described	separately	in	the	second	through	fifth
chapters.	These	chapters	describe	the	error	messages	and	informational	messages
in	each	version.

The	final	chapter	describes	ND,	which	was	created	specifically	to	assist	in	the
operation	of	IPv6	and	is	closely	related	to	ICMPv6.



Due	to	the	close	relationship	between	ICMP	and	IP,	this	part	assumes	that	you
are	familiar	with	basic	IP	concepts,	including	IP	addressing,	the	general	format
of	IP	datagrams,	and	how	they	are	routed	(covered	in	Part	II-3).	To	better
understand	ICMPv6	details,	you	may	also	want	to	reference	the	IPv6	addressing
and	datagram	encapsulation	information	(covered	in	Part	II-4).



Chapter	31.	ICMP	CONCEPTS
AND	GENERAL	OPERATION

The	Internet	Control	Message	Protocol	(ICMP)	is	one	of	the	underappreciated
"worker	bees"	of	the	networking	world.	Everyone	knows	how	important	key
protocols	such	as	the	Internet	Protocol	(IP)	are	to	TCP/IP,	but	few	realize	that
the	suite	as	a	whole	relies	on	many	functions	that	ICMP	provides.	Originally
created	to	allow	the	reporting	of	a	small	set	of	error	conditions,	ICMP	messages
are	now	used	to	implement	a	wide	range	of	error-reporting,	feedback,	and	testing
capabilities.	While	each	message	type	is	unique,	they	are	all	implemented	using
a	common	message	format,	sent,	and	then	received	based	on	relatively	simple
protocol	rules.	This	makes	ICMP	one	of	the	easiest	TCP/IP	protocols	to
understand.	(Yes,	I	actually	said	something	in	this	book	was	easy!)

In	this	chapter,	I	provide	a	general	description	of	ICMP.	I	begin	with	an
overview	of	ICMP,	discussing	its	purpose,	history,	and	the	versions	and
standards	that	define	it.	I	describe	the	general	method	by	which	ICMP	operates
and	discuss	the	rules	that	govern	how	and	when	ICMP	messages	are	created	and
processed.	I	then	outline	the	common	format	used	for	ICMP	messages	in
versions	4	and	6	of	the	protocol	(ICMPv4	and	ICMPv6),	and	how	data	is
encapsulated	in	them	in	general	terms.	I	conclude	with	a	discussion	of	ICMP
message	classifications	and	a	summary	of	different	message	types	and	codes	for
both	ICMPv4	and	ICMPv6.

ICMP	Overview,	History,	Versions,	and
Standards
IP	is	the	foundation	of	the	TCP/IP	protocol	suite,	because	it	is	the	mechanism
responsible	for	delivering	datagrams.	Three	of	the	main	characteristics	that



describe	IP's	datagram	delivery	method	are	connectionless,	unreliable,	and
unacknowledged.	This	means	that	datagrams	are	just	sent	over	the	internetwork
with	no	prior	connection	established,	no	assurance	they	will	show	up,	and	no
acknowledgment	sent	back	to	the	sender	that	they	arrived.	On	the	surface,	this
seems	like	it	would	result	in	a	protocol	that	is	difficult	to	use	and	impossible	to
rely	on,	and	thus	would	be	a	poor	choice	for	designing	a	protocol	suite.
However,	even	though	IP	makes	no	guarantees,	it	works	very	well	because	most
of	the	time,	IP	internetworks	are	sufficiently	robust	that	messages	get	where	they
need	to	go.

Even	the	best-designed	system	still	encounters	problems,	of	course.	Incorrect
packets	are	occasionally	sent,	hardware	devices	have	problems,	routes	are	found
to	be	invalid,	and	so	forth.	IP	devices	also	often	need	to	share	specific
information	in	order	to	guide	them	in	their	operation,	and	they	need	to	perform
tests	and	diagnostics.	However,	IP	itself	includes	no	provision	that	allows
devices	to	exchange	low-level	control	messages.	Instead,	these	features	are
provided	in	the	form	of	a	companion	protocol	to	IP	called	the	Internet	Control
Message	Protocol	(ICMP).

A	good	analogy	for	the	relationship	between	IP	and	ICMP	is	to	consider	the	one
between	a	high-powered	executive	and	her	experienced	administrative	assistant.
The	executive	is	busy	and	her	time	is	very	expensive.	She	is	paid	to	do	a	specific
job	and	to	do	it	well,	and	not	to	spend	time	on	administrative	tasks.	However,
without	someone	doing	those	tasks,	the	executive	could	not	do	her	job	properly.
The	administrative	assistant	does	the	important	support	jobs	that	make	it	possible
for	the	executive	to	focus	on	her	work.	The	working	relationship	between	them
is	very	important;	a	good	pair	will	work	together	like	a	cohesive	team,	even
anticipating	each	other's	needs.

In	TCP/IP,	IP	is	the	executive,	and	ICMP	is	its	administrative	assistant.	IP
focuses	on	its	core	activities,	such	as	addressing,	datagram	packaging,	and
routing.	ICMP	provides	critical	support	to	IP	in	the	form	of	ICMP	messages	that
allow	different	types	of	communication	to	occur	between	IP	devices.	These
messages	use	a	common	general	format	and	are	encapsulated	in	IP	datagrams	for
transmission.	They	are	divided	into	different	categories,	and	each	type	has	a
specific	use	and	internal	field	format.



Just	as	an	administrative	assistant	often	has	a	special	location	in	an	organization
chart,	and	usually	connects	with	a	dotted	line	directly	to	the	executive	she
assists,	ICMP	occupies	a	unique	place	in	the	TCP/IP	protocol	architecture	(see
Chapter	8).	Technically,	you	might	consider	ICMP	to	belong	to	layer	4,	because
it	creates	messages	that	are	encapsulated	in	IP	datagrams	and	sent	using	IP	at
layer	3.	However,	in	the	standard	that	first	defined	it,	ICMP	is	specifically
declared	to	be	not	only	part	of	the	network	layer,	but	also,	as	stated	in	RFC	792,
is	"actually	an	integral	part	of	IP,	[that]	must	be	implemented	by	every	IP
module."	This	was	the	initial	defining	standard	for	ICMP,	titled	simply	"Internet
Control	Message	Protocol."	It	was	published	at	the	same	time	as	the	standard	for
IP,	which	was	RFC	791.	This	is	further	indication	that	IP	and	ICMP	really	are	a
team	of	sorts.

Due	to	the	close	relationship	between	the	two,	when	the	new	version	6	of	the
Internet	Protocol	(IPv6)	was	developed	in	the	mid-1990s,	it	was	necessary	to
define	a	new	version	of	ICMP	as	well.	This	was	of	course	called	the	"Internet
Control	Message	Protocol	(ICMPv6)	for	the	Internet	Protocol	Version	6	(IPv6)
Specification."	It	was	first	published	as	RFC	1885	in	1995,	and	revised	in	RFC
2463	in	1998.	Just	as	the	original	IP	is	now	often	called	IPv4	to	differentiate	it
from	IPv6,	the	original	ICMP	is	now	also	called	ICMPv4.

TIP

KEY	CONCEPT	In	TCP/IP,	diagnostic,	test,	and	error-reporting	functions	at	the	internetwork	layer	are
performed	by	the	Internet	Control	Message	Protocol	(ICMP),	which	is	like	IP's	"administrative
assistant."	The	original	version,	now	called	ICMPv4,	is	used	with	IPv4,	and	the	newer	ICMPv6	is	used
with	IPv6.

These	two	RFCs,	792	and	2463,	define	the	basic	operation	of	ICMPv4	and
ICMPv6,	respectively,	and	also	describe	some	of	the	ICMP	message	types
supported	by	each	version	of	the	protocol.	ICMPv4	and	ICMPv6	are	very	similar
in	most	respects,	although	they	have	some	differences,	most	of	which	are	a	direct
result	of	the	changes	made	to	IP	itself.	Another	document,	RFC	1122,
"Requirements	for	Internet	Hosts—Communication	Layers,"	contains	rules	for
how	ICMPv4	is	used,	as	you	will	see	soon	in	the	section	on	ICMP	message
creation	and	processing	conventions	later	in	this	chapter.	RFC	1812,
"Requirements	for	IP	Version	4	Routers,"	is	also	relevant.



Both	versions	of	the	protocol	define	a	general	messaging	system	that	was
designed	to	be	expandable.	This	means	that	in	addition	to	the	messages	defined
in	the	ICMP	standards	themselves,	other	protocols	may	also	define	message
types	used	in	ICMP.	Some	of	the	more	important	of	these	are	shown	in
Table	31-1.

Table	31-1.	Non-ICMP	Internet	Standards	That	Define	ICMP	Messages

ICMP	Version	of
Message	Types
Defined

RFC
Number

Name ICMP	Message	Types	Defined

	 950 Internet	Standard
Subnetting
Procedure

Address	Mask	Request,	Address	Mask
Reply

	 1256 ICMP	Router
Discovery
Messages

Router	Advertisement,	Router	Solicitation

ICMPv4 1393 Traceroute	Using
an	IP	Option

Traceroute

	 1812 Requirements	for
IP	Version	4
Routers

Defines	three	new	codes	(subtypes)	for
the	Destination	Unreachable	message.

ICMPv6 2461 Neighbor
Discovery	for	IP
Version	6	(IPv6)

Router	Advertisement,	Router
Solicitation,	Neighbor	Advertisement,
Neighbor	Solicitation,	Redirect

	 2894 Router
Renumbering	for
IPv6

Router	Renumbering

This	chapter	includes	a	full	list	of	the	ICMPv4	and	ICMPv6	message	types
covered	in	this	book	and	the	standards	that	define	each	one.



ICMP	General	Operation
ICMP	is	one	of	the	simplest	protocols	in	the	TCP/IP	protocol	suite.	Most
protocols	implement	a	particular	type	of	functionality	to	either	facilitate	basic
operation	of	a	part	of	the	network	stack	or	an	application.	To	this	end,	they
include	many	specific	algorithms	and	tasks	that	define	the	protocol,	which	is
where	most	of	the	complexity	lies.	ICMP,	in	contrast,	is	exactly	what	its	name
suggests:	a	protocol	that	defines	control	messages.	As	such,	pretty	much	all	of
what	ICMP	is	about	is	providing	a	mechanism	for	any	IP	device	to	send	control
messages	to	another	device.

The	ICMP	Message-Passing	Service
Various	message	types	are	defined	in	ICMP	that	allow	different	types	of
information	to	be	exchanged.	These	are	usually	either	generated	for	the	purpose
of	reporting	errors	or	for	exchanging	important	information	of	different	sorts	that
is	needed	to	keep	IP	operating	smoothly.	ICMP	itself	doesn't	define	how	all	the
different	ICMP	messages	are	used;	this	is	done	by	the	protocols	that	use	the
messages.	In	this	manner,	ICMP	describes	a	simple	message-passing	service	to
other	protocols.

TIP

KEY	CONCEPT	ICMP	is	not	like	most	other	TCP/IP	protocols	in	that	it	does	not	perform	a	specific
task.	It	defines	a	mechanism	by	which	various	control	messages	can	be	transmitted	and	received	to
implement	a	variety	of	functions.

As	mentioned	in	the	preceding	section,	ICMP	is	considered	an	integral	part	of
IP,	even	though	it	uses	IP	to	send	its	messages.	Typically,	the	operation	of	ICMP
involves	some	portion	of	the	TCP/IP	protocol	software	on	a	machine	detecting	a
condition	that	causes	it	to	generate	an	ICMP	message.	This	is	often	the	IP	layer
itself,	though	it	may	be	some	other	part	of	the	software.	The	message	is	then
encapsulated	and	transmitted	like	any	other	TCP/IP	message,	and	is	given	no
special	treatment	compared	to	other	IP	datagrams.	The	message	is	sent	over	the
internetwork	to	the	IP	layer	at	the	receiving	device,	as	shown	in	Figure	31-1.

Again,	since	many	of	the	ICMP	messages	are	actually	intended	to	convey
information	to	a	device's	IP	software,	the	IP	layer	itself	may	be	the	ultimate



information	to	a	device's	IP	software,	the	IP	layer	itself	may	be	the	ultimate
destination	of	an	ICMP	message	once	a	recipient	gets	it.	In	other	cases,	the
ultimate	destination	may	be	some	other	part	of	the	TCP/IP	protocol	software,
which	is	determined	by	the	type	of	message	received.	ICMP	does	not	use	ports
like	the	User	Datagram	Protocol	(UDP)	or	Transmission	Control	Protocol	(TCP)
to	direct	its	messages	to	different	applications	on	a	host.	The	software	recognizes
the	message	type	and	directs	it	accordingly	within	the	software.

ICMP	was	originally	designed	with	the	idea	that	most	messages	would	be	sent
by	routers,	but	they	can	be	sent	by	both	routers	and	by	regular	hosts	as	well,
depending	on	the	message	type.	Some	are	obviously	sent	only	by	routers,	such	as
Redirect	messages;	others	may	be	sent	by	either	routers	or	hosts.	Many	of	the
ICMP	messages	are	used	in	matched	pairs,	especially	in	various	kinds	of
Request	and	Reply	messages,	and	Advertisement	and	Solicitation	messages.

Figure	31-1.	ICMP	general	operation	A	typical	use	of	ICMP	is	to	provide	a	feedback	mechanism	when
an	IP	message	is	sent.	In	this	example,	Device	A	is	trying	to	send	an	IP	datagram	to	Device	B.	However,
when	it	gets	to	Router	R3,	a	problem	of	some	sort	is	detected	that	causes	the	datagram	to	be	dropped.
Router	R3	sends	an	ICMP	message	back	to	Device	A	to	tell	it	that	something	happened,	hopefully	with
enough	information	to	let	Device	A	correct	the	problem,	if	possible.	Router	R3	can	only	send	the	ICMP

message	back	to	Device	A,	not	to	Router	R2	or	R1.

ICMP	Error	Reporting	Limited	to	the	Datagram
Source
One	interesting	general	characteristic	of	ICMP's	operation	is	that	when	errors	are



detected,	they	can	be	reported	using	ICMP,	but	only	back	to	the	original	source
of	a	datagram.	This	is	actually	a	big	drawback	in	how	ICMP	works.	Refer	back
to	Figure	31-1	and	consider	again	client	Host	A	sending	a	message	to	server
Host	B,	with	a	problem	detected	in	the	datagram	by	Router	R3.	Even	if	Router
R3	suspects	that	the	problem	was	caused	by	one	of	the	preceding	routers	that
handled	the	message,	such	as	Router	R2,	it	cannot	send	a	problem	report	to
Router	R2.	It	can	send	an	ICMP	message	only	back	to	Host	A.

This	limitation	is	an	artifact	of	how	IP	works.	You	may	recall	from	looking	at
the	IP	datagram	format	that	the	only	address	fields	are	for	the	original	source	and
ultimate	destination	of	the	datagram.	(The	only	exception	is	if	the	IP	Record
Route	option	is	used,	but	devices	cannot	count	on	this.)	When	Router	R3
receives	a	datagram	from	Router	R2	that	Router	R2	in	turn	received	from	Router
R1	(and	prior	to	that,	from	Device	A),	it	is	only	Device	A's	address	in	the
datagram.	Thus,	Router	R3	must	send	a	problem	report	back	to	Device	A,	and
Device	A	must	decide	what	to	do	with	it.	Device	A	may	decide	to	change	the
route	it	uses	or	to	generate	an	error	report	that	an	administrator	can	use	to
troubleshoot	Router	R2.

In	addition	to	this	basic	limitation,	several	special	rules	and	conventions	have
been	put	in	place	to	govern	the	circumstances	under	which	ICMP	messages	are
generated,	sent,	and	processed.	I'll	discuss	these	later	in	the	chapter.

TIP

KEY	CONCEPT	ICMP	error-reporting	messages	sent	in	response	to	a	problem	seen	in	an	IP	datagram
can	be	sent	back	only	to	the	originating	device.	Intermediate	devices	cannot	be	the	recipients	of	an	ICMP
message	because	their	addresses	are	normally	not	carried	in	the	IP	datagram's	header.



ICMP	Message	Classes,	Types,	and	Codes
ICMP	messages	are	used	to	allow	the	communication	of	different	types	of
information	between	IP	devices	on	an	internetwork.	The	messages	themselves
are	used	for	a	wide	variety	of	purposes,	and	they	are	organized	into	general
categories	as	well	as	numerous	specific	types	and	subtypes.

ICMP	Message	Classes
At	the	highest	level,	ICMP	messages	are	divided	into	two	classes:

Error	Messages	These	messages	are	used	to	provide	feedback	to	a	source
device	about	an	error	that	has	occurred.	They	are	typically	generated	specifically
in	response	to	some	sort	of	action,	usually	the	transmission	of	a	datagram,	as
shown	in	the	example	in	Figure	31-1.	Errors	are	usually	related	to	the	structure
or	content	of	a	datagram	or	to	problem	situations	on	the	internetwork
encountered	during	datagram	routing.

Informational	(or	Query)	Messages	These	are	messages	that	are	used	to	let
devices	exchange	information,	implement	certain	IP-related	features,	and
perform	testing.	They	do	not	indicate	errors	and	are	typically	not	sent	in
response	to	a	regular	datagram	transmission.	They	are	generated	either	when
directed	by	an	application	or	on	a	regular	basis	to	provide	information	to	other
devices.	An	informational	ICMP	message	may	also	be	sent	in	reply	to	another
informational	ICMP	message,	since	they	often	occur	in	request/reply	or
solicitation/advertisement	functional	pairs.

TIP

KEY	CONCEPT	ICMP	messages	are	divided	into	two	general	categories:	error	messages	that	are	used
to	report	problem	conditions,	and	informational	messages	that	are	used	for	diagnostics,	testing,	and	other
purposes.

ICMP	Message	Types
Each	individual	kind	of	message	in	ICMP	is	given	its	own	unique	Type	value,
which	is	put	into	the	field	of	that	name	in	the	ICMP	common	message	format.
This	field	is	8	bits	wide,	so	a	theoretical	maximum	of	256	message	types	can	be
defined.	A	separate	set	of	Type	values	is	maintained	for	each	of	ICMPv4	and



defined.	A	separate	set	of	Type	values	is	maintained	for	each	of	ICMPv4	and
ICMPv6.

In	ICMPv4,	Type	values	were	assigned	sequentially	to	both	error	and
informational	messages	on	a	first-come,	first-served	basis	(sort	of),	so	we	cannot
tell	just	by	the	Type	value	what	type	of	message	each	is.	One	minor
improvement	made	in	ICMPv6	was	that	the	message	types	were	separated.	In
IPv6,	error	messages	have	Type	values	from	0	to	127,	and	informational
messages	have	values	from	128	to	255.	Only	some	of	the	Type	values	are
currently	defined.

TIP

KEY	CONCEPT	A	total	of	256	different	possible	message	types	can	be	defined	for	each	of	ICMPv4
and	ICMPv6.	The	Type	field	that	appears	in	the	header	of	each	message	specifies	the	kind	of	ICMP
message.	In	ICMPv4,	there	is	no	relationship	between	Type	value	and	message	type.	In	ICMPv6,	error
messages	have	a	Type	value	of	0	to	127,	and	informational	messages	have	a	Type	value	of	128	to	255.

ICMP	Message	Codes
The	message	type	indicates	the	general	purpose	of	each	kind	of	ICMP	message.
ICMP	also	provides	an	additional	level	of	detail	within	each	message	type	in	the
form	of	a	Code	field,	which	is	also	8	bits.	You	can	consider	this	field	as	a
message	subtype.	Thus,	each	message	type	can	have	up	to	256	subtypes	that	are
more	detailed	subdivisions	of	the	message's	overall	functionality.	A	good
example	is	the	Destination	Unreachable	message,	which	is	generated	when	a
datagram	cannot	be	delivered.	In	this	message	type,	the	Code	value	provides
more	information	on	exactly	why	the	delivery	was	not	possible.

ICMP	Message	Class	and	Type	Summary
The	next	four	chapters	of	the	book	describe	all	of	the	major	ICMP	message	types
for	both	ICMPv4	and	ICMPv6.	For	convenience,	I	have	summarized	all	these
message	types	in	Table	31-2,	which	shows	each	of	the	Type	values	for	the
messages	covered	in	this	book,	the	name	of	each	message,	a	very	brief	summary
of	its	purpose,	and	the	RFC	that	defines	it.	(To	keep	the	table	from	being
egregiously	large,	I	have	not	shown	each	of	the	Code	values	for	each	Type
value;	these	can	be	found	in	the	individual	message	type	descriptions.)	The	table



is	organized	into	sections	that	correspond	to	the	four	chapters	that	describe
ICMP	message	types,	except	this	table	is	sorted	by	ascending	Type	value	within
each	category	for	easier	reference.

Table	31-2.	ICMP	Message	Classes,	Types,	and	Codes

Message
Class

Type
Value

Message
Name

Summary	Description	of	Message
Type

Defining
RFC
Number

	 3 Destination
Unreachable

Indicates	that	a	datagram	could	not	be
delivered	to	its	destination.	The	Code	value
provides	more	information	on	the	nature	of
the	error.

792

ICMPv4
Error
Messages

4 Source
Quench

Lets	a	congested	IP	device	tell	a	device	that
is	sending	it	datagrams	to	slow	down	the
rate	at	which	it	is	sending	them.

792

	 5 Redirect Allows	a	router	to	inform	a	host	of	a	better
route	to	use	for	sending	datagrams.

792

	 11 Time
Exceeded

Sent	when	a	datagram	has	been	discarded
prior	to	delivery	due	to	expiration	of	its
Time	to	Live	field.

792

	 12 Parameter
Problem

Indicates	a	miscellaneous	problem
(specified	by	the	Code	value)	in	delivering
a	datagram.

792

	 0 Echo	Reply Sent	in	reply	to	an	Echo	(Request)
message;	used	for	testing	connectivity.

792

	 8 Echo
(Request)

Sent	by	a	device	to	test	connectivity	to
another	device	on	the	internetwork.	The
word	Request	sometimes	appears	in	the
message	name.

792

	 9 Router
Advertisement

Used	by	routers	to	tell	hosts	of	their
existence	and	capabilities.

1256

ICMPv4
Informational
Messages
(part	1	of	2)

10 Router
Solicitation

Used	by	hosts	to	prompt	any	listening
routers	to	send	a	Router	Advertisement.

1256



	 13 Timestamp
(Request)

Sent	by	a	device	to	request	that	another
send	it	a	timestamp	value	for	propagation
time	calculation	and	clock	synchronization.
The	word	Request	sometimes	appears	in	the
message	name.

792

	 14 Timestamp
Reply

Sent	in	response	to	a	Timestamp	(Request)
to	provide	time	calculation	and	clock
synchronization	information.

792

	 15 Information
Request

Originally	used	to	request	configuration
information	from	another	device.	Now
obsolete.

792

	 16 Information
Reply

Originally	used	to	provide	configuration
information	in	response	to	an	Information
Request	message.	Now	obsolete.

792

ICMPv4
Informational
Messages
(part	2	of	2)

17 Address	Mask
Request

Used	to	request	that	a	device	send	a	subnet
mask.

950

	 18 Address	Mask
Reply

Contains	a	subnet	mask	sent	in	reply	to	an
Address	Mask	Request.

950

	 30 Traceroute Used	to	implement	the	experimental
enhanced	traceroute	utility.

1393

	 1 Destination
Unreachable

Indicates	that	a	datagram	could	not	be
delivered	to	its	destination.	Code	value
provides	more	information	on	the	nature	of
the	error.

2463

ICMPv6
Error
Messages

2 Packet	Too
Big

Sent	when	a	datagram	cannot	be	forwarded
because	it	is	too	big	for	the	maximum
transmission	unit	(MTU)	of	the	next	hop	in
the	route.	This	message	is	needed	in	IPv6
and	not	IPv4	because	in	IPv4,	routers	can
fragment	oversized	messages,	but	in	IPv6
they	cannot.

2463

	 3 Time
Exceeded

Sent	when	a	datagram	has	been	discarded
prior	to	delivery	due	to	the	Hop	Limit	field
being	reduced	to	zero.

2463

	 4 Parameter
Problem

Indicates	a	miscellaneous	problem
(specified	by	the	Code	value)	in	delivering

2463



Problem (specified	by	the	Code	value)	in	delivering
a	datagram.

	 128 Echo	Request Sent	by	a	device	to	test	connectivity	to
another	device	on	the	internetwork.

2463

	 129 Echo	Reply Sent	in	reply	to	an	Echo	(Request)
message;	used	for	testing	connectivity.

2463

	 133 Router
Solicitation

Prompts	a	router	to	send	a	Router
Advertisement.

2461

ICMPv6
Informational
Messages

134 Router
Advertisement

Sent	by	routers	to	tell	hosts	on	the	local
network	that	the	router	exists.	It	also
describes	its	capabilities.

2461

	 135 Neighbor
Solicitation

Sent	by	a	device	to	request	the	layer	2
address	of	another	device	while	providing
its	own	as	well.

2461

	 136 Neighbor
Advertisement

Provides	information	about	a	host	to	other
devices	on	the	network.

2461

	 137 Redirect Redirects	transmissions	from	a	host	to
either	an	immediate	neighbor	on	the
network	or	a	router.

2461

	 138 Router
Renumbering

Conveys	renumbering	information	for
router	renumbering.

2894

You	can	see	that	several	of	the	message	types	are	quite	similar	in	ICMPv4	and
ICMPv6,	but	there	are	some	slight	differences.	An	obvious	one	is	that	Redirect	is
considered	an	error	message	in	ICMPv4,	but	it's	an	informational	message	in
ICMPv6.	Messages	are	often	used	differently	as	well.	In	IPv6,	the	use	of	many
of	the	ICMP	informational	messages	is	described	in	the	Neighbor	Discovery
(ND)	protocol,	which	is	new	to	IPv6	(see	Chapter	36).

Note	that	the	Information	Request	and	Information	Reply	messages	were
originally	created	to	allow	devices	to	determine	an	IP	address	and	possibly	other
configuration	information.	This	function	was	later	implemented	using	host
configuration	protocols	such	as	the	Reverse	Address	Resolution	Protocol
(RARP;	see	Chapter	14),	Boot	Protocol	(BOOTP;	see	Chapter	60),	and	Dynamic
Host	Configuration	Protocol	(DHCP,	discussed	in	Chapters	Chapter	61	through
Chapter	64).	These	message	types	are	now	obsolete.



ICMP	Message	Creation	and	Processing
Conventions	and	Rules
In	the	overview	of	ICMP	earlier	in	this	chapter,	I	compared	the	relationship
between	IP	and	ICMP	to	that	between	an	executive	and	an	administrative
assistant.	One	of	the	characteristics	that	many	executives	value	in	a	good
assistant	is	that	the	assistant	does	his	work	independently,	without	causing
unnecessary	disruption.	A	good	assistant	should	save	the	executive	time,	not	cost
her	time.

As	the	assistant	to	IP,	ICMP	must	similarly	help	IP	function	without	taking	up
too	much	of	its	resources.	Here,	the	resource	being	conserved	is	not	so	much
time	as	bandwidth.	ICMP	messages	are	important,	but	must	be	considered	part
of	the	overhead	of	running	a	network.	They	carry	no	user	data,	so	each	one
represents	a	small	loss	of	overall	end-user	bandwidth	on	the	network.	For	this
reason,	we	want	to	send	them	only	when	necessary,	and	to	carefully	control	the
circumstances	under	which	they	are	generated.

Administrative	assistants	have	some	serious	advantages	over	networking
protocols:	common	sense	and	experience.	They	usually	know	where	the	line	is
drawn	between	help	and	hindrance;	computers	don't.	To	partially	compensate,
ICMP's	operation	is	guided	by	a	set	of	conventions	or	rules	for	how	messages
are	created	and	processed.	For	ICMPv4,	these	conventions	are	described	in	part
in	the	defining	RFC	792,	but	much	more	in	RFC	1122,	"Requirements	for
Internet	Hosts—Communication	Layers,"	which	provides	specific	information
on	implementing	TCP/IP	in	host	devices.	In	ICMPv6,	the	information	related	to
ICMP	implementation	that	appears	in	RFC	1122	has	been	largely	incorporated
into	the	main	document	that	defines	ICMPv6,	RFC	2463.

Most	of	the	issues	related	to	message	generation	have	to	do	with	error	messages,
not	informational	messages.	The	latter	class	of	messages	usually	doesn't	cause
problems	because	they	are	generated	based	on	specific	rules	already	established
in	the	protocols	that	use	them.	For	example,	routers	send	Router	Advertisement
messages	on	a	regular	basis,	and	the	routers	make	sure	this	is	infrequent.	They
are	also	sent	in	response	to	Router	Solicitation	messages	sent	on	occasion	by
hosts,	and	as	long	as	a	host	doesn't	go	haywire	and	start	sending	tons	of
Solicitations,	there	won't	be	a	problem.	Even	then,	you	can	give	a	router	enough



Solicitations,	there	won't	be	a	problem.	Even	then,	you	can	give	a	router	enough
smarts	not	to	send	Router	Advertisements	too	often.

Limitations	on	ICMP	Message	Responses
The	problem	comes	up	with	error	messages	specifically	because	they	are	sent	in
response	to	so	many	situations.	Potentially,	they	may	even	be	sent	in	response	to
each	other.	Without	special	care,	loops	or	cascading	message	generation	might
occur.	For	example,	consider	a	situation	in	which	Device	A	encounters	an	error
and	sends	an	error	report	to	Device	B.	Device	B	finds	an	error	in	Device	A's
message	and	sends	an	error	report	back	to	Device	A.	This	could	result	in	billions
of	messages	being	sent	back	and	forth,	thereby	clogging	the	network,	until	a
human	figures	out	what	is	wrong	and	fixes	it.

To	prevent	such	problems,	an	ICMP	error	message	must	not	be	generated	in
response	to	any	of	the	following:

An	ICMP	Error	Message	This	prevents	loops	of	the	type	just	mentioned.	Note,
however,	that	an	ICMP	error	message	can	be	generated	in	response	to	an	ICMP
informational	message.

A	Broadcast	or	Multicast	Datagram	What	would	happen	if	a	datagram	were
broadcast	to	5,000	hosts,	and	each	of	them	found	an	error	in	it	and	tried	to	send	a
report	back	to	the	source?	Something	unpleasant!

IP	Datagram	Fragments	Except	the	First	In	many	cases,	the	same	situation
that	might	cause	a	device	to	generate	an	error	for	one	fragment	would	also	apply
to	each	successive	one,	causing	unnecessary	ICMP	traffic.	For	this	reason,	when
a	datagram	is	fragmented,	a	device	may	send	an	error	message	only	in	response
to	a	problem	in	the	first	fragment.

Datagrams	with	Non-Unicast	Source	Address	If	a	datagram's	source	address
doesn't	define	a	unique,	unicast	device	address,	an	error	message	cannot	be	sent
back	to	that	source.	This	prevents	ICMP	messages	from	being	broadcast,	unicast,
or	sent	to	nonroutable	special	addresses	such	as	the	loopback	address.

TIP

KEY	CONCEPT	In	order	to	prevent	excessive	numbers	of	ICMP	messages	from	being	sent	on	a
network,	a	special	set	of	rules	governs	when	and	how	they	may	be	created.	Most	of	these	are	designed	to



eliminate	situations	in	which	very	large	numbers	of	ICMP	error	messages	would	be	generated	in
response	to	certain	occurrences.

These	rules	apply	to	both	ICMPv4	and	ICMPv6,	but	in	ICMPv6	there	are	a
couple	of	special	cases.	In	certain	circumstances,	an	ICMPv6	Packet	Too	Big
message	may	be	sent	to	a	multicast	address,	as	this	is	required	for	Path	MTU
Discovery	(described	in	Chapter	27)	to	work.	Certain	Parameter	Problem
messages	may	also	be	sent	to	multicast	or	broadcast	addresses.	Finally,	in
addition	to	the	rules	just	mentioned,	IPv6	implementations	are	specifically
directed	to	limit	the	rate	at	which	they	send	ICMPv6	messages	overall.

ICMP	Message	Processing	Conventions
Message	processing	generally	takes	place	as	described	earlier	in	the	section	on
ICMP	general	operation,	with	the	ICMP	message	delivered	either	to	the	IP
software	or	other	protocol	software	implementation	as	required.	What	is	done
with	the	message	usually	depends	on	its	type.	Some	messages	are	destined	for
only	the	IP	software	itself,	but	many	are	intended	for	the	higher-layer	protocol
that	generated	the	datagram	that	led	to	the	error.	In	the	next	section,	you	will	see
that	ICMP	error	messages	include	information	that	allows	the	upper-layer
protocol	to	be	extracted	for	the	purpose	of	passing	the	message	to	the	appropriate
software	layer.

In	IPv6,	the	class	of	message	(error	or	informational)	can	be	determined	from	the
Type	value.	This	knowledge	can	then	be	used	to	guide	processing	of	ICMP
messages	with	unknown	Type	values.	The	rule	is	that	ICMP	error	messages	with
unknown	Type	values	must	be	passed	to	the	appropriate	upper-layer	protocol.
Informational	messages	with	unknown	Type	values	are	discarded	without	taking
action.

In	addition	to	these	general	rules,	there	are	specific	rules	put	into	place	to	guide
the	processing	of	some	of	the	message	types.	I	describe	some	of	these
conventions	in	the	chapters	that	discuss	individual	ICMP	messages.

An	important	final	point	is	that	ICMP	messages,	especially	error	messages,	are
not	considered	binding	on	the	device	that	processes	them.	To	stick	with	the
office	analogy,	they	have	the	equivalent	status	in	an	office	of	only	of	an	FYI



memo,	not	an	assignment.	It	is	often	the	case	that	a	device	should	take	action
upon	processing	an	ICMP	message,	but	the	device	is	not	required	to.	The
exception,	again,	is	when	informational	messages	are	used	for	specific	purposes.
For	example,	most	of	the	messages	that	come	in	pairs	are	designed	so	that	a
Request	results	in	the	matching	Reply	and	a	Solicitation	yields	an
Advertisement.

TIP

KEY	CONCEPT	A	device	receiving	an	ICMP	message	is	not	required	to	take	action	unless	a	protocol
using	a	message	type	dictates	a	specific	response	to	a	particular	message	type.	In	particular,	devices	are
not	mandated	to	perform	any	specific	task	when	receiving	an	ICMP	error	message.



ICMP	Common	Message	Format	and	Data
Encapsulation
As	you	have	seen	so	far	in	this	chapter,	ICMP	is	not	so	much	a	protocol	that
performs	a	specific	function	as	a	framework	for	the	exchange	of	error	reports
and	information.	Since	each	of	the	message	types	is	used	for	a	different	purpose,
they	differ	in	the	types	of	information	they	contain.	This	means	each	ICMP
message	has	a	slightly	different	format.	At	the	same	time,	however,	ICMP
message	types	also	have	a	degree	of	commonality—a	portion	of	each	message	is
common	between	message	types.

ICMP	Common	Message	Format
You	can	think	of	the	structure	of	an	ICMP	message	as	having	a	common	part
and	a	unique	part.	The	common	part	consists	of	three	fields	that	have	the	same
size	and	same	meaning	in	all	ICMP	messages	(although	the	values	in	the	fields
aren't	the	same	for	each	ICMP	message	type).	The	unique	part	contains	fields
that	are	specific	to	each	type	of	message.

Interestingly,	the	common	message	format	is	basically	the	same	for	ICMPv4	and
ICMPv6.	It	is	described	in	Table	31-3	and	illustrated	in	Figure	31-2.

Table	31-3.	ICMP	Common	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type.	For	ICMPv6,	values	from	0	to	127
are	error	messages,	and	values	128	to	255	are	informational	messages.
Common	values	for	this	field	are	given	in	Table	31-2.

Code 1 Identifies	the	subtype	of	message	within	each	ICMP	message	Type
value.	Thus,	up	to	256	subtypes	can	be	defined	for	each	message	type.
Values	for	this	field	are	shown	in	the	following	chapters	on	individual
ICMP	message	types.

Checksum 2 A	16-bit	checksum	field	that	is	calculated	in	a	manner	similar	to	the	IP
header	checksum	in	IPv4.	It	provides	error-detection	coverage	for	the
entire	ICMP	message.	Note	that	in	ICMPv6,	a	pseudo	header	of	IPv6
header	fields	is	prepended	for	checksum	calculation;	this	is	similar	to	the
way	this	is	done	in	TCP.



way	this	is	done	in	TCP.

Message
Body/Data

Variable Contains	the	specific	fields	used	to	implement	each	message	type.	This
is	the	unique	part	of	the	message.

Figure	31-2.	ICMP	common	message	format	This	overall,	generic	message	format	is	used	for	both
ICMPv4	and	ICMPv6	message	types.

Original	Datagram	Inclusion	in	ICMP	Error
Messages
The	message	body	typically	contains	one	or	several	fields	that	carry	information
of	relevance	to	each	specific	type	of	ICMP	message.	All	ICMP	error	messages
include	a	portion	of	the	original	IP	datagram	that	led	to	the	ICMP	error	message.
This	aids	in	diagnosing	the	problem	that	caused	the	ICMP	message	to	be
generated,	by	allowing	the	error	to	be	communicated	to	higher	layers.

The	inclusion	of	original	IP	datagram	information	is	done	differently	for	the	two
ICMP	versions:

ICMPv4	Error	Messages	Each	error	message	includes	the	full	IP	header	and
the	first	8	bytes	of	the	payload.	Since	the	beginning	of	the	payload	will	contain
the	encapsulated	higher-layer	header,	the	ICMP	message	also	carries	either	the
full	UDP	header	or	the	first	8	bytes	of	the	TCP	header.	In	both	cases,	the	source
and	destination	port	numbers	are	part	of	what	is	included.	If	the	original	header
was	a	standard	IP	header	with	no	options,	the	Message	Body	will	therefore	have
a	length	of	28	bytes;	if	options	are	present,	it	will	be	larger.

ICMPv6	Error	Messages	Each	error	message	includes	as	much	of	the	IPv6
datagram	as	will	fit	without	causing	the	size	of	the	ICMPv6	error	message
(including	its	IP	header	encapsulation)	to	exceed	the	minimum	IPv6	maximum
transmission	unit	size,	which	is	1280	bytes.	This	provides	additional	information



for	diagnostic	purposes	when	compared	to	ICMPv4,	while	ensuring	that	no
ICMPv6	error	messages	will	be	too	large	for	any	physical	network	segment.	The
larger	size	of	the	included	data	allows	the	IPv6	extension	headers	to	be	included
in	the	error	message,	since	the	error	could	be	in	one	of	those	extension	headers.

NOTE

Remember	that	in	IPv6,	routers	cannot	fragment	IP	datagrams;	any	datagram	that	is	oversized	for	an
underlying	physical	network	is	dropped.	ICMPv6	is	thus	designed	to	ensure	that	this	does	not	happen	by
not	creating	ICMPv6	datagrams	over	the	universal	IPv6	MTU	size	of	1280.

TIP

KEY	CONCEPT	Each	kind	of	ICMP	message	contains	data	unique	to	that	message	type,	but	all
messages	are	structured	according	to	a	common	ICMP	message	format.	ICMP	error	messages	always
include	in	their	message	body	field	some	portion	of	the	original	IP	datagram	that	resulted	in	the	error
being	generated.

ICMP	Data	Encapsulation
After	an	ICMP	message	is	formatted,	it	is	encapsulated	in	an	IP	datagram	like
any	other	IP	message.	This	is	why	some	people	believe	ICMP	is	architecturally	a
higher	layer	than	IP,	though	as	I	discussed	earlier,	it	is	really	more	of	a	special
case.	You	can	also	see	that	when	an	ICMP	error	message	is	generated,	we	end	up
with	the	original	IP	header	and	part	or	all	of	the	payload,	encapsulated	in	the
ICMP	message,	which	in	turn	is	encapsulated	within	a	new	IP	header	that	will	be
sent	back	as	an	error	report,	usually	to	the	device	that	sent	the	original	IP
message.



Chapter	32.	ICMPV4	ERROR
MESSAGE	TYPES	AND	FORMATS

Routers	and	hosts	use	Internet	Control	Message	Protocol	(ICMP)	error	messages
to	tell	a	device	that	sent	a	datagram	about	problems	that	were	encountered	during
delivery.	The	original	ICMP	version	4	(ICMPv4)	defined	five	different	error
messages,	which	are	all	described	in	the	original	ICMP	standard,	RFC	792.
These	are	some	of	the	most	important	ICMP	messages.	They	provide	critical
feedback	about	error	conditions	and	may	help	a	transmitting	device	take
corrective	action	to	ensure	reliable	and	efficient	datagram	delivery.

In	this	first	of	four	chapters	on	specific	ICMP	types,	I	look	at	the	ICMPv4	error
messages.	I	begin	with	Destination	Unreachable	messages,	which	are	sent	due	to
datagram	delivery	failures,	and	Source	Quench	messages,	which	are	used	to	tell
a	device	to	slow	down	the	rate	at	which	it	sends	datagrams.	Next,	I	describe
Time	Exceeded	messages,	which	are	sent	when	a	datagram	has	been	traveling
the	network	too	long	or	takes	too	long	to	be	reassembled	from	fragments,	and
Redirect	messages,	which	let	a	router	provide	feedback	about	better	routes	to	a
host.	Finally,	I	discuss	Parameter	Problem	messages,	which	are	generic
messages	used	for	problems	not	covered	by	other	ICMP	error	messages.

ICMPv4	Destination	Unreachable	Messages
Since	the	Internet	Protocol	(IP)	is	an	unreliable	protocol,	there	are	no	guarantees
that	a	datagram	sent	by	one	device	to	another	will	ever	actually	get	there.	The
internetwork	of	hosts	and	routers	will	make	a	best	effort	to	deliver	the	datagram,
but	it	may	not	get	where	it	needs	to	for	any	number	of	reasons.	Devices	on	an	IP
network	understand	that	and	are	designed	accordingly.	IP	software	never
assumes	its	datagrams	will	always	be	received,	and	higher-layer	protocols	like



the	Transmission	Control	Protocol	(TCP)	take	care	of	providing	reliability	and
acknowledgments	of	received	data	for	applications	that	need	these	features.

This	setup,	with	higher	layers	handling	failed	deliveries,	is	sufficient	in	some
cases.	For	example,	suppose	Device	A	tries	to	send	to	Device	B,	but	a	router
near	Device	B	is	overloaded,	so	it	drops	the	datagram.	In	this	case,	the	problem
is	likely	intermittent,	so	Device	A	can	retransmit	and	eventually	reach	Device	B.
But	what	about	a	situation	where	a	device	is	trying	to	send	to	an	IP	address	that
doesn't	exist,	or	a	problem	with	routing	that	isn't	easily	corrected?	Having	the
source	just	continually	retry	in	this	case	would	be	inefficient,	to	say	the	least.

IP	is	designed	to	allow	IP	datagram	deliveries	to	fail,	and	we	should	take	any
such	failures	seriously.	What	we	really	need	is	a	feedback	mechanism	that	can
tell	a	source	device	that	something	improper	is	happening	and	why.	In	IP	version
4	(IPv4),	this	service	is	provided	through	the	transmission	of	Destination
Unreachable	ICMP	messages.	When	a	source	node	receives	one	of	these
messages,	it	knows	there	was	a	problem	sending	a	datagram,	and	can	then	decide
what	action,	if	any,	it	wants	to	take.	Like	all	ICMP	error	messages,	Destination
Unreachable	messages	include	a	portion	of	the	datagram	that	could	not	be
delivered,	which	helps	the	recipient	of	the	error	figure	out	what	the	problem	is.

ICMPv4	Destination	Unreachable	Message
Format
Table	32-1	and	Figure	32-1	show	the	specific	format	for	ICMPv4	Destination
Unreachable	messages.

Table	32-1.	ICMPv4	Destination	Unreachable	Message	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	for	Destination	Unreachable
messages,	this	is	set	to	3.

Code 1 Identifies	the	subtype	of	unreachable	error	being	communicated.	See
Table	34-2	for	a	full	list	of	codes	and	what	they	mean.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).



Unused 4 The	4	bytes	that	are	left	blank	and	not	used.

Original
Datagram
Portion

Variable The	full	IP	header	and	the	first	8	bytes	of	the	payload	of	the
datagram	that	prompted	this	error	message	to	be	sent.

Figure	32-1.	ICMPv4	Destination	Unreachable	message	format

ICMPv4	Destination	Unreachable	Message
Subtypes
There	are	many	different	reasons	why	it	may	not	be	possible	for	a	datagram	to
reach	its	destination.	Some	of	these	may	be	due	to	erroneous	parameters	(like	the
invalid	IP	address	example	mentioned	earlier).	A	router	might	have	a	problem
reaching	a	particular	network	for	whatever	reason.	There	can	also	be	other	more
esoteric	reasons	related	to	why	a	datagram	cannot	be	delivered.

For	this	reason,	the	ICMPv4	Destination	Unreachable	message	type	can	be
considered	as	a	class	of	related	error	messages.	The	receipt	of	a	Destination
Unreachable	message	tells	a	device	that	the	datagram	it	sent	couldn't	be
delivered,	and	the	Code	field	in	the	ICMP	header	indicates	the	reason	for	the
nondelivery.	Table	32-2	shows	the	different	Code	values,	corresponding
message	subtypes,	and	a	brief	explanation	of	each.

Table	32-2.	ICMPv4	Destination	Unreachable	Message	Subtypes

Code
Value

Message
Subtype

Description

0 Network
Unreachable

The	datagram	could	not	be	delivered	to	the	network	specified	in	the
network	ID	portion	of	the	IP	address.	This	usually	means	a	problem
with	routing	but	could	also	be	caused	by	a	bad	address.

1 Host The	datagram	was	delivered	to	the	network	specified	in	the	network



1 Host
Unreachable

The	datagram	was	delivered	to	the	network	specified	in	the	network
ID	portion	of	the	IP	address	but	could	not	be	sent	to	the	specific	host
indicated	in	the	address.	Again,	this	usually	implies	a	routing	issue.

2 Protocol
Unreachable

The	protocol	specified	in	the	Protocol	field	was	invalid	for	the	host
to	which	the	datagram	was	delivered.

3 Port
Unreachable

The	destination	port	specified	in	the	UDP	or	TCP	header	was
invalid.

4 Fragmentation
Needed	and	DF
Set

This	is	one	of	those	esoteric	codes.	Normally,	an	IPv4	router	will
automatically	fragment	a	datagram	that	it	receives	if	it	is	too	large
for	the	maximum	transmission	unit	(MTU)	of	the	next	physical
network	link	the	datagram	needs	to	traverse.	However,	if	the	DF
(Don't	Fragment)	flag	is	set	in	the	IP	header,	this	means	the	sender
of	the	datagram	does	not	want	the	datagram	ever	to	be	fragmented.
This	puts	the	router	between	the	proverbial	rock	and	a	hard	place,
and	it	will	be	forced	to	drop	the	datagram	and	send	an	error	message
with	this	code.	This	message	type	is	most	often	used	in	a	clever	way
by	intentionally	sending	messages	of	increasing	size	to	discover	the
MTU	size	that	a	link	can	handle.	This	process	is	called	Path	MTU
Discovery	(described	in	Chapter	27).

5 Source	Route
Failed

Generated	if	a	source	route	was	specified	for	the	datagram	in	an
option	but	a	router	could	not	forward	the	datagram	to	the	next	step
in	the	route.

6 Destination
Network
Unknown

Not	used;	code	0	is	used	instead.

7 Destination	Host
Unknown

The	host	specified	is	not	known.	This	is	usually	generated	by	a
router	local	to	the	destination	host	and	usually	means	a	bad	address.

8 Source	Host
Isolated

Obsolete,	no	longer	used.

9 Communication
with	Destination
Network	Is
Administratively
Prohibited

The	source	device	is	not	allowed	to	send	to	the	network	where	the
destination	device	is	located.

10 Communication
with	Destination
Host	Is
Administratively
Prohibited

The	source	device	is	allowed	to	send	to	the	network	where	the
destination	device	is	located,	but	not	that	particular	device.



11 Destination
Network

Unreachable	for
Type	of	Service

The	network	specified	in	the	IP	address	cannot	be	reached	due	to	the
inability	to	provide	service	specified	in	the	Type	of	Service	field	of

the	datagram	header	(see	Chapter	31).

12 Destination	Host
Unreachable	for
Type	of	Service

The	destination	host	specified	in	the	IP	address	cannot	be	reached
due	to	the	inability	to	provide	service	specified	in	the	datagram's
Type	of	Service	field.

13 Communication
Administratively
Prohibited

The	datagram	could	not	be	forwarded	due	to	filtering	that	blocks	the
message	based	on	its	contents.

14 Host	Precedence
Violation

Sent	by	a	first-hop	router	(the	first	router	to	handle	a	sent	datagram)
when	the	Precedence	value	in	the	Type	of	Service	field	is	not
permitted.

15 Precedence
Cutoff	in	Effect

Sent	by	a	router	when	receiving	a	datagram	whose	Precedence	value
(priority)	is	lower	than	the	minimum	allowed	for	the	network	at	that
time.

As	you	can	see	in	Table	32-2,	not	all	of	these	codes	are	actively	used	at	this	time.
For	example,	code	8	is	obsolete	and	code	0	is	used	instead	of	6.	Also,	some	of
the	higher	numbers	related	to	the	Type	of	Service	field	aren't	actively	used
because	Type	of	Service	isn't	actively	used.

TIP

KEY	CONCEPT	ICMPv4	Destination	Unreachable	messages	are	used	to	inform	a	sending	device	of	a
failure	to	deliver	an	IP	datagram.	The	message's	Code	field	provides	information	about	the	nature	of	the
delivery	problem.

Interpretation	of	Destination	Unreachable
Messages
It's	important	to	remember	that	just	as	IP	is	a	best	effort,	the	reporting	of
unreachable	destinations	using	ICMP	is	also	a	best	effort.	Realize	that	these
ICMP	messages	are	themselves	carried	in	IP	datagrams.	More	than	that,
however,	remember	that	there	may	be	problems	that	prevent	a	router	from
detecting	failure	of	delivery	of	an	ICMP	message,	such	as	a	low-level	hardware
problem.	A	router	could,	theoretically,	also	be	precluded	from	sending	an	ICMP



message	even	when	failure	of	delivery	is	detected	for	whatever	reason.

For	this	reason,	the	sending	of	Destination	Unreachable	messages	should	be
considered	supplemental.	There	is	no	guarantee	that	every	problem	sending	a
datagram	will	result	in	a	corresponding	ICMP	message.	No	device	should	count
on	receiving	an	ICMP	Destination	Unreachable	for	a	failed	delivery	any	more
than	it	counts	on	the	delivery	in	the	first	place.	This	is	why	the	higher-layer
mechanisms	mentioned	at	the	start	of	this	discussion	are	still	important.



ICMPv4	Source	Quench	Messages
When	a	source	device	sends	out	a	datagram,	it	will	travel	across	the	internetwork
and	eventually	arrive	at	its	intended	destination	(at	least,	that's	what	we	hope	will
happen).	At	that	point,	it	is	up	to	the	destination	device	to	process	the	datagram
by	examining	it	and	determining	which	higher-layer	software	process	to	hand	the
datagram.

If	a	destination	device	is	receiving	datagrams	at	a	relatively	slow	rate,	it	may	be
able	to	process	each	datagram	on	the	fly	as	it	is	received.	However,	datagram
receipt	in	a	typical	internetwork	can	tend	to	be	uneven	or	bursty,	with	alternating
higher	and	lower	rates	of	traffic.	To	allow	for	times	when	datagrams	are	arriving
faster	than	they	can	be	processed,	each	device	has	a	buffer	where	it	can
temporarily	hold	datagrams	it	has	received	until	it	has	a	chance	to	deal	with
them.

However,	this	buffer	is	itself	limited	in	size.	Assuming	the	device	has	been
properly	designed,	the	buffer	may	be	sufficient	to	smooth	out	high-traffic	and
low-traffic	periods	most	of	the	time.	Certain	situations	can	still	arise	in	which
traffic	is	received	so	rapidly	that	the	buffer	fills	up	entirely.	Some	examples	of
scenarios	in	which	this	might	happen	include	the	following:

A	single	destination	is	overwhelmed	by	datagrams	from	many	sources,	such
as	a	popular	website	being	swamped	by	HTTP	requests.

Device	A	and	Device	B	are	exchanging	information,	but	Device	A	is	a	much
faster	computer	than	Device	B,	and	can	generate	outgoing	and	process
incoming	datagrams	much	faster	than	Device	B	can.

A	router	receives	a	large	number	of	datagrams	over	a	high-speed	link	that	it
needs	to	forward	over	a	low-speed	link;	they	start	to	pile	up	while	waiting	to
be	sent	over	the	slow	link.

A	hardware	failure	or	other	situation	causes	datagrams	to	sit	at	a	device
unprocessed.

A	device	that	continues	to	receive	datagrams	when	it	has	no	more	buffer	space	is
forced	to	discard	them	and	is	said	to	be	congested.	A	source	that	has	its	datagram
discarded	due	to	congestion	won't	have	any	way	of	knowing	this,	since	IP	itself



is	unreliable	and	unacknowledged.	Therefore,	while	it	is	possible	to	simply	allow
higher-layer	protocols	to	detect	the	dropped	datagrams	and	generate
replacements,	it	makes	a	lot	more	sense	to	have	the	congested	device	provide
feedback	to	the	sources	by	telling	them	that	it	is	overloaded.

In	IPv4,	a	device	that	is	forced	to	drop	datagrams	due	to	congestion	provides
feedback	to	the	sources	that	overwhelmed	it	by	sending	them	ICMPv4	Source
Quench	messages.	Just	as	you	use	water	to	quench	a	fire,	a	Source	Quench
message	is	a	signal	that	attempts	to	quench	a	source	device	that	is	sending	too
fast.	In	other	words,	it's	a	polite	way	for	one	IP	device	to	tell	another,	"Slow
down!"	When	a	device	receives	one	of	these	messages,	it	knows	it	needs	to
reduce	the	speed	at	which	it	is	sending	datagrams	to	the	device	that	sent	it.

ICMPv4	Source	Quench	Message	Format
Table	32-3	and	Figure	32-2	show	the	specific	format	for	ICMPv4	Source
Quench	messages.

Table	32-3.	ICMPv4	Source	Quench	Message	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	for	Source	Quench	messages,	this
is	set	to	4.

Code 1 Identifies	the	subtype	of	error	being	communicated.	For	Source
Quench	messages,	this	is	not	used,	and	the	field	is	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Unused 4 The	4	bytes	that	are	left	blank	and	not	used.

Original
Datagram
Portion

Variable The	full	IP	header	and	the	first	8	bytes	of	the	payload	of	the
datagram	that	was	dropped	due	to	congestion.



Figure	32-2.	ICMPv4	Source	Quench	message	format

Problems	with	Source	Quench	Messages
What's	interesting	about	the	Source	Quench	format	is	that	it	is	basically	a	null
message.	It	tells	the	source	that	the	destination	is	congested	but	provides	no
specific	information	about	that	situation,	nor	does	it	specify	what	exactly	the
destination	wants	the	source	to	do	other	than	cut	back	on	its	transmission	rate	in
some	way.	There	is	also	no	method	for	the	destination	to	signal	a	source	that	it	is
no	longer	congested,	and	that	the	source	should	resume	its	prior	sending	rate.
This	means	the	response	to	a	Source	Quench	message	is	left	up	to	the	device	that
receives	it.	Usually,	a	device	will	cut	back	its	transmission	rate	until	it	no	longer
receives	the	messages,	and	then	it	may	try	to	slowly	increase	the	rate	again.

In	a	similar	manner,	there	are	no	rules	about	when	and	how	a	device	generates
Source	Quench	messages	in	the	first	place.	A	common	convention	is	that	one
message	is	generated	for	each	dropped	datagram.	However,	more	intelligent
algorithms	may	be	employed,	especially	on	higher-end	routers,	to	predict	when
the	device's	buffer	will	be	filled	and	preemptively	quench	certain	sources	that	are
sending	too	quickly.	Devices	may	also	decide	whether	to	quench	all	sources
when	they	become	busy,	or	only	certain	ones.	As	with	other	ICMP	error
messages,	a	device	cannot	count	on	a	Source	Quench	message	being	sent	when	a
busy	device	discards	one	of	its	datagrams.

The	lack	of	information	communicated	in	Source	Quench	messages	makes	them
a	rather	crude	tool	for	managing	congestion.	In	general	terms,	the	process	of
regulating	the	sending	of	messages	between	two	devices	is	called	flow	control,
and	this	is	usually	a	function	of	the	transport	layer.	TCP	actually	has	a	flow
control	mechanism	(discussed	in	Chapter	49)	that	is	far	superior	to	the	use	of
ICMP	Source	Quench	messages.

Another	issue	with	Source	Quench	messages	is	that	they	can	be	abused.



Another	issue	with	Source	Quench	messages	is	that	they	can	be	abused.
Transmission	of	these	messages	by	a	malicious	user	can	cause	a	host	to	be
slowed	down	when	there	is	no	valid	reason.	This	security	issue,	combined	with
the	superiority	of	the	TCP	method	for	flow	control,	has	caused	the	use	of	Source
Quench	messages	to	largely	fall	out	of	favor.

TIP

KEY	CONCEPT	ICMPv4	Source	Quench	messages	are	sent	by	a	device	to	request	that	another	reduce
the	rate	at	which	it	is	sending	datagrams.	The	messages	are	a	rather	crude	method	of	flow	control
compared	to	more	capable	mechanisms	such	as	those	provided	by	TCP.



ICMPv4	Time	Exceeded	Messages
Large	IP	internetworks	can	have	thousands	of	interconnected	routers	that	pass
datagrams	between	devices	on	various	networks.	In	large	internetworks,	the
topology	of	connections	between	routes	can	become	complex,	which	makes
routing	more	difficult.	Routing	protocols	will	normally	allow	routers	to	find	the
best	routes	between	networks,	but	in	some	situations,	an	inefficient	route	might
be	selected	for	a	datagram.	In	the	worst	case,	a	router	loop	may	occur.	An
example	of	this	situation	is	where	Router	A	thinks	datagrams	intended	for
Network	X	should	next	go	to	Router	B,	which	thinks	they	should	go	to	Router	C,
which	thinks	they	need	to	go	to	Router	A.	(See	the	ICMPv6	Time	Exceeded
Message	description	in	Chapter	34	for	an	illustration	of	a	router	loop.)

If	a	loop	like	this	occurred,	datagrams	for	Network	X	that	were	entering	this	part
of	the	internetwork	would	circle	forever,	chewing	up	bandwidth	and	eventually
leading	to	the	network	being	unusable.	As	insurance	against	this	occurrence,
each	IP	datagram	includes	in	its	header	a	Time	to	Live	(TTL)	field.	This	field
was	originally	intended	to	limit	the	maximum	time	(in	seconds)	that	a	datagram
could	be	on	the	internetwork,	but	now	limits	the	life	of	a	datagram	by	limiting
the	number	of	times	the	datagram	can	be	passed	from	one	device	to	the	next.	The
TTL	is	set	to	a	value	by	the	source	that	represents	the	maximum	number	of	hops
it	wants	for	the	datagram.	Each	router	decrements	the	value;	if	it	ever	reaches
zero,	the	datagram	is	said	to	have	expired	and	is	discarded.

When	a	datagram	is	dropped	due	to	expiration	of	the	TTL	field,	the	device	that
dropped	the	datagram	will	inform	the	source	of	this	occurrence	by	sending	it	an
ICMPv4	Time	Exceeded	message,	as	shown	in	Figure	32-3.	Receipt	of	this
message	indicates	to	the	original	sending	device	that	there	is	a	routing	problem
when	sending	to	that	particular	destination,	or	that	it	set	the	TTL	field	value	too
low	in	the	first	place.	As	with	all	ICMP	messages,	the	device	receiving	it	must
decide	whether	and	how	to	respond	to	receipt	of	the	message.	For	example,	it
may	first	try	to	resend	the	datagram	with	a	higher	TTL	value.



Figure	32-3.	Expiration	of	an	IP	datagram	and	Time	Exceeded	message	generation	In	this	example,
Device	A	sends	an	IP	datagram	to	Device	B,	which	has	a	Time	to	Live	(TTL)	field	value	of	only	4
(perhaps	not	realizing	that	Device	B	is	seven	hops	away).	On	the	fourth,	hop	the	datagram	reaches

Router	R4,	which	decrements	its	TTL	field	to	0	and	then	drops	it	as	it	expires.	Router	R4	then	sends	an
ICMP	Time	Exceeded	message	back	to	Device	A.

There	is	another	time	expiration	situation	where	ICMP	Time	Exceeded	messages
are	used.	When	an	IP	message	is	broken	into	fragments,	the	destination	device	is
charged	with	reassembling	them	into	the	original	message.	One	or	more
fragments	may	not	make	it	to	the	destination,	so	to	prevent	the	device	from
waiting	forever,	it	sets	a	timer	when	the	first	fragment	arrives.	If	this	timer
expires	before	the	others	are	received,	the	device	gives	up	on	this	message.	The
fragments	are	discarded,	and	a	Time	Exceeded	message	is	generated.

ICMPv4	Time	Exceeded	Message	Format
Table	32-4	and	Figure	32-4	show	the	specific	format	for	ICMPv4	Time
Exceeded	messages.

Table	32-4.	ICMPv4	Time	Exceeded	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	for	Time	Exceeded	messages,	this	is
set	to	11.

Code 1 Identifies	the	subtype	of	error	being	communicated.	A	value	of	0



Code 1 Identifies	the	subtype	of	error	being	communicated.	A	value	of	0
indicates	expiration	of	the	IP	TTL	field;	a	value	of	1	indicates	that	the
fragment	reassembly	time	has	been	exceeded.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Unused 4 The	4	bytes	that	are	left	blank	and	not	used.

Original
Datagram
Portion

Variable The	full	IP	header	and	the	first	8	bytes	of	the	payload	of	the	datagram
that	was	dropped	due	to	expiration	of	the	TTL	field	or	reassembly	timer.

Figure	32-4.	ICMPv4	Time	Exceeded	message	format

Applications	of	Time	Exceeded	Messages
ICMP	Time	Exceeded	messages	are	usually	sent	in	response	to	the	two
conditions	described	in	Table	32-4:	TTL	or	reassembly	timer	expiration.
Generally,	routers	generate	TTL	expiration	messages	as	they	try	to	route	a
datagram,	while	end	hosts	indicate	reassembly	violations.	However,	there	is
actually	a	very	clever	application	of	these	messages	that	has	nothing	to	do	with
reporting	errors	at	all.

The	TCP/IP	traceroute	(or	tracert)	utility	is	used	to	show	the	sequence	of	devices
over	which	a	datagram	is	passed	on	a	particular	route	between	a	source	and
destination.	The	traceroute	utility	also	shows	the	amount	of	time	it	takes	for	a
datagram	to	reach	each	hop	in	that	route.	This	utility	was	originally	implemented
using	Time	Exceeded	messages	by	sending	datagrams	with	successively	higher
TTL	values.

First,	a	dummy	datagram	is	sent	with	a	TTL	value	of	1,	causing	the	first	hop	in
the	route	to	discard	the	datagram	and	send	back	an	ICMP	Time	Exceeded
message;	the	time	elapsed	for	this	could	then	be	measured.	Then,	a	second
datagram	is	sent	with	a	TTL	value	of	2.	This	causes	the	second	device	in	the



route	to	report	back	a	Time	Exceeded	message,	and	so	on.	By	continuing	to
increase	the	TTL	value	you	can	get	reports	back	from	each	hop	in	the	route.	See
Chapter	88	for	more	details	on	traceroute's	operation.

TIP

KEY	CONCEPT	ICMPv4	Time	Exceeded	messages	are	sent	in	two	different	time-related
circumstances.	The	first	is	if	a	datagram's	Time	to	Live	(TTL)	field	is	reduced	to	zero,	causing	it	to
expire	and	the	datagram	to	be	dropped.	The	second	is	when	all	the	pieces	of	a	fragmented	message	are
not	received	before	the	expiration	of	the	recipient's	reassembly	timer.



ICMPv4	Redirect	Messages
Every	device	on	an	internetwork	needs	to	be	able	to	send	to	every	other	device.
If	hosts	were	responsible	for	determining	the	routes	to	each	possible	destination,
each	host	would	need	to	maintain	an	extensive	set	of	routing	information.	Since
there	are	so	many	hosts	on	an	internetwork,	this	would	be	a	very	time-
consuming	and	maintenance-intensive	situation.

Instead,	IP	internetworks	are	designed	around	a	fundamental	design	decision:
Routers	are	responsible	for	determining	routes	and	maintaining	routing
information.	Hosts	determine	only	when	they	need	a	datagram	routed,	and	then
hand	the	datagram	off	to	a	local	router	to	be	sent	where	it	needs	to	go.	I	discuss
this	in	more	detail	in	my	overview	of	IP	routing	concepts	(see	Chapter	23).

Since	most	hosts	do	not	maintain	routing	information,	they	must	rely	on	routers
to	know	about	routes	and	where	to	send	datagrams	intended	for	different
destinations.	Typically,	a	host	on	an	IP	network	will	start	out	with	a	routing	table
that	basically	tells	it	to	send	everything	not	on	the	local	network	to	a	single
default	router,	which	will	then	figure	out	what	to	do	with	it.	Obviously,	if	there
is	only	one	router	on	the	network,	the	host	will	use	that	as	the	default	router	for
all	nonlocal	traffic.	However,	if	there	are	two	or	more	routers,	sending	all
datagrams	to	just	one	router	may	not	make	sense.	It	is	possible	that	a	host	could
be	manually	configured	to	know	which	router	to	use	for	which	destinations,	but
another	mechanism	in	IP	can	allow	a	host	to	learn	this	automatically.

Consider	a	Network	N1	that	contains	a	number	of	hosts	(H1,	H2,	and	so	on)	and
two	routers,	R1	and	R2.	Host	H1	has	been	configured	to	send	all	datagrams	to
Router	R1,	as	its	default	router.	Suppose	it	wants	to	send	a	datagram	to	a	device
on	Network	N2.	However,	Network	N2	is	most	directly	connected	to	Network
N1	using	Router	R2,	not	R1.	The	datagram	will	first	be	sent	to	Router	R1,	which
will	look	in	its	routing	table	and	see	that	datagrams	for	Network	N2	need	to	be
sent	through	Router	R2.	"But	wait,"	R1	says.	"R2	is	on	the	local	network,	and
H1	is	on	the	local	network—so	why	am	I	needed	as	a	middleman?	H1	should
just	send	datagrams	for	N2	directly	to	R2	and	leave	me	out	of	it."

In	this	situation,	Router	R1	will	send	an	ICMPv4	Redirect	message	back	to	Host
H1,	telling	it	that	in	the	future,	it	should	send	this	type	of	datagram	directly	to



Router	R2.	This	situation	is	shown	in	Figure	32-5.	Router	R1	will	also	forward
the	datagram	to	Router	R2	for	delivery,	since	there	is	no	reason	to	drop	the
datagram.	Thus,	despite	usually	being	grouped	along	with	true	ICMP	error
messages,	Redirect	messages	are	really	arguably	not	error	messages	at	all.	They
represent	a	situation	in	which	only	inefficiency	exists,	not	outright	error.	(In	fact,
in	ICMPv6,	they	have	been	reclassified.)

ICMPv4	Redirect	Message	Format
Table	32-5	and	Figure	32-6	show	the	specific	format	for	ICMPv4	Redirect
messages.

Figure	32-5.	Host	redirection	using	an	ICMP	Redirect	message	In	this	example,	Host	H1	sends	to
Router	R1	a	datagram	destined	for	Network	N2.	However,	Router	R1	notices	that	Router	R2	is	on	the
same	network	and	is	a	more	direct	route	to	Network	N2.	It	forwards	the	datagram	on	to	Router	R2,	but

also	sends	an	ICMP	Redirect	message	back	to	Host	H1	to	tell	it	to	use	Router	R2	next	time.

Table	32-5.	ICMPv4	Redirect	Message	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	for	Redirect	messages,	this	value	is
5.

Code 1 Identifies	the	meaning	or	scope	of	the	Redirect	message.	See



Code 1 Identifies	the	meaning	or	scope	of	the	Redirect	message.	See
Table	32-6	for	an	explanation	of	how	this	field	is	used	in	Redirect
messages.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Internet
Address

4 The	address	of	the	router	to	which	future	datagrams	sent	to	the
original	destination	should	be	sent.

Original
Datagram
Portion

Variable The	full	IP	header	and	the	first	8	bytes	of	the	payload	of	the	datagram
that	led	to	the	creation	of	the	Redirect.

Figure	32-6.	ICMPv4	Redirect	message	format

Redirect	Message	Interpretation	Codes
When	a	Redirect	message	is	received	back	by	a	device,	it	inspects	the	included
portion	of	the	original	datagram.	Since	this	contains	the	original	destination
address	of	the	redirected	target	device,	this	tells	the	original	sender	which
addresses	should	be	redirected	in	the	future.	The	Internet	Address	field	tells	it
which	router	it	should	use	for	subsequent	datagrams.	The	Code	field	tells	the
sender	how	broadly	to	interpret	the	redirection.	There	are	four	different	Code
values,	as	shown	in	Table	32-6.

Table	32-6.	ICMP	Redirect	Message	Interpretation	Codes

Code
Value

Message
Subtype

Meaning

0 Redirect	Datagrams
for	the	Network	(or
Subnet)

Redirect	all	future	datagrams	sent	not	only	to	the	device	whose
address	caused	this	Redirect,	but	also	to	all	other	devices	on	the
network	(or	subnet)	where	that	device	is	located.	(This	code	is
now	obsolete;	see	the	note	that	follows	this	table.)

1 Redirect	Datagrams
for	the	Host

Redirect	all	future	datagrams	only	for	the	address	of	the	specific
device	to	which	the	original	datagram	was	sent.



for	the	Host device	to	which	the	original	datagram	was	sent.

2 Redirect	Datagrams
for	the	Type	of
Service	(TOS)	and
Network	(or
Subnet)

Same	as	for	Code	value	0,	but	only	for	future	datagrams	that	have
the	same	TOS	value	as	the	original	datagram.	(This	code	is	now
obsolete;	see	the	note	that	follows	this	table.)

3 Redirect	Datagrams
for	the	TOS	and
Host

As	for	Code	value	1,	but	only	for	future	datagrams	that	have	the
same	TOS	value	as	the	original	datagram.

NOTE

One	problem	with	Redirects	for	whole	networks	is	that	the	network	specification	may	be	ambiguous	in
an	environment	where	subnetting	or	classless	addressing	is	used.	For	this	reason,	the	use	of	Code	values
0	and	2	was	prohibited	by	RFC	1812;	the	values	are	considered	obsolete	on	the	modern	Internet.

Obviously,	routers	usually	generate	Redirect	messages	and	send	them	to	hosts;
hosts	do	not	normally	create	them.	The	specific	rules	for	when	Redirect
messages	are	created	can	be	fairly	complex,	as	a	number	of	conditions	may	exist
that	preclude	these	messages	from	being	sent.	In	particular,	special	rules	exist	for
when	a	router	may	redirect	an	entire	network	(or	subnet)	instead	of	just	a	single
host.	Also,	remember	that	the	TOS	field	is	optional	and	often	not	used,	so
Redirects	with	Code	values	of	2	or	3	are	less	common	than	those	with	values	of
0	and	1.

Limitations	of	Redirect	Messages
Keep	in	mind	that	ICMP	Redirect	messages	are	not	a	mechanism	by	which	the
general	routing	process	in	IP	is	implemented;	they	are	only	a	support	function.
They	are	a	convenient	way	for	hosts	to	be	given	information	about	routes	by
local	routers,	but	are	not	used	to	communicate	route	information	between
routers.

This	means	that	a	Redirect	message	can	tell	a	host	to	use	a	more	efficient	first-
hop	router,	but	cannot	tell	a	router	to	use	a	more	efficient	second-hop	router.	In
the	previous	example	(illustrated	in	Figure	32-5),	suppose	that	in	addition	to	the
connections	mentioned,	Router	R2	is	connected	to	Router	R3	and	Router	R4.
Router	R2	sends	the	datagram	in	question	to	Router	R3,	which	realizes	it	needs



to	send	to	Router	R4,	a	router	already	directly	connected	to	Router	R2.	Router
R3	cannot	send	a	Redirect	message	to	Router	R2	telling	it	to	use	Router	R4	next
time.	The	messages	are	simply	not	designed	for	this	purpose—remember	that
ICMP	messages	always	go	back	to	the	source	of	the	original	datagram,	which
would	not	be	Router	R2	in	this	case.	Such	inefficiencies	must	be	resolved	using
routing	protocols.

TIP

KEY	CONCEPT	A	router	uses	ICMPv4	Redirect	messages	to	inform	a	host	of	a	preferred	router	that
will	be	used	for	future	datagrams	that	are	sent	to	a	particular	host	or	network.	They	are	not	used	to	alter
routes	between	routers.



ICMPv4	Parameter	Problem	Messages
The	previous	sections	in	this	chapter	describe	four	specific	ICMPv4	message
types	that	allow	a	device	to	report	various	error	conditions	to	the	original	sender
of	a	datagram.	However,	other	error	situations	may	arise	that	don't	correspond	to
any	of	these	four	specific	message	types.	Typically,	the	problem	results	when	a
device	attempts	to	process	the	header	fields	of	an	IP	datagram	and	finds
something	in	it	that	doesn't	make	sense.

If	a	device	finds	a	problem	with	any	of	the	parameters	in	an	IP	datagram	header
that	is	serious	enough	that	it	cannot	complete	processing	the	header,	it	must
discard	the	datagram.	As	in	other	cases	where	a	datagram	must	be	tossed	out,
this	is	serious	enough	to	warrant	communication	of	the	problem	back	to	the
device	that	sent	the	original	datagram.	This	is	accomplished	in	ICMPv4	using
the	Parameter	Problem	message	type.

This	is	a	catchall	type	of	message	that	can	be	used	to	indicate	an	error	in	any
header	field	of	an	IP	datagram.	The	message	type	does	not	contain	any	specific
fields	or	coding	to	indicate	what	the	problem	is.	This	was	done	intentionally	to
keep	the	Parameter	Problem	message	generic	and	ensure	that	it	could	indicate
any	sort	of	error.	Instead	of	special	error	codes,	most	Parameter	Problem
messages	tell	the	original	source	which	parameter	caused	the	problem	by
including	a	special	pointer	that	indicates	which	field	in	the	original	datagram
header	caused	the	problem.	Both	hosts	and	routers	can	generate	Parameter
Problem	messages.

ICMPv4	Parameter	Problem	Message	Format
Table	32-7	and	Figure	32-7	show	the	specific	format	for	ICMPv4	Parameter
Problem	messages.



Figure	32-7.	ICMPv4	Parameter	Problem	message	format

Table	32-7.	ICMPv4	Parameter	Problem	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	for	Parameter	Problem	messages,	this
value	is	12.

Code 1 Identifies	the	subtype	of	the	problem	being	communicated.	See
Table	32-8	for	more	information	about	this	field	as	it	relates	to	Parameter
Problem	messages.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Pointer 1 An	offset	that	points	to	the	byte	location	in	the	datagram	that	caused	the
Parameter	Problem	message	to	be	generated.	The	device	receiving	the
ICMP	message	can	use	this	value	to	get	an	idea	of	which	field	in	the
original	message	had	the	problem.	This	field	is	used	only	when	the	Code
value	is	0.

Unused 3 3	bytes	that	are	left	blank	and	not	used.

Original
Datagram
Portion

Variable The	full	IP	header	and	the	first	8	bytes	of	the	payload	of	the	datagram
that	prompted	this	error	message	to	be	sent.

Parameter	Problem	Message	Interpretation
Codes	and	the	Pointer	Field
When	a	Parameter	Problem	message	is	generated	due	to	a	specific	bad	field	in
the	original	message,	the	Pointer	field	is	used	to	show	the	location	of	the
problem.	This	meaning	of	the	Parameter	Problem	message	is	the	one	that	was
defined	in	the	original	ICMP	standard,	RFC	792,	and	is	associated	with	Code
value	0.	There	are	some	cases	of	a	parameter	problem	in	which	a	pointer	to	a
specific	field	in	the	original	message	really	wouldn't	make	sense,	so	other
standards	have	defined	two	new	Code	field	values	for	Parameter	Problem
messages.	Table	32-8	shows	the	three	Code	values	and	provides	a	brief
explanation	of	each	one.



Table	32-8.	ICMPv4	Parameter	Problem	Message	Interpretation	Codes

Code
Value

Message
Subtype

Description

0 Pointer
Indicates
the	Error

This	is	the	normal	use	of	the	Parameter	Problem	message.	When	this
Code	value	is	used,	the	Pointer	field	indicates	the	location	of	the
problem.

1 Missing	a
Required
Option

The	IP	datagram	needed	to	have	an	option	in	it	that	was	missing.	Since
the	option	was	missing,	there	is	no	way	to	point	to	it.

2 Bad	Length The	length	of	the	datagram	overall	was	incorrect,	indicating	a	general
problem	with	the	message	as	a	whole.	Again,	the	Pointer	field	makes	no
sense	here.

TIP

KEY	CONCEPT	The	ICMPv4	Parameter	Problem	message	is	a	generic	catchall	that	can	be	used	to
convey	an	error	of	any	type	in	an	IP	datagram.	A	special	Pointer	field	is	normally	used	to	indicate	to	the
message's	recipient	where	the	problem	was	in	the	original	datagram.

Note	that	the	Pointer	field	is	only	eight	bits	wide,	but	since	this	allows	for	values
of	up	to	256,	it	is	sufficient	for	allowing	it	to	point	to	any	location	within	the	IP
header.	It	is	possible	for	the	Pointer	field	to	point	to	a	field	within	an	IP	option.



Chapter	33.	ICMPV4
INFORMATIONAL	MESSAGE
TYPES	AND	FORMATS

The	five	Internet	Control	Message	Protocol	(ICMP)	error	message	types	we
examined	in	the	previous	chapter	communicate	important	information	about
error	or	problem	conditions	encountered	during	the	operation	of	an	Internet
Protocol	(IP)	internetwork.	In	contrast,	the	other	class	of	ICMP	messages
contains	those	messages	that	are	informational.	They	are	not	sent	in	response	to
some	issue	with	a	regular	IP	datagram,	but	are	used	on	their	own	to	implement
various	support	functions	for	IP.	Informational	messages	are	used	for	testing	and
diagnostic	purposes,	as	well	as	for	allowing	devices	to	share	critical	information
that	they	need	to	function	correctly.

In	this	chapter,	I	describe	nine	different	ICMP	version	4	(ICMPv4)	informational
messages.	Because	many	of	these	messages	are	used	in	functional	sets,	pairs	of
related	messages	are	described	together.	I	begin	with	a	discussion	of	the	Echo
(Request)	and	Echo	Reply	messages	used	for	network	testing,	and	Timestamp
(Request)	and	Timestamp	Reply	messages	used	for	clock	synchronization.	I
explain	the	use	and	format	of	Router	Advertisement	and	Router	Solicitation
messages,	which	allow	hosts	to	discover	the	identity	of	local	routers	and	learn
important	information	about	them.	I	also	describe	the	Address	Mask	Request	and
Address	Mask	Reply	messages	that	communicate	subnet	mask	information.	I
conclude	with	a	look	at	the	Traceroute	message,	which	implements	a	more
sophisticated	version	of	the	traceroute	utility.

NOTE

The	original	ICMP	standard	also	defined	two	more	informational	message	types:	Information	Request



and	Information	Reply.	These	were	intended	to	allow	devices	to	determine	an	IP	address	and	possibly
other	configuration	information.	This	function	was	later	implemented	using	host	configuration	protocols
such	as	the	Reverse	Address	Resolution	Protocol	(RARP),	Boot	Protocol	(BOOTP),	and	Dynamic	Host
Configuration	Protocol	(DHCP).	These	message	types	are	now	obsolete;	therefore,	they	are	not
discussed	in	this	chapter.

ICMPv4	Echo	(Request)	and	Echo	Reply
Messages
One	of	the	main	purposes	of	ICMP	informational	messages	is	to	enable	testing
and	diagnostics	in	order	to	help	identify	and	correct	problems	on	an
internetwork.	The	most	basic	test	that	can	be	conducted	between	two	devices	is
simply	checking	if	they	are	capable	of	sending	datagrams	to	each	other.	The
usual	way	that	this	is	done	is	to	have	one	device	send	a	test	message	to	a	second
device,	which	receives	the	message	and	replies	back	to	tell	the	first	device	it
received	the	message.

ICMPv4	includes	a	pair	of	messages	specifically	for	connection	testing.	Suppose
Device	A	wants	to	see	if	it	can	reach	Device	B.	Device	A	begins	the	test	process
by	sending	an	ICMPv4	Echo	message	to	Device	B.	Device	B,	when	it	receives
the	Echo,	responds	back	to	Device	A	with	an	Echo	Reply	message.	When
Device	A	receives	this	message,	it	knows	that	it	is	able	to	communicate	(both
send	and	receive)	successfully	with	Device	B.

NOTE

The	name	of	the	first	message	in	this	pair	is	often	given	as	Echo	Request.	While	this	does	convey	the
paired	nature	of	the	Echo	and	Echo	Reply	messages,	the	formal	name	used	in	the	standards	is	simply	an
Echo	message.

ICMPv4	Echo	and	Echo	Reply	Message	Format
Table	33-1	and	Figure	33-1	show	the	format	for	both	ICMPv4	Echo	and	Echo
Reply	messages.

Table	33-1.	ICMPv4	Echo	and	Echo	Reply	Message	Format

Field
Name

Size
(Bytes)

Description



Name (Bytes)

Type 1 Identifies	the	ICMP	message	type.	For	Echo	messages,	the	value	is	8;
for	Echo	Reply	messages,	the	value	is	0.

Code 1 Not	used	for	Echo	and	Echo	Reply	messages;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Identifier 2 An	identification	field	that	can	be	used	to	help	in	matching	Echo	and
Echo	Reply	messages.

Sequence
Number

2 A	sequence	number	to	help	in	matching	Echo	and	Echo	Reply
messages.

Optional
Data

Variable Additional	data	to	be	sent	along	with	the	message	(not	specified).

It	is	possible	that	a	source	device	may	want	to	send	more	than	one	Echo	message
to	either	a	single	destination	or	multiple	destinations.	Conversely,	a	single
destination	might	receive	Echo	messages	from	more	than	one	source.	It	is
essential	that	a	device	receiving	an	Echo	Reply	message	knows	which	Echo
message	prompted	it	to	be	sent.

Figure	33-1.	ICMPv4	Echo	and	Echo	Reply	message	format	Two	special	fields	are	used	within	the
format	of	these	messages.	They	allow	devices	to	match	Echo	and	Echo	Reply	messages	together,	and
exchange	a	sequence	of	messages.	The	Identifier	field	was	envisioned	as	being	used	as	a	higher-level
label,	like	a	session	identifier,	while	the	Sequence	Number	was	seen	as	something	to	identify	individual
test	messages	within	a	series.	However,	the	use	of	these	fields	is	up	to	the	particular	implementation.	In
some	cases,	the	Identifier	field	is	filled	in	with	the	process	number	of	the	application	that	is	using	the
Echo	or	Echo	Reply	message	to	allow	several	users	to	use	utilities	like	ping	without	interference.

Application	of	Echo	and	Echo	Reply	Messages
The	most	common	way	that	you	may	use	the	Echo	and	Echo	Reply	messages	is
through	the	popular	utility	ping,	which	is	used	to	test	host	reachability.	While	the
basic	test	simply	consists	of	sending	an	Echo	message	and	waiting	for	an	Echo



Reply	message,	modern	versions	of	ping	are	quite	sophisticated.	They	allow	the
user	to	specify	many	parameters,	including	the	number	of	Echo	messages	sent,
how	often	they	are	sent,	the	size	of	message	transmitted,	and	more.	They	also
provide	a	great	deal	of	information	about	the	connection,	including	the	number
of	Echo	Reply	messages	received,	the	time	elapsed	for	the	pair	of	messages	to	be
exchanged,	and	a	lot	more.	See	the	description	of	ping	in	Chapter	88	for	a	full
explanation	of	the	utility.

TIP

KEY	CONCEPT	ICMPv4	Echo	(Request)	and	Echo	Reply	messages	are	used	to	facilitate	network
reachability	testing.	A	device	can	test	its	ability	to	perform	basic	communication	with	another	one	by
sending	an	Echo	message	and	waiting	for	an	Echo	Reply	message	to	be	returned	by	the	other	device.	The
ping	utility,	a	widely	used	diagnostic	tool	in	TCP/IP	internetworks,	makes	use	of	these	messages.



ICMPv4	Timestamp	(Request)	and	Timestamp
Reply	Messages
All	of	the	hosts	and	routers	on	an	internetwork	operate	independently	of	each
other.	One	aspect	of	this	autonomy	is	that	each	device	maintains	a	separate
system	clock.	There's	a	problem,	however:	Even	highly	accurate	clocks	have
slight	differences	in	both	how	accurately	they	keep	time	and	the	time	with	which
they	were	initialized	at	startup.	This	means	that	under	normal	circumstances,	no
two	devices	on	an	internetwork	are	guaranteed	to	have	exactly	the	same	time.

The	creators	of	TCP/IP	recognized	that	certain	applications	might	not	work
properly	if	there	were	too	much	differential	between	the	system	clocks	of	a	pair
of	devices.	To	support	this	requirement,	they	created	a	pair	of	ICMP	messages
that	allow	devices	to	exchange	system	time	information.	The	initiating	device
creates	a	Timestamp	message	and	sends	it	to	the	device	with	which	it	wishes	to
synchronize.	That	device	responds	with	a	Timestamp	Reply	message.
Timestamp	fields	in	these	messages	are	used	to	mark	the	times	that	these
messages	are	sent	and	received	to	allow	the	devices'	clocks	to	be	synchronized.

NOTE

As	with	the	Echo	message	(described	in	the	previous	section),	the	Timestamp	message	is	sometimes	seen
as	Timestamp	Request,	though	the	word	Request	doesn't	appear	in	its	formal	name.

ICMPv4	Timestamp	and	Timestamp	Reply
Message	Format
The	ICMPv4	Timestamp	and	Timestamp	Reply	messages	have	the	same	format.
The	originating	device	fills	in	some	of	the	fields,	and	the	replying	device	fills	in
others.	The	format	is	as	shown	in	Table	33-2	and	Figure	33-2.

Table	33-2.	ICMPv4	Timestamp	and	Timestamp	Reply	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type.	For	Timestamp	messages,	the	value
is	13;	for	Timestamp	Reply	messages,	the	value	is	14.



is	13;	for	Timestamp	Reply	messages,	the	value	is	14.

Code 1 Not	used	for	Timestamp	and	Timestamp	Reply	messages;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Identifier 2 An	identification	field	that	can	be	used	to	help	in	matching	Timestamp
and	Timestamp	Reply	messages.

Sequence
Number

2 A	sequence	number	to	help	in	matching	Timestamp	and	Timestamp
Reply	messages.

Originate
Timestamp

4 A	time	value	filled	in	by	the	originating	device	just	before	sending	the
Timestamp	message.

Receive
Timestamp

4 A	time	value	filled	in	by	the	responding	device	just	as	it	receives	the
Timestamp	message.

Transmit
Timestamp

4 A	time	value	filled	in	by	the	responding	device	just	before	sending	back
the	Timestamp	Reply	message.

The	Identifier	and	Sequence	Number	fields	are	used	to	match	Timestamp	and
Timestamp	Reply	messages,	exactly	as	they	are	used	for	Echo	and	Echo	Reply
messages.	The	Identifier	field	is	intended	as	a	higher-level	label,	like	a	session
identifier,	while	the	Sequence	Number	is	often	used	to	identify	individual
messages	within	a	series.	However,	the	use	of	these	fields	is	up	to	the	particular
implementation.

Figure	33-2.	ICMPv4	Timestamp	and	Timestamp	Reply	message	format

All	three	timestamps	are	represented	as	the	number	of	milliseconds	since
midnight,	Universal	Time	(UT,	also	called	Greenwich	mean	time	or	GMT	).	The
reason	there	are	three	timestamps	instead	of	the	two	you	might	ordinarily	expect
is	that	the	responding	device	records	a	separate	timestamp	when	it	receives	the



Timestamp	message	and	when	it	generates	the	Timestamp	Reply.	When	the
Reply	message	is	received	back	by	the	originating	device,	it	then	has	the	times
that	both	the	Timestamp	and	the	Timestamp	Reply	messages	were	sent.	This
allows	the	originating	device	to	differentiate	between	the	time	required	for
transmitting	datagrams	over	the	network	and	the	time	for	the	other	device	to
process	the	Timestamp	message	and	turn	it	into	a	Timestamp	Reply	message.

Issues	Using	Timestamp	and	Timestamp	Reply
Messages
In	practice,	even	with	these	three	timestamp	fields,	it	is	difficult	to	coordinate
system	clocks	over	an	internetwork,	especially	a	large	one	like	the	Internet.	The
main	problem	is	that	the	amount	of	time	it	takes	to	send	a	datagram	between	any
pair	of	devices	varies	from	one	datagram	to	the	next.	And	again,	since	IP	is
unreliable,	it's	possible	that	the	time	for	a	datagram	to	be	received	could	be
infinite.	In	fact,	it	might	be	lost	or	dropped	by	a	router.

This	means	that	a	simple	exchange	of	Timestamp	and	Timestamp	Reply
messages	is	simply	not	a	method	that's	reliable	enough	to	ensure	that	two	devices
are	synchronized	on	a	typical	IP	internetwork.	For	this	reason,	modern	devices
often	use	a	more	sophisticated	method	for	time	synchronization,	such	as	the
Network	Time	Protocol	(NTP).

Note	that	unlike	many	of	the	other	ICMP	message	types,	support	for	Timestamp
and	Timestamp	Reply	messages	is	optional,	for	both	hosts	and	routers.



ICMPv4	Router	Advertisement	and	Router
Solicitation	Messages
In	Chapter	23,	which	described	IP	routing	fundamentals,	I	discussed	a	critical
aspect	of	IP	internetwork	design:	the	difference	between	the	roles	of	a	router	and
the	roles	of	a	host	with	regard	to	routing.	Routers	are	charged	with	the	job	of
routing	datagrams,	and	therefore,	of	knowing	routes	and	exchanging	route
information.	Hosts	generally	do	not	know	a	great	deal	about	routes;	they	rely	on
routers	to	convey	datagrams	intended	for	destinations	outside	the	local	network.

This	dependence	means	that	before	a	host	can	really	participate	on	an
internetwork,	it	needs	to	know	the	identity	of	at	least	one	router	on	the	local
network.	One	way	to	ensure	that	this	is	the	case	is	to	just	manually	configure
each	host	with	the	address	of	a	local	router	as	its	default	router.	This	method	is
simple,	but	has	the	typical	drawbacks	associated	with	manual	processes:	It	is
time-consuming	to	set	up,	difficult	to	maintain,	and	inflexible.

The	Router	Discovery	Process
It	would	be	better	if	there	were	some	method	whereby	a	host	could	automatically
discover	the	identity	of	local	routers	and	learn	important	information	about	them.
In	IP,	this	process	is	called	Router	Discovery	and	was	first	defined	in	RFC	1256,
"ICMP	Router	Discovery	Messages."	The	messages	referenced	in	the	RFC	title
are	the	ICMP	Router	Advertisement	message	and	the	Router	Solicitation
message.	They	were	added	to	the	ICMP	message	types	that	were	defined	in
earlier	standards	such	as	RFC	792.

Routers	are	responsible	for	sending	Router	Advertisement	messages.	These
messages	tell	listening	devices	that	the	router	exists,	and	they	provide	important
information	about	the	router	such	as	its	address	(or	addresses,	if	it	has	more	than
one)	and	how	long	the	host	should	retain	information	about	the	router.	Routine
Router	Advertisement	messages	are	sent	on	a	regular	basis,	and	an	administrator
can	configure	the	time	between	messages	(usually	between	seven	and	ten
minutes).	Hosts	listen	for	these	messages;	when	an	advertisement	is	received,	the
host	processes	it	and	adds	the	information	about	the	router	to	its	routing	table.



A	host	that	does	not	have	any	manually	configured	routing	information	will	have
no	knowledge	of	routers	when	it	first	powers	on.	Having	it	sit	for	many	minutes
while	it	looks	for	a	routine	Router	Advertisement	message	is	inefficient.	Instead
of	waiting,	the	host	may	send	a	Router	Solicitation	message	on	its	local
network(s).	This	will	prompt	any	router	that	hears	it	to	immediately	send	out	an
extra	Router	Advertisement	message	directly	to	that	host.

ICMPv4	Router	Advertisement	Message	Format
The	ICMPv4	Router	Advertisement	message	format	is	shown	in	Table	33-3	and
Figure	33-3.

Table	33-3.	ICMPv4	Router	Advertisement	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type.	For	Router	Advertisement	messages,
the	value	is	9.

Code 1 Normally	set	to	0.	When	a	Mobile	IP	agent	is	sending	a	Router
Advertisement	with	an	Agent	Advertisement	extension,	it	may	set	the
value	to	16	only	if	the	device	is	a	mobile	agent	and	doesn't	intend	to
handle	normal	traffic.	See	the	discussion	of	Mobile	IP	agent	discovery
for	details	(Chapter	30).

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Num
Addrs

1 The	number	of	addresses	associated	with	this	router	that	are	included	in
this	advertisement.

Addr
Entry	Size

1 The	address	entry	size—number	of	32-bit	words	of	information	included
with	each	address.	Since	in	this	message	format	each	router	address	has	a
32-bit	address	and	a	32-bit	preference	level,	this	value	is	fixed	at	2.

Lifetime 2 The	number	of	seconds	that	a	host	should	consider	the	information	in	this
message	valid.

Router
Address
Entries

Value
of	Num
Addrs
field	*	8

A	number	of	router	address	entries	equal	to	the	value	of	the	Num	Addrs
field.	Each	is	8	bytes	and	has	two	subfields,	each	4	bytes	in	size.	The
Router	Address	subfield	is	a	valid	address	for	an	interface	to	the	router
sending	this	message.	The	Preference	Level	subfield	is	the	preference
level	of	this	address.	When	more	than	one	address	is	included	in	an
advertisement,	this	field	indicates	which	address	the	router	would	prefer



advertisement,	this	field	indicates	which	address	the	router	would	prefer
hosts	to	use.	Higher	values	mean	greater	preference.

Figure	33-3.	ICMPv4	Router	Advertisement	Message	format

ICMPv4	Router	Solicitation	Message	Format
ICMPv4	Router	Solicitation	messages	are	much	simpler,	because	they	need	to
convey	only	the	following	single	piece	of	information:	"If	you	are	a	router	and
can	hear	this,	please	send	a	Router	Advertisement	to	me."	The	format	is
therefore	just	the	trivial	set	of	fields	shown	in	Table	33-4	and	illustrated	in
Figure	33-4.

Table	33-4.	ICMPv4	Router	Solicitation	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type.	For	Router	Solicitation	messages,
the	value	is	10.

Code 1 Not	used;	value	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Reserved 4 The	4	reserved	bytes	sent	as	0.



Figure	33-4.	ICMPv4	Router	Solicitation	Message	format

Addressing	and	Use	of	Router	Advertisement
and	Router	Solicitation	Messages
If	possible,	both	Router	Advertisement	and	Router	Solicitation	messages	are	sent
out	as	multicast	for	efficiency.	Router	Advertisements	use	the	"all	devices"
multicast	address	(224.0.0.1),	because	they	are	intended	for	hosts	to	hear.	Router
Solicitation	messages	use	the	"all	routers"	multicast	address	(224.0.0.2).	If	the
local	network	does	not	support	multicast,	messages	are	instead	sent	out	by
broadcast	(to	address	255.255.255.255).

It	is	important	to	remember	that	just	like	ICMP	Redirect	messages,	Router
Advertisement	messages	are	not	a	generalized	method	for	exchanging	routing
information.	They	are	a	support	mechanism	only,	used	to	inform	hosts	about	the
existence	of	routers.	Detailed	information	about	routes	is	communicated	between
routers	using	routing	protocols,	like	the	Routing	Information	Protocol	(RIP)	and
Open	Shortest	Path	First	(OSPF).

Although	Router	Discovery	is	one	alternative	to	manual	configuration	of	a	host's
default	router,	there	are	other	alternatives	as	well.	For	example,	a	host
configuration	protocol	like	the	Dynamic	Host	Configuration	Protocol	(DHCP)
can	allow	a	host	to	learn	the	address	of	a	default	router	on	the	local	network.

Finally,	note	that	when	Mobile	IP	is	implemented,	Router	Advertisement
messages	are	used	as	the	basis	for	Mobile	IP–aware	routers	to	send	Agent
Advertisements.	One	or	more	special	extensions	are	added	to	the	regular	Router
Advertisement	format	to	create	an	Agent	Advertisement.	This	is	discussed
extensively	in	the	section	on	Mobile	IP	Agent	Discovery	in	Chapter	31.

TIP

KEY	CONCEPT	ICMP	Router	Advertisement	messages	are	sent	regularly	by	IP	routers	to	inform	hosts
of	their	presence	and	characteristics.	This	way,	hosts	know	to	use	them	for	delivery	of	datagrams	to



distant	hosts.	A	host	that	is	new	to	a	network	and	wants	to	find	out	immediately	what	routers	are	present
may	send	a	Router	Solicitation	message,	which	will	prompt	listening	routers	to	send	out	Router
Advertisement	messages.



ICMPv4	Address	Mask	Request	and	Reply
Messages
When	IP	was	first	developed,	IP	addresses	were	based	on	a	simple	two-level
structure,	with	a	network	identifier	(network	ID)	and	host	identifier	(host	ID).	To
provide	more	flexibility,	a	technique	called	subnetting	was	soon	developed.
Subnetting	expands	the	addressing	scheme	into	a	three-level	structure,	with	each
address	containing	a	network	ID,	subnet	identifier,	and	host	ID.	The	subnet	mask
is	a	32-bit	number	that	tells	devices	(and	users)	which	bits	are	part	of	the	subnet
identifier,	as	compared	to	the	host	ID.	All	of	this	is	described	in	considerable
detail	in	the	part	on	IP	addressing	(Part	II-3).

To	function	properly	in	a	subnetting	environment,	each	host	must	know	the
subnet	mask	that	corresponds	to	each	address	it	is	assigned.	Without	the	mask,	it
cannot	properly	interpret	IP	addresses.	Just	as	in	determining	the	identity	of	a
local	router,	a	host	can	be	informed	of	the	local	network's	subnet	mask	either
manually	or	automatically.	The	manual	method	is	to	simply	manually	assign	the
subnet	mask	to	each	host.	The	automatic	method	makes	use	of	a	pair	of	ICMP
messages	designed	for	subnet	mask	determination,	which	were	defined	in	RFC
950,	the	same	standard	that	defined	subnetting	itself.

To	use	this	method,	a	host	sends	an	Address	Mask	Request	message	on	the	local
network,	usually	to	get	a	response	from	a	router.	If	it	knows	the	address	of	a
local	router,	it	may	send	the	request	directly	(unicast);	otherwise,	the	host	will
broadcast	the	request	to	any	listening	router.	A	local	router	(or	other	device)	will
receive	this	message	and	respond	back	with	an	Address	Mask	Reply	message
that	contains	the	subnet	mask	for	the	local	network.	This	process	is	somewhat
similar	to	the	mechanism	used	by	a	host	to	solicit	a	router	to	respond	with	a
Router	Advertisement	message,	except	that	routers	do	not	routinely	send	subnet
mask	information—that	information	must	be	requested.

ICMPv4	Address	Mask	Request	and	Address
Mask	Reply	Message	Format
The	Address	Mask	Request	and	Address	Mask	Reply,	like	some	other	request



and	reply	pairs,	have	the	same	basic	format.	The	host	creates	the	request	with	all
fields	filled	in	except	for	the	subnet	mask	value	itself,	and	the	router	supplies	the
mask	and	sends	the	reply	back	to	the	host.	The	format	is	described	in	Table	33-5
and	illustrated	in	Figure	33-5.

Table	33-5.	ICMPv4	Address	Mask	Request	and	Address	Mask	Reply
Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type.	For	Address	Mask	Request	messages,
the	value	is	17;	for	Address	Mask	Reply	messages,	it	is	18.

Code 1 Not	used	for	either	message	type;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Identifier 2 An	identification	field	that	can	be	used	to	help	in	matching	Address
Mask	Request	and	Address	Mask	Reply	messages.

Sequence
Number

2 A	sequence	number	to	help	in	matching	Address	Mask	Request	and
Address	Mask	Reply	messages.

Address
Mask

4 The	subnet	mask	for	the	local	network,	filled	in	by	the	router	in	the
Address	Mask	Reply	message.

Figure	33-5.	ICMPv4	Address	Mask	Request	and	Address	Mask	Reply	message	format

The	Identifier	and	Sequence	Number	fields	can	be	used	to	match	up	requests	and
replies,	as	they	are	for	Echo	and	Echo	Reply	messages.	However,	a	host	won't
normally	send	multiple	requests	for	subnet	masks	the	way	it	might	send	Echo
messages	for	testing.	For	this	reason,	the	Identifier	and	Sequence	Number	fields
may	be	ignored	by	some	implementations.



Use	of	Address	Mask	Request	and	Address
Mask	Reply	Messages
Note	that	the	use	of	Address	Mask	Request	and	Address	Mask	Reply	messages
is	optional,	just	as	the	Router	Discovery	described	in	the	previous	section	is.
Other	methods	besides	these	messages	or	manual	configuration	may	be	used	to
tell	a	host	what	subnet	mask	to	use.	Again,	a	common	alternative	to	ICMP	for
this	is	to	use	a	host	configuration	protocol	like	DHCP.	Routers	do	need	to	be
able	to	respond	to	Address	Mask	Requests	for	hosts	that	choose	to	send	them.



ICMPv4	Traceroute	Messages
The	Echo	and	Echo	Reply	messages	you	saw	earlier	in	this	chapter	are	used	for
the	most	basic	type	of	test	that	can	be	conducted	between	two	devices:	checking
if	they	can	communicate.	A	more	sophisticated	test	can	also	be	performed	in
order	to	see	not	only	if	the	devices	are	able	to	talk,	but	also	to	discover	the	exact
sequence	of	routers	used	to	move	datagrams	between	them.	In	TCP/IP,	this
diagnostic	is	performed	using	the	traceroute	(or	tracert)	utility.

The	first	implementation	of	traceroute	used	a	clever	application	of	Time
Exceeded	error	messages,	as	described	in	the	previous	chapter.	By	sending	a	test
message	to	a	destination	first	with	a	Time	to	Live	(TTL)	value	of	1,	then	2,	then
3,	and	so	on,	each	router	in	the	path	between	the	source	and	destination	would
successively	discard	the	test	messages	and	send	back	a	Time	Exceeded	message.
Each	router	would	then	display	the	sequence	of	routers	between	the	two	hosts.
This	bit	of	trickery	works	well	enough	in	general	terms,	but	is	suboptimal	in	a
couple	of	respects.	For	example,	it	requires	the	source	device	to	send	one	test
message	for	each	router	in	the	path,	instead	of	just	a	single	test	message.	It	also
doesn't	take	into	account	the	possibility	that	the	path	between	two	devices	may
change	during	the	test.

Recognizing	these	limitations,	a	new	experimental	standard	was	developed	in
1993	that	defined	a	more	efficient	way	to	conduct	a	traceroute:	RFC	1393,
"Traceroute	Using	an	IP	Option."	As	the	title	suggests,	this	method	of	doing	a
traceroute	works	by	having	the	source	device	send	a	single	datagram	to	the
destination	that	contains	a	special	Traceroute	IP	option.	Each	router	that	sees	that
option	while	the	test	message	is	conducted	along	the	route	responds	back	to	the
original	source	with	an	ICMP	Traceroute	message,	which	is	also	defined	in	RFC
1393.

ICMPv4	Traceroute	Message	Format
Since	the	Traceroute	message	was	specifically	designed	for	the	traceroute	utility,
it	was	possible	to	incorporate	extra	information	in	it	that	a	host	tracing	a	route
could	use.	The	message	format	is	as	shown	in	Table	33-6	and	Figure	33-6.



Table	33-6.	ICMPv4	Traceroute	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMP	message	type;	in	this	case,	30.

Code 1 Set	to	the	value	0	if	the	datagram	the	source	device	sent	was	successfully
sent	to	the	next	router,	or	1	to	indicate	that	the	datagram	was	dropped
(meaning	the	traceroute	failed).

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

ID
Number

2 An	identification	field	used	to	match	up	this	Traceroute	message	to	the
original	message	sent	by	the	source	(the	one	containing	the	Traceroute	IP
option).

Unused 2 Not	used,	set	to	0.

Outbound
Hop
Count

2 The	number	of	routers	the	original	message	has	already	passed	through.

Return
Hop
Count

2 The	number	of	routers	the	return	message	has	passed	through.

Output
Link
Speed

4 The	speed	of	the	link	over	which	the	Traceroute	message	is	being	sent,	in
bytes	per	second.

Output
Link
MTU

4 The	maximum	transmission	unit	(MTU)	of	the	link	over	which	the
Traceroute	message	is	being	sent,	in	bytes.

Figure	33-6.	ICMPv4	Traceroute	message	format



Use	of	Traceroute	Messages
Although	this	method	of	implementing	traceroute	has	advantages	over	the	older
Time	Exceeded	messages	method,	it	has	one	critical	flaw	as	well:	It	requires
changes	to	both	hosts	and	routers	to	support	the	new	IP	option	and	the
Traceroute	ICMP	message.	People	aren't	big	on	change,	especially	when	it
comes	to	the	basic	operation	of	IP.	For	this	reason,	RFC	1393	never	moved
beyond	experimental	status,	and	most	IP	devices	still	use	the	older	method	of
implementing	traceroute.	It	is	possible	that	you	may	encounter	ICMP	Traceroute
messages,	however,	so	it's	good	that	you	know	they	exist.

TIP

KEY	CONCEPT	ICMP	Traceroute	messages	were	designed	to	provide	a	more	capable	way	of
implementing	the	traceroute	(tracert)	utility.	However,	most	TCP/IP	implementations	still	use	ICMP
Time	Exceeded	messages	for	this	task.



Chapter	34.	ICMPV6	ERROR
MESSAGE	TYPES	AND	FORMATS

The	original	Internet	Control	Message	Protocol	(ICMP)	defined	for	version	4	of
the	Internet	Protocol	(IPv4)	has	a	number	of	error	messages	that	allow	for	the
communication	of	problems	on	an	internetwork.	When	IP	version	6	(IPv6)	was
developed,	the	differences	between	IPv4	and	IPv6	were	significant	enough	that	a
new	version	of	ICMP	was	also	required:	version	6	(ICMPv6),	which	is	currently
specified	in	RFC	2463.	Like	ICMPv4,	ICMPv6	defines	several	error	messages
for	informing	a	source	that	something	has	gone	wrong.

In	this	chapter,	I	describe	the	four	ICMPv6	error	messages	defined	in	RFC	2463.
I	first	discuss	ICMPv6	Destination	Unreachable	messages,	which	are	used	to	tell
a	device	that	the	datagram	it	sent	could	not	be	delivered	for	a	variety	of	reasons.
I	describe	Packet	Too	Big	error	messages,	which	are	sent	when	a	datagram	can't
be	sent	due	to	being	too	large	for	an	underlying	network	it	needs	to	traverse.	I
explain	the	use	of	Time	Exceeded	messages,	which	indicate	that	too	much	time
was	taken	to	accomplish	a	transmission.	I	conclude	with	a	look	at	Parameter
Problem	messages,	which	provide	a	generalized	way	of	reporting	errors	that	are
not	described	by	any	of	the	preceding	ICMPv6	error	message	types.

NOTE

Three	of	the	four	ICMPv6	error	messages	(all	except	Packet	Too	Big)	are	equivalent	to	the	ICMPv4
error	messages	that	have	the	same	names.	However,	to	allow	this	chapter	to	stand	on	its	own,	I	describe
each	one	fully,	in	addition	to	pointing	out	any	significant	differences	between	the	ICMPv4	and	ICMPv6
version	of	the	message.

ICMPv6	Destination	Unreachable	Messages



IPv6	includes	some	important	enhancements	over	the	older	version	4,	but	the
basic	operation	of	the	two	protocols	is	still	fundamentally	the	same.	Like	IPv4,
IPv6	is	an	unreliable	network	protocol	that	makes	a	best	effort	to	deliver
datagrams,	but	offers	no	guarantees	that	they	will	always	get	there.	Just	as	they
did	in	IPv4,	devices	on	an	IPv6	network	must	not	assume	that	datagrams	sent	to
a	destination	will	always	be	received.

When	a	datagram	cannot	be	delivered,	recovery	from	this	condition	normally
falls	to	higher-layer	protocols	like	the	Transmission	Control	Protocol	(TCP),
which	will	detect	the	miscommunication	and	resend	the	lost	datagrams.	In	some
situations,	such	as	a	datagram	that	was	dropped	due	to	the	congestion	of	a	router,
this	is	sufficient,	but	in	other	cases,	a	datagram	may	not	be	delivered	due	to	an
inherent	problem	with	how	it	is	being	sent.	For	example,	the	source	may	have
specified	an	invalid	destination	address,	which	means	that	even	if	it	were	resent
many	times,	the	datagram	would	never	get	to	its	intended	recipient.

In	general,	having	the	source	just	resend	undelivered	datagrams	while	having	no
idea	why	they	were	lost	is	inefficient.	It	is	better	to	have	a	feedback	mechanism
that	can	tell	a	source	device	about	undeliverable	datagrams	and	provide	some
information	about	why	the	datagram	delivery	failed.	As	in	ICMPv4,	in	ICMPv6
this	is	done	with	Destination	Unreachable	messages.	Each	message	includes	a
code	that	indicates	the	basic	nature	of	the	problem	that	caused	the	datagram	not
to	be	delivered,	as	well	as	all	or	part	of	the	datagram	that	was	undelivered	in
order	to	help	the	source	device	diagnose	the	problem.

ICMPv6	Destination	Unreachable	Message
Format
Table	34-1	and	Figure	34-1	show	the	specific	format	for	ICMPv6	Destination
Unreachable	messages.



Figure	34-1.	ICMPv6	Destination	Unreachable	message	format

Table	34-1.	ICMPv6	Destination	Unreachable	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Destination	Unreachable
messages,	this	is	set	to	1.

Code 1 Identifies	the	subtype	of	unreachable	errors	that	are	being
communicated.	See	Table	32-2	for	a	full	list	of	codes	and	what	they
mean.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Unused 4 The	4	bytes	that	are	left	blank	and	not	used.

Original
Datagram
Portion

Variable As	much	of	the	IPv6	datagram	as	will	fit	without	causing	the	size	of	the
ICMPv6	error	message	(including	its	own	IP	header)	to	exceed	the
minimum	IPv6	maximum	transmission	unit	(MTU)	of	1280	bytes.

ICMPv6	Destination	Unreachable	Message
Subtypes
There	are	a	number	of	different	reasons	why	a	destination	may	be	unreachable.
To	provide	additional	information	about	the	nature	of	the	problem	to	the	device
that	originally	tried	to	send	the	datagram,	a	value	is	placed	in	the	message's	Code
field.	One	interesting	difference	between	ICMPv4	and	ICMPv6	Destination
Unreachable	messages	is	that	there	are	many	fewer	Code	values	for	ICMPv6.
The	ICMPv6	Code	values	were	streamlined,	mainly	because	several	of	the
ICMPv4	codes	were	related	to	relatively	obscure	features	that	aren't	applicable	to
ICMPv6.

Table	34-2	shows	the	different	Code	values,	corresponding	message	subtypes,
and	a	brief	explanation	of	each.

Table	34-2.	ICMPv6	Destination	Unreachable	Message	Subtypes

Code
Value

Message
Subtype

Description



Value Subtype

0 No	Route	to
Destination

The	datagram	was	not	delivered	because	it	could	not	be	routed	to	the
destination.	Since	this	means	that	the	datagram	could	not	be	sent	to
the	destination	device's	local	network,	this	is	basically	equivalent	to
the	Network	Unreachable	message	subtype	in	ICMPv4.

1 Communication
with	Destination
Administratively
Prohibited

The	datagram	could	not	be	forwarded	due	to	filtering	that	blocks	the
message	based	on	its	contents.	Equivalent	to	the	message	subtype
with	the	same	name	(and	Code	value	13)	in	ICMPv4.

3 Address
Unreachable

There	was	a	problem	attempting	to	deliver	the	datagram	to	the	host
specified	in	the	destination	address.	This	code	is	equivalent	to	the
ICMPv4	Host	Unreachable	code	and	usually	means	that	the
destination	address	was	bad	or	that	there	was	a	problem	with
resolving	it	into	a	layer	2	address.

4 Port
Unreachable

The	destination	port	specified	in	the	UDP	or	TCP	header	was	invalid
or	does	not	exist	on	the	destination	host.

Note	that	Code	value	2	is	not	used.	Also,	Destination	Unreachable	messages	are
sent	only	when	there	is	a	fundamental	problem	with	delivering	a	particular
datagram;	they	are	not	sent	when	a	datagram	is	dropped	simply	due	to
congestion	of	a	router.

Processing	of	Destination	Unreachable
Messages
It	is	up	to	the	recipient	of	an	ICMPv6	Destination	Unreachable	message	to
decide	what	to	do	with	it.	However,	just	as	the	original	datagram	may	not	reach
its	destination,	the	Destination	Unreachable	message	may	do	the	same.
Therefore,	a	device	cannot	rely	on	the	receipt	of	one	of	these	error	messages	to
inform	it	of	every	delivery	problem.	This	is	especially	true	given	that	it	is
possible	that	some	unreachable	destination	problems	may	not	be	detectable.

TIP

KEY	CONCEPT	ICMPv6	Destination	Unreachable	messages	are	used	in	the	same	manner	as	the
ICMPv4	Destination	Unreachable	messages:	to	inform	a	sending	device	of	a	failure	to	deliver	an	IP
datagram.	The	message's	Code	field	provides	information	about	the	nature	of	the	delivery	problem
(though	the	Code	values	are	different	from	those	in	ICMPv4).



ICMPv6	Packet	Too	Big	Messages
One	of	the	most	interesting	changes	made	to	the	operation	of	IP	in	version	6	is
related	to	the	process	of	datagram	fragmentation	and	reassembly.	In	IPv4,	a	host
can	send	a	datagram	of	any	size	that's	allowed	by	the	IP	specification	out	onto
the	internetwork.	If	a	router	needs	to	send	the	datagram	over	a	physical	link	that
has	a	maximum	transmission	unit	(MTU)	size	that	is	too	small	for	the	size	of	the
datagram,	it	will	automatically	fragment	the	datagram	and	send	the	fragments
individually	so	they	will	fit.	The	destination	device	will	receive	the	fragments
and	reassemble	them.	I	explain	the	basics	behind	this	in	Chapter	22.

Even	though	it	is	convenient	for	hosts	to	be	able	to	rely	on	routers	to
automatically	fragment	messages	as	needed,	it	is	inefficient	for	routers	to	spend
time	doing	this.	For	this	reason,	in	IPv6	developers	made	the	decision	to	not
allow	routers	to	fragment	datagrams.	This	puts	the	responsibility	on	each	host	to
ensure	that	the	datagrams	they	send	out	are	small	enough	to	fit	over	every
physical	network	between	itself	and	any	destination.	This	is	done	either	by	using
the	IPv6	default	minimum	MTU	of	1280,	which	every	physical	link	must
support,	or	a	special	Path	MTU	Discovery	process	for	determining	the	minimum
MTU	between	a	pair	of	devices.	Again,	the	full	details	are	in	Chapter	22.

If	an	IPv6	router	is	not	allowed	to	fragment	an	IPv6	datagram	that	is	too	large	to
fit	on	the	next	physical	link	over	which	it	must	be	forwarded,	what	should	the
router	do	with	it?	The	datagram	can't	be	forwarded,	so	the	router	has	no	choice
but	to	discard	it.	When	this	happens,	the	router	is	required	to	report	this
occurrence	back	to	the	device	that	initially	sent	the	datagram,	using	an	ICMPv6
Packet	Too	Big	message.	The	source	device	will	know	that	it	needs	to	fragment
the	datagram	in	order	to	have	it	successfully	reach	its	destination.

NOTE

Recall	that	packet	is	a	synonym	for	datagram,	so	you	can	think	of	this	as	the	"Datagram	Too	Big"
message.

ICMPv6	Packet	Too	Big	Message	Format
Table	34-3	and	Figure	34-2	show	the	format	for	ICMPv6	Packet	Too	Big



messages.

Table	34-3.	ICMPv6	Packet	Too	Big	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Packet	Too	Big	messages,	this
is	set	to	2.

Code 1 Not	used	for	this	message	type;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

MTU 4 The	MTU	size,	in	bytes,	of	the	physical	link	over	which	the	router
wanted	to	send	the	datagram,	but	was	not	able	to	do	so	due	to	the
datagram's	size.	Including	this	value	in	the	Packet	Too	Big	message	tells
the	source	device	the	size	it	needs	to	use	for	its	next	transmission	to	this
destination	in	order	to	avoid	this	problem	in	the	future	(at	least	for	this
particular	link).

Original
Datagram
Portion

Variable As	much	of	the	IPv6	datagram	as	will	fit	without	causing	the	size	of	the
ICMPv6	message	(including	its	own	IP	header)	to	exceed	the	minimum
IPv6	MTU	of	1280	bytes.

Figure	34-2.	ICMPv6	Packet	Too	Big	message	format

TIP

KEY	CONCEPT	In	IPv6,	routers	are	not	allowed	to	fragment	datagrams	that	are	too	large	to	send	over
a	physical	link	to	which	they	are	connected.	An	oversized	datagram	is	dropped,	and	an	ICMPv6	Packet
Too	Big	message	is	sent	back	to	the	datagram's	originator	to	inform	it	of	this	occurrence.

Applications	of	Packet	Too	Big	Messages
While	Packet	Too	Big	is	obviously	an	error	message,	it	also	has	another	use:	the



implementation	of	Path	MTU	Discovery.	This	process,	described	in	RFC	1981,
defines	a	way	for	a	device	to	determine	the	minimum	MTU	for	a	path	to	a
destination.	To	perform	Path	MTU	Discovery,	the	source	device	sends	a	series
of	test	messages,	decreasing	the	size	of	the	datagram	until	it	no	longer	receives
Packet	Too	Big	messages	back	in	response	to	its	tests.	See	Chapter	27	for	a	bit
more	detail	on	this.

NOTE

The	Packet	Too	Big	message	is	new	to	ICMPv6.	However,	its	use	is	somewhat	similar	to	the	use	of	the
Fragmentation	Needed	and	DF	Set	version	of	the	ICMP4	Destination	Unreachable	message	type,	which
is	used	as	part	of	IPv4's	Path	MTU	Discovery	feature.

Incidentally,	Packet	Too	Big	is	an	exception	to	the	rule	that	ICMP	messages	are
sent	only	in	response	to	unicast	datagrams;	it	may	be	sent	in	reply	to	an
oversized	multicast	datagram.	If	this	occurs,	it	is	important	to	realize	that	some
of	the	intended	targets	of	the	multicast	may	still	have	received	it,	if	the	path	the
multicast	took	to	them	did	not	go	through	the	link	with	the	small	MTU	that
caused	the	error.



ICMPv6	Time	Exceeded	Messages
The	engineers	who	first	designed	IP	recognized	that	due	to	the	nature	of	how
routing	works	on	an	internetwork,	there	was	always	a	danger	that	a	datagram
might	get	lost	in	the	system	and	spend	too	much	time	being	passed	from	one
router	to	another.	They	included	in	IPv4	datagrams	a	field	called	Time	to	Live
(TTL),	which	was	intended	to	be	set	to	a	time	value	by	the	device	sending	the
datagram	and	used	as	a	timer	to	cause	the	datagram	to	be	discarded	if	it	took	too
long	to	get	to	its	destination.

Eventually,	the	meaning	of	this	field	was	changed,	so	it	represented	not	a	time	in
seconds	but	the	number	of	hops	the	datagram	was	allowed	to	traverse.	In	IPv6,
the	new	meaning	of	this	field	was	formalized	when	it	was	renamed	Hop	Limit.
Regardless	of	its	name,	the	field	still	has	the	same	basic	purpose:	It	restricts	how
long	a	datagram	can	exist	on	an	internetwork	by	limiting	the	number	of	times
routers	can	forward	it.	This	is	particularly	designed	to	provide	protection	against
router	loops	that	may	occur	in	large	or	improperly	configured	internetworks.	An
example	of	this	situation	is	where	Router	A	thinks	datagrams	intended	for
Network	X	should	next	go	to	Router	B,	which	thinks	they	should	go	to	Router	C,
which	thinks	they	need	to	go	to	Router	A.	Without	a	Hop	Limit,	such	datagrams
would	circle	forever,	clogging	networks	and	never	accomplishing	anything
useful.	Figure	34-3	illustrates	the	router	loop	problem.

Each	time	a	router	passes	an	IPv6	datagram,	it	decreases	the	Hop	Limit	field.	If
the	value	ever	reaches	zero,	the	datagram	expires	and	is	discarded.	When	this
happens,	the	router	that	dropped	the	datagram	sends	an	ICMPv6	Time	Exceeded
message	back	to	the	datagram's	originator	to	inform	it	that	the	datagram	was
dropped.	This	is	basically	the	same	as	the	ICMPv4	Time	Exceeded	message.	As
in	the	ICMPv4	case,	the	device	receiving	the	message	must	decide	whether	and
how	to	respond	to	receipt	of	the	message.	For	example,	since	a	device	using	a
Hop	Limit	that	was	too	low	can	cause	the	error,	the	device	may	try	to	resend	the
datagram	with	a	higher	value	before	concluding	that	there	is	a	routing	problem
and	giving	up.	(Chapter	32	for	an	illustration	of	how	TTL	expiration	works.)

Just	as	with	the	ICMPv4	equivalent,	there	is	also	another	time	expiration
situation	in	which	ICMPv6	Time	Exceeded	messages	are	used.	When	an	IP
message	is	broken	into	fragments	that	are	sent	independently,	the	destination



message	is	broken	into	fragments	that	are	sent	independently,	the	destination
device	is	charged	with	reassembling	the	fragments	into	the	original	message.
One	or	more	fragments	may	not	make	it	to	the	destination,	however.	To	prevent
the	device	from	waiting	forever,	it	sets	a	timer	when	the	first	fragment	arrives.	If
this	timer	expires	before	all	of	the	other	fragments	are	also	received,	the	device
gives	up	on	this	message.	The	fragments	are	tossed	out,	and	a	Time	Exceeded
message	is	generated.

Figure	34-3.	An	example	of	a	router	loop	This	diagram	shows	a	simple	internetwork	consisting	of	four
networks,	each	of	which	is	served	by	a	router.	It	is	an	adaptation	of	Figure	23-3	from	Chapter	23,	but	in
this	case,	the	routing	tables	have	been	set	up	incorrectly.	Router	R1	thinks	that	it	needs	to	route	any
traffic	intended	for	Network	N4	to	Router	R3,	which	thinks	it	goes	to	Router	R2,	which	thinks	it	goes
back	to	Router	R1.	This	means	that	when	any	device	tries	to	send	to	Network	N4,	the	datagram	will
circle	this	triangle	until	its	Hop	Limit	is	reached,	at	which	point	an	ICMPv6	Time	Exceeded	message

will	be	generated.

ICMPv6	Time	Exceeded	Message	Format
Table	32-4	and	Figure	34-4	show	the	format	for	ICMPv6	Time	Exceeded
messages.

Table	34-4.	ICMPv6	Time	Exceeded	Message	Format

Field
Name

Size
(Bytes)

Description



Name (Bytes)

Type 1 Identifies	the	ICMPv6	message	type;	for	Time	Exceeded	messages,	this
is	set	to	3.

Code 1 Identifies	the	subtype	of	time	error	that's	being	communicated.	A	value
of	0	indicates	expiration	of	the	Hop	Limit	field;	a	value	of	1	indicates
that	the	fragment	reassembly	time	has	been	exceeded.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Unused 4 The	4	bytes	left	blank	and	not	used.

Original
Datagram
Portion

Variable As	much	of	the	IPv6	datagram	as	will	fit	without	causing	the	size	of	the
ICMPv6	error	message	(including	its	own	IP	header)	to	exceed	the
minimum	IPv6	MTU	of	1280	bytes.

Figure	34-4.	ICMPv6	Time	Exceeded	message	format

TIP

KEY	CONCEPT	Like	their	ICMPv4	namesakes,	ICMPv6	Time	Exceeded	messages	are	sent	in	two
different	time-related	circumstances.	The	first	is	if	a	datagram's	Hop	Limit	field	is	reduced	to	zero,
thereby	causing	it	to	expire	and	the	datagram	to	be	dropped.	The	second	is	when	all	the	pieces	of	a
fragmented	message	are	not	received	before	the	recipient's	reassembly	timer	expires.

Applications	of	Time	Exceeded	Messages
In	IPv4,	ICMP	Time	Exceeded	messages	are	used	both	as	an	error	message	and
in	a	clever	application	to	implement	the	TCP/IP	traceroute	command.	This	is
done	by	first	sending	a	dummy	datagram	with	a	TTL	value	of	1,	thereby	causing
the	first	hop	in	the	route	to	discard	the	datagram	and	send	back	an	ICMP	Time
Exceeded	message.	Then	a	second	datagram	is	sent	to	the	same	destination	with
a	TTL	value	of	2,	thus	causing	the	second	device	in	the	route	to	report	back	a
Time	Exceeded	message,	and	so	on.



There	is	an	IPv6	version	of	traceroute	that	is	sometimes	called	traceroute6.	Due
to	the	fact	that	IPv6	and	its	protocols	and	applications	are	still	in	development,	I
have	not	been	able	to	confirm	definitively	that	traceroute6	is	implemented	using
ICMPv6	Time	Exceeded	messages	in	the	manner	described	earlier,	but	I	believe
this	is	the	case	(and	it	certainly	would	make	sense).	See	Chapter	88	for	more
information	about	traceroute.



ICMPv6	Parameter	Problem	Messages
The	ICMPv6	Destination	Unreachable,	Packet	Too	Big,	and	Time	Exceeded
messages	described	in	the	previous	sections	are	used	to	indicate	specific	error
conditions	to	the	original	sender	of	a	datagram.	Recognizing	that	a	router	or	host
may	encounter	some	other	problem	in	processing	a	datagram	that	is	not	covered
by	any	of	these	message	types,	ICMPv6	includes	a	generic	error	message	type,
just	as	ICMPv4	did.	This	is	called	the	ICMPv6	Parameter	Problem	message.

As	the	name	suggests,	a	Parameter	Problem	message	indicates	that	a	device
found	a	problem	with	a	parameter	(another	name	for	a	datagram	field)	while
attempting	to	work	its	way	through	the	header	(or	headers)	in	an	IPv6	datagram.
This	message	is	generated	only	when	the	error	encountered	is	serious	enough
that	the	device	could	not	make	sense	of	the	datagram	and	had	to	discard	it.	So,	if
an	error	is	found	that	a	device	is	able	to	recover	from	(does	not	need	to	drop	the
datagram),	no	Parameter	Problem	message	is	created.

As	was	the	case	for	the	ICMPv4	version	of	this	message,	the	ICMPv6	message
was	designed	to	be	generic,	so	it	can	indicate	an	error	in	basically	any	field	in	the
original	datagram.	A	special	Pointer	field	is	used	that	points	to	the	place	in	that
datagram	where	the	error	was	encountered.	By	looking	at	the	structure	of	the
original	message	(which,	as	you	may	recall,	is	included	up	to	a	certain	size	in	the
ICMP	message	format),	the	original	device	can	tell	which	field	contained	the
problem.	The	Code	value	is	also	used	to	communicate	additional	general
information	about	the	nature	of	the	problem.

ICMPv6	Parameter	Problem	Message	Format
Table	34-5	and	Figure	34-5	show	the	format	for	ICMPv6	Parameter	Problem
messages.

Table	34-5.	ICMPv6	Parameter	Problem	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Parameter	Problem	messages,
this	is	set	to	4.



Code 1 Identifies	the	general	class	of	the	parameter	problem.	See	Table	34-6	for
more	information.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Pointer 4 An	offset	that	points	to	the	byte	location	in	the	original	datagram	that
caused	the	Parameter	Problem	message	to	be	generated.	The	device
receiving	the	ICMP	message	can	use	this	value	to	get	an	idea	of	which
field	in	the	original	message	had	the	problem.

Original
Datagram
Portion

Variable As	much	of	the	IPv6	datagram	as	will	fit	without	causing	the	size	of	the
ICMPv6	error	message	(including	its	own	IP	header)	to	exceed	the
minimum	IPv6	MTU	of	1280	bytes.

Figure	34-5.	ICMPv6	Parameter	Problem	message	format

Parameter	Problem	Message	Interpretation
Codes	and	the	Pointer	Field
The	Pointer	field,	which	was	only	8	bits	wide	in	ICMPv4,	has	been	widened	to
32	bits	in	ICMPv6	in	order	to	provide	more	flexibility	in	isolating	the	error.	The
Code	value	is	also	used	somewhat	differently	in	ICMPv6	than	it	was	in	the
ICMPv4	version	of	this	message	type.	In	ICMPv4,	the	Pointer	was	used	only
when	the	Code	field	was	0,	and	other	code	values	indicated	other	problem
categories	for	which	the	Pointer	field	did	not	make	sense.	In	ICMPv6,	the
Pointer	field	is	used	with	all	Code	types	to	indicate	the	general	nature	of	what
the	problem	is.	This	means	the	Pointer	field	tells	the	recipient	of	the	Parameter
Problem	message	where	the	problem	happened	in	the	message,	and	the	Code
field	tells	it	what	the	nature	of	the	problem	is.	Table	34-6	shows	the	three	Code
values	and	provides	a	brief	explanation	of	each.

Table	34-6.	ICMPv6	Parameter	Problem	Message	Interpretation	Codes



Code
Value

Message
Subtype

Description

0 Erroneous
Header	Field
Encountered

The	Pointer	field	points	to	a	header	that	contains	an	error	or	otherwise
could	not	be	processed.

1 Unrecognized
Next	Header
Type
Encountered

As	explained	in	Chapter	26,	in	IPv6,	a	datagram	can	have	multiple
headers,	each	of	which	contains	a	Next	Header	field	that	points	to	the
next	header	in	the	datagram.	This	code	indicates	that	the	Pointer	field
points	to	a	Next	Header	field	containing	an	unrecognized	value.

2 Unrecognized
IPv6	Option
Encountered

The	Pointer	field	points	to	an	IPv6	option	that	was	not	recognized	by
the	processing	device.

TIP

KEY	CONCEPT	The	ICMPv6	Parameter	Problem	message	is	a	generic	error	message	that	can	be	used
to	convey	an	error	of	any	type	in	an	IP	datagram.	The	Pointer	field	is	used	to	indicate	where	the	problem
was	in	the	original	datagram	to	the	recipient	of	the	message.



Chapter	35.	ICMPV6
INFORMATIONAL	MESSAGE
TYPES	AND	FORMATS

In	the	previous	chapter,	we	explored	a	number	of	Internet	Control	Message
Protocol	version	6	(ICMPv6)	error	messages.	These	are	sent	back	to	the
originator	of	an	Internet	Protocol	version	6	(IPv6)	datagram	when	the	originator
detects	an	error	it,	thereby	making	it	impossible	for	the	error	to	be	delivered.
Like	the	original	version	of	ICMP	(ICMPv4),	ICMPv6	also	defines	another
message	class:	informational	messages.	These	ICMPv6	messages	are	used	not	to
report	errors,	but	to	allow	the	sharing	of	information	required	to	implement
various	test,	diagnostic,	and	support	functions	critical	to	the	operation	of	IPv6.

In	this	chapter,	I	describe	eight	different	ICMPv6	informational	messages	in	five
topics	(six	of	these	messages	are	used	in	matching	pairs,	and	the	pairs	are
described	together).	I	begin	by	describing	ICMPv6	Echo	Request	and	Echo
Reply	messages,	which	are	used	for	network	connectivity	testing.	I	explain	the
format	of	Router	Advertisement	and	Router	Solicitation	messages,	which	are
used	to	let	hosts	discover	local	routers	and	learn	necessary	parameters	from
them.	I	then	describe	ICMPv6	Neighbor	Advertisement	and	Neighbor
Solicitation	messages,	which	are	used	for	various	communications	between	hosts
on	a	local	network,	including	IPv6	address	resolution.	I	discuss	IPv6	Redirect
messages,	which	let	routers	inform	hosts	of	better	first-hop	routers,	and	IPv6
Router	Renumbering	messages.

Several	of	the	ICMPv6	informational	messages	include	additional	information
that	is	either	optional,	recommended,	or	mandatory,	depending	on	the
circumstances	under	which	the	message	is	generated.	Some	of	these	are	shared
between	message	types,	so	they	are	described	in	a	separate	topic	at	the	end	of	the



between	message	types,	so	they	are	described	in	a	separate	topic	at	the	end	of	the
chapter.

In	IPv4,	the	use	of	many	of	the	ICMP	informational	messages	was	described	in	a
variety	of	different	standards.	In	IPv6,	many	of	the	functions	using	informational
messages	have	been	gathered	together	and	formalized	in	the	IPv6	Neighbor
Discovery	(ND)	protocol.	The	solicitation	and	advertisement	of	local	routers	and
neighboring	hosts,	as	well	as	the	communication	of	redirection	information	are
both	examples	of	activities	for	which	ND	is	responsible.	In	fact,	five	of	the
ICMP	messages	described	in	this	chapter	are	actually	defined	in	the	ND
standard,	RFC	2461.

TIP

RELATED	INFORMATION	Neighbor	Discovery	(ND)	and	ICMPv6	are	obviously	closely	related,
given	that	ND	describes	the	use	of	several	of	the	ICMP	messages:	Router	Advertisement,	Router
Solicitation,	Neighbor	Advertisement,	Neighbor	Solicitation,	and	Redirect.	Thus,	just	as	ICMPv4	is	an
important	assistant	to	IPv4,	both	ICMPv6	and	ND	are	important	helpers	for	IPv6.	In	this	book,	I	provide
most	of	the	description	of	how	these	messages	are	used	in	the	next	chapter,	which	discusses	ND.	In	this
chapter,	I	provide	only	a	brief	summary	of	their	use,	while	focusing	primarily	on	message	format	and	the
meaning	of	each	of	the	fields	in	that	format.

ICMPv6	Echo	Request	and	Echo	Reply
Messages
IP	is	a	relatively	simple	protocol	that	does	not	include	any	method	for
performing	tests	between	devices	to	help	in	diagnosing	internetwork	problems.
This	means	that	this	job,	like	other	support	tasks,	falls	to	ICMP.	The	simplest
test	performed	when	there	is	a	problem	using	TCP/IP	is	usually	a	check	that	a
pair	of	devices	is	able	to	send	datagrams	to	each	other.	This	is	most	often	done
by	an	initiating	device	that	sends	a	test	message	to	a	second	device,	which
receives	it	and	replies	back	to	tell	the	first	device	it	received	the	message.

Like	ICMPv4,	ICMPv6	includes	a	pair	of	messages	specifically	for	connection
testing.	To	use	them,	Device	A	begins	the	test	process	by	sending	an	ICMPv4
Echo	Request	message	to	Device	B,	which	responds	back	to	Device	A	with	an
Echo	Reply	message.	When	Device	A	receives	this	message,	it	knows	that	it	is
able	to	communicate	(both	send	and	receive)	successfully	with	Device	B.



NOTE

In	ICMPv4	the	first	message	type	was	named	just	Echo	but	was	often	called	Echo	Request.	In	ICMPv6,
Request	is	part	of	the	formal	message	name—a	modest	but	useful	improvement	from	a	clarity
standpoint.

ICMPv6	Echo	and	Echo	Reply	Message	Format
The	format	for	ICMPv6	Echo	Request	and	Echo	Reply	messages	is	very	similar
to	that	of	the	ICMPv4	version,	as	shown	in	Table	35-1	and	Figure	35-1.

Table	35-1.	ICMPv6	Echo	Request	and	Echo	Reply	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Echo	Request	messages,	the
value	is	128,	and	for	Echo	Reply	messages,	it's	129.	(In	ICMPv6,
informational	messages	always	have	a	Type	value	of	128	or	higher.)

Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Identifier 2 An	optional	identification	field	that	can	be	used	to	help	in	matching	Echo
Request	and	Echo	Reply	messages.

Sequence
Number

2 A	sequence	number	to	help	in	matching	Echo	Request	and	Echo	Reply
messages.

Optional
Data

Variable Additional	optional	data	to	be	sent	along	with	the	message.	If	this	is	sent
in	the	Echo	Request,	it	is	copied	into	the	Echo	Reply	to	be	sent	back	to
the	source.

Figure	35-1.	ICMPv6	Echo	Request	and	Echo	Reply	message	format

It	is	often	necessary	to	match	an	Echo	Reply	message	with	the	Echo	Request



It	is	often	necessary	to	match	an	Echo	Reply	message	with	the	Echo	Request
message	that	led	to	it	being	generated.	Two	special	fields	are	used	within	the
format	of	these	messages	to	allow	Echo	Request	and	Echo	Reply	messages	to	be
matched	together,	and	to	allow	a	sequence	of	messages	to	be	exchanged.	The
Identifier	field	is	provided	so	that	a	particular	test	session	can	be	identified,	and
the	Sequence	Number	field	allows	a	series	of	tests	in	a	session	to	be	numbered.
The	use	of	both	fields	is	optional.

Application	of	Echo	and	Echo	Reply	Messages
ICMPv6	Echo	Request	and	Echo	Reply	messages	are	used	via	the	IPv6	version
of	the	IP	ping	utility,	which	is	commonly	called	ping6.	Like	its	IPv4
predecessor,	this	utility	allows	an	administrator	to	configure	a	number	of	test
options	to	perform	either	a	simple	or	rigorous	test	of	the	connection	between	a
pair	of	devices.	See	Chapter	88	for	a	full	explanation.

TIP

KEY	CONCEPT	ICMPv6	Echo	Request	and	Echo	Reply	messages	are	used	to	facilitate	network
reachability	testing.	A	device	tests	its	ability	to	communicate	with	another	by	sending	it	an	Echo	Request
message	and	waiting	for	an	Echo	Reply	in	response.	The	ping	utility,	a	widely	used	diagnostic	tool	in
TCP/IP	internetworks,	makes	use	of	these	messages.



ICMPv6	Router	Advertisement	and	Router
Solicitation	Messages
At	the	highest	level,	we	can	separate	IP	devices	into	two	groups:	hosts	and
routers.	Both	participate	in	the	use	of	the	internetwork,	but	they	have	different
roles.	An	important	IP	principle	related	to	this	division	is	that	routers	take	care	of
routing—moving	data	between	networks—while	hosts	generally	don't	need	to
worry	about	this	job.	Hosts	rely	on	the	routers	on	their	local	networks	to
facilitate	communication	to	all	other	hosts	except	those	on	the	local	network.

The	implications	of	this	are	clear:	A	host	cannot	really	use	an	internetwork	until
it	knows	the	identity	of	at	least	one	local	router	and	the	method	by	which	that
router	is	to	be	used.	In	IPv4,	a	technique	known	as	Router	Discovery	was
invented,	which	provides	a	means	by	which	a	host	can	locate	a	router	and	learn
important	parameters	related	to	the	operation	of	the	local	network.	Router
Discovery	in	IPv6	works	in	a	very	similar	manner	by	having	routers	send	Router
Advertisement	messages	both	on	a	regular	basis	and	in	response	to	hosts
prompting	for	them	using	Router	Solicitation	messages.	The	Router	Discovery
function	has	been	incorporated	into	the	ND	protocol,	where	it	is	part	of	a	larger
class	of	tools	that	I	call	host–Router	Discovery	functions.

ICMPv6	Router	Advertisement	Message	Format
The	ICMPv6	Router	Advertisement	and	Router	Solicitation	messages	are	fairly
similar	to	their	counterparts	in	ICMPv4.	The	main	differences	are	in	the
parameters	that	are	communicated.	Since	routers	are	responsible	for	a	few	more
functions	in	IPv6	than	they	are	in	IPv4,	the	Router	Advertisement	message	in
ICMPv6	has	a	few	more	fields	than	the	older	version.

The	format	of	an	ICMPv6	Router	Advertisement	message	is	described	in
Table	35-2	and	shown	in	Figure	35-2.



Figure	35-2.	ICMPv6	Router	Advertisement	message	format

Table	35-2.	ICMPv6	Router	Advertisement	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Router	Advertisement
messages,	the	value	is	134.

Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Cur	Hop
Limit

1 Current	Hop	Limit:	This	is	a	default	number	that	the	router	recommends
that	hosts	on	the	local	network	use	as	a	value	in	the	Hop	Limit	field	of
datagrams	they	send.	If	0,	the	router	is	not	recommending	a	Hop	Limit
value	in	this	Router	Advertisement.

Autoconfig
Flags

1 Two	flags	that	let	the	router	tell	the	host	how	autoconfiguration	is
performed	on	the	local	network,	as	described	in	Table	35-3.	(See
Chapter	25	for	details	on	IPv6	autoconfiguration.)

Router
Lifetime

2 Tells	the	host	receiving	this	message	how	long,	in	seconds,	this	router
should	be	used	as	a	default	router.	If	0,	it	tells	the	host	this	router	should
not	be	used	as	a	default	router.	Note	that	this	is	an	expiration	interval
only	for	the	status	of	the	router	as	a	default,	not	for	other	information	in
the	Router	Advertisement	message.

Reachable
Time

4 Tells	hosts	how	long,	in	milliseconds,	they	should	consider	a	neighbor
to	be	reachable	after	they	have	received	reachability	confirmation.	(See



Time to	be	reachable	after	they	have	received	reachability	confirmation.	(See
Chapter	36	for	more	information.)

Retrans
Timer

4 Retransmission	Timer:	The	amount	of	time,	in	milliseconds,	that	a	host
should	wait	before	retransmitting	Neighbor	Solicitation	messages.

Options Variable Router	Advertisement	messages	may	contain	three	possible	options	(see
the	"ICMPv6	Informational	Message	Options"	section	later	in	this
chapter	for	more	on	ICMPv6	options):

Source	Link-Layer	Address:	Included	when	the	router	sending	the
Advertisement	knows	its	link-layer	(layer	2)	address.

MTU:	Used	to	tell	local	hosts	the	MTU	of	the	local	network	when
hosts	on	the	network	may	not	know	this	information.

Prefix	Information:	Tells	local	hosts	what	prefix	or	prefixes	to	use
for	the	local	network.	(You'll	recall	that	the	"prefix"	indicates	which
bits	of	an	IPv6	address	are	the	network	identifier	when	compared	to
the	host	identifier;	it	is	thus	analogous	to	an	IPv4	subnet	mask.)

Table	35-3.	ICMPv6	Router	Advertisement	Message	Autoconfiguration
Flags

Subfield
Name

Size
(Bytes)

Description

M 1/8	(1
bit)

Managed	Address	Configuration	Flag:	When	set,	this	flag	tells	hosts	to
use	an	administered	or	stateful	method	for	address	autoconfiguration,
such	as	the	Dynamic	Host	Configuration	Protocol	(DHCP).

O 1/8	(1
bit)

Other	Stateful	Configuration	Flag:	When	set,	this	tells	hosts	to	use	an
administered	or	stateful	autoconfiguration	method	for	information	other
than	addresses.

Reserved 6/8	(6
bits)

Reserved	for	future	use;	sent	as	zeros.

ICMPv6	Router	Solicitation	Message	Format
The	format	of	an	ICMPv6	Router	Solicitation	message	is	shown	in	Table	35-4
and	Figure	35-3.

Table	35-4.	ICMPv6	Router	Solicitation	Message	Format

Field Size
(Bytes)

Description



Name (Bytes)

Type 1 Identifies	the	ICMPv6	message	type;	for	Router	Solicitation	messages,
the	value	is	133.

Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Reserved 4 The	4	reserved	bytes	set	to	0.

Options Variable If	the	device	sending	the	Router	Solicitation	knows	its	layer	2	address,	it
should	be	included	in	a	Source	Link-Layer	Address	option.	Option
formats	are	described	in	the	"ICMPv6	Informational	Message	Options"
section	later	in	this	chapter.

Figure	35-3.	ICMPv6	Router	Solicitation	message	format

Addressing	of	Router	Advertisement	and	Router
Solicitation	Messages
Router	Solicitation	messages	are	normally	sent	to	the	IPv6	"all	routers"	multicast
address;	this	is	the	most	efficient	method,	because	routers	are	required	to
subscribe	to	this	multicast	address	while	hosts	will	ignore	it.	A	routine
(unsolicited)	Router	Advertisement	message	is	sent	to	all	devices	using	the	"all
nodes"	multicast	address	for	the	local	network.	A	Router	Advertisement	message
that	is	sent	in	response	to	a	Router	Solicitation	message	goes	in	unicast	back	to
the	device	that	sent	the	solicitation.

TIP

KEY	CONCEPT	ICMPv6	Router	Advertisement	messages	are	sent	regularly	by	IPv6	routers	to	inform
hosts	of	their	presence	and	characteristics,	and	to	provide	hosts	with	parameters	that	they	need	to
function	properly	on	the	local	network.	A	host	that	wants	to	find	out	immediately	which	routers	are
present	may	send	a	Router	Solicitation	message,	which	will	prompt	listening	routers	to	send	out	Router



Advertisements.



ICMPv6	Neighbor	Advertisement	and	Neighbor
Solicitation	Messages
The	previous	section	described	the	Router	Advertisement	and	Router	Solicitation
messages,	which	are	used	to	facilitate	host–Router	Discovery	functions	as	part	of
the	IPv6	ND	protocol.	The	other	main	group	of	tasks	for	which	ND	is
responsible	relates	to	the	exchange	of	information	between	neighboring	hosts	on
the	same	network.	I	call	these	host-host	communication	or	host-host	discovery
functions.

Arguably,	the	most	important	additions	to	the	ND	protocol	are	the	functions	that
formalize	the	exchange	of	parameters	and	the	methods	that	determine	the
existence	of	neighboring	hosts.	These	tasks	include	the	new	method	of	address
resolution	in	IPv6	as	well	as	the	processes	of	next-hop	determination	and
neighbor	unreachability	detection.	They	require	the	use	of	two	ICMPv6
messages:	the	Neighbor	Solicitation	message	and	the	Neighbor	Advertisement
message.

The	Neighbor	Solicitation	message	allows	a	device	to	check	that	a	neighbor
exists	and	is	reachable,	and	lets	a	device	initiate	address	resolution.	The
Neighbor	Advertisement	message	confirms	the	existence	of	a	host	or	router,	and
also	provides	layer	2	address	information	when	needed.	As	you	can	see,	these
two	messages	are	comparable	to	the	Router	Advertisement	and	Router
Solicitation	messages,	but	they	are	used	differently	and	include	different
parameters.

ICMPv6	Neighbor	Advertisement	Message
Format
The	format	for	the	Neighbor	Advertisement	message	is	shown	in	Table	35-5	and
Figure	35-4.

Table	35-5.	ICMPv6	Neighbor	Advertisement	Message	Format

Field
Name

Size
(Bytes)

Description



Type 1 Identifies	the	ICMPv6	message	type;	for	Neighbor	Advertisement
messages,	the	value	is	136.

Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Flags 4 Three	flags	that	convey	information	about	the	message	(and	a	lot	of
empty	space	for	future	use),	as	described	in	Table	35-6.

Target
Address

16 If	the	Neighbor	Advertisement	is	being	sent	in	response	to	a	Neighbor
Solicitation,	this	is	the	same	value	as	in	the	Target	Address	field	of	the
Solicitation.	This	field	will	commonly	contain	the	IPv6	address	of	the
device,	thereby	sending	the	Neighbor	Advertisement,	but	not	in	all	cases.
For	example,	if	a	device	responds	as	a	proxy	for	the	target	of	the
Neighbor	Solicitation,	the	Target	Address	field	contains	the	address	of
the	target,	not	the	device	sending	the	response.	(See	Chapter	13	for
details	on	address	resolution	proxying.)	If	the	Neighbor	Advertisement	is
being	sent	unsolicited,	then	this	is	the	IPv6	address	of	the	device	sending
it.

Options Variable When	sent	in	response	to	a	multicast	Neighbor	Solicitation,	a	Neighbor
Advertisement	message	must	contain	a	Target	Link-Layer	Address
option,	which	carries	the	link-layer	address	of	the	device	sending	the
message.	This	is	a	good	example	of	an	option	that's	not	really	"optional."
When	the	Neighbor	Advertisement	is	sent	in	response	to	a	unicast
Neighbor	Solicitation,	this	option	is	technically	not	required	(since	the
sender	of	the	Solicitation	must	already	have	the	target's	link-layer
address	to	have	sent	it	unicast).	Despite	this,	it	is	still	normally	included
to	ensure	that	the	link-layer	address	of	the	target	is	refreshed	in	the	cache
of	the	device	that	sent	the	Neighbor	Solicitation.



Figure	35-4.	ICMPv6	Neighbor	Advertisement	message	format

Table	35-6.	ICMPv6	Neighbor	Advertisement	Message	Flags

Subfield
Name

Size
(Bytes)

Description

R 1/8	(1
bit)

Router	Flag:	Set	when	a	router	sends	a	Neighbor	Advertisement,	and
cleared	when	a	host	sends	one.	This	identifies	the	type	of	device	that	sent
the	datagram,	and	is	also	used	as	part	of	neighbor	unreachability	detection
to	detect	when	a	device	changes	from	acting	as	a	router	to	functioning	as
a	regular	host.

S 1/8	(1
bit)

Solicited	Flag:	When	set,	indicates	that	this	message	was	sent	in	response
to	a	Neighbor	Solicitation	message.	Cleared	for	unsolicited	Neighbor
Advertisements.

O 1/8	(1
bit)

Override	Flag:	When	set,	tells	the	recipient	that	the	information	in	this
message	should	override	any	existing	cached	entry	for	the	link-layer
address	of	this	device.	This	bit	is	normally	set	in	unsolicited	Neighbor
Advertisements,	since	these	are	sent	when	a	host	needs	to	force	a	change
of	information	in	the	caches	of	its	neighbors.

Reserved 3	5/8
(29	bits)

A	big	set	of	reserved	bits.



ICMPv6	Neighbor	Solicitation	Message	Format
The	Neighbor	Solicitation	message	format	is	much	simpler,	as	shown	in
Table	35-7	and	Figure	35-5.

Table	35-7.	ICMPv6	Neighbor	Solicitation	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Neighbor	Solicitation
messages,	the	value	is	135.

Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Reserved 4 The	4	reserved	bytes	set	to	0.

Target
Address

16 The	IPv6	address	of	the	target	of	the	solicitation.	For	IPv6	address
resolution,	this	is	the	actual	unicast	IP	address	of	the	device	whose	layer
2	(link-layer)	address	we	are	trying	to	resolve.

Options Variable If	the	device	sending	the	Neighbor	Solicitation	knows	both	its	own	IP
address	and	layer	2	address,	it	should	include	the	layer	2	address	in	a
Source	Link-Layer	Address	option.	The	inclusion	of	this	option	will
allow	the	destination	of	the	Neighbor	Solicitation	to	enter	the	layer	2	and
layer	3	addresses	of	the	source	of	this	message	into	its	own	address
cache.	(See	the	discussion	of	IPv6	address	resolution	in	Chapter	25.)

Figure	35-5.	ICMPv6	Neighbor	Solicitation	message	format



Addressing	of	Neighbor	Advertisement	and
Neighbor	Solicitation	Messages
Neighbor	Solicitation	messages	are	sent	either	unicast	to	the	address	of	the	target
device	or	to	the	solicited-node	multicast	address	of	the	target.	This	latter	address
is	a	special	type	that's	used	to	allow	a	device	to	send	a	multicast	that	will	be
heard	by	the	target	whose	address	it	is	trying	to	resolve,	but	won't	be	heard	by
most	other	devices;	it	is	explained	in	Chapter	25,	which	describes	IPv6	address
resolution.

When	a	Neighbor	Advertisement	message	is	generated	in	response	to	a	Neighbor
Solicitation	message,	it	is	sent	unicast	back	to	the	device	that	sent	the
Solicitation	message,	unless	that	message	was	sent	from	the	unspecified	address,
in	which	case	it	is	multicast	to	the	"all	nodes"	multicast	address.	If	the	Neighbor
Advertisement	message	is	sent	unsolicited	(for	example,	by	a	device	that	wishes
to	inform	others	of	a	change	in	link-layer	address),	it	is	sent	to	the	"all	nodes"
multicast	address.

TIP

KEY	CONCEPT	ICMPv6	Neighbor	Advertisement	and	Neighbor	Solicitation	messages	are	similar	in
many	ways	to	the	Router	Advertisement	and	Router	Solicitation	messages.	However,	rather	than	being
used	to	communicate	parameters	from	routers	to	hosts,	they	are	used	for	various	types	of	communication
between	hosts	on	a	physical	network,	such	as	address	resolution,	next-hop	determination,	and	neighbor
unreachability	detection.



ICMPv6	Redirect	Messages
Because	of	the	different	roles	of	routers	and	hosts	in	an	IPv6	internetwork,	hosts
don't	need	to	know	very	much	about	routes.	They	send	datagrams	intended	for
destinations	on	the	local	network	directly,	while	they	send	those	for	other
networks	to	their	local	routers	and	let	them	"do	the	driving,"	so	to	speak.

If	a	local	network	has	only	a	single	router,	it	will	send	all	such	nonlocal	traffic	to
that	router.	If	it	has	more	than	one	local	router,	the	host	then	must	decide	which
router	to	use	for	which	traffic.	In	general	terms,	a	host	will	not	know	the	most
efficient	choice	of	router	for	every	type	of	datagram	it	may	need	to	send.	In	fact,
many	nodes	start	out	with	a	limited	routing	table	that	says	to	send	everything	to	a
single	default	router,	even	if	there	are	several	routers	on	the	network.

When	a	router	receives	datagrams	destined	for	certain	networks,	it	may	realize
that	it	would	be	more	efficient	if	a	host	to	a	different	router	on	the	local	network
sent	such	traffic.	If	so,	it	will	invoke	the	Redirect	function	by	sending	an
ICMPv6	Redirect	message	to	the	device	that	sent	the	original	datagram.	This	is
the	last	of	the	functions	that	is	performed	in	IPv6	by	the	ND	protocol	and	is
explained	in	Chapter	36.

NOTE

In	ICMPv6,	the	Redirect	message	is	informational	and	no	longer	considered	an	error	message	as	it	was
in	ICMPv4.

ICMPv6	Redirect	Message	Format
The	format	of	ICMPv6	Redirect	messages	is	shown	in	Table	35-8	and	Figure	35-
6.

Table	35-8.	ICMPv6	Redirect	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Redirect	messages,	the	value	is
137.



Code 1 Not	used;	set	to	0.

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Reserved 4 The	4	bytes	sent	as	zeros.

Target
Address

16 The	address	of	the	router	that	the	router	creating	the	Redirect	is	telling
the	recipient	of	the	Redirect	to	use	as	a	first	hop	for	future	transmissions
to	the	destination.	For	example,	if	Router	R2	generated	a	Redirect
telling	Host	A	that,	in	the	future,	transmissions	to	Host	B	should	be	sent
first	to	Router	R1,	then	Router	R1's	IPv6	address	would	be	in	this	field.

Destination
Address

16 The	address	of	the	device	whose	future	transmissions	are	being
redirected;	this	is	the	destination	of	the	datagram	that	originally	led	to
the	Redirect	being	generated.	Repeating	the	previous	example:	If	Router
R2	generated	a	Redirect	telling	Host	A	that,	in	the	future,	transmissions
to	Host	B	should	be	sent	first	to	Router	R1,	then	Host	B's	IPv6	address
would	be	in	this	field.

Options Variable Redirect	messages	normally	include	two	ICMPv6	option	fields	(see	the
"ICMPv6	Informational	Message	Options"	section	later	in	this	chapter):

Target	Link-Layer	Address:	The	layer	2	address	of	the	Target
Address,	if	known.	This	saves	the	recipient	of	the	Redirect	message
from	needing	to	perform	an	address	resolution	on	the	target.

Redirected	Header:	As	much	of	the	IPv6	datagram	that	spawned
this	Redirect	as	will	fit	without	causing	the	size	of	the	ICMPv6
error	message	(including	its	own	IP	header)	to	exceed	the	minimum
IPv6	MTU	of	1280	bytes.



Figure	35-6.	ICMPv6	Redirect	message	format

Redirect	messages	are	always	sent	in	unicast	to	the	address	of	the	device	that
originally	sent	the	datagram	that	originally	created	the	Redirect	message.

Application	of	Redirect	Messages
The	Redirect	message	has	always	been	somewhat	of	an	oddball.	In	ICMPv4,	it	is
considered	an	error	message,	but	this	makes	it	different	from	other	error
messages.	For	one	thing,	it's	not	really	an	error,	since	it	doesn't	represent	a
failure	to	deliver,	only	an	inefficiency	in	doing	so.	For	this	reason,	in	ICMPv6	it
was	moved	into	the	set	of	informational	message	types.	Here,	too,	it	doesn't
really	fit	in	with	the	others,	since	it	is	sent	in	reaction	to	a	regular	IP	message,
and	it	also	includes	a	copy	of	(part	of)	the	datagram	that	spawned	it,	as	error
messages	do.

TIP

KEY	CONCEPT	ICMPv6	Redirect	messages	are	used	by	a	router	to	inform	a	host	of	a	better	router	to
use	for	future	datagrams	that	were	sent	to	a	particular	host	or	network.	They	are	not	used	to	alter	routes
between	routers,	however.



ICMPv6	Router	Renumbering	Messages
One	of	the	more	interesting	decisions	made	in	IPv6	was	the	selection	of	a	very
large	128-bit	address	size.	This	provides	an	address	space	far	larger	than	what
humans	are	ever	likely	to	need,	and	probably	larger	than	needed	for	IPv6,	strictly
speaking.	What	this	wealth	of	bits	provides	is	the	flexibility	to	assign	meaning	to
different	bits	in	the	address	structure.	This,	in	turn,	serves	as	the	basis	for
important	features	such	as	the	autoconfiguration	and	automated	renumbering	of
IPv6	addresses.

IPv6	Router	Renumbering
The	renumbering	feature	in	IPv6	is	of	particular	interest	to	network
administrators,	since	it	has	the	potential	to	make	large	network	migrations	and
merges	much	simpler.	In	August	2000,	the	IETF	published	RFC	2894,	"Router
Renumbering	for	IPv6,"	which	describes	a	similar	technique	that	allows	routers
in	an	autonomous	system	to	be	renumbered	by	giving	them	new	prefixes
(network	identifiers).

Router	renumbering	is	actually	a	fairly	simple	process,	especially	if	we	avoid	the
gory	details,	which	is	exactly	what	I	intend	to	do.	A	network	administrator	uses	a
device	on	the	internetwork	to	generate	one	or	more	Router	Renumbering
Command	messages.	These	messages	provide	a	list	of	prefixes	of	routers	that	are
to	be	renumbered.	Each	router	processes	these	messages	to	see	if	the	addresses
on	any	of	their	interfaces	match	the	specified	prefixes.	If	so,	they	change	the
matched	prefixes	to	the	new	ones	specified	in	the	message.	Additional
information	is	also	included	in	the	Router	Renumbering	Command	message	to
control	how	and	when	the	renumbering	is	done.

If	requested,	each	router	processing	a	Command	message	will	respond	with	a
Router	Renumbering	Result	message.	This	serves	as	feedback	to	the	originator
of	the	Command	message,	indicating	whether	the	renumbering	was	successful,
and	what	changes,	if	any,	were	made.

The	router	renumbering	standard	also	defines	a	few	important	management
features.	Many	of	these	reflect	the	great	power	of	something	that	can	mass-
renumber	routers,	and	hence,	they	represent	the	potential	for	such	power	to	be



abused.	Command	messages	may	be	sent	in	a	test	mode,	in	which	they	are
processed	but	the	renumbering	is	not	actually	done.	Messages	include	a
sequence	number	to	guard	against	replay	attacks,	and	a	special	Sequence
Number	Reset	message	can	be	used	to	reset	the	sequence	number	information
that	was	previously	sent.	For	added	security,	the	standard	specifies	that	messages
be	authenticated	and	have	their	identity	checked.

ICMPv6	Router	Renumbering	Message	Format
The	format	of	Router	Renumbering	messages	is	shown	in	Table	35-9	and
Figure	35-7.

Figure	35-7.	ICMPv6	Router	Renumbering	message	format

Table	35-9.	ICMPv6	Router	Renumbering	Message	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	message	type;	for	Router	Renumbering	messages,
the	value	is	138.

Code 1 Indicates	the	subtype	of	Router	Renumbering	message:

0	=	Router	Renumbering	Command



1	=	Router	Renumbering	Result

255	=	Sequence	Number	Reset

Checksum 2 A	16-bit	checksum	field	for	the	ICMP	header	(see	Chapter	31).

Sequence
Number

4 A	32-bit	number	that	guards	against	replay	attacks	by	letting	a	recipient
detect	stale,	duplicate,	or	out-of-order	commands.

Segment
Number

1 Differentiates	between	valid	Router	Renumbering	messages	within	the
same	Sequence	Number.

Flags 1 Five	flags	used	to	control	the	renumbering	process,	as	described	in
Table	35-10.

Max
Delay

2 Tells	a	router	receiving	a	message	the	maximum	amount	of	time	(in
milliseconds)	it	is	allowed	to	delay	before	sending	a	reply.

Reserved 4 The	4	reserved	bytes.

Message
Body

Variable For	a	Router	Renumbering	Command,	the	message	body	contains	two
sets	of	information.	The	first	is	a	Match-Prefix	Part	for	the	prefix	being
renumbered.	The	second	is	one	or	more	Use-Prefix	Parts	that	describe
the	new	prefix	for	each	match.	A	router	receiving	a	Command	checks	its
own	interface	addresses,	and	if	they	match	the	Match-Prefix-Part,	they
use	Use-Prefix	Parts	data	to	accomplish	the	renumbering.

For	a	Router	Renumbering	Result,	the	message	body	contains	zero	or
more	Match	Results	entries	that	describe	each	prefix	that	a	router	has
matched	from	a	Router	Renumbering	Command.	Each	entry	provides
information	about	whether	renumbering	for	a	prefix	was	successful.

Table	35-10	shows	the	Router	Renumbering	Message	flags.	The	first	four	flags
(T,	R,	A,	and	S)	control	the	operation	of	Command	messages.	They	are	just
copied	verbatim	in	a	Result	message	from	the	Command	message	that	led	to	the
Result	message	being	created.	The	P	flag	is	used	only	in	Result	messages	(0	in
Command	messages).

Table	35-10.	ICMPv6	Router	Renumbering	Message	Flags

Subfield
Name

Size
(Bytes)

Description

T 1/8	(1
bit)

Test	Command	Flag:	When	set	to	1,	this	flags	this	Command	messageas
being	a	test	message.	This	tells	the	recipient	to	only	simulate	processing
of	the	renumbering,	not	to	actually	do	it.



R 1/8	(1
bit)

Result	Requested	Flag:	When	set	to	1,	requests	that	a	Result	message	be
sent	after	processing	the	Command	message.	When	set	to	0,	says	not	to
send	one.

A 1/8	(1
bit)

All	Interfaces	Flag:	When	this	flag	is	clear	(0),	the	Command	message	is
not	applied	to	any	router	interfaces	that	have	been	administratively	shut
down.	When	1,	it	is	applied	to	all	interfaces.

S 1/8	(1
bit)

Site-Specific	Flag:	This	flag	has	meaning	only	when	a	router	treats	its
interfaces	as	belonging	to	different	sites.	If	so,	a	value	of	1	tells	it	to	apply
the	Command	message	only	to	interfaces	on	the	same	site	as	the	interface
for	which	the	Command	message	was	received.	A	value	of	0	applies	it	to
all	interfaces	regardless	of	site.

P 1/8	(1
bit)

Processed	Previously	Flag:	This	flag	is	normally	0,	meaning	the
Command	message	was	not	previously	seen	and	the	Result	message
contains	the	report	of	processing	it.	When	1,	this	indicates	that	the
recipient	of	the	Command	message	believes	it	has	seen	it	before	and	is
not	processing	it.	(Test	commands	are	not	included	in	the	assessment	of
whether	a	Command	message	has	been	seen	before.)

Reserved 3/8	(3
bits)

Three	bits	reserved	for	future	flags.

Addressing	of	Router	Renumbering	Messages
Since	Router	Renumbering	messages	are	intended	for	all	routers	on	a	site,	they
are	normally	sent	to	the	"all	routers"	multicast	address,	using	either	link-local	or
site-local	scope.	They	may	also	be	sent	to	local	unicast	addresses.



ICMPv6	Informational	Message	Options
Each	of	the	five	ICMPv6	informational	message	types	defined	and	used	by	the
protocol	has	an	Options	field	into	which	one	or	more	options	may	be	inserted.
This	probably	isn't	the	best	name	for	these	sets	of	data,	since	they	are	only
optional	in	certain	cases.	In	fact,	in	some	cases	the	option	is	actually	the	entire
point	of	the	message.	For	example,	a	Neighbor	Advertisement	message
containing	a	link-layer	address	for	address	resolution	carries	it	in	an	Options
field,	but	the	message	wouldn't	be	of	much	use	without	it!

Each	option	has	its	own	structure	of	subfields	based	on	the	classic	type,	length,
and	value	triplet	used	in	many	message	formats.	The	Type	subfield	indicates	the
option	type,	and	the	Length	field	indicates	its	length,	so	that	the	device
processing	the	option	can	determine	where	it	ends.	The	value	may	be	contained
in	one	or	more	fields,	which	hold	the	actual	information	for	which	the	option	is
being	used.

Some	options	are	used	for	only	one	kind	of	ICMPv6	message;	others	are	used
for	more	than	one	variety.	So,	they	are	best	thought	of	as	modular	components
used	in	different	types	of	messages	as	needed.	I	describe	the	format	of	each	of
these	five	options	in	the	following	sections.

Source	Link-Layer	Address	Option	Format
The	Source	Link-Layer	Address	Option	carries	the	link-layer	address	of	a	device
sending	an	ICMPv6	message,	as	shown	in	Table	35-11	and	Figure	35-8.	It's	used
in	Router	Advertisement,	Router	Solicitation,	and	Neighbor	Solicitation
messages.

Table	35-11.	ICMPv6	Source	Link-Layer	Address	Option	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	option	type.	For	the	Source	Link-Layer
Address	option,	the	value	is	1.

Length 1 The	length	of	the	entire	option	(including	the	Type	and	Length
fields),	expressed	in	units	of	8	octets	(64	bits).



fields),	expressed	in	units	of	8	octets	(64	bits).

Source	Link-
Layer	Address

Variable The	link-layer	(layer	2)	address	of	the	device	sending	the	ICMPv6
message.

Figure	35-8.	ICMPv6	Source	Link-Layer	Address	option	format

Target	Link-Layer	Address	Option	Format
The	Target	Link-Layer	Address	option	carries	the	link-layer	address
corresponding	to	the	Target	Address	field	in	Neighbor	Advertisement	and
Redirect	messages.	Its	format	is	shown	in	Table	35-12	and	Figure	35-9.

Table	35-12.	ICMPv6	Target	Link-Layer	Address	Option	Format

Field	Name Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	option	type.	For	the	Target	Link-Layer
Address	option,	the	value	is	2.

Length 1 The	length	of	the	entire	option	(including	the	Type	and	Length
fields),	expressed	in	units	of	8	octets	(64	bits).

Target	Link-
Layer	Address

Variable The	link-layer	(layer	2)	address	of	the	target	device.

Figure	35-9.	ICMPv6	Target	Link-Layer	Address	option	format

Prefix	Information	Option	Format
The	Prefix	Information	option	provides	a	prefix	and	related	information	in
Router	Advertisement	messages.	This	is	the	longest	and	most	complex	of	the



options,	as	you	can	see	in	Table	35-13	and	Figure	35-10.

Table	35-13.	ICMPv6	Prefix	Information	Option	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	option	type.	For	the	Prefix	Information	option,	the
value	is	3.

Length 1 The	length	of	the	entire	option	(including	the	Type	and	Length	fields),
expressed	in	units	of	8	octets	(64	bits).	The	Prefix	Information	option	is
fixed	in	size	at	32	bytes,	so	the	value	of	the	Length	field	is	4.

Prefix
Length

1 The	number	of	bits	in	the	Prefix	field	that	are	considered	part	of	the
network	identifier	(the	remainder	are	used	for	the	host	identifier	and
ignored).	See	Chapter	25	for	details	on	prefix	lengths.

Flags 1 A	pair	of	flags	that	convey	information	about	the	prefix,	as	described	in
Table	35-14.

Valid
Lifetime

4 The	amount	of	time,	in	seconds,	that	the	recipient	of	the	message
containing	this	option	should	consider	the	prefix	valid	for	purposes	of	on-
link	determination	(see	the	description	of	the	L	flag	in	Table	35-14).	A
value	of	all	1s	means	infinity	(forever).

Preferred
Lifetime

4 When	the	recipient	of	this	prefix	uses	it	to	automatically	generate
addresses	using	address	autoconfiguration,	this	specifies	the	amount	of
time,	in	seconds,	that	such	addresses	remain	preferred	(meaning,	valid	and
freely	usable).	A	value	of	all	1s	means	infinity	(forever).

Reserved 4 The	4	unused	bytes	sent	as	zeros.

Prefix 16 The	prefix	being	communicated	from	the	router	to	the	host	in	the	Router
Advertisement	message.	The	Prefix	Length	field	indicates	how	many	of
the	128	bits	in	this	field	are	significant	(part	of	the	network	ID).	Only
these	bits	are	placed	in	the	Prefix	field;	the	remaining	bits	are	cleared	to
zero.



Figure	35-10.	ICMPv6	Prefix	Information	option	format

Table	35-14.	ICMPv6	Prefix	Information	Option	Flags

Subfield
Name

Size
(Bytes)

Description

L 1/8	(1
bit)

On-Link	Flag:	When	set	to	1,	tells	the	recipient	of	the	option	that	this
prefix	can	be	used	for	on-link	determination.	This	means	the	prefix	can	be
used	for	deciding	whether	or	not	an	address	is	on-link	(on	the	recipient's
local	network).	When	0,	the	sender	is	making	no	statement	regarding
whether	the	prefix	can	be	used	for	this	or	not.

A 1/8	(1
bit)

Autonomous	Address-Configuration	Flag:	When	set	to	1,	specifies	that
this	prefix	can	be	used	for	IPv6	address	autoconfiguration.	(See
Chapter	25	for	details	on	IPv6	autoconfiguration.)

Reserved 6/8	(6
bits)

6	leftover	bits	reserved	and	sent	as	zeros.

Redirected	Header	Option	Format
In	a	Redirect	message,	the	Redirected	Header	option	provides	a	copy	of	the
original	message	(or	a	portion	of	it)	that	led	to	the	Redirect	message	being
generated.	This	option's	format	is	shown	in	Table	35-15	and	Figure	35-11.



Table	35-15.	ICMPv6	Redirected	Header	Option	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	option	type.	For	the	Redirected	Header	option,	the
value	is	4.

Length 1 The	length	of	the	entire	option	(including	the	Type	and	Length	fields),
expressed	in	units	of	8	octets	(64	bits).

Reserved 6 The	6	reserved	bytes	sent	as	zeros.

IP
Header	+
Data

Variable As	much	of	the	original	IPv6	datagram	as	will	fit	without	causing	the	size
of	the	ICMPv6	error	message	(including	its	own	IP	header)	to	exceed	the
minimum	IPv6	MTU	of	1280	bytes.

Figure	35-11.	ICMPv6	Redirected	Header	option	format

MTU	Option	Format
The	MTU	option	lets	a	router	convey	a	recommended	MTU	value	in	Router
Advertisement	messages.	Its	format	is	shown	in	Table	35-16	and	Figure	35-12.

Table	35-16.	ICMPv6	MTU	Option	Format

Field
Name

Size
(Bytes)

Description

Type 1 Identifies	the	ICMPv6	option	type.	For	the	MTU	option,	the	value	is	5.

Length 1 The	length	of	the	entire	option	(including	the	Type	and	Length	fields),
expressed	in	units	of	8	octets	(64	bits).	The	MTU	option	is	fixed	in	length
at	8	bytes,	so	the	value	of	this	field	is	1.

Reserved 2 The	2	reserved	bytes	sent	as	zeros.



MTU 4 The	MTU	value,	in	bytes,	that	the	router	is	recommending	for	use	on	the
local	link.

Figure	35-12.	ICMPv6	MTU	option	format



Chapter	36.	IPV6	NEIGHBOR
DISCOVERY	(ND)	PROTOCOL

The	new	Internet	Protocol	version	6	(IPv6)	represents	an	evolution	of	the
venerable	IP.	It	maintains	the	same	basic	operational	principles	of	IPv4,	but
makes	some	important	modifications,	particularly	in	the	area	of	addressing.	In
fact,	some	of	the	more	significant	changes	in	IPv6	are	actually	not	in	IP	itself,
but	in	the	protocols	that	support	IP.	One	of	the	most	interesting	of	these	was	the
creation	of	an	entirely	new	support	protocol	for	IPv6.	It	combines	several	tasks
previously	performed	by	other	protocols	in	IPv4,	adds	some	new	functions,	and
makes	numerous	improvements	to	the	whole	package.	This	new	standard	is
called	the	IPv6	Neighbor	Discovery	(ND)	protocol.

In	this	chapter,	I	describe	the	new	ND	protocol	used	in	IPv6.	I	begin	with	an
overview	of	the	protocol,	discussing	its	history,	the	motivation	for	its	creation,
and	the	standards	that	define	it.	I	then	describe	its	operation	in	general	terms,
listing	the	fundamental	functions	that	ND	performs,	the	three	groups	these
functions	fit	into,	and	the	Internet	Control	Message	Protocol	version	6	(ICMPv6)
message	types	used	to	carry	them	out.	I	describe	the	key	differences	between	ND
and	the	way	that	its	functions	were	carried	out	in	IPv4.	I	then	provide	more
information	on	the	three	functional	groups	in	ND:	those	that	involve	discovery
of	important	internetwork	information	from	routers,	those	that	are	related	to
address	resolution	and	neighbor	communication	between	hosts,	and	finally,	those
involved	with	router	redirection.

TIP

BACKGROUND	INFORMATION	This	chapter	assumes	basic	comprehension	of	IPv6,	which,	in	turn,
requires	understanding	IPv4.	ND	uses	ICMPv6	messages,	so	I	reference	Chapters	Chapter	31	to
Chapter	35,	which	discuss	them.	Finally,	since	ICMP	performs	some	of	the	functions	done	by	the



Address	Resolution	Protocol	(ARP)	in	IPv4,	you	may	need	to	refer	to	Chapter	13	if	you're	unfamiliar
with	ARP's	operation.

IPv6	ND	Overview
The	purpose	of	network	layer	protocols	like	IP	is	to	provide	a	means	of
connecting	together	individual	local	networks	to	create	a	much	larger
internetwork.	To	higher-layer	protocols	and	to	users,	this	internetwork	behaves
in	most	respects	as	if	it	were	a	single	large	network,	because	the	lower	layers
hide	the	details	that	hold	together	the	individual	networks.	Any	device	can	send
information	to	any	other	regardless	of	where	it	is	located,	and	like	magic,	it	will
work—at	least	most	of	the	time.

The	existence	of	an	internetwork	means	that	devices	can	treat	all	other	devices	as
peers,	at	least	from	the	perspective	of	higher-layer	protocols	and	applications.
From	the	standpoint	of	lower	layers,	however,	there	is	a	very	important
difference	between	devices	that	are	on	a	host's	local	network	and	those	that	are
elsewhere.	In	a	general	sense,	most	devices	have	a	more	important	relationship
with	the	devices	that	are	on	their	local	network	than	those	that	are	far	away.
Some	of	the	most	obvious	tasks	that	a	device	must	perform	specifically	with
other	devices	on	its	local	network	include	the	following:

Direct	Datagram	Delivery	Devices	deliver	data	directly	to	other	devices	on
their	local	network,	while	data	going	to	distant	devices	must	be	indirectly
delivered	(routed).

Layer	2	Addressing	To	facilitate	direct	delivery,	devices	need	to	know	the	layer
2	addresses	of	the	other	devices	on	the	local	network;	they	don't	need	to	know
them	for	nonlocal	devices.

Router	Identification	To	deliver	indirectly,	a	device	needs	to	find	a	router	on	its
local	network	that	it	can	talk	to.

Router	Communication	The	local	router	must	communicate	information	to
each	of	the	local	hosts	using	it,	so	the	hosts	know	how	best	to	use	it.

Configuration	Hosts	will	usually	look	to	information	provided	by	local	devices
to	let	them	perform	configuration	tasks	such	as	determining	their	own	IP
address.



To	support	these	and	other	requirements,	several	special	protocols	and	functions
were	developed	along	with	the	original	IP	(version	4).	The	IP	addressing	scheme
lets	devices	differentiate	local	addresses	from	distant	ones.	The	Address
Resolution	Protocol	(ARP)	lets	devices	determine	layer	2	addresses	from	layer	3
addresses.	ICMP	provides	a	messaging	system	to	support	various
communication	requirements	between	local	devices,	including	the	ability	of	a
host	to	find	a	local	router	and	the	router	to	provide	information	to	local	hosts.

These	features	all	work	properly	in	IPv4,	but	they	were	developed	in	sort	of	an
ad	hoc	manner.	They	are	defined	not	in	a	single	place,	but	rather	in	a	variety	of
different	Internet	standards.	There	were	also	some	limitations	with	the	way	these
local	device	functions	were	implemented.

Formalizing	Local	Network	Functions:	The
Neighbor	Concept
IPv6	represents	the	biggest	change	in	decades	to	not	just	the	IP	itself,	but	the
entire	TCP/IP	suite.	It	thus	provided	an	ideal	opportunity	to	formalize	and
integrate	the	many	disparate	functions	and	tasks	related	to	communication
between	local	devices.	The	result	was	the	creation	of	a	new	protocol:	Neighbor
Discovery	for	IP	version	6,	also	commonly	called	the	IPv6	Neighbor	Discovery
protocol.	Since	this	protocol	is	new	in	IPv6,	there	is	no	IPv4	version	of	it,	so	the
name	is	usually	just	seen	as	the	ND	protocol	with	no	further	qualifications;	its
use	with	IPv6	is	implied.

The	term	neighbor	is	one	that	has	been	used	for	years	in	various	networking
standards	and	technologies	to	refer	to	devices	that	are	local	to	each	other.	In	the
context	of	the	current	discussion,	two	devices	are	neighbors	if	they	are	on	the
same	local	network,	meaning	that	they	can	send	information	to	each	other
directly.	The	term	can	refer	to	either	a	regular	host	or	a	router.	I	think	this	is	a
good	analogy	to	the	way	humans	refer	to	those	who	live	or	work	nearby.	Just	as
most	of	us	have	a	special	relationship	with	people	who	are	our	neighbors	and
communicate	more	with	them	than	with	those	who	are	far	away,	so	do	IP
devices.

Since	a	neighbor	is	a	local	device,	the	name	of	the	ND	protocol	would	seem	to
indicate	that	ND	is	all	about	how	neighbors	discover	each	other's	existence.	In



the	context	of	this	protocol,	however,	the	term	discovery	has	a	much	more
generic	meaning:	It	refers	to	discovering	not	just	who	are	neighbors	are,	but	also
discovering	important	information	about	them.	In	addition	to	letting	devices
identify	their	neighbors,	ND	facilitates	all	the	tasks	listed	earlier,	including	such
functions	as	address	resolution,	parameter	communication,	autoconfiguration,
and	much	more,	as	you	will	see	in	this	chapter.

TIP

KEY	CONCEPT	The	new	IPv6	Neighbor	Discovery	(ND)	protocol	formalizes	for	IPv6	a	number	of
functions	related	to	communication	between	devices	on	a	local	network	that	are	performed	in	IPv4	by
protocols	such	as	ARP	and	ICMP.	ND	is	considered	another	helper	protocol	for	IPv6	and	is	closely
related	to	ICMPv6.

Neighbor	Discovery	Standards
The	ND	protocol	was	originally	defined	in	RFC	1970,	published	in	August	1996,
and	revised	in	the	current	defining	standard,	RFC	2461,	published	December
1998.	Most	of	the	functions	of	the	ND	protocol	are	implemented	using	a	set	of
five	special	ICMPv6	control	messages,	which	were	discussed	in	the	previous
chapter.	Thus,	to	some	extent,	the	operation	of	ND	is	partially	described	by	the
ICMPv6	standard,	RFC	2463.	Where	ICMPv4	can	be	considered	IPv4's
"administrative	assistant,"	IPv6	really	has	two	such	assistants	working	closely
together:	ICMPv6	and	ND.	I	discuss	more	of	the	differences	between	the	ways
IPv4	and	IPv6	implement	ND's	functions	later	in	this	chapter.



IPv6	ND	General	Operational	Overview
As	I	just	mentioned,	the	name	of	the	ND	protocol	really	does	not	do	it	justice.
The	protocol	facilitates	not	merely	the	discovery	of	neighboring	devices,	but	also
a	substantial	number	of	functions	related	to	local	network	connectivity,	datagram
routing,	and	configuration.	Both	regular	hosts	and	routers	in	an	IPv6
environment	count	on	the	ND	protocol	to	facilitate	important	exchanges	of
information	that	are	necessary	for	proper	internetwork	operation.

The	ND	protocol	has	a	number	of	similarities	to	ICMP.	An	important	one	is	that
like	ICMP,	ND	is	a	messaging	protocol.	It	doesn't	implement	a	single	specific
function,	but	rather	a	group	of	activities	that	are	performed	through	the	exchange
of	messages.	This	means	I	can't	explain	the	operation	of	ND	through	a	specific
description	of	what	ND	does,	but	rather	must	define	its	operation	by	means	of	a
list	of	messages	that	ND	provides,	and	the	specific	ways	that	those	messages	are
used.

Any	local	network	on	an	internetwork	will	have	both	regular	hosts	and	routers,
and	the	term	neighbor	can	refer	to	either.	Of	course,	hosts	and	routers	play
different	roles	on	a	network,	and	as	a	result,	ND	is	very	different	for	each.	The
ND	standard	describes	nine	specific	functions	performed	by	the	protocol.	To
better	understand	these	functions	and	how	they	are	related,	we	can	divide	them
into	three	functional	groups	based	on	communication	type	and	the	kinds	of
devices	involved,	as	illustrated	in	Figure	36-1.

Figure	36-1.	Neighbor	Discovery	(ND)	protocol	functional	groups	and	functions

Two	main	groups	of	functions	in	ND	are	those	for	handling	router	discovery	and



Two	main	groups	of	functions	in	ND	are	those	for	handling	router	discovery	and
those	for	handling	communications	between	hosts.	A	third	functional	group
consists	of	just	the	Redirect	function.

Host-Router	Discovery	Functions
ND	host-router	discovery	functions	are	those	that	facilitate	the	discovery	of	local
routers	and	the	exchange	of	information	between	routers	and	hosts.	This	includes
four	specific	functions:

Router	Discovery	(RD)	RD	is	the	core	function	of	this	group.	It's	the	method	by
which	hosts	locate	routers	on	their	local	network.

Prefix	Discovery	Closely	related	to	the	process	of	RD	is	Prefix	Discovery.
Recall	that	the	term	prefix	refers	to	the	network	identifier	portion	of	an	IP
address.	Hosts	use	this	function	to	determine	the	network	they	are	on,	which,	in
turn,	tells	them	how	to	differentiate	between	local	and	distant	destinations	and
whether	to	attempt	direct	or	indirect	delivery	of	datagrams.

Parameter	Discovery	Also	closely	related	to	RD,	this	is	the	method	by	which	a
host	learns	important	parameters	about	the	local	network	and/or	routers,	such	as
the	maximum	transmission	unit	(MTU)	of	the	local	link.

Address	Autoconfiguration	Hosts	in	IPv6	are	designed	to	be	able	to
automatically	configure	themselves,	but	this	requires	information	that	is
normally	provided	by	a	router.

Host-Host	Communication	Functions
The	other	main	group	of	functions	is	associated	with	information	determination
and	communication	directly	between	nodes,	usually	hosts.	Some	of	these
functions	can	be	performed	between	hosts	and	routers,	but	this	group	is	not
specifically	related	to	RD.	Host-host	communcation	functions	include	the
following:

Address	Resolution	The	process	by	which	a	device	determines	the	layer	2
address	of	another	device	on	the	local	network	from	that	device's	layer	3	(IP)
address.	This	is	the	job	performed	by	ARP	in	IPv4.

Next-Hop	Determination	The	method	for	looking	at	an	IP	datagram's
destination	address	and	determining	where	it	should	next	be	sent.



Neighbor	Unreachability	Detection	The	process	of	determining	whether	or	not
a	neighbor	device	can	be	directly	contacted.

Duplicate	Address	Detection	Determining	if	an	address	that	a	device	wishes	to
use	already	exists	on	the	network.

Redirect	Function
The	last	functional	group	contains	just	one	function:	Redirect.	This	is	the
technique	whereby	a	router	informs	a	host	of	a	better	next-hop	node	to	use	for	a
particular	destination.

TIP

KEY	CONCEPT	ND	encompasses	nine	individual	functions,	many	of	which	are	related	to	each	other.
They	are	organized	into	three	functional	groups:	host-router	discovery	functions,	host-host
communications	functions,	and	the	Redirect	function.

Relationships	Between	Functions
The	division	of	ND's	overall	functionality	into	nine	tasks	in	three	groups	is
somewhat	arbitrary,	but	provides	a	good	frame	of	reference	for	understanding
what	the	protocol	does.	Some	of	the	functions	in	different	groups	are	related;
next-hop	determination	uses	information	obtained	as	part	of	Parameter
Discovery.	The	Redirect	function	is	also	a	form	of	router-host	communication
but	is	distinct	from	RD.

ICMPv6	Messages	Used	by	ND
Just	as	ND	is	similar	to	ICMP	in	its	operation,	the	two	protocols	are	related	in
another	way:	the	way	that	they	perform	messaging.	ND	actually	implements	its
functions	using	ICMPv6	messages.	A	set	of	five	message	types	is	described	in
the	ND	standard:

Router	Advertisement	Messages	Sent	regularly	by	routers	to	tell	hosts	that	they
exist	and	provide	important	prefix	and	parameter	information	to	them.

Router	Solicitation	Messages	Sent	by	hosts	to	request	that	any	local	routers
send	a	Router	Advertisement	message	so	they	don't	have	to	wait	for	the	next
regular	advertisement	message.



Neighbor	Advertisement	Messages	Sent	by	hosts	to	indicate	the	existence	of
the	host	and	provide	information	about	it.

Neighbor	Solicitation	Messages	Sent	to	verify	the	existence	of	another	host	and
to	ask	it	to	transmit	a	Neighbor	Advertisement	message.

Redirect	Messages	Sent	by	a	router	to	tell	a	host	of	a	better	method	to	route	data
to	a	particular	destination.

We'll	look	at	how	these	message	types	are	used	later	in	this	chapter.	See
Chapter	35	for	the	structures	of	each	of	these	five	ICMPv6	message	types	used
by	ND.



IPv6	ND	Functions	Compared	to	Equivalent	IPv4
Functions
The	IPv6	ND	protocol	has	the	distinction	of	being	the	only	truly	new	protocol
created	as	part	of	the	core	of	IPv6;	there	is	no	previous	version	of	ND.	Of
course,	most	of	the	services	that	ND	provides	to	IPv6	were	also	required	in	IPv4.
They	were	just	provided	in	a	rather	diverse	set	of	protocols	and	standards	that
the	ND	protocol	has	formalized,	integrated,	and	improved.

What	this	means	is	that	while	ND	is	new,	the	jobs	it	does	are	equivalent	to	the
tasks	performed	by	several	other	protocols	in	IPv4.	Specifically,	the	bulk	of	ND
functions	correspond	to	the	following	set	of	standards,	features,	and	message
types	in	IPv4:

ICMPv4	Router	Discovery	Most	of	the	functions	associated	with	identifying
and	obtaining	information	from	routers	in	ND	are	based	on	the	use	of	ICMPv4
Router	Advertisement	and	Router	Solicitation	messages,	as	defined	in	RFC
1256.

Address	Resolution	Protocol	ND	provides	enhanced	address	resolution
capabilities	that	are	similar	to	the	functions	provided	in	IPv4	by	ARP.

ICMPv4	Redirect	ND's	Redirect	function	and	Redirect	messages	are	based	on
similar	functionality	defined	in	IPv4	and	ICMPv4.

There	are	other	aspects	of	ND	that	only	somewhat	correlate	to	how	things	work
in	IPv4.	There	are	also	improvements	or	new	functionality	compared	to	how
these	IPv4	functions	work.	Some	of	these	are	due	to	differences	in	how	IPv6
itself	operates	compared	to	IPv4.	For	example,	Prefix	Discovery	in	ND	is	sort	of
related	to	the	Address	Mask	Request	and	Address	Mask	Reply	messaging	in
ICMPv4.

Overall,	ND	represents	a	substantial	improvement	compared	to	the	way	its	job
was	done	in	IPv4.	Like	IPv6	itself,	ND	is	generally	better	suited	to	the	needs	of
modern	networks	than	the	older	protocols.	Some	of	the	more	important	specific
improvements	made	in	ND	compared	to	how	its	job	was	done	in	IPv4	include
the	following:



Formalizing	of	Router	Discovery	In	IPv4,	the	process	of	RD	and	solicitation
was	arguably	an	afterthought.	ND	formalizes	this	process	and	makes	it	part	of
the	core	of	the	TCP/IP	protocol	suite.

Formalizing	of	Address	Resolution	In	a	similar	manner,	address	resolution	is
handled	in	a	superior	way	in	ND,	which	functions	at	layer	3	and	is	tightly	tied	to
IP,	just	as	ICMP	is.	There	is	no	more	need	for	an	ambiguously	layered	protocol
like	ARP,	whose	implementation	depends	greatly	on	the	underlying	physical	and
data	link	layers.

Ability	to	Perform	Functions	Securely	ND	operates	at	the	network	layer,	so	it
can	make	use	of	the	authentication	and	encryption	capabilities	of	IPsec	for	tasks
such	as	address	resolution	and	RD.

Autoconfiguration	In	combination	with	features	built	into	IPv6,	ND	allows
many	devices	to	automatically	configure	themselves,	without	the	need	for
something	like	a	Dynamic	Host	Configuration	Protocol	(DHCP)	server	(though
DHCPv6	does	also	exist).

Dynamic	Router	Selection	Devices	use	ND	to	detect	if	neighbors	are	reachable.
If	a	device	is	using	a	router	that	stops	being	reachable,	it	will	detect	this	and
automatically	switch	to	another	one.

Multicast-Based	Address	Resolution	Address	resolution	is	performed	using
special	multicast	addresses	instead	of	broadcasts,	thereby	reducing	unnecessary
disruption	of	"innocent	bystanders"	when	resolution	messages	must	be	sent.

Better	Redirection	Improvements	have	been	made	to	the	method	for	generating
and	using	Redirect	messages.



IPv6	ND	Host-Router	Discovery	Functions
Connecting	individual	networks	together	creates	internetworks.	The	devices	that
are	responsible	for	this	connection	of	networks	are	routers,	which	send	data	from
one	network	to	the	next.	A	host	must	rely	on	a	router	to	forward	transmissions	to
all	devices	other	than	those	on	the	local	network.	For	this	reason,	before	a	host
can	properly	use	an	internetwork,	it	needs	to	find	a	local	router	and	learn
important	information	about	both	the	router	and	the	network	itself.	Enabling	this
information	exchange	is	one	of	the	most	important	jobs	of	the	IPv6	ND	protocol.

The	general	term	used	to	describe	most	of	the	ND	communication	between	hosts
and	routers	on	a	local	network	is	discovery.	As	I	mentioned	earlier	in	this
chapter,	the	term	encompasses	not	merely	discovery	of	the	router,	but	also
communication	of	important	parameters.	Most	of	this	communication	flows
from	the	routers	to	the	hosts,	since	routers	control	the	way	that	each	network	is
used.	They	provide	information	to	hosts	so	the	hosts	know	how	best	to	operate.

The	various	discovery	features	related	to	host-router	communication	are	all
facilitated	by	the	same	exchange	of	two	different	ICMPv6	message	types.	Router
Advertisement	messages	are	sent	only	by	routers,	and	they	contain	information
about	the	router	and	the	network	on	which	it	is	located.	Router	Solicitation
messages	are	optional,	and	they	are	sent	by	hosts	when	they	want	to	find	a	local
router.	The	format	of	each	of	these	messages	is	described	in	Chapter	35.

Note	that	both	Router	Advertisement	and	Router	Solicitation	messages	may
include	an	optional	layer	2	address	of	the	device	sending	the	message.	This	is
used	to	update	address	resolution	caches	to	save	time	when	address	resolution	is
needed	later.

The	mechanisms	for	using	these	messages	are	not	really	that	complicated.	The
best	way	to	see	how	the	discovery	process	works	overall	is	to	look	at	the	specific
tasks	performed	both	by	routers	and	hosts	in	ND.	Let's	start	by	looking	at	the
functions	that	routers	perform.

Host-Router	Discovery	Functions	Performed	by
Routers



Routers	are	responsible	for	the	following	functions:

Routine	Advertisement	The	main	job	that	routers	do	in	ND	is	to	regularly
transmit	Router	Advertisement	messages.	Each	router	maintains	a	timer	that
controls	how	often	an	advertisement	is	sent	out.	Advertisements	are	also	sent
when	any	sort	of	special	situation	arises.	For	example,	a	message	will	be	sent	if
key	information	about	the	router	changes,	such	as	its	address	on	the	local
network.	Router	Advertisement	messages	include	key	information	about	both	the
router	and	the	network.	See	Chapter	35	for	a	full	description	of	the	Router
Advertisement	message	format.

Parameter	Maintenance	Routers	are	responsible	for	maintaining	key
parameters	about	the	local	network,	so	they	can	be	sent	in	advertisements.	These
include	the	default	Hop	Limit	field	value	that	should	be	used	by	hosts	on	the
network,	a	default	MTU	value	for	the	network,	and	information	such	as	network
prefixes,	which	are	used	for	both	first-hop	routing	by	hosts	and
autoconfiguration.	Again,	some	more	details	on	these	can	be	found	in
Chapter	35.

Solicitation	Processing	Routers	listen	for	Router	Solicitation	messages.	When
one	is	received,	they	will	immediately	send	a	Router	Advertisement	to	the
requesting	host.

Host-Router	Discovery	Functions	Performed	by
Hosts
For	their	part,	hosts	are	responsible	for	three	main	functions:

Advertisement	Processing	Hosts	listen	for	advertisements	on	their	local
network	and	process	them.	They	then	set	appropriate	parameters	based	on	the
information	in	these	messages.	This	includes	maintaining	various	data	structures
such	as	lists	of	prefixes	and	routers,	which	are	updated	regularly	as	new
advertisement	information	comes	in.

Solicitation	Generation	Under	certain	conditions,	a	host	will	generate	a	Router
Solicitation	and	send	it	out	on	the	local	network.	This	very	simple	message	just
requests	that	any	local	routers	that	hear	it	immediately	send	a	Router
Advertisement	message	back	to	the	device	that	made	the	request.	This	is	most



often	done	when	a	host	is	first	turned	on,	so	it	doesn't	have	to	sit	waiting	for	the
next	routine	advertisement.

Autoconfiguration	When	required,	and	if	the	network	supports	the	function,	the
host	will	use	information	from	the	local	router	to	allow	it	to	automatically
configure	itself	with	an	IP	address	and	other	parameters.

TIP

KEY	CONCEPT	One	of	the	two	main	functional	groups	of	ND	is	the	set	of	host-router	discovery
functions.	They	allow	hosts	on	a	local	network	to	discover	the	identity	of	a	local	router	and	learn
important	parameters	about	how	the	network	is	to	be	used.	Host-router	discovery	operations	are
performed	using	ICMPv6	Router	Advertisement	and	Router	Solicitation	messages.



IPv6	ND	Host-Host	Communication	Functions
The	delivery	of	datagrams	in	IP	can	be	divided	into	two	methods:	direct	and
indirect.	Indirect	datagram	delivery	requires	that	routers	provide	help	to	hosts,
which	leads	to	the	host-router	discovery	functions	described	in	the	previous
section.	Direct	delivery	of	datagrams	is	performed	from	one	host	to	another	on
the	same	network.	This	doesn't	require	the	use	of	routers,	but	necessitates	other
IPv6	ND	protocol	functions	that	involve	communication	directly	between	local
hosts.	These	include	next-hop	determination,	address	resolution,	neighbor
unreachability	detection,	and	duplicate	address	detection.

Next-Hop	Determination
The	first	task	that	any	host	must	perform	when	it	wants	to	send	a	datagram	is
next-hop	determination.	This	is	the	process	by	which	a	device	looks	at	the
destination	address	in	a	datagram	and	decides	whether	direct	or	indirect	delivery
is	required.	In	early	IPv4,	this	was	done	by	looking	at	the	class	of	the	address,
and	later	on,	by	using	the	subnet	mask.	In	IPv6,	the	prefix	information	obtained
from	local	routers	is	compared	to	the	destination	of	the	datagram	to	determine	if
the	destination	device	is	local	or	distant.	If	it	is	local,	the	next	hop	is	the	same	as
the	destination	address;	if	it	is	not	local,	the	next	hop	is	chosen	from	the	device's
list	of	local	routers	(which	are	determined	either	by	manual	configuration	or
using	the	host-router	discovery	features	of	ND).

For	efficiency	purposes,	hosts	do	not	perform	this	next-hop	determination	for
each	and	every	datagram.	They	maintain	a	destination	cache	that	contains
information	about	what	the	next	hop	should	be	for	recent	devices	to	which
datagrams	have	been	sent.	Each	time	a	next-hop	determination	is	performed	for	a
particular	destination,	information	from	that	determination	is	entered	into	the
cache	so	that	it	can	be	used	the	next	time	datagrams	are	sent	to	that	device.

Address	Resolution
If	a	host	determines	that	the	destination	of	a	datagram	is	local,	it	will	then	need
to	send	the	datagram	to	that	device.	The	actual	transmission	will	occur	using
whatever	physical	layer	and	data	link	layer	technology	has	been	used	to
implement	the	local	network.	This	requires	the	host	to	know	the	layer	2	address



implement	the	local	network.	This	requires	the	host	to	know	the	layer	2	address
of	the	destination,	even	though	it	generally	has	only	the	layer	3	address	from	the
datagram.	Getting	from	the	layer	3	address	to	the	layer	2	address	is	known	as	the
address	resolution	problem.

In	IPv6,	the	ND	protocol	is	responsible	for	address	resolution.	When	a	host
wants	to	get	the	layer	2	address	of	a	datagram	destination	it	sends	an	ICMPv6
Neighbor	Solicitation	message	containing	the	IP	address	of	the	device	whose
layer	2	address	it	wishes	to	determine.	That	device	responds	back	with	a
Neighbor	Advertisement	message	that	contains	its	layer	2	address.	Instead	of
using	a	broadcast	that	would	disrupt	each	device	on	the	local	network,	the
solicitation	is	sent	using	a	special	multicast	to	the	destination	device's	solicited-
node	address.	See	Chapters	Chapter	13	and	Chapter	25	for	more	information
about	address	resolution	in	IPv6.

Note	also	that	even	though	this	discussion	does	concentrate	on	communication
between	hosts,	address	resolution	may	also	be	done	when	a	host	needs	to	send	a
datagram	to	a	local	router	and	has	no	entry	for	it	in	its	destination	cache.	In	the
context	of	address	resolution,	a	destination	device	is	just	a	neighbor.	Whether	it
is	a	host	or	a	router	matters	only	in	terms	of	what	happens	after	the	datagram	has
been	sent	and	received.	In	other	words,	these	host-to-host	functions	are	so	named
only	because	they	are	not	specific	to	the	communication	between	hosts	and
routers	like	the	tasks	in	the	preceding	section.

Updating	Neighbors	Using	Neighbor
Advertisement	Messages
Devices	do	not	routinely	send	Neighbor	Advertisement	messages	the	way	that
routers	send	Router	Advertisement	messages.	There	really	isn't	any	need	for	this:
Neighbors	don't	change	much	over	time,	and	resolution	will	occur	naturally	over
time	as	devices	send	datagrams	to	each	other.	In	addition,	having	advertisements
sent	regularly	by	so	many	devices	on	a	network	would	be	wasteful.

A	host	may,	however,	send	an	unsolicited	Neighbor	Advertisement	message
under	certain	conditions	where	it	feels	it	is	necessary	to	immediately	provide
updated	information	to	other	neighbors	on	the	local	network.	A	good	example	of
this	is	a	hardware	failure—in	particular,	the	failure	of	a	network	interface	card.
When	the	card	is	replaced,	the	device's	layer	2	(MAC)	address	will	change.



When	the	card	is	replaced,	the	device's	layer	2	(MAC)	address	will	change.
Assuming	the	device's	IP	layer	can	detect	this,	it	can	send	out	an	unsolicited
Neighbor	Advertisement	message	to	tell	other	devices	to	update	their	resolution
caches	with	the	new	MAC	address.

Neighbor	Unreachability	Detection	and	the
Neighbor	Cache
Neighbor	Solicitation	and	Neighbor	Advertisement	messages	are	most	often
associated	with	address	resolution,	but	they	also	have	other	purposes.	One	of
these	is	neighbor	unreachability	detection.	Each	device	maintains	information
about	each	of	its	neighbors	and	updates	it	dynamically	as	network	conditions
change.	The	information	is	kept	for	both	host	and	router	devices	that	are
neighbors	on	the	local	network.	Knowing	that	a	device	has	become	unreachable
is	important	because	a	host	can	adapt	its	behavior	accordingly.	In	the	case	of	an
unreachable	host,	a	device	may	wait	a	certain	period	of	time	before	trying	to
send	datagrams	to	an	unreachable	host,	instead	of	flooding	the	network	with
repeated	attempts	to	send	to	the	host.	An	unreachable	router,	on	the	other	hand,
is	a	signal	that	the	device	needs	to	find	a	new	router	to	use,	if	an	alternate	is
available.

Each	host	maintains	a	neighbor	cache	that	contains	information	about
neighboring	devices.	Each	time	a	host	receives	a	datagram	from	a	neighbor,	it
knows	the	neighbor	is	reachable	at	that	particular	moment,	so	the	device	makes
an	entry	in	the	cache	for	the	neighbor	to	indicate	this.	Of	course,	receiving	a
datagram	from	a	neighbor	means	only	that	the	neighbor	is	reachable	now;	the
more	time	that	elapses	since	the	last	datagram	was	received,	the	greater	the
chance	that	something	has	happened	to	make	the	neighbor	no	longer	reachable.

For	this	reason,	neighbor	reachability	information	must	be	considered	temporary.
Each	time	a	neighbor	is	entered	into	the	cache	as	reachable,	a	timer	is	started.
When	the	timer	expires,	the	reachability	information	for	that	neighbor	is
considered	stale,	and	reachability	is	no	longer	assumed	for	that	neighbor.	When
a	new	datagram	is	received	from	the	neighbor	in	question,	the	timer	is	reset	and
the	cache	is	again	set	to	indicate	that	the	device	is	reachable.	The	amount	of	time
a	host	should	consider	a	neighbor	reachable	before	expiring	it	is	communicated
by	a	local	router	using	a	field	in	a	Router	Advertisement	message.

A	host	can	also	dynamically	seek	out	a	neighbor	if	it	needs	to	know	its



A	host	can	also	dynamically	seek	out	a	neighbor	if	it	needs	to	know	its
reachability	status.	It	sends	a	Neighbor	Solicitation	message	to	the	device	and
waits	for	a	Neighbor	Advertisement	message	in	response.	It	then	updates	the
cache	accordingly.

Duplicate	Address	Detection
The	last	use	of	the	two	messages	we	have	been	discussing	here	is	for	duplicate
address	detection.	When	a	host	uses	the	IPv6	autoconfiguration	facility,	one	of
the	steps	in	the	process	is	to	ensure	that	the	address	it	is	trying	to	use	doesn't
already	exist	on	the	network.	This	is	done	by	sending	a	Neighbor	Solicitation
message	to	the	address	the	device	wishes	to	use.	If	a	Neighbor	Advertisement
message	is	received	in	reply,	the	address	is	already	in	use.

TIP

KEY	CONCEPT	The	second	of	the	two	main	functional	groups	of	ND	is	the	set	of	host-host
communication	functions.	Two	ICMPv6	messages,	Neighbor	Advertisement	and	Neighbor	Solicitation,
are	defined.	They	enable	a	variety	of	types	of	essential	communication	between	adjacent	hosts	on	a	local
network.	These	include	address	resolution,	determining	the	next	hop	to	which	a	datagram	should	be	sent,
and	also	the	assessment	of	a	neighboring	device's	reachability.



IPv6	ND	Redirect	Function
The	last	of	the	major	responsibilities	of	the	IPv6	ND	protocol	is	the	Redirect
function.	This	is	used	by	a	router	to	inform	a	host	of	a	better	route	to	use	for
datagrams	that	have	been	sent	to	a	particular	destination.	An	argument	could	be
made	that	the	Redirect	function	should	be	part	of	the	host-router	group	since	it
represents	a	form	of	communication	between	routers	and	regular	hosts.
However,	it	is	somewhat	different	from	the	other	discovery	functions,	and	so	the
standard	treats	it	separately.

Routers	are	responsible	for	detecting	situations	where	a	host	on	the	local
network	has	made	an	inefficient	first-hop	routing	decision,	and	then	attempting
to	correct	it.	For	example,	consider	a	network	that	has	two	routers	on	it,	R1	and
R2.	A	Host	H1	wants	to	send	a	datagram	to	Device	X2	on	another	network	that
is	connected	to	Host	H1's	network	through	Router	R2.	If	Host	H1	sends	the
datagram	to	Router	R1,	that	router	will	know	it	must	go	through	Router	R2,	and
will	send	it	there.	Seeing	that	Router	R2	was	also	on	the	local	network,	Router
R1	therefore	knows	that	Host	H1	made	a	poor	initial	routing	decision:	The
datagram	should	have	been	sent	to	Router	R2	directly,	not	Router	R1.	If	this
sounds	very	similar	to	ICMPv4's	redirect	feature,	that's	because	it	is!

In	response,	Router	R1	will	create	a	special	ICMPv6	Redirect	message.	This
message	will	tell	Host	H1	that	for	any	subsequent	datagrams	that	will	be	sent	to
Device	X2	should	be	first	sent	to	Router	R2,	instead	of	to	Router	R1.	It	is	also
possible	that	a	router	may	determine	other	situations	where	the	first	hop	from	a
particular	host	should	be	different	and	will	advise	the	host	using	a	Redirect
message.	This	is	illustrated	in	Figure	36-2.

Only	routers	send	Redirect	messages,	not	hosts.	Hosts	are	responsible	for
looking	for	these	Redirect	messages	and	processing	them.	A	host	receiving	such
a	message	will	look	in	it	to	see	which	destination's	datagram	led	to	the
redirection	notice,	and	which	new	first	hop	the	router	is	saying	the	host	should
use	in	the	future	for	that	destination.	In	this	example,	Host	H1	will	see	that
Router	R1	is	saying	that	any	further	datagrams	to	Device	X2	should	be	sent	to
Router	R2	instead	of	Router	R1.	Host	H1	will	update	its	destination	cache	for
Device	X2	accordingly.



Figure	36-2.	ND	host	redirection	using	an	ICMPv6	Redirect	message	Host	H1	sends	to	Router	R1	an
IPv6	datagram	destined	for	a	device	on	Network	N2.	However,	Router	R1	notices	that	Router	R2	is	on

the	same	network	as	the	source	device	and	is	a	more	direct	route	to	Network	N2.	It	forwards	the
datagram	on	to	Router	R2	but	also	sends	an	ICMPv6	Redirect	message	back	to	Host	H1	to	tell	it	to	use

Router	R2	next	time.

TIP

KEY	CONCEPT	The	ND	Redirect	function	allows	a	router	to	tell	a	host	to	use	a	different	router	for
future	transmissions	to	a	particular	destination.	It	is	similar	to	the	IPv4	redirect	feature	and	is
implemented	using	ICMPv6	Redirect	messages.

When	a	router	sends	a	Redirect	message,	it	may	also	include	in	the	message	the
data	link	layer	address	of	the	destination	to	which	it	is	redirecting.	This	address
is	used	by	the	host	to	update	its	address	resolution	cache,	if	necessary.	This	may
save	bandwidth	in	the	future	by	eliminating	an	address	resolution	cycle,	when
the	redirected	host	tries	to	send	to	the	new,	redirected	location.	In	the	example,
Router	R1	may	include	Router	R2's	own	layer	2	address	in	the	Redirect	message.
This	can	be	used	by	Host	H1	the	next	time	it	has	a	datagram	for	Device	X2.

IPv6	also	supports	the	authentication	of	Redirect	messages	to	prevent
unauthorized	devices	from	causing	havoc	by	sending	inappropriate	Redirect
messages.	A	host	may	be	configured	to	discard	Redirect	messages	that	are	not
properly	authenticated.



Part	II-7.	TCP/IP	ROUTING	PROTOCOLS
(GATEWAY	PROTOCOLS)
Chapter	37

Chapter	38

Chapter	39

Chapter	40

Chapter	41

Routing	is	not	just	one	of	the	most	important	activities	that	take	place	at	the
network	layer;	it	is	also	the	function	that	really	defines	layer	3	of	the	OSI
Reference	Model.	Routing	is	what	enables	small	local	networks	to	be	linked
together	to	form	potentially	huge	internetworks	that	can	span	cities,	countries,	or
even	the	entire	globe.	The	job	of	routing	is	done	by	special	devices	called
routers,	which	forward	datagrams	from	network	to	network,	allowing	any	device
to	send	to	any	other	device,	even	if	the	source	has	no	idea	where	the	destination
is.

Strictly	speaking,	an	argument	could	be	made	that	some	routing	protocols	don't
belong	in	layer	3.	For	example,	many	of	these	protocols	send	messages	using	the
Transmission	Control	Protocol	(TCP)	or	User	Datagram	Protocol	(UDP)	at	layer
4.	Despite	this,	routing	is	inherently	a	layer	3	activity,	and	for	this	reason,	it	is
traditional	to	consider	routing	protocols	part	of	layer	3.

Routing	is	a	complicated	subject.	The	short	summary	of	the	process	is	that
routers	decide	how	to	forward	a	datagram	based	on	its	destination	address,	which
is	compared	to	information	the	router	keeps	in	special	routing	tables.	These
tables	contain	entries	for	each	of	the	networks	the	router	knows	about,	telling	the
router	which	adjacent	router	the	datagram	should	be	sent	to	in	order	for	it	to
reach	its	eventual	destination.

As	you	can	imagine,	routing	tables	are	critically	important	to	the	routing	process.
It	is	possible	for	these	tables	to	be	manually	maintained	by	network
administrators,	but	this	is	tedious	and	time-consuming	and	doesn't	allow	routers
to	deal	with	changes	or	problems	in	the	internetwork.	Instead,	most	modern



routers	are	designed	with	functionality	that	lets	them	share	route	information
with	other	routers,	so	they	can	keep	their	routing	tables	up-to-date	automatically.
This	information	exchange	is	accomplished	through	the	use	of	routing	protocols.

This	part	contains	five	chapters	that	provide	a	description	of	the	most	common
routing	(or	gateway)	protocols	used	in	TCP/IP.	The	first	chapter	provides	an
overview	of	various	concepts	that	are	important	to	know	in	order	to	understand
how	routing	protocols	work,	including	an	explanation	of	the	difference	between
interior	and	exterior	routing	protocols.	This	sets	the	stage	for	the	chapters	that
follow.

In	the	second	and	third	chapters,	I	thoroughly	explain	the	two	most	commonly
used	interior	routing	protocols	in	TCP/IP:	the	Routing	Information	Protocol
(RIP)	and	the	Open	Shortest	Path	First	(OSPF)	protocol.	In	the	fourth	chapter,	I
describe	the	Border	Gateway	Protocol	(BGP),	which	is	the	exterior	routing
protocol	used	today	on	the	Internet.	The	fifth	chapter	briefly	discussing	five
historical,	proprietary,	or	less	commonly	used	routing	protocols.

You	may	notice	that	the	title	of	this	part	refers	to	both	routing	protocols	and
gateway	protocols.	These	terms	are	interchangeable,	and	the	word	gateway
appears	in	the	name	of	several	of	the	protocols.	This	is	an	artifact	of	the
historical	use	of	the	term	gateway	in	early	TCP/IP	standards	to	refer	to	the
devices	we	now	call	routers.	Today,	the	term	gateway	normally	refers	not	to	a
router,	but	to	a	different	type	of	network	interconnection	device,	so	this	can	be
particularly	confusing.	The	term	routing	protocol	is	now	preferred,	and	it	is	the
one	I	use.

Like	all	topics	related	to	routing,	routing	protocols	are	generally	quite	complex.	I
cover	the	major	ones	here	in	more	detail	than	most	general	networking
references,	but	even	so,	I	am	only	scratching	the	surface,	especially	of	the	more
complicated	ones	like	OSPF.	You	can	check	out	the	referenced	Internet
standards	(RFCs)	for	more	details	if	you	desire.	Also	note	that	there	are	some
routing	protocols	in	use	on	IP	networks	that	I	do	not	cover	here,	such	as	IS-IS
(which	is	actually	an	OSI	protocol	and	not	formally	part	of	TCP/IP).



Chapter	37.	OVERVIEW	OF	KEY
ROUTING	PROTOCOL
CONCEPTS

Routing	protocols	play	an	important	part	in	the	overall	process	of	routing	in	an
internetwork.	It	is	therefore	easiest	to	understand	them	in	the	scope	of	an	overall
discussion	of	routing.	It's	difficult	to	describe	the	individual	TCP/IP	routing
protocols	without	some	background	information	on	how	routing	protocols	work.
For	this	reason,	I	feel	it	is	worth	taking	a	brief	look	at	key	routing	protocol
concepts	so	that	you	will	have	more	luck	making	sense	of	the	routing	protocols
described	in	the	next	few	chapters.

In	this	chapter,	I	will	provide	an	overview	of	the	routing	protocol	architectures,
protocol	types,	algorithms,	and	metrics.

Routing	Protocol	Architectures
Let's	start	with	a	look	at	routing	protocol	architectures.	In	this	context,	the	word
architecture	refers	to	the	way	that	an	internetwork	is	structured.	Once	you	have
some	networks	and	routers	that	you	wish	to	connect	together,	there	are	any
number	of	ways	that	you	can	do	this.	The	architecture	you	choose	is	based	on	the
way	that	routers	are	linked,	and	this	has	an	impact	on	the	way	that	routing	is
done	and	how	routing	protocols	operate.

Core	Architecture
TCP/IP	and	the	Internet	were	developed	simultaneously,	so	TCP/IP	routing
protocols	evolved	as	the	Internet	itself	did.	Early	architecture	of	the	Internet
consisted	of	a	small	number	of	core	routers	that	contained	comprehensive



information	about	the	internetwork.	When	the	Internet	was	very	small,	adding
more	routers	to	this	core	expanded	it.	However,	each	time	the	core	was
expanded,	the	amount	of	routing	information	that	needed	to	be	maintained	grew.

Eventually,	the	core	became	too	large,	so	a	two-level	hierarchy	was	formed	to
allow	further	expansion.	Noncore	routers	were	located	on	the	periphery	of	the
core	and	contained	only	partial	routing	information;	they	relied	on	the	core
routers	for	transmissions	that	went	across	the	internetwork.	A	special	routing
protocol	called	the	Gateway-to-Gateway	Protocol	(GGP)	was	used	within	the
core	of	the	internetwork,	while	another	protocol	called	the	Exterior	Gateway
Protocol	(EGP)	was	used	between	noncore	and	core	routers.	The	noncore	routers
were	sometimes	single,	stand-alone	routers	that	connected	a	single	network	to
the	core,	or	they	could	be	sets	of	routers	for	an	organization.

This	architecture	served	for	a	while,	but	it	did	not	scale	very	well	as	the	Internet
grew.	The	problem	was	mainly	due	to	the	fact	that	there	was	only	a	single	level
to	the	architecture:	Every	router	in	the	core	had	to	communicate	with	every	other
router.	Even	with	peripheral	routers	being	kept	outside	the	core,	the	amount	of
traffic	in	the	core	kept	growing.

Autonomous	System	(AS)	Architecture
To	resolve	the	scaling	problem,	a	new	architecture	was	created	that	moved	away
from	the	centralized	concept	of	a	core	toward	an	architecture	that	was	better
suited	to	a	larger	and	growing	internetwork.	This	decentralized	architecture
treats	the	internetwork	as	a	set	of	independent	groups,	with	each	group	called	an
autonomous	system	(AS).	An	AS	consists	of	a	set	of	routers	and	networks
controlled	by	a	particular	organization	or	administrative	entity,	which	uses	a
single	consistent	policy	for	internal	routing.

The	power	of	this	system	is	that	routing	on	the	internetwork	as	a	whole	occurs
between	ASes	and	not	individual	routers.	Information	is	shared	between	one	and
maybe	a	couple	of	routers	in	each	AS,	not	every	router	in	each	AS.	The	details
of	routing	within	an	AS	are	also	hidden	from	the	rest	of	the	internetwork.	This
provides	both	flexibility	for	each	AS	to	do	routing	as	it	sees	fit	(thus	the	name
autonomous)	and	efficiency	for	the	overall	internetwork.	Each	AS	has	its	own
number,	and	the	numbers	are	globally	managed	to	make	sure	that	they	are



unique	across	an	internetwork	(such	as	the	Internet).

TIP

KEY	CONCEPT	Large,	modern	TCP/IP	internetworks	can	contain	thousands	of	routers.	To	better
manage	routing	in	such	an	environment,	routers	are	grouped	into	constructs	called	autonomous	systems
(ASes),	each	of	which	consists	of	a	group	of	routers	managed	independently	by	a	particular	organization
or	entity.

Modern	Protocol	Types:	Interior	and	Exterior
Routing	Protocols
The	different	nature	of	routing	within	an	AS	and	between	ASes	can	be	seen	in
the	fact	that	the	following	distinct	sets	of	TCP/IP	routing	protocols	are	used	for
each	type:

Interior	Routing	Protocols	These	protocols	are	used	to	exchange	routing
information	between	routers	within	an	AS.	Interior	routing	protocols	are	not
used	between	ASes.

Exterior	Routing	Protocols	These	protocols	are	used	to	exchange	routing
information	between	ASes.	They	may	in	some	cases	be	used	between	routers
within	an	AS,	but	they	primarily	deal	with	exchanging	information	between
ASes.

TIP

KEY	CONCEPT	Interior	routing	protocols	are	used	to	share	routing	information	within	an	autonomous
system;	each	AS	may	use	a	different	interior	routing	protocol	because	the	system	is,	as	the	name	says,
autonomous.	Exterior	routing	protocols	convey	routing	data	between	ASes;	each	AS	must	use	the	same
exterior	protocol	to	ensure	that	it	can	communicate.

Since	ASes	are	just	sets	of	routers,	you	connect	ASes	by	linking	a	router	in	one
AS	to	a	router	in	another	AS.	Architecturally,	an	AS	consists	of	a	set	of	routers
with	two	different	types	of	connectivity:

Internal	Routers	Some	routers	in	an	AS	connect	only	to	other	routers	in	the
same	AS.	These	run	interior	routing	protocols.

Border	Routers	Some	routers	in	an	AS	connect	both	to	routers	within	the	AS



and	to	routers	in	one	or	more	other	ASes.	These	devices	are	responsible	for
passing	traffic	between	the	AS	and	the	rest	of	the	internetwork.	They	run	both
interior	and	exterior	routing	protocols.

Due	to	its	advantages,	the	AS	architecture,	an	example	of	which	can	be	seen	in
Figure	37-1,	has	become	the	standard	for	TCP/IP	networks,	most	notably	the
Internet.	The	division	of	routing	protocols	into	the	interior	and	exterior
classifications	has	thus	also	become	standard,	and	all	modern	TCP/IP	routing
protocols	are	first	subdivided	by	type	in	this	manner.

Figure	37-1.	TCP/IP	autonomous	system	(AS)	routing	architecture	This	diagram	shows	a	simplified
Internet	organized	into	three	ASes,	each	of	which	is	managed	independently	from	the	others.
Communication	within	each	AS	is	done	using	an	interior	routing	protocol	chosen	by	that	AS's

administrators	(thin	links).	Communication	between	ASes	must	be	done	using	a	common	exterior
routing	protocol	(thick	links).	Internal	routers	are	shown	in	lighter	text,	and	border	routers	are	shown	in

black	text.



Routing	Protocol	Algorithms	and	Metrics
Another	key	differentiation	of	routing	protocols	is	on	the	basis	of	the	algorithms
and	metrics	they	use.	An	algorithm	refers	to	a	method	that	the	protocol	uses	for
determining	the	best	route	between	any	pair	of	networks,	and	for	sharing	routing
information	between	routers.	A	metric	is	a	measure	of	"cost"	that	is	used	to
assess	the	efficiency	of	a	particular	route.	Since	internetworks	can	be	quite
complex,	the	algorithms	and	metrics	of	a	protocol	are	very	important,	and	they
can	be	the	determining	factor	in	deciding	that	one	protocol	is	superior	to	another.

There	are	two	routing	protocol	algorithms	that	are	most	commonly	encountered:
distance	vector	and	link	state.	There	are	also	protocols	that	use	a	combination	of
these	methods	or	other	methods.

Distance-Vector	(Bellman-Ford)	Routing
Protocol	Algorithm
A	distance-vector	routing	algorithm,	also	called	a	Bellman-Ford	algorithm	after
two	of	its	inventors,	is	one	where	routes	are	selected	based	on	the	distance
between	networks.	The	distance	metric	is	something	simple—usually	the
number	of	hops,	or	routers,	between	them.

Routers	using	this	type	of	protocol	maintain	information	about	the	distance	to	all
known	networks	in	a	table.	They	regularly	send	that	table	to	each	router	they
immediately	connect	with	(their	neighbors	or	peers).	These	routers	then	update
their	tables	and	send	those	tables	to	their	neighbors.	This	causes	distance
information	to	propagate	across	the	internetwork,	so	that	eventually,	each	router
obtains	distance	information	about	all	networks	on	the	internetwork.

Distance-vector	routing	protocols	are	somewhat	limited	in	their	ability	to	choose
the	best	route.	They	also	are	subject	to	certain	problems	in	their	operation	that
must	be	worked	around	through	the	addition	of	special	heuristics	and	features.
Their	chief	advantages	are	simplicity	and	history	(they	have	been	used	for	a	long
time).

Link-State	(Shortest-Path	First)	Routing	Protocol



Algorithm
A	link-state	algorithm	selects	routes	based	on	a	dynamic	assessment	of	the
shortest	path	between	any	two	networks.	For	that	reason,	it's	also	called	a
shortest-path	first	method.

Using	this	method,	each	router	maintains	a	map	describing	the	current	topology
of	the	internetwork.	This	map	is	updated	regularly	by	testing	reachability	of
different	parts	of	the	Internet,	and	by	exchanging	link-state	information	with
other	routers.	The	determination	of	the	best	route	(or	shortest	path)	can	be	made
based	on	a	variety	of	metrics	that	indicate	the	true	cost	of	sending	a	datagram
over	a	particular	route.

Link-state	algorithms	are	much	more	powerful	than	distance-vector	algorithms.
They	adapt	dynamically	to	changing	internetwork	conditions,	and	they	also
allow	routes	to	be	selected	based	on	more	realistic	metrics	of	cost	than	simply
the	number	of	hops	between	networks.	However,	they	are	more	complicated	to
set	up	and	use	more	computer	processing	resources	than	distance-vector
algorithms,	and	they	aren't	as	well	established.

Hybrid	Routing	Protocol	Algorithms
There	are	also	hybrid	protocols	that	combine	features	from	both	types	of
algorithms,	and	other	protocols	that	use	completely	different	algorithms.	For
example,	the	Border	Gateway	Protocol	(BGP)	is	a	path-vector	algorithm,	which
is	somewhat	similar	to	the	distance-vector	algorithm,	but	communicates	much
more	detailed	route	information.	It	includes	some	of	the	attributes	of	distance-
vector	and	link-state	protocols,	but	is	more	than	just	a	combination	of	the	two.



Static	and	Dynamic	Routing	Protocols
Finally,	you	may	also	occasionally	see	routing	protocols	categorized	by	type	as
static	and	dynamic.	This	terminology	is	somewhat	misleading.

The	term	static	routing	simply	refers	to	a	situation	where	the	routing	tables	are
manually	set	up	so	that	they	remain	static.	In	contrast,	dynamic	routing	is	the	use
of	routing	protocols	to	dynamically	update	routing	tables.	Thus,	all	routing
protocols	are	dynamic.	There	is	no	such	thing	as	a	static	routing	protocol	(unless
you	consider	a	network	administrator	who	is	editing	a	routing	table	a	protocol).



Chapter	38.	ROUTING
INFORMATION	PROTOCOL	(RIP,
RIP-2,	AND	RIPNG)

The	most	popular	of	the	TCP/IP	interior	routing	protocols	is	the	Routing
Information	Protocol	(RIP).	The	simplicity	of	the	name	matches	the	simplicity	of
the	protocol.	Of	all	the	routing	protocols,	RIP	is	one	of	the	easiest	to	configure
and	least	demanding	of	resources.	Its	popularity	is	due	both	to	this	simplicity	and
its	long	history.	In	fact,	support	for	RIP	has	been	built	into	operating	systems	for
as	long	as	TCP/IP	itself	has	existed.

There	are	three	versions	of	RIP:	RIP	versions	1	and	2	for	IP	version	4	(IPv4)	and
RIPng	for	IP	version	6	(IPv6).	The	basic	operation	of	the	protocol	is	mostly	the
same	for	all	three	versions,	but	there	are	also	some	notable	differences	between
them,	especially	in	terms	of	the	format	of	messages	sent.

RIP	was	one	of	the	first	interior	routing	protocols	used	in	TCP/IP.	More	than	20
years	later,	it	continues	to	be	widely	used.	Even	though	RIP	has	important
limitations,	it	continues	to	have	an	important	place	in	TCP/IP	routing	to	this	day.
Evidence	that	RIP	has	a	future	can	be	seen	in	the	creation	of	an	IPv6	version	of
the	protocol:	RIPng.

I	will	open	the	examination	of	RIP	with	an	overall	description	of	its
characteristics	and	how	it	works	in	general	terms.	I	start	with	an	overview	and
history	of	the	protocol,	including	a	brief	discussion	of	its	different	versions	and
the	standards	that	define	them.	I	describe	the	method	that	RIP	uses	to	determine
routes	and	the	metric	used	to	assess	route	cost.	I	describe	the	general	operation
of	the	protocol	including	message	types	and	when	they	are	sent.	I	then	describe
the	most	important	limitations	and	issues	with	RIP,	and	the	special	features	that



have	been	added	to	the	protocol	to	resolve	several	problems	with	the	basic	RIP
algorithm.	Finally,	I	take	a	closer	look	at	each	version,	showing	the	message
format	used	for	each	and	discussing	version-specific	features	as	well.

RIP	Overview
RIP	has	been	the	most	popular	interior	routing	protocol	in	the	TCP/IP	protocol
suite	for	many	years.	The	history	of	the	protocol	and	how	it	came	to	achieve
prominence	is	a	rather	interesting	one.	Unlike	many	of	the	other	important
protocols	in	the	TCP/IP	suite,	RIP	was	not	first	developed	formally	using	the
RFC	standardization	process	(see	Chapter	3).	Rather,	it	evolved	as	a	de	facto
industry	standard	and	became	an	Internet	standard	later.

The	history	of	RIP	has	something	in	common	with	another	networking
heavyweight:	Ethernet.	Like	that	formidable	local	area	network	(LAN)
technology,	RIP's	roots	go	back	to	that	computing	pioneer,	Xerox's	Palo	Alto
Research	Center	(PARC).	At	the	same	time	that	Ethernet	was	being	developed
for	tying	together	LANs,	PARC	created	a	higher-layer	protocol	to	run	on
Ethernet	called	the	Xerox	PARC	Universal	Protocol	(PUP).	PUP	required	a
routing	protocol,	so	Xerox	created	a	protocol	called	the	Gateway	Information
Protocol	(GWINFO).	This	was	later	renamed	the	Routing	Information	Protocol
and	used	as	part	of	the	Xerox	Network	System	(XNS)	protocol	suite.

RIP	entered	the	mainstream	when	developers	at	the	University	of	California	at
Berkeley	adapted	it	for	use	in	the	Berkeley	Standard	Distribution	(BSD)	of	the
UNIX	operating	system.	RIP	first	appeared	in	BSD	version	4.2	in	1982,	where	it
was	implemented	as	the	UNIX	program	routed	(pronounced	"route-dee,"	not
"rout-ed"—the	"d"	stands	for	"daemon,"	a	common	UNIX	term	for	a	server
process).

BSD	was	(and	still	is)	a	very	popular	operating	system,	especially	for	machines
connected	to	the	early	Internet.	As	a	result,	RIP	was	widely	deployed	and
became	the	industry	standard	for	internal	routing	protocols.	It	was	used	both	for
TCP/IP	and	other	protocol	suites.	In	fact,	a	number	of	other	routing	protocols,
such	as	the	RTP	protocol	in	the	AppleTalk	suite,	were	based	on	this	early
version	of	RIP.



RIP	Standardization
For	a	while,	the	BSD	implementation	of	routed	was	actually	considered	the
standard	for	the	protocol	itself.	However,	this	was	not	a	formally	defined
standard,	and	this	meant	that	there	was	no	formal	definition	of	exactly	how	it
functioned.	This	led	to	slight	differences	in	various	implementations	of	the
protocol	over	time.	To	resolve	potential	interoperability	issues	between
implementations,	the	Internet	Engineering	Task	Force	(IETF)	formally	specified
RIP	in	the	Internet	standard	RFC	1058,	"Routing	Information	Protocol,"	which
was	published	in	June	1988.	This	RFC	was	based	directly	on	the	BSD	routed
program.	This	original	version	of	RIP	is	now	also	sometimes	called	RIP	version
1	or	RIP-1	to	differentiate	it	from	later	versions.

RIP's	popularity	was	due	in	large	part	to	its	inclusion	in	BSD,	and	it	was
included	in	BSD	because	of	the	relative	simplicity	of	the	protocol.

RIP	Operational	Overview,	Advantages,	and
Limitations
RIP	uses	the	distance-vector	algorithm	to	determine	routes,	as	described	in
Chapter	37.	Each	router	maintains	a	routing	table	containing	entries	for	various
networks	or	hosts	in	the	internetwork.	Each	entry	contains	two	primary	pieces	of
information:	the	address	of	the	network	or	host	and	the	distance	to	it,	measured
in	hops,	which	is	simply	the	number	of	routers	that	a	datagram	must	pass
through	to	get	to	its	destination.

On	a	regular	basis,	each	router	in	the	internetwork	sends	out	its	routing	table	in	a
special	message	on	each	of	the	networks	to	which	it	is	connected,	using	the	User
Datagram	Protocol	(UDP).	Other	routers	receive	these	tables	and	use	them	to
update	their	own	tables.	This	is	done	by	taking	each	of	the	routes	they	receive
and	adding	an	extra	hop.	For	example,	if	Router	A	receives	an	indication	from
Router	B	that	Network	N1	is	four	hops	away,	since	Router	A	and	Router	B	are
adjacent,	the	distance	from	Router	A	to	Network	N1	is	five.	After	a	router
updates	its	tables,	it	sends	out	this	information	to	other	routers	on	its	local
networks.	Over	time,	routing	distance	information	for	all	networks	propagates
over	the	entire	internetwork.

RIP	is	straightforward	in	operation,	easy	to	implement,	and	undemanding	of



RIP	is	straightforward	in	operation,	easy	to	implement,	and	undemanding	of
router	processing	power,	which	makes	it	especially	attractive	in	smaller
autonomous	systems	(ASes).	There	are,	however,	some	important	limitations
that	arise	due	to	the	simplicity	of	the	protocol.	For	starters,	hops	are	often	not	the
best	metric	to	use	in	selecting	routes.	There	are	also	a	number	of	problems	that
arise	with	the	algorithm	itself.	These	include	slow	convergence	(delays	in	having
all	routers	agree	on	the	same	routing	information)	and	problems	dealing	with
network	link	failures.	RIP	includes	several	special	features	to	resolve	some	of
these	issues,	but	others	are	inherent	limitations	of	the	protocol.	For	example,	RIP
supports	a	maximum	of	only	15	hops	between	destinations,	making	it	unsuitable
for	very	large	ASes,	and	this	cannot	be	changed.

More	than	two	decades	after	it	was	first	created,	RIP	continues	to	be	a	popular
interior	routing	protocol.	Its	limitations	have	led	to	many	internetworking
experts	hoping	that	the	protocol	would	eventually	be	replaced	by	newer
protocols	such	as	Open	Shortest	Path	First	(OSPF)	that	are	superior	on	a	strictly
technical	basis.	Some	have	gone	so	far	as	to	sarcastically	suggest	that	maybe	it
would	be	best	if	RIP	would	R.	I.	P.	Once	a	protocol	becomes	popular,	however,
it's	hard	to	resist	momentum,	and	RIP	is	likely	to	continue	to	be	used	for	many
years	to	come.

TIP

KEY	CONCEPT	The	Routing	Information	Protocol	(RIP)	is	one	of	the	oldest	and	most	popular	interior
routing	protocols.	With	each	router,	it	uses	a	distance-vector	algorithm	that	maintains	a	table,	which
indicates	how	to	reach	various	networks	in	the	AS	and	the	distance	to	it	in	hops.	RIP	is	popular	because
it	is	well	established	and	simple,	but	it	has	a	number	of	important	limitations.

Development	of	RIP	Version	2	(RIP-2)	and	RIPng
for	IPv6
Some	other	issues	with	RIP	came	about	as	a	result	of	the	protocol	having	been
developed	in	the	early	1980s,	when	TCP/IP	was	still	in	its	infancy.	Over	time,	as
the	use	of	TCP/IP	protocols	changed,	RIP	became	outdated.	In	response,	RIP
version	2,	or	RIP-2	was	created	in	the	early	1990s.

RIP-2	defines	a	new	message	format	for	RIP	and	includes	a	number	of	new
features,	including	support	for	classless	addressing,	authentication,	and	the	use
of	multicasting	instead	of	broadcasting,	which	improves	network	performance.	It



of	multicasting	instead	of	broadcasting,	which	improves	network	performance.	It
was	first	defined	in	RFC	1388,	"RIP	Version	2	Carrying	Additional
Information,"	published	in	January	1993.	This	RFC	was	revised	in	RFC	1723
and	finalized	in	RFC	2453,	"RIP	Version	2,"	published	in	November	1998.

In	order	to	ensure	that	RIP	can	work	with	TCP/IP	in	the	future,	it	was	necessary
to	define	a	version	that	would	work	with	the	IPv6.	In	1997,	RFC	2080	was
published,	titled	"RIPng	for	IPv6."	The	ng	stands	for	next	generation;	you'll
recall	that	IPv6	is	also	sometimes	called	IPng.

RIPng	is	not	just	a	new	version	of	RIP,	like	RIP-2,	but	is	defined	as	a	new	stand-
alone	protocol.	It	is,	however,	based	closely	on	the	original	RIP	and	RIP-2
standards.	A	distinct	protocol	(as	opposed	to	a	revision	of	the	original)	was
needed	due	to	the	changes	made	between	IPv4	and	IPv6,	though	RIP	and	RIPng
work	in	the	same	basic	way.	RIPng	is	sometimes	also	called	RIPv6.

TIP

KEY	CONCEPT	The	original	version	of	RIP	has	the	fewest	features	and	is	now	called	RIP-1.	RIP-2
was	created	to	add	support	for	classless	addressing	and	other	capabilities.	RIPng	is	the	version	created
for	compatibility	with	IPv6.



RIP	Route	Determination	Algorithm	and	Metric
As	I	mentioned	in	the	previous	chapter,	one	of	the	defining	characteristics	of	any
routing	protocol	is	the	algorithm	it	uses	for	determining	routes.	RIP	falls	into	the
class	of	protocols	that	use	a	distance-vector,	or	Bellman-Ford,	routing	algorithm.
To	help	you	understand	exactly	how	RIP	determines	routes,	this	section	presents
the	specific	implementation	of	the	algorithm	for	RIP	and	provides	an	example.

Note	that	the	description	presented	here	is	the	basic	algorithm	used	by	RIP.	This
is	modified	in	certain	ways	to	address	some	of	the	problems	that	can	occur	in
special	circumstances	due	to	how	the	algorithm	works.	Later	in	this	chapter,	we
will	explore	these	problems	and	the	special	features	RIP	includes	to	address
them.

RIP	Routing	Information	and	Route	Distance
Metric
The	job	of	RIP,	like	any	routing	protocol,	is	to	provide	a	mechanism	for
exchanging	information	about	routes	so	routers	can	keep	their	routing	tables	up-
to-date.	Each	router	in	an	RIP	internetwork	keeps	track	in	its	routing	table	of	all
networks	(and	possibly	individual	hosts)	in	the	internetwork.	For	each	network
or	host,	the	device	includes	a	variety	of	information,	of	which	the	following	is
the	most	important:

The	address	of	the	network	or	host

The	distance	from	that	router	to	the	network	or	host

The	first	hop	for	the	route:	the	device	to	which	datagrams	must	first	be	sent	to
eventually	get	to	the	network	or	host

In	theory,	the	distance	metric	can	be	any	assessment	of	cost,	but	in	RIP,	distance
is	measured	in	hops.	As	you	probably	already	know,	in	TCP/IP	vernacular,	a
datagram	makes	a	hop	when	it	passes	through	a	router.	Thus,	the	RIP	distance
between	a	router	and	a	network	measures	the	number	of	routers	that	the
datagram	must	pass	through	to	get	to	the	network.	If	a	router	connects	to	a
network	directly,	then	the	distance	is	1	hop.	If	it	goes	through	a	single	router,	the
distance	is	2	hops,	and	so	on.	In	RIP,	a	maximum	of	15	hops	are	allowed	for	any



network	or	host.	The	value	16	is	defined	as	infinity,	so	an	entry	with	16	in	it
means	"this	network	or	host	is	not	reachable."

RIP	Route	Determination	Algorithm
On	a	regular	basis,	each	router	running	RIP	will	send	out	its	routing	table	entries
to	provide	information	to	other	routers	about	the	networks	and	hosts	it	knows
how	to	reach.	Any	routers	on	the	same	network	as	the	one	sending	out	this
information	will	be	able	to	update	their	own	tables	based	on	the	information	they
receive.

Any	router	that	receives	a	message	from	another	router	on	the	same	network
saying	it	can	reach	Network	X	at	a	cost	of	N	knows	it	can	reach	Network	X	at	a
cost	of	N+1	by	sending	to	the	router	it	received	the	message	from.

RIP	Route	Determination	and	Information
Propagation
Let's	take	a	specific	example	to	help	you	understand	how	routes	are	determined
and	how	route	information	is	propagated	using	RIP.	Consider	a	relatively	simple
internetwork	with	four	individual	networks,	connected	as	follows:

Router	RA	connects	Network	N1	to	Network	N2.

Router	RB	and	Router	RC	connect	Network	N2	to	Network	N3.

Router	RD	connects	Network	N3	to	Network	N4.

This	sample	AS	is	illustrated	in	Figure	38-1.

Figure	38-1.	Sample	RIP	AS	This	is	an	example	of	a	simple	AS	that	contains	four	physical	networks
and	four	routers.

Now	let's	suppose	that	we	just	turned	on	Router	RA.	It	sees	that	it	is	directly
connected	to	Network	N1	and	Network	N2,	so	it	will	have	an	entry	in	its	routing
table	indicating	that	it	can	reach	Network	N1	at	a	cost	of	1,	which	we	can



represent	as	{N1,1}.	Information	about	Network	N1	will	propagate	from	Router
RA	across	the	internetwork	in	the	following	sequence	of	steps	(which	are
illustrated	in	Figure	38-2):

1.	 Router	RA	sends	out	an	RIP	message	containing	the	entry	{N1,1}	on	each
of	the	networks	to	which	it	is	connected.	There	are	no	other	routers	on
Network	N1,	so	nothing	happens	there.	But	Routers	RB	and	RC	are	on
Network	N2,	so	they	receive	the	information.

2.	 Routers	RB	and	RC	will	look	in	their	routing	tables	to	see	if	they	already
have	entries	for	Network	N1.	Assuming	neither	does,	they	will	each	create
a	routing	table	entry	{N1,2}	for	Router	RA.	This	means,	"I	can	reach
Network	N1	at	a	cost	of	2	hops	by	sending	to	Router	RA."

3.	 Routers	RB	and	RC	will	each	send	their	own	routing	tables	out	over	the
networks	to	which	they	are	connected:	Networks	N2	and	N3.	This	will
contain	the	entry	{N1,2}.	Router	RA	will	receive	that	message	on	Network
N2	but	will	ignore	it,	since	it	knows	it	can	reach	Network	N1	directly	(cost
of	1,	which	is	less	than	2).	But	Router	RD	will	receive	the	message	on
Network	N3.

4.	 Router	RD	will	examine	its	routing	table,	and	seeing	no	entry	for	Network
N1,	it	will	add	the	entry	{N1,3}	for	Routers	RB	or	RC.	Either	one	will
work,	so	whichever	is	chosen	depends	entirely	on	whether	Router	RD
received	information	about	Network	N1	first	from	Router	RB	or	Router
RC.

5.	 Router	RD	will	send	the	entry	{N1,3}	on	Network	N4,	but	there	are	no
other	routers	there	to	hear	it.

Note	that	RIP	is	designed	so	that	a	routing	entry	is	replaced	only	if	information
is	received	about	a	shorter	route;	ties	go	to	the	incumbent,	if	you	will.	This
means	that	once	Router	RD	creates	an	entry	for	Network	N1	with	a	cost	of	3
going	through	Router	RB,	if	it	receives	information	that	it	can	reach	Network	N1
at	the	same	cost	of	3	through	Router	RC,	it	will	ignore	it.	Similarly,	if	it	gets
Router	RC's	information	first,	it	will	ignore	the	information	from	Router	RB.

Naturally,	this	same	propagation	scheme	will	occur	for	all	the	other	networks	as
well.	I	have	shown	only	how	information	about	Network	N1	moves	from	router
to	router.	For	example,	Router	RA	will	eventually	install	an	entry	for	Network



to	router.	For	example,	Router	RA	will	eventually	install	an	entry	for	Network
N4	saying	that	it	is	reachable	at	a	cost	of	3	going	through	either	Router	RB	or
RC;	this	will	be	either	{N4,RB,3}	or	{N4,RC,3}.

TIP

KEY	CONCEPT	Routing	information	is	propagated	between	routers	in	RIP	using	a	simple	algorithm.
On	a	regular	basis,	each	router	sends	out	RIP	messages	that	specify	which	networks	it	can	reach	and	how
many	hops	it	takes	to	reach	them.	Other	routers	directly	connected	to	that	one	know	that	they	can	then
reach	those	networks	through	that	router	at	a	cost	of	one	additional	hop.	So	if	Router	A	sends	a	message
saying	it	can	reach	Network	X	for	a	cost	of	N	hops,	every	other	router	that	connects	directly	to	Router	A
can	reach	Network	X	for	a	cost	of	N+1	hops.	It	will	put	that	information	into	its	routing	table,	unless	it
knows	of	an	alternate	route	through	another	router	that	has	a	lower	cost.

Figure	38-2.	Propagation	of	network	routing	information	using	RIP	This	composite	diagram	illustrates
the	five	steps	in	propagating	route	information	about	Network	N1	from	Router	RA	to	the	rest	of	the	AS.
In	step	1,	the	information	is	sent	from	Router	RA	to	both	of	its	connected	networks.	In	step	2,	it	reaches



Routers	RB	and	RC,	which	then	know	they	can	reach	Network	N1	through	Router	RA	at	a	cost	of	one
additional	hop.	In	step	3,	these	two	routers	send	this	information	on	their	networks,	and	in	step	4,	it
reaches	Router	RD.	In	step	5,	Router	RD	sends	out	the	information,	but	no	other	routers	are	around	to

receive	it.

This	propagation	of	network	routing	information	occurs	on	a	regular	basis,	and
also	when	the	structure	of	the	network	changes	(due	to	intentional	changes	in
topography	or	failure	of	links	or	routers).	When	this	happens,	the	change
information	will	move	through	the	internetwork	so	that	all	routers	are	eventually
updated.	For	example,	suppose	a	connection	were	added	from	Router	RC	to
Network	N1.	If	Router	RD	previously	had	the	entry	{N1,RB,3},	it	would
eventually	change	this	to	{N1,RC,2},	since	it	could	now	reach	Network	N1	more
quickly	by	going	through	Router	RC.

Default	Routes
In	some	cases,	it	is	not	convenient	for	every	network	or	host	in	a	large
internetwork	to	be	fully	specified	with	its	own	routing	entry.	Then	it	may	be
advantageous	to	specify	a	default	route	for	the	network	to	use	in	reaching	hosts
or	networks	for	which	they	have	no	information.	The	most	common	example	of
this	is	when	an	AS	connects	to	the	public	Internet	through	a	single	router.	Except
for	that	router,	the	rest	of	the	local	network	doesn't	need	to	know	how	to	access
the	Internet.

In	RIP,	information	about	a	default	route	is	communicated	by	having	routers	that
are	intended	to	handle	such	traffic	send	information	about	a	"dummy"	network
with	the	address	0.0.0.0.	This	is	treated	as	if	it	were	a	regular	network	when
information	about	routes	is	propagated	on	the	internetwork	using	RIP	messages,
but	other	devices	recognize	this	special	address	and	understand	that	it	means	a
default	route.



RIP	General	Operation,	Messaging,	and	Timers
RIP	is	a	protocol	for	exchanging	routing	information,	so	its	operation	can	best	be
described	in	terms	of	the	messages	used	to	exchange	this	information	and	the
rules	for	when	messages	are	sent.	The	RIP	software	in	each	router	sends
messages	and	takes	other	actions	both	in	reaction	to	certain	events	and	in
response	to	triggers	set	off	by	timers.	Timers	are	also	used	to	determine	when
routing	information	should	be	discarded	if	it	is	not	updated.

RIP	Messages	and	Basic	Message	Types
Communication	between	RIP	software	elements	in	routers	on	an	internetwork	is
accomplished	through	the	use	of	RIP	messages.	These	messages	are	sent	using
the	UDP,	with	the	UDP	port	number	520	reserved	for	RIP-1	and	RIP-2,	and	521
for	RIPng.	Thus,	even	though	RIP	is	considered	part	of	layer	3	like	other	routing
protocols,	it	behaves	more	like	an	application	in	terms	of	how	it	sends	messages.
The	exact	format	of	the	message	is	version-dependent,	and	all	three	formats
(RIP,	RIP-2,	and	RIPng)	are	described	in	detail	later	in	this	chapter.	RIP
messages	can	be	either	sent	to	a	specific	device	or	sent	out	for	multiple	devices
to	receive.	If	directed	to	one	device,	they	are	sent	unicast;	otherwise,	they	are
either	broadcast	(in	RIP)	or	multicast	(RIP-2	and	RIPng).

There	are	only	two	basic	message	types	for	all	three	versions	of	RIP:

RIP	Request	A	message	sent	by	a	router	to	another	router	asking	it	to	send	back
all	or	part	of	its	routing	table.

RIP	Response	A	message	sent	by	a	router	containing	all	or	part	of	its	routing
table.	Note	that	despite	the	name,	this	message	is	not	sent	just	in	response	to	an
RIP	Request	message,	as	you	will	see.

NOTE

The	original	RIP	also	defined	a	few	other	message	types:	Traceon,	Traceoff,	and	a	special	message	type
reserved	for	use	by	Sun	Microsystems.	These	are	obsolete	and	no	longer	used.	They	were	removed	from
the	RIP-2	and	RIPng	standards.

RIP	Update	Messaging	and	the	30-Second	Timer



RIP	Request	messages	are	sent	under	special	circumstances	when	a	router
requires	that	it	be	provided	with	immediate	routing	information.	The	most
common	example	of	this	is	when	a	router	is	first	powered	on.	After	initializing,
the	router	will	typically	send	an	RIP	Request	message	on	its	attached	networks
to	ask	for	the	latest	information	about	routes	from	any	neighboring	routers.	It	is
also	possible	for	RIP	Request	messages	to	be	used	for	diagnostic	purposes.

A	router	receiving	an	RIP	Request	message	will	process	it	and	send	an	RIP
Response	message	containing	either	all	of	its	routing	table	or	just	the	entries	the
Request	message	asked	for,	as	appropriate.	Under	normal	circumstances,
however,	routers	do	not	usually	send	RIP	Request	messages	asking	specifically
for	routing	information.	Instead,	each	RIP	router	has	a	special	timer	that	goes	off
every	30	seconds.	(This	timer	is	not	given	a	specific	name	in	the	RIP	standards;
it	is	just	the	30-second	timer.)

Each	time	the	timer	expires,	an	unsolicited	(unrequested)	broadcast	or	multicast
is	made	of	an	RIP	Response	message	containing	the	router's	entire	routing	table.
The	timer	is	then	reset,	and	30	seconds	later,	it	goes	off	again,	causing	another
routine	RIP	Response	message	to	be	sent.	This	process	ensures	that	route
information	is	regularly	sent	around	the	Internet,	so	routers	are	always	kept	up-
to-date	about	routes.

TIP

KEY	CONCEPT	RIP	uses	two	basic	message	types:	the	RIP	Request	and	RIP	Response.	Both	are	sent
using	the	User	Datagram	Protocol	(UDP).	RIP	Response	messages,	despite	their	name,	are	used	both	for
routine	periodic	routing	table	updates	as	well	as	to	reply	to	RIP	Request	messages.	Requests	are	sent
only	in	special	circumstances,	such	as	when	a	router	first	joins	a	network.

Preventing	Stale	Information:	The	Timeout	Timer
When	a	router	receives	routing	information	and	enters	it	into	its	routing	table,
that	information	cannot	be	considerd	valid	indefinitely.	In	the	example	presented
earlier	in	the	"RIP	Route	Determination	and	Information	Propagation"	section,
suppose	that	after	Router	RB	installs	a	route	to	Network	N1	through	Router	RA,
the	link	between	Router	RA	and	Network	N2	fails.	Once	this	happens,	Network
N1	is	no	longer	reachable	from	Router	RB,	but	Router	RB	has	a	route	indicating
that	it	can	reach	Network	N1.



To	prevent	this	problem,	routes	are	kept	in	the	routing	table	for	only	a	limited
amount	of	time.	A	special	Timeout	timer	is	started	whenever	a	route	is	installed
in	the	routing	table.	Whenever	the	router	receives	another	RIP	Response
message	with	information	about	that	route,	the	route	is	considered	refreshed,	and
its	Timeout	timer	is	reset.	As	long	as	the	route	continues	to	be	refreshed,	the
timer	will	never	expire.

If,	however,	RIP	Response	messages	containing	that	route	stop	arriving,	the
timer	will	eventually	expire.	When	this	happens,	the	route	is	marked	for	deletion
by	setting	the	distance	for	the	route	to	16	(which	you	may	recall	is	RIP	infinity
and	indicates	an	unreachable	network).	The	default	value	for	the	Timeout	timer
is	usually	180	seconds.	This	allows	several	periodic	updates	of	a	route	to	be
missed	before	a	router	will	conclude	that	the	route	is	no	longer	reachable.

Removing	Stale	Information:	The	Garbage-
Collection	Timer
When	a	route	is	marked	for	deletion,	a	new	Garbage-Collection	timer	is	also
started.	Garbage	collection	is	a	computer-industry	phrase	for	a	task	that	looks	for
deleted	or	invalid	information	and	cleans	it	up.	Thus,	this	is	a	timer	that	counts	a
number	of	seconds	before	the	newly	invalid	route	will	be	actually	removed	from
the	table.	The	default	value	for	this	timer	is	120	seconds.

The	reason	for	using	this	two-stage	removal	method	is	to	give	the	router	that
declared	the	route	that's	no	longer	reachable	a	chance	to	propagate	this
information	to	other	routers.	Until	the	Garbage-Collection	timer	expires,	the
router	will	include	that	route,	with	the	unreachable	metric	of	16	hops,	in	its	own
RIP	Response	messages,	so	that	the	problem	with	that	route	is	conveyed	to	the
other	routers.	When	the	timer	expires,	the	route	is	deleted.	If	during	the	garbage
collection	period	a	new	RIP	Response	message	for	the	route	is	received,	then	the
deletion	process	is	aborted.	In	this	case,	the	Garbage-Collection	timer	is	cleared,
the	route	is	marked	as	valid	again,	and	a	new	Timeout	timer	starts.

Triggered	Updates
In	addition	to	the	two	situations	already	described	where	an	RIP	Response	is	sent
—in	reply	to	an	RIP	Request	message	and	on	expiration	of	the	30-second	timer



—an	RIP	Response	message	is	also	sent	out	when	a	route	changes.

This	action,	an	enhancement	to	a	basic	RIP	operation,	called	a	triggered	update,
is	intended	to	ensure	that	information	about	route	changes	is	propagated	as	fast
as	possible	across	the	internetwork.	This	will	help	reduce	the	slow	convergence
problem	in	RIP.	For	example,	in	the	case	of	a	route	timing	out	and	the	Garbage-
Collection	timer	starting,	a	triggered	update	would	be	sent	out	about	the	now-
invalid	route	immediately.	This	is	described	in	more	detail	later	in	the	chapter,	in
the	"RIP	Special	Features	for	Resolving	RIP	Algorithm	Problems"	section.



RIP	Problems	and	Some	Resolutions
The	simplicity	of	RIP	is	often	given	as	the	main	reason	for	its	popularity.
Simplicity	is	great	most	of	the	time,	but	an	unfortunate	price	of	simplicity	in	too
many	cases	is	that	problems	crop	up,	usually	in	unusual	cases	or	special
situations,	and	so	it	is	with	RIP.	The	straightforward	distance-vector	algorithm
and	operation	mechanism	work	well	most	of	the	time,	but	they	have	some
important	weaknesses.	We	need	to	examine	these	problems	to	understand	both
the	limitations	of	RIP	and	some	of	the	complexities	that	have	been	added	to	the
protocol	to	resolve	them.

Issues	with	RIP's	Algorithm
The	most	important	area	where	we	find	serious	issues	with	RIP	is	with	the	basic
function	of	the	distance-vector	algorithm	described	earlier	in	this	section	and	the
way	that	messages	are	used	to	implement	it,	as	described	in	the	following
sections.

Slow	Convergence
The	distance-vector	algorithm	is	designed	so	that	all	routers	share	all	their
routing	information	regularly.	Over	time,	all	routers	eventually	end	up	with	the
same	information	about	the	location	of	networks	and	which	are	the	best	routes	to
use	to	reach	them.	This	is	called	convergence.	Unfortunately,	the	basic	RIP
algorithm	is	rather	slow	to	achieve	convergence.	It	takes	a	long	time	for	all
routers	to	get	the	same	information,	and	in	particular,	it	takes	a	long	time	for
information	about	topology	changes	to	propagate.

Consider	the	worst-case	situation	of	two	networks	separated	by	15	routers.	Since
routers	normally	send	RIP	Response	messages	only	every	30	seconds,	a	change
to	one	of	this	pair	of	networks	might	not	be	seen	by	the	router	nearest	to	the
other	one	until	many	minutes	have	elapsed—an	eternity	in	networking	terms.

The	slow	convergence	problem	is	even	more	pronounced	when	it	comes	to	the
propagation	of	route	failures.	Failure	of	a	route	is	detected	only	through	the
expiration	of	the	180-second	Timeout	timer,	so	that	adds	up	to	three	minutes
more	delay	before	convergence	can	even	begin.



Routing	Loops
A	routing	loop	occurs	when	Router	A	has	an	entry	telling	it	to	send	datagrams
for	Network	1	to	Router	B,	and	Router	B	has	an	entry	saying	that	datagrams	for
Network	1	should	be	sent	to	Router	A.	Larger	loops	can	also	exist:	Router	A
says	to	send	to	B,	which	says	to	send	to	Router	C,	which	says	to	send	to	Router
A.	Under	normal	circumstances,	these	loops	should	not	occur,	but	they	can
happen	in	special	situations.

RIP	does	not	include	any	specific	mechanism	to	detect	or	prevent	routing	loops.
The	best	it	can	do	is	try	to	avoid	them.

Counting	to	Infinity
A	special	case	of	slow	convergence	can	lead	to	a	routing	loop	situation	where
one	router	passes	bad	information	to	another	router,	which	sends	more	bad
information	to	another	router,	and	so	on.	This	causes	a	situation	where	the
protocol	is	sometimes	described	as	unstable.	The	problem	is	called	counting	to
infinity,	for	reasons	you	will	soon	see.

To	understand	how	this	happens,	let's	modify	the	example	presented	earlier	in
the	"RIP	Route	Determination	and	Information	Propagation"	section,	as	shown
in	Figure	38-3.	Suppose	that	the	internetwork	is	operating	properly	for	a	while.
Router	RB	has	an	entry	indicating	it	can	reach	Network	N1	through	Router	RA
at	a	cost	of	2.	But	let's	say	the	link	from	Network	N1	to	Router	RA	fails.	After
the	Timeout	timer	for	Network	N1	expires	on	Router	RA,	that	router	will	change
the	metric	for	Network	N1	to	16	to	indicate	that	it	is	unreachable.	In	the	absence
of	any	mechanism	to	force	Router	RA	to	immediately	inform	other	routers	of
this	failure,	those	routers	will	not	know	about	the	change.	Router	RB	will
continue	to	think	it	can	reach	Network	N1	through	Router	RA.



Figure	38-3.	The	RIP	counting	to	infinity	problem	This	composite	diagram	shows	part	of	the	AS
illustrated	previously	in	Figure	38-1.	The	top	panel	(1)	shows	the	normal	state	of	the	network,	with
Router	RB	able	to	reach	Network	N1	through	Router	RA	at	a	cost	of	2.	In	panel	2,	the	link	between
Router	RA	and	Network	N1	is	broken.	Router	RA	changes	its	cost	to	reach	Network	N1	to	16	(RIP

infinity).	In	panel	3,	before	Router	RA	can	send	out	this	update	to	Router	RB,	it	receives	a	routine	RIP
message	from	Router	RB	indicating	that	Network	N1	can	be	reached	for	a	cost	of	2.	Router	RA	is	then
fooled	into	thinking	that	it	can	use	Router	RB	as	an	alternate	route	to	Network	N1,	even	though	Router
RB's	information	originally	came	from	Router	RA	in	the	first	place.	In	panel	4,	Router	RA	then	sends

this	bogus	information	out,	which	is	received	by	Router	RB	in	panel	5.	Router	RB	then	increases	its	cost
to	4,	and	on	its	next	cycle	will	send	this	to	Router	RA,	which	will	increase	its	cost	to	5,	and	so	on.	This

cycle	will	continue,	with	both	routers	"counting	to	infinity"	(cost	of	16).

Now	suppose	Router	RB's	regular	30-second	timer	goes	off	before	Router	RA's
next	broadcast.	Router	RB	will	send	its	normal	routing	table,	which	contains	a
route	to	Network	N1	at	a	cost	of	2.	Router	RA	will	see	this	and	say,	"Hey	look,
Router	RB	has	a	route	to	Network	N1	with	a	cost	of	2!	That	means	I	can	get
there	with	a	cost	of	3,	which	sure	beats	my	current	cost	of	16.	Let's	use	that!"	So



Router	RA	installs	this	route	and	cancels	its	Timeout	timer.	Of	course,	this	is
bogus	information—Router	RA	doesn't	realize	that	Router	RB's	claim	of	being
able	to	reach	Network	N1	was	based	on	old	information	from	Router	RA	itself!

It	only	gets	worse	from	there.	When	it	is	time	for	Router	RA's	regular	routing
table	update,	it	will	broadcast	a	route	to	Network	N1	with	a	cost	of	3.	Now
Router	RB	will	see	this	and	say,	"Well,	my	route	to	Network	N1	is	through
Router	RA.	Router	RA	was	saying	before	that	its	cost	was	1;	but	now	it	says	the
cost	is	3.	That	means	I	have	to	change	my	cost	to	4."

Router	RB	will	later	send	back	to	Router	RA,	and	back	and	forth	they	will	go,
each	incrementing	the	cost	two	at	a	time.	This	won't	stop	until	the	value	of
infinity	cost	of	16	is	hit—thus	the	name	counting	to	infinity.	At	this	point,	both
routers	will	finally	agree	that	Network	N1	is	unreachable,	but	as	you	can	see,	it
takes	a	long	time	for	it	to	happen.

Small	Infinity
The	use	of	a	relatively	small	value	for	the	infinity	cost	limits	the	slow
convergence	problem.	Even	in	a	situation	where	we	count	to	infinity,	the	total
amount	of	time	elapsed	is	at	least	manageable.	(Imagine	if	infinity	were	defined
as	say,	1,000!)	Unfortunately,	the	drawback	of	this	is	that	it	limits	the	size	of	the
internetwork	that	can	be	used	for	RIP.

Many	people	balk	at	the	limit	of	a	span	of	15	routers	in	RIP,	but	to	be	honest	I
think	it	is	much	ado	about,	well,	if	not	nothing,	then	nothing	much.	The	15	value
is	not	a	limit	on	the	total	number	of	routers	you	can	use,	but	rather	a	limit	on	the
number	of	routers	between	any	two	networks.	Consider	that	most	internetworks
are	set	up	hierarchically.	Even	if	you	have	a	rather	complex	four-level	hierarchy,
you	wouldn't	be	close	to	the	15-router	limit.	In	fact,	you	could	create	a	huge	AS
with	thousands	of	routers,	without	having	more	than	15	routers	between	any	two
devices.	So	this	is	a	limitation	for	only	the	very	largest	of	ASes.

On	the	other	hand,	RIP's	need	to	send	out	its	entire	routing	table	many	times
each	hour	makes	it	a	potentially	poor	choice	for	a	large	internetwork	regardless
of	the	infinity=16	issue.	In	an	internetwork	with	many	routers,	the	amount	of
traffic	RIP	generates	can	become	excessive.



TIP

KEY	CONCEPT	One	of	the	most	important	problems	with	the	operation	of	RIP	is	slow	convergence,
which	describes	the	fact	that	it	can	take	a	long	time	for	information	about	changes	to	a	network	to
propagate	between	routers.	One	specific	instance	of	this	problem	is	the	counting	to	infinity	problem,	in
which	out-of-date	information	causes	many	bogus	RIP	messages	to	be	exchanged	between	routers	about
an	unreachable	network.

To	be	fair,	these	problems	are	mostly	general	to	distance-vector	routing
algorithms	and	not	RIP	in	particular.	Some	of	them	are	corrected	through	the
implementation	of	specific	changes	to	the	algorithm	or	the	rules	under	which
RIP	messages	are	sent,	as	described	in	the	next	section.	According	to	RFC	2453,
there	was	actually	a	proposal	to	increase	RIP's	infinity	cost	to	a	number	larger
than	16,	but	this	would	have	caused	compatibility	problems	with	older	devices
(which	would	view	any	route	with	a	metric	of	16	or	higher	as	unreachable),	so	it
was	rejected.

Issues	with	RIP's	Metric
In	addition	to	these	concerns	with	the	algorithm	itself,	RIP	is	also	often	criticized
because	of	its	choice	of	metric.	The	first	issue	here	is	RIP's	use	of	hop	count	as	a
distance	metric.	Simply	put,	hop	count	is	a	poor	metric	of	the	cost	of	sending	a
datagram	between	two	networks.	I	believe	the	use	of	hop	count	as	the	metric	in
RIP	is	partially	due	to	the	desire	for	simplicity	(it's	easy	to	make	the	protocol
work	when	hop	count	is	all	the	routers	need	to	consider).	But	the	use	of	hop
count	is	also	partially	an	artifact	of	RIP	being	around	for	more	than	20	years.

Decades	ago,	computers	were	slow,	so	each	time	a	datagram	passed	through	a
router	there	was	probably	a	significant	delay.	Hop	count	was	not	a	perfect	metric
even	then,	but	I	think	it	had	more	correspondence	with	how	long	it	took	to	move
a	datagram	across	an	internetwork	than	it	does	today.

Modern	routers	are	lightning	fast,	making	hop	count	a	flawed	way	of	measuring
network	distance.	The	number	of	hops	taken	often	has	no	correlation	with	the
actual	amount	of	time	it	takes	to	move	data	across	a	route.	To	take	an	extreme
case,	consider	two	networks	that	are	connected	by	a	direct	dial-up	telephone
networking	link	using	56K	modems.	Let's	say	they	are	also	connected	by	a
sequence	of	three	routers	using	high-speed	DS-3	lines.	RIP	would	consider	the
56K	link	a	better	route	because	it	has	fewer	hops,	even	though	it	clearly	is	much



56K	link	a	better	route	because	it	has	fewer	hops,	even	though	it	clearly	is	much
slower.

Another	issue	is	RIP's	lack	of	support	for	dynamic	(real-time)	metrics.	Even	if
RIP	were	to	use	a	more	meaningful	metric	than	hop	count,	the	algorithm	requires
that	the	metric	should	be	fixed	for	each	link.	There	is	no	way	to	have	RIP
calculate	the	best	route	based	on	real-time	data	about	various	links	the	way
protocols	like	OSPF	do	(see	Chapter	39).

Most	of	these	problems	are	built	into	RIP	and	cannot	be	resolved.	Interestingly,
some	RIP	implementations	apparently	do	let	administrators	"fudge"	certain
routes	to	compensate	for	the	limitations	of	the	hop	count	metric.	For	example,
the	routers	on	either	end	of	the	56K	link	mentioned	earlier	could	be	configured
so	that	they	considered	the	56K	link	to	have	a	hop	count	of	ten	instead	of	one.
This	would	cause	any	routes	using	the	link	to	be	more	expensive	than	the	DS-3
path.	This	is	clever,	but	hardly	an	elegant	or	general	solution.

Note	that	in	addition	to	the	rather	long	list	of	problems	that	I've	mentioned,	there
were	also	some	specific	issues	with	the	first	version	of	RIP.	Some	of	the	more
important	of	these	include	lack	of	support	for	Classless	Inter-Domain	Routing
(CIDR),	lack	of	authentication,	and	a	performance	reduction	caused	by	the	use
of	broadcasts	for	messaging.	These	were	mostly	addressed	through	extensions	in
RIP-2.

RIP	Special	Features	for	Resolving	RIP
Algorithm	Problems
The	simplicity	of	RIP	is	its	most	attractive	quality,	but	as	you	just	saw,	this	leads
to	certain	problems	with	how	it	operates.	Most	of	these	limitations	are	related	to
the	basic	algorithm	used	for	determining	routes,	and	the	method	of	message
passing	that's	being	used	to	implement	the	algorithm.	In	order	for	RIP	to	be	a
useful	protocol,	some	of	these	issues	needed	to	be	addressed,	in	the	form	of
changes	to	the	basic	RIP	algorithm	and	operational	scheme	we	explored	earlier
in	this	section.

The	solution	to	problems	that	arise	due	to	RIP	being	too	simple	is	to	add
complexity	in	the	form	of	features	that	add	more	intelligence	to	the	way	that	RIP
operates.	In	the	following	sections,	we'll	take	a	look	at	four	of	these:	split



horizon,	split	horizon	with	poisoned	reverse,	triggered	updates,	and	hold	down.

Note	that	while	I	describe	these	as	"features,"	at	least	some	of	them	are	really
necessary	to	ensure	the	proper	RIP	functionality.	Therefore,	they	are	generally
considered	standard	parts	of	RIP,	and	most	were	described	even	in	the	earliest
RIP	documents.	However,	sometimes	performance	or	stability	issues	may	arise
when	these	techniques	are	used,	especially	in	combination.	For	this	reason
different	RIP	implementations	may	omit	some	features.	For	example,	hold	down
slows	down	route	recovery	and	may	not	be	needed	when	other	features	such	as
split	horizon	are	used.	As	always,	care	must	be	taken	to	ensure	that	all	routers
are	using	the	same	features,	or	even	greater	problems	may	arise.

Also,	see	the	upcoming	section	on	RIP-2's	specific	features,	later	in	this	chapter,
for	a	description	of	the	Next	Hop	feature,	which	helps	reduce	convergence	and
routing	problems	when	RIP	is	used.

Split	Horizon
The	counting	to	infinity	problem	is	one	of	the	most	serious	issues	with	the	basic
RIP	algorithm.	In	the	example	in	the	previous	section,	the	cause	of	the	problem
is	immediately	obvious:	After	Network	N1	fails	and	Router	RA	notices	it	go
down,	Router	RB	"tricks"	Router	RA	into	thinking	it	has	an	alternate	path	to
Network	N1	by	sending	Router	RA	a	route	advertisement	to	Network	N1.

If	you	think	about	it,	it	doesn't	really	make	sense	under	any	circumstances	to
have	Router	RB	send	an	advertisement	to	Router	RA	about	a	network	that
Router	RB	can	access	only	through	Router	RA	in	the	first	place.	In	the	case
where	the	route	fails,	it	causes	this	problem,	which	is	obviously	a	good	reason
not	do	it.	But	even	when	the	route	is	operational,	what	is	the	point	of	Router	RB
telling	Router	RA	about	it?	Router	RA	already	has	a	shorter	connection	to	the
network	and	will	therefore	never	send	traffic	intended	for	Network	N1	to	Router
RB	anyway.

Clearly,	the	best	solution	is	simply	to	have	Router	RB	not	include	any	mention
of	the	route	to	Network	N1	in	any	RIP	Response	messages	it	sends	to	Router
RA.	We	can	generalize	this	by	adding	a	new	rule	to	RIP	operation:	When	a
router	sends	out	an	RIP	Response	message	on	any	of	the	networks	to	which	it	is
connected,	it	omits	any	route	information	that	it	originally	learned	from	that



network.	This	feature	is	called	split	horizon,	because	the	router	effectively	splits
its	view	of	the	internetwork,	sending	different	information	on	certain	links	than
on	others.

With	this	new	rule,	let's	consider	the	behavior	of	Router	RB.	It	has	an	interface
on	Network	N2,	which	it	shares	with	Router	RA.	It	will	therefore	not	include
any	information	on	routes	it	originally	obtained	from	Router	RA	when	sending
on	Network	N2.	This	will	prevent	the	counting	to	infinity	loop	you	saw	in	the
previous	section.	Similarly,	because	Router	RD	is	on	Network	N3,	Router	RB
will	not	send	any	information	about	routes	it	got	from	Router	RD	when	sending
on	Network	N3.

Note,	however,	that	split	horizon	may	not	always	solve	the	counting	to	infinity
problem,	especially	in	the	case	where	multiple	routers	are	connected	indirectly.
The	classic	example	would	be	three	routers	configured	in	a	triangle.	In	this
situation,	problems	may	still	result	due	to	data	that	is	propagated	in	two
directions	between	any	two	routers.	In	this	case,	the	hold	down	feature,
described	shortly,	may	be	of	assistance.

Split	Horizon	with	Poisoned	Reverse
Adding	"poisoned	reverse"	provides	an	enhancement	of	the	basic	split	horizon
feature.	Instead	of	omitting	routes	learned	from	a	particular	interface	when
sending	RIP	Response	messages	on	that	interface,	we	include	those	routes	but
set	their	metric	to	RIP	infinity,	or	16.	So	in	the	previous	example,	Router	RB
would	include	the	route	to	Network	N1	in	its	transmissions	on	Network	N2,	but
it	would	say	the	cost	to	reach	Network	N1	was	16	instead	of	its	real	cost	(which
is	2).

The	poisoned	reverse	refers	to	the	fact	that	we	are	poisoning	the	routes	that	we
want	to	make	sure	routers	on	that	interface	don't	use.	Router	RA	will	see	Router
RB	advertise	Network	N1	but	with	a	cost	of	16,	which	serves	as	an	explicit
message	to	Router	RA:	"There	is	absolutely	no	way	for	you	to	get	to	Network
N1	through	Router	RB."	This	provides	more	insurance	than	the	regular	split
horizon	feature,	because	if	the	link	from	Router	RA	to	Network	N1	is	broken,
Router	RA	will	know	for	certain	that	it	can't	try	to	get	a	new	route	through
Router	RB.	Figure	38-4	shows	how	split	horizon	with	poisoned	reverse	works.

This	technique	also	works	in	normal	circumstances	(meaning	when	there	is	no



This	technique	also	works	in	normal	circumstances	(meaning	when	there	is	no
issue	such	as	a	broken	link	to	a	network).	In	that	case,	Router	RA	will	receive
updates	from	Router	RB	with	a	cost	of	16	on	a	periodic	basis,	but	Router	RA
will	never	try	to	reach	Network	N1	through	Router	RB	anyway,	since	it	is
directly	connected	to	Network	N1	(cost	of	1).

Triggered	Updates
The	routing	loop	problem	we	looked	at	earlier	in	this	chapter	occurred	because
Router	RB	advertised	Router	RA's	route	back	to	Router	RA.	There's	another
aspect	of	the	problem	that	is	also	significant:	After	Router	RA	discovered	that
the	link	to	Network	N1	failed,	it	had	to	wait	up	to	30	seconds	until	its	next
scheduled	transmission	time	to	tell	other	routers	about	the	failure.

For	RIP	to	work	well,	when	something	significant	happens,	we	want	to	tell	other
routers	on	the	internetwork	immediately.	For	this	reason,	a	new	rule	should	be
added	to	the	basic	RIP	router	operation:	Whenever	a	router	changes	the	metric
for	a	route	it	is	required	to	(almost)	immediately	send	out	an	RIP	Response
message	to	tell	its	immediate	neighbor	routers	about	the	change.	If	these	routers,
seeing	this	change,	update	their	routing	information,	they	are	in	turn	required	to
send	out	updates.	Thus,	the	change	of	any	network	route	information	causes
cascading	updates	to	be	sent	throughout	the	internetwork,	significantly	reducing
the	slow	convergence	problem.	Note	that	this	includes	the	removal	of	a	route	due
to	expiration	of	its	Timeout	timer,	since	the	first	step	in	route	removal	is	setting
the	route's	metric	to	16,	which	triggers	an	update.



Figure	38-4.	RIP	problem	solving	using	split	horizon	with	poisoned	reverse	The	top	panel	in	this
diagram	(1)	shows	the	same	example	as	in	Figure	38-3.	In	panel	2,	as	before,	the	link	between	Router
RA	and	Network	N1	is	broken,	just	as	Router	RB	is	ready	to	send	out	its	routine	update.	However,	the
split	horizon	with	poisoned	reverse	feature	means	it	sends	different	messages	on	its	two	links.	On	the
network	that	connects	it	to	Router	RA,	it	sends	a	route	advertisement	with	a	cost	of	16.	In	panel	3,
Router	RA	receives	this,	which	it	will	discard,	ensuring	no	counting	to	infinity	problem	occurs.	On
Router	RA's	next	cycle,	it	will	update	Router	RB	to	tell	it	that	Network	N1	is	no	longer	reachable.

You	probably	noticed	that	I	said	that	triggered	updates	were	sent	"almost"
immediately.	In	fact,	before	sending	a	triggered	update	a	route	waits	a	random
amount	of	time,	from	1	to	5	seconds.	This	is	done	to	reduce	the	load	on	the
internetwork	that	would	result	from	many	routers	sending	update	messages
nearly	simultaneously.

Hold	Down
Split	horizon	tries	to	solve	the	counting	to	infinity	problem	by	suppressing	the
transmission	of	invalid	information	about	routes	that	fail.	For	extra	insurance,	we
can	implement	a	feature	that	changes	how	devices	receiving	route	information
process	it	in	the	case	of	a	failed	route.	The	hold	down	feature	works	by	having
each	router	start	a	timer	when	it	first	receives	information	about	a	network	that	is
unreachable.	Until	the	timer	expires,	the	router	will	discard	any	subsequent	route
messages	that	indicate	that	the	route	is	in	fact	reachable.	A	typical	Hold	Down
timer	runs	for	60	or	120	seconds.

The	main	advantage	of	this	technique	is	that	a	router	won't	be	confused	by
receiving	spurious	information	about	a	route	being	accessible	when	it	was	just
recently	told	that	the	route	was	no	longer	valid.	It	provides	a	period	of	time	for
out-of-date	information	to	be	flushed	from	the	system,	which	is	valuable
especially	on	complex	internetworks.	Adding	hold	down	to	split	horizon	can	also
help	in	situations	where	split	horizon	alone	is	insufficient	for	preventing
counting	to	infinity,	such	as	when	a	trio	of	routers	are	linked	in	a	triangle,	as
discussed	earlier.

The	main	disadvantage	of	hold	down	is	that	it	forces	a	delay	in	a	router
responding	to	a	route	once	it	is	fixed.	Suppose	that	a	route	went	down	for	just
five	seconds	for	some	reason.	After	the	network	is	up	again,	routers	will	want	to
again	know	about	this.	However,	the	Hold	Down	timer	must	expire	before	the
router	will	try	to	use	that	network	again.	This	makes	internetworks	using	hold
down	relatively	slow	to	respond	to	corrected	routes,	and	it	could	lead	to	delays	in



down	relatively	slow	to	respond	to	corrected	routes,	and	it	could	lead	to	delays	in
accessing	networks	that	fail	intermittently.

TIP

KEY	CONCEPT	Four	special	features	represent	changes	to	RIP	operation	that	ameliorate	or	eliminate
the	problems	with	the	operation	of	the	basic	protocol.	Split	horizon	and	split	horizon	with	poisoned
reverse	prevent	a	router	from	sending	invalid	route	information	back	to	the	router	from	which	it
originally	learned	the	route.	Triggered	updates	reduce	the	slow	convergence	problem	by	causing	the
immediate	propagation	of	changed	route	information.	Finally,	the	hold	down	feature	may	be	used	to
provide	robustness	when	information	about	a	failed	route	is	received.



RIP	Version-Specific	Message	Formats	and
Features
As	I've	noted,	RIP	has	been	in	widespread	use	for	more	than	two	decades.
During	that	time,	internetworks	and	internetworking	technologies	have	changed.
To	keep	up	with	the	times,	RIP	has	also	evolved	and	today	has	three	different
versions.	The	basic	operation	of	all	three	is	fairly	similar,	and	it	was	described	in
the	previous	sections	of	this	chapter.	As	you	might	expect,	there	are	also	some
differences	between	the	versions.	One	of	the	more	important	of	these	is	the
format	used	for	RIP	messages	in	each	version,	and	the	meaning	and	use	of	the
fields	within	that	format.

It's	now	time	to	take	a	look	at	the	message	format	used	by	each	of	the	three
versions	of	RIP	as	well	as	certain	specific	features	not	common	to	all	versions.	I
begin	with	the	original	RIP,	now	also	known	as	RIP	version	1.	I	then	describe
the	updated	version	of	RIP	called	RIP	version	2	or	RIP-2.	Finally,	I	discuss
RIPng,	also	sometimes	called	RIPv6;	it's	the	version	of	RIP	used	for	IPv6.	(Note
that	this	is	not	technically	a	new	version	of	the	original	RIP	but	a	new	protocol
closely	based	on	the	earlier	RIP	versions.)

RIP	Version	1	(RIP-1)	Message	Format	and
Features
RIP	evolved	as	an	industry	standard	and	was	popularized	by	its	inclusion	in	the
Berkeley	Standard	Distribution	of	UNIX	(BSD	UNIX).	This	first	version	of	RIP
(now	sometimes	called	RIP-1	to	differentiate	it	from	later	versions)	was
eventually	standardized	in	RFC	1058.	As	part	of	this	standard,	the	original	RIP-1
message	format	was	defined,	which	of	course	serves	RIP-1	itself,	and	is	also	the
basis	for	the	format	used	in	later	versions.

RIP-1	Messaging
As	explained	in	the	general	discussion	on	RIP	operation	in	the	previous	sections,
route	information	is	exchanged	in	RIP	through	the	sending	of	two	different	types
of	RIP	messages:	RIP	Request	and	the	RIP	Response.	These	are	transmitted	as
regular	TCP/IP	messages	using	UDP,	which	uses	the	UDP	reserved	port	number
520.	This	port	number	is	used	as	follows:



520.	This	port	number	is	used	as	follows:

RIP	Request	messages	are	sent	to	UDP	destination	port	520.	They	may	have	a
source	port	of	520	or	may	use	an	ephemeral	port	number	(see	Chapter	43	for
an	explanation	of	ephemeral	ports).

RIP	Response	messages	sent	in	reply	to	an	RIP	Request	are	sent	with	a	source
port	of	520	and	a	destination	port	equal	to	whatever	source	port	the	RIP
Request	used.

Unsolicited	RIP	Response	messages	(sent	on	a	routine	basis	and	not	in
response	to	a	request)	are	sent	with	both	the	source	and	destination	ports,
which	are	set	to	520.

RIP-1	Message	Format
The	basic	message	format	for	RIP-1	is	described	in	Table	38-1	and	illustrated
Figure	38-5.

Table	38-1.	RIP-1	Message	Format

Field
Name

Size
(Bytes)

Description

Command 1 Command	Type:	Identifies	the	type	of	RIP	message	being	sent.	A
value	of	1	indicates	an	RIP	Request,	while	2	means	an	RIP	Response.
Originally,	three	other	values	and	commands	were	also	defined:	3	and
4	for	the	Traceon	and	Traceoff	commands,	and	5,	which	was	reserved
for	use	by	Sun	Microsystems.	These	are	obsolete	and	no	longer	used.

Version 1 Version	Number:	Set	to	1	for	RIP	version	1.

Must	Be
Zero

2 Field	reserved;	value	must	be	set	to	all	zeros.

RIP
Entries

20	to	500,
in
increments
of	20

The	body	of	an	RIP	message	consists	of	1	to	25	sets	of	RIP	entries.
These	entries	contain	the	actual	route	information	that	the	message	is
conveying.	Each	entry	is	20	bytes	long	and	has	the	subfields	shown	in
Table	38-2.

Table	38-2.	RIP-1	RIP	Entries

Subfield
Name

Size
(Bytes)

Description



Address
Family
Identifier

2 A	fancy	name	for	a	field	that	identifies	the	type	of	address	in	the	entry.
The	routers	are	using	IP	addresses,	for	which	this	field	value	is	2.

Must	Be
Zero

2 Field	reserved;	value	must	be	set	to	all	zeros.

IP
Address

4 The	address	of	the	route	the	routers	are	sending	information	about.	No
distinction	is	made	between	addresses	of	different	types	of	devices	in
RIP,	so	the	address	can	be	for	a	network,	a	subnet,	or	a	single	host.	It	is
also	possible	to	send	an	address	of	all	zeros,	which	is	interpreted	as	the
default	route	for	other	devices	on	the	network	to	use	for	reaching	routes
with	no	specified	routing	entries.	This	is	commonly	used	to	allow	a
network	to	access	the	Internet.

Must	Be
Zero

4 Field	reserved;	value	must	be	set	to	all	zeros.

Must	Be
Zero

4 Field	reserved;	value	must	be	set	to	all	zeros.	(Yes,	two	of	them	in	a	row.)

Metric 4 The	distance	for	the	network	indicated	by	the	IP	address	in	the	IP	Address
field.	Values	of	1	to	15	indicate	the	number	of	hops	to	reach	the	network,
while	a	value	of	16	represents	infinity	(an	unreachable	destination).	See
the	general	discussion	of	the	RIP	algorithm	earlier	in	this	chapter	for
more	information	about	the	use	of	metrics.

Figure	38-5.	RIP-1	message	format	The	RIP-1	message	format	can	contain	up	to	25	RIP	entries.	Here,
RIP	entry	1	is	shown	with	each	of	its	constituent	subfields.

If	you're	like	me,	the	first	thing	that	comes	to	mind	after	looking	at	this	message



format	is	this:	What's	with	all	the	extra	space?	I	mean,	we	have	four	different
fields	that	are	reserved	(must	be	zero),	and	even	most	of	the	other	fields	are
larger	than	they	need	to	be	(a	metric	of	1	to	16	needs	only	4	bits,	not	32).	The
command	type	and	version	number	could	also	easily	have	been	made	only	4	bits
each,	if	not	less.	And	why	bother	having	a	2-byte	field	to	identify	the	address
type	when	we	are	only	going	to	deal	with	IP	addresses	anyway?

This	seeming	wastefulness	is	actually	an	artifact	of	the	generality	of	the	original
RIP	design.	The	protocol	was	intended	to	be	able	to	support	routing	for	a	variety
of	different	internetworking	protocols,	not	just	Internet	Protocol	(IP).	Remember
that	it	wasn't	even	originally	developed	with	IP	in	mind.	So,	the	Address	Family
Identifier	was	included	to	specify	address	type,	and	RIP	entries	were	made	large
enough	to	handle	large	addresses.	IP	requires	only	4	bytes	per	address,	so	some
of	the	space	is	not	used.

RIP-1	Version-Specific	Features
Since	RIP-1	was	the	first	version	of	the	protocol,	its	features	formed	the	basis	for
future	RIP	versions;	it	doesn't	really	have	any	version-specific	features.	What
RIP-1	has	is	a	number	of	limitations,	such	as	a	lack	of	support	for	specifying
classless	addresses	and	no	means	for	authentication.	RIP-2	was	created	to
address	some	of	RIP-1	shortcomings.	As	you	will	see	in	the	next	section,	RIP-2's
features	put	to	good	use	those	"Must	Be	Zero"	bytes	in	the	RIP-1	format!

TIP

KEY	CONCEPT	RIP-1	was	the	first	version	of	RIP	and	is	the	simplest	in	terms	of	operation	and
features.	The	bulk	of	an	RIP-1	message	consists	of	sets	of	RIP	entries	that	specify	route	addresses	and
the	distance	to	the	route	in	hops.

RIP	Version	2	(RIP-2)	Message	Format	and
Features
The	original	RIP	(RIP-1)	has	a	number	of	problems	and	limitations.	As	the
TCP/IP	protocol	suite	evolved	and	changed,	RIP-1's	problems	were	compounded
by	it	becoming	somewhat	out	of	date.	It	was	unable	to	handle	newer	IP	features.
There	were	some	who	felt	that	the	existence	of	newer	and	better	interior	routing
protocols	meant	that	it	would	be	best	to	just	give	up	on	RIP	entirely	and	move
over	to	something	like	OSPF.



over	to	something	like	OSPF.

However,	RIP's	appeal	was	never	its	technical	superiority,	but	its	simplicity	and
ubiquity	in	the	industry.	By	the	early	1990s,	RIP	was	already	in	use	in	many
thousands	of	networks.	For	those	who	liked	RIP,	it	made	more	sense	to	migrate
to	a	newer	version	that	addressed	some	of	RIP-1's	shortcomings	than	to	go	to	an
entirely	different	protocol.	To	this	end,	a	new	version	of	the	protocol,	RIP-2	was
developed.	It	was	initially	published	in	RFC	1388	in	1993.	It	is	now	defined	in
RFC	2453,	"RIP	Version	2,"	which	was	published	in	November	1998.

RIP-2	Version-Specific	Features
RIP-2	represents	a	very	modest	change	to	the	basic	RIP.	RIP-2	works	in	the
same	basic	way	as	RIP-1.	In	fact,	the	new	features	introduced	in	RIP-2	are
described	as	extensions	to	the	basic	protocol,	thereby	conveying	the	fact	that
they	are	layered	upon	regular	RIP-1	functionality.	The	five	key	RIP-2	extensions
are	as	follows:

Classless	Addressing	Support	and	Subnet	Mask	Specification	When	RIP-1
was	developed,	the	use	of	subnets	in	IP	(as	described	in	RFC	950)	had	not	yet
been	formally	defined.	It	was	still	possible	to	use	RIP-1	with	subnets	through	the
use	of	a	heuristic	to	determine	if	the	destination	is	a	network,	subnet,	or	host.
However,	there	was	no	way	to	clearly	specify	the	subnet	mask	for	an	address
using	RIP-1	messages.	RIP-2	adds	explicit	support	for	subnets	by	allowing	a
subnet	mask	within	the	route	entry	for	each	network	address.	It	also	provides
support	for	Variable	Length	Subnet	Masking	(VLSM;	see	Chapter	18)	and
CIDR.

Next	Hop	Specification	In	RIP-2,	each	RIP	entry	includes	a	space	where	an
explicit	IP	address	can	be	entered	as	the	next-hop	router	for	datagrams	that	are
intended	for	the	network	in	that	entry.	This	feature	can	help	improve	efficiency
of	routing	by	eliminating	unnecessary	extra	hops	for	datagrams	sent	to	certain
destinations.	One	common	use	of	this	field	is	when	the	most	efficient	route	to	a
network	is	through	a	router	that	is	not	running	RIP.	Such	a	router	will	not
exchange	RIP	messages	and	would	therefore	not	normally	be	selected	by	RIP
routers	as	a	next	hop	for	any	network.	The	explicit	Next	Hop	field	allows	the
router	to	be	selected	as	the	next	hop,	regardless	of	this	situation.



Authentication	RIP-1	included	no	authentication	mechanism,	which	is	a
problem	because	it	could	potentially	allow	a	malicious	host	to	attack	an
internetwork	by	sending	bogus	RIP	messages.	RIP-2	provides	a	basic
authentication	scheme	that	allows	routers	to	ascertain	the	identity	of	a	router
before	it	will	accept	RIP	messages	from	it.

Route	Tag	Each	RIP-2	entry	includes	a	Route	Tag	field	where	additional
information	about	a	route	can	be	stored.	This	information	is	propagated	along
with	other	data	about	the	route	as	RIP	entries	are	sent	around	the	internetwork.	A
common	use	of	this	field	is	when	a	route	is	learned	from	a	different	AS	in	order
to	identify	the	AS	from	which	the	route	was	obtained.

Use	of	Multicasting	To	help	reduce	network	load,	RIP-2	allows	routers	to	be
configured	to	use	multicasts	instead	of	broadcasts	for	sending	out	unsolicited
RIP	Response	messages.	These	datagrams	are	sent	out	using	the	special	reserved
multicast	address	224.0.0.9.	All	routers	on	an	internetwork	must	use	multicast	if
this	is	to	work	properly.

As	you	can	see,	many	of	these	extensions	require	more	information	to	be
included	with	each	advertised	route.	This	is	where	all	that	extra	space	in	the
message	format	of	RIP-1	routing	entries	comes	in	handy,	as	you	will	see	shortly.

TIP

KEY	CONCEPT	RIP-2	is	the	most	recent	version	of	RIP	used	in	IPv4.	It	includes	a	number	of
enhancements	over	the	original	RIP-1,	including	support	for	subnet	masks	and	classless	addressing,
explicit	next-hop	specification,	route	tagging,	authentication,	and	multicast.	For	compatibility,	it	uses	the
same	basic	message	format	as	RIP-1,	putting	the	extra	information	required	for	its	new	features	into
some	of	the	unused	fields	of	the	RIP-1	message	format.

RIP-2	Messaging
RIP-2	messages	are	exchanged	using	the	same	basic	mechanism	as	RIP-1
messages.	Two	different	message	types	exist:	RIP	Request	and	RIP	Response.
They	are	sent	using	UDP,	which	uses	the	reserved	port	number	520.	The
semantics	for	the	use	of	this	port	are	the	same	as	for	RIP-1.	For	convenience,	I'll
repeat	the	description	here:

RIP	Request	messages	are	sent	to	UDP	destination	port	520.	They	may	have	a
source	port	of	520	or	may	use	an	ephemeral	port	number.



RIP	Response	messages	sent	in	reply	to	an	RIP	Request	message	are	sent
with	a	source	port	of	520	and	a	destination	port	equal	to	whatever	source	port
the	RIP	Request	message	used.

Unsolicited	RIP	Response	messages	(sent	on	a	routine	basis	and	not	in
response	to	a	request)	are	sent	with	both	the	source	and	destination	ports	set
to	520.

RIP-2	Message	Format
The	basic	message	format	for	RIP-2	is	also	pretty	much	the	same	as	it	was	for
RIP-1,	with	the	Version	field	set	to	2	in	order	to	clearly	identify	the	message	as
being	RIP-2.	Table	38-3	and	Figure	38-6	illustrate	the	RIP-2	message	format.
The	real	differences	are	in	the	individual	RIP	entries,	as	you	can	see	in	Table	38-
4.

Table	38-3.	RIP-2	Message	Format

Field
Name

Size
(Bytes)

Description

Command 1 Command	Type:	Identifies	the	type	of	RIP	message	being	sent.	A
value	of	1	indicates	an	RIP	Request,	while	2	means	an	RIP	Response.

Version 1 Version	Number:	Set	to	2	for	RIP	version	2.

Must	Be
Zero

2 Field	reserved;	value	must	be	set	to	all	zeros.

Route
Table
Entries
(RTEs)

20	to	500,
in
increments
of	20

As	with	RIP-1,	the	body	of	an	RIP-2	message	consists	of	1	to	25	sets
of	route	information.	In	RIP-2	these	are	labeled	Route	Table	Entries,
or	RTEs.	Each	RTE	is	20	bytes	long	and	has	the	subfields	shown	in
Table	38-4.

Table	38-4.	RIP-2	Route	Table	Entries	(RTEs)

Subfield
Name

Size
(Bytes)

Description

Address
Family
Identifier

2 Same	meaning	as	for	RIP-1;	value	is	2	to	identify	IP	addresses.



Route
Tag

2 Additional	information	to	be	carried	with	this	route.

IP
Address

4 Same	as	in	RIP-1:	the	address	of	the	route	the	router	is	sending
information	about.	No	distinction	is	made	between	the	address	of
different	types	of	devices	in	RIP,	so	the	address	can	be	for	a	network,	a
subnet,	or	a	single	host.	It	is	also	possible	to	send	an	address	of	all	zeros,
which	is	interpreted	as	the	default	route,	as	in	RIP-1.

Subnet
Mask

4 The	subnet	mask	associated	with	this	address.

Next	Hop 4 Address	of	the	device	to	use	as	the	next	hop	for	the	network	advertised	in
this	entry.

Metric 4 The	distance	for	the	network	indicated	by	the	IP	address,	as	in	RIP-1.
Values	of	1	to	15	indicate	the	number	of	hops	to	reach	the	network	(as
described	in	the	discussion	of	the	RIP	algorithm	earlier	in	this	chapter),
while	a	value	of	16	represents	infinity	(an	unreachable	destination).

As	you	can	see,	the	unused	fields	allow	the	new	RIP-2	features	to	be
implemented	without	changing	the	basic	structure	of	the	RIP	entry	format.	This
allows	RIP-1	and	RIP-2	messages	and	devices	to	coexist	in	the	same	network.
An	RIP-2	device	can	handle	both	RIP-1	and	RIP-2	messages,	and	will	look	at	the
version	number	to	see	which	version	the	message	is.	An	RIP-1	device	should
handle	both	RIP-2	and	RIP-1	messages	the	same	way,	simply	ignoring	the	extra
RIP-2	fields	it	doesn't	understand.

NOTE

If	authentication	is	used,	one	of	the	RTEs	contains	authentication	information,	thus	limiting	the	message
to	24	"real"	RTEs.



Figure	38-6.	RIP-2	message	format	The	RIP	entries	of	RIP-1	are	called	Route	Table	Entries	(RTEs)	in
RIP-2;	the	message	format	can	contain	up	to	25.	The	format	of	RTE	1	is	shown	here	with	each	of	its

subfields	(the	others	are	summarized	to	save	space).

RIPng	(RIPv6)	Message	Format	and	Features
The	future	of	TCP/IP	is	IPv6,	which	makes	some	very	important	changes	to	IP,
especially	with	regard	to	addressing.	Since	IPv6	addresses	are	different	than
IPv4	addresses,	everything	that	works	with	IP	addresses	must	change	to	function
under	IPv6.	This	includes	routing	protocols,	which	exchange	addressing
information.

To	ensure	a	future	for	the	RIP,	a	new	IPv6-compatible	version	had	to	be
developed.	This	new	version	was	published	in	1997	in	RFC	2080,	RIPng	for
IPv6,	where	the	ng	stands	for	next	generation	(IPv6	is	also	sometimes	called	IP
next	generation).

RIPng,	which	is	also	occasionally	seen	as	RIPv6	for	obvious	reasons,	was
designed	to	be	as	similar	as	possible	to	the	current	version	of	RIP	for	IPv4,
which	is	RIP-2.	In	fact,	RFC	2080	describes	RIPng	as	the	minimum	change
possible	to	RIP	to	allow	it	to	work	on	IPv6.	Despite	this	effort,	it	was	not
possible	to	define	RIPng	as	just	a	new	version	of	the	older	RIP,	as	RIP-2	was
defined.	RIPng	is	a	new	protocol,	which	was	necessary	because	of	the
significance	of	the	changes	between	IPv4	and	IPv6—especially	the	change	from
32-bit	to	128-bit	addresses	in	IPv6,	which	necessitated	a	new	message	format.



RIPng	Version-Specific	Features
Even	though	RIPng	is	a	new	protocol,	a	specific	effort	was	made	to	make	RIPng
like	its	predecessors.	Its	basic	operation	is	almost	entirely	the	same,	and	it	uses
the	same	overall	algorithm	and	operation,	as	you	saw	earlier	in	this	chapter.
RIPng	also	does	not	introduce	any	specific	new	features	compared	to	RIP-2,
except	those	needed	to	implement	RIP	on	IPv6.

RIPng	maintains	most	of	the	enhancements	introduced	in	RIP-2;	some	are
implemented	as	they	were	in	RIP-2,	while	others	appear	in	a	modified	form.
Here's	specifically	how	the	five	extensions	in	RIP-2	are	implemented	in	RIPng:

Classless	Addressing	Support	and	Subnet	Mask	Specification	In	IPv6	all,
addresses	are	classless	and	specified	using	an	address	and	a	prefix	length,	instead
of	a	subnet	mask.	Thus,	a	field	for	the	prefix	length	is	provided	for	each	entry
instead	of	a	subnet	mask	field.

Next	Hop	Specification	This	feature	is	maintained	in	RIPng,	but	implemented
differently.	Due	to	the	large	size	of	IPv6	addresses,	if	you	include	a	Next	Hop
field	in	the	format	of	RIPng,	the	RTEs	would	almost	double	the	size	of	every
entry.	Since	Next	Hop	is	an	optional	feature,	this	would	be	wasteful.	Instead,
when	a	Next	Hop	is	needed,	it	is	specified	in	a	separate	routing	entry.

Authentication	RIPng	does	not	include	its	own	authentication	mechanism.	It	is
assumed	that	if	authentication	and/or	encryption	are	needed,	they	will	be
provided	using	the	standard	IPsec	features,	which	are	defined	for	IPv6	at	the	IP
layer.	This	is	more	efficient	than	having	individual	protocols	like	RIPng	perform
authentication.

Route	Tag	This	field	is	implemented	in	the	same	way	as	it	is	in	RIP-2.

Use	of	Multicasting	RIPng	uses	multicasts	for	transmissions,	specifically	the
reserved	IPv6	multicast	address	FF02::9.

RIPng	Messaging
There	are	two	basic	RIPng	message	types,	RIP	Request	and	RIP	Response,
which	are	exchanged	using	the	UDP	as	with	RIP-1	and	RIP-2.	Since	RIPng	is	a
new	protocol,	it	cannot	use	the	same	UDP	reserved	port	number	520,	which	is
used	for	RIP-1/RIP-2.	Instead,	RIPng	uses	well-known	port	number	521.	The



semantics	for	the	use	of	this	port	are	the	same	as	those	used	for	port	520	in	RIP-1
and	RIP-2.	For	convenience,	here	are	the	rules	again:

RIP	Request	messages	are	sent	to	UDP	destination	port	521.	They	may	have	a
source	port	of	521	or	may	use	an	ephemeral	port	number.

RIP	Response	messages	sent	in	reply	to	an	RIP	Request	message	are	sent
with	a	source	port	of	521	and	a	destination	port	equal	to	whatever	source	port
the	RIP	Request	message	used.

Unsolicited	RIP	Response	messages	(sent	on	a	routine	basis	and	not	in
response	to	a	request)	are	sent	with	both	the	source	and	destination	ports	set
to	521.

RIPng	Message	Format
The	message	format	for	RIPng	is	similar	to	that	of	RIP-1	and	RIP-2,	except	for
the	format	of	the	RTEs.	It	is	shown	in	Table	38-5	and	illustrated	in	Figure	38-7.

Table	38-5.	RIPng	Message	Format

Field
Name

Size
(Bytes)

Description

Command 1 Command	Type:	Identifies	the	type	of	RIPng	message	being	sent.	A
value	of	1	indicates	an	RIPng	Request,	while	2	means	an	RIPng
Response.

Version 1 Version	Number:	Set	to	1	(not	6,	since	this	is	the	first	version	of	the	new
protocol	RIPng).

Must	Be
Zero

2 Field	reserved;	value	must	be	set	to	all	zeros.

Route
Table
Entries
(RTEs)

Variable The	body	of	an	RIPng	message	consists	of	a	variable	number	of	Route
Table	Entries	(RTEs)	that	contain	information	about	routes.	Each	entry	is
20	bytes	long	and	has	the	subfields	shown	in	Table	38-6.

Table	38-6.	RIPng	RTEs

Subfield
Name

Size
(Bytes)

Description



IPv6
Prefix

16 The	128-bit	IPv6	address	of	the	network	whose	information	is	contained
in	this	RTE.

Route
Tag

2 Additional	information	to	be	carried	with	this	route,	as	defined	in	RIP-2.

Prefix
Len

1 The	number	of	bits	of	the	IPv6	address	that	is	the	network	portion	(the
remainder	being	the	host	portion).	This	is	the	number	that	normally	would
appear	after	the	slash	when	specifying	an	IPv6	network	address.	It	is
analogous	to	an	IPv4	subnet	mask.	See	the	description	of	IPv6	prefix
notation	in	Chapter	25	for	more	details.

Metric 1 The	distance	for	the	network	indicated	by	the	IP	address,	as	in	RIP-1.
Values	of	1	to	15	indicate	the	number	of	hops	to	reach	the	network	(as
described	in	the	general	discussion	of	the	RIP	algorithm	earlier	in	this
chapter)	while	a	value	of	16	represents	infinity	(an	unreachable
destination).

Figure	38-7.	RIPng	message	format	RIPng	retains	the	use	of	RTEs	from	RIP-2,	but	their	format	has
been	changed	to	accommodate	the	much	larger	IPv6	address	size.	The	limit	of	25	entries	per	message

has	also	been	eliminated.

The	maximum	number	of	RTEs	in	RIPng	is	not	restricted	to	25	as	it	is	in	RIP-1
and	RIP-2.	It	is	limited	only	by	the	maximum	transmission	unit	(MTU)	of	the
network	over	which	the	message	is	being	sent.

TIP

KEY	CONCEPT	RIPng	is	the	version	of	RIP	that	was	developed	for	use	on	IPv6	internetworks.	It	is
technically	a	distinct	protocol	from	RIP-1	and	RIP-2,	but	is	very	similar	to	both.	It	retains	the



enhancements	to	RIP	made	in	RIP-2,	making	changes	to	these	features	and	to	the	RIP	message	format
wherever	needed	for	compatibility	with	IPv6.

When	a	Next	Hop	field	needs	to	be	specified,	a	special	RTE	is	included,	as	I
mentioned	earlier.	This	RTE	is	included	before	all	the	RTEs	to	which	it	applies.
It	has	the	same	basic	structure	as	shown	for	regular	RTEs	in	Table	38-6,	with	the
IPv6	Prefix	subfield	containing	the	next	hop	address,	the	Route	Tag	and	Prefix
Len	fields	set	to	0,	and	the	Metric	field	set	to	255	(0xFF).



Chapter	39.	OPEN	SHORTEST
PATH	FIRST	(OSPF)

Interior	routing	protocols	using	a	distance-vector	routing	algorithm,	such	as	the
Routing	Information	Protocol	(RIP)	we	explored	last	chapter,	have	a	long	history
and	work	well	in	a	small	group	of	routers.	However,	they	also	have	some	serious
limitations	in	both	scalability	and	performance	that	make	them	poorly	suited	to
larger	autonomous	systems	(ASes)	or	those	with	specific	performance	issues.
Many	organizations	that	start	out	using	RIP	quickly	find	that	its	restrictions	and
issues	make	it	less	than	ideal.

To	solve	this	problem,	a	new	routing	protocol	was	developed	in	the	late	1980s.
This	protocol,	called	Open	Shortest	Path	First	(OSPF),	uses	the	more	capable
(and	more	complex)	link-state	or	shortest-path	first	routing	algorithm.	It	fixes
many	of	the	issues	with	RIP	and	allows	routes	to	be	selected	dynamically	based
on	the	current	state	of	the	network,	not	just	a	static	picture	of	how	routers	are
connected.	It	also	has	numerous	advanced	features,	including	support	for	a
hierarchical	topology	and	automatic	load	sharing	among	routes.	On	the
downside,	it	is	a	complicated	protocol,	which	means	it	is	often	not	used	unless	it
is	really	needed.	This	makes	it	the	complement	of	RIP	and	is	the	reason	they
both	have	a	place	in	the	spectrum	of	TCP/IP	routing	protocols.

In	this	chapter,	I	provide	a	condensed	explanation	of	the	concepts	and	operation
behind	OSPF.	As	usual,	I	begin	with	an	overview	of	the	protocol,	discussing
how	it	was	developed,	its	versions,	and	the	standards	that	define	them.	I	describe
the	concepts	behind	OSPF,	including	basic	topology	and	the	link-state	database.
I	then	discuss	the	more	complex	optional	hierarchical	topology	of	routers	and	the
roles	routers	play	when	this	topology	is	used.	I	briefly	explain	the	method	used
for	determining	routes	in	OSPF,	and	the	general	operation	and	messaging	used	in



the	protocol,	including	a	description	of	the	five	OSPF	message	types.	I	conclude
with	descriptions	of	the	formats	used	for	OSPF	messages.

NOTE

The	difficult	thing	about	networking	is	that	so	many	protocols	and	technologies	are	so	involved	that	each
deserves	its	own	book.	This	is	certainly	the	case	with	OSPF	itself,	which	is	sufficiently	complex	that	the
RFC	defining	OSPF	version	2	is	more	than	240	pages	long!	Thus,	this	chapter,	despite	being	fairly
comprehensive,	is	only	a	high-level	description	of	OSPF.

OSPF	Overview
In	the	early	days	of	TCP/IP,	RIP	became	the	standard	protocol	for	routing	within
an	autonomous	system	(AS),	almost	by	default.	RIP	had	two	big	things	going	for
it:	It	was	simple	and	easy	to	use,	and	it	was	included	in	the	popular	Berkeley
Standard	Distribution	(BSD)	of	UNIX	starting	in	1982.	Most	organizations	using
TCP/IP	started	out	with	relatively	small	networks	and	were	able	to	use	RIP	with
some	degree	of	success.

However,	as	I	discussed	in	Chapter	38,	that	protocol	has	some	serious	technical
issues,	and	they	are	exacerbated	when	RIP	is	used	on	a	larger	AS.	Many	of	RIP's
problems	are	due	to	it	being	a	distance-vector	protocol,	because	the	algorithm
itself	simply	limits	the	ability	of	RIP	to	choose	the	best	route	and	adapt	to
changing	network	conditions.	Other	problems	with	RIP	were	based	on	its
implementation,	such	as	the	selection	of	a	cost	value	of	16	for	infinity,	which
makes	it	impossible	to	use	RIP	in	a	situation	where	more	than	15	hops	might
occur	between	devices.	Problems	such	as	the	lack	of	classless	addressing	support
were	addressed	in	version	2	of	RIP,	but	the	basic	difficulties	with	the	protocol	as
a	whole	persist.

Development	and	Standardization	of	OSPF
The	Internet	Engineering	Task	Force	(IETF)	recognized	that	RIP	by	itself	simply
would	not	meet	the	needs	of	all	ASes	on	the	Internet.	It	formed	a	working	group
in	1988	to	develop	a	new	routing	protocol	based	on	the	more	capable	link-state
algorithm,	also	called	shortest	path	first	(SPF).	Research	into	this	type	of
protocol	had	already	begun	as	early	as	the	1970s,	with	some	of	it	conducted	on
the	ARPAnet,	the	predecessor	of	the	Internet,	upon	which	much	of	TCP/IP	was



developed.

This	new	protocol's	name	conveys	two	of	its	most	important	characteristics.	The
first	word	refers	to	the	fact	that	the	protocol,	like	all	TCP/IP	standards,	was
developed	using	the	open	and	public	RFC	process,	so	it	is	not	proprietary,	and
no	license	is	required	to	use	it.	The	SPF	portion	of	the	name	refers	to	the	type	of
algorithm	it	uses,	which	is	designed	to	allow	routers	to	dynamically	determine
the	shortest	path	between	any	two	networks.

The	first	version	of	OSPF	was	described	in	RFC	1131,	which	was	published	in
October	1989.	This	was	quickly	replaced	by	OSPF	version	2	in	July	1991,	which
is	described	in	RFC	1247.	Since	then,	there	have	been	several	revisions	to	the
OSPF	version	2	standard,	in	RFCs	1583,	2178,	and	2328,	with	the	last	of	these
now	the	current	standard.	OSPF	version	2	is	the	only	version	in	use	today,	so	it
is	usually	what	is	meant	when	people	(including	myself)	refer	to	OSPF.

Overview	of	OSPF	Operation
The	fundamental	concept	behind	OSPF	is	a	data	structure	called	the	link-state
database	(LSDB).	Each	router	in	an	AS	maintains	a	copy	of	this	database,	which
contains	information	in	the	form	of	a	directed	graph	that	describes	the	current
state	of	the	AS.	Each	link	to	a	network	or	another	router	is	represented	by	an
entry	in	the	database,	and	each	has	an	associated	cost	(or	metric).	The	metric	can
be	made	to	include	many	different	aspects	of	route	performance,	not	just	a
simple	hop	count,	as	is	used	in	RIP.

Information	about	the	AS	moves	around	the	AS	in	the	form	of	link-state
advertisements	(LSAs),	which	are	messages	that	let	each	router	tell	the	others
what	it	currently	knows	about	the	state	of	the	AS.	Over	time,	the	information
that	each	router	has	about	the	AS	converges	with	that	of	the	others,	and	they	all
have	the	same	data.	When	changes	occur	to	the	internetwork,	routers	send
updates	to	ensure	that	all	the	routers	are	kept	up-to-date.

To	determine	actual	routes,	each	router	uses	its	LSDB	to	construct	a	shortest-
path	tree.	This	tree	shows	the	links	from	the	router	to	each	other	router	and
network	and	allows	the	lowest-cost	route	to	any	location	to	be	determined.	As
new	information	about	the	state	of	the	internetwork	arrives,	this	tree	can	be
recalculated,	so	the	best	route	is	dynamically	adjusted	based	on	network
conditions.	When	more	than	one	route	with	an	equal	cost	exists,	traffic	can	be



conditions.	When	more	than	one	route	with	an	equal	cost	exists,	traffic	can	be
shared	among	the	routes.

OSPF	Features	and	Drawbacks
In	addition	to	the	obvious	benefits	of	the	link-state	algorithm,	OSPF	includes
several	other	features	of	value,	especially	to	larger	organizations.	It	supports
authentication	for	security	and	all	three	major	types	of	IP	addressing	(classful,
subnetted	classful,	and	classless).	For	very	large	ASes,	OSPF	also	allows	routers
to	be	grouped	and	arranged	into	a	hierarchical	topology.	This	allows	for	better
organization	and	improved	performance	through	reduced	LSA	traffic.

Naturally,	the	superior	functionality	and	many	features	of	OSPF	do	not	come
without	a	cost.	In	this	case,	the	primary	cost	is	that	of	complexity.	Where	RIP	is
a	simple	and	easy-to-use	protocol,	OSPF	requires	more	work	and	more	expertise
to	properly	configure	and	maintain.	This	means	that	even	though	OSPF	is	widely
considered	better	than	RIP,	technically,	it's	not	for	everyone.	The	obvious	role
for	OSPF	is	as	a	routing	protocol	for	larger	or	higher-performance	ASes,	leaving
RIP	to	cover	the	smaller	and	simpler	internetworks.

TIP

KEY	CONCEPT	Open	Shortest	Path	First	(OSPF)	was	developed	in	the	late	1980s	to	provide	a	more
capable	interior	routing	protocol	for	larger	or	more	complex	ASes	that	were	not	being	served	well	by
RIP.	It	uses	the	dynamic	shortest	path	first,	or	link-state,	routing	algorithm,	with	each	router	maintaining
a	database	containing	information	about	the	state	and	topology	of	the	internetwork.	As	changes	to	the
internetwork	occur,	routers	send	out	updated	state	information,	which	allows	each	router	to	dynamically
calculate	the	best	route	to	any	network	at	any	point	in	time.	OSPF	is	a	complement	to	RIP	in	that	RIP	is
simple	but	limited,	whereas	OSPF	is	more	capable	but	more	complicated.



OSPF	Basic	Topology	and	the	Link-State
Database	(LSDB)
OSPF	is	designed	to	facilitate	routing	in	both	smaller	and	larger	ASes.	To	this
end,	the	protocol	supports	two	topologies.	When	there	is	only	a	small	number	of
routers,	the	entire	AS	is	managed	as	a	single	entity.	This	doesn't	have	a	specific
name,	but	I	call	it	OSPF	basic	topology	to	convey	the	simple	nature	of	the
topology	and	to	contrast	it	with	the	hierarchical	topology	you	will	explore	in	the
next	section.

When	OSPF	basic	topology	is	used,	all	the	routers	in	the	AS	function	as	peers.
Each	router	communicates	routing	information	with	each	other	one,	and	each
maintains	a	copy	of	the	key	OSPF	data	structure:	the	LSDB,	which	is	essentially
a	computerized	representation	of	the	topology	of	the	AS.	It	is	the	method	by
which	routers	see	the	state	of	the	links	in	the	AS—thus	the	name	link-state
database	(and	for	that	matter,	the	name	of	the	entire	class	of	link-state	algorithms
of	which	OSPF	is	a	part).

The	LSDB	is	a	bit	hard	to	visualize,	but	is	best	viewed	as	a	set	of	data	that	is
equivalent	to	a	graphical	picture	that	shows	the	topology	of	an	AS.	In	such	a
diagram,	we	typically	show	routers	and	networks	as	nodes,	and	connections
between	routers	and	networks	as	lines	that	connect	them.	The	OSPF	LSDB	takes
that	information	and	puts	it	into	a	table	to	allow	a	router	to	maintain	a	virtual
picture	of	all	the	connections	between	routers	and	networks	in	the	AS.

The	LSDB	therefore	indicates	which	routers	can	directly	reach	which	other
routers	and	which	networks	each	router	can	reach.	Furthermore,	it	stores	for	each
of	these	links	a	cost	to	reach	the	network.	This	cost	is	an	arbitrary	metric	that	can
be	set	up	based	on	any	criteria	important	to	the	administrator.	OSPF	is	not
restricted	to	the	overly	simple	hop-count	metric	used	in	RIP.

OSPF	Basic	Topology
For	example,	let's	consider	the	same	AS	that	you	looked	at	in	the	examination	of
the	RIP	route	determination	algorithm	in	Chapter	38.	This	internetwork	has	four
individual	networks,	connected	as	follows:



Router	RA	connects	Network	N1	to	Network	N2.

Routers	RB	and	RC	connect	Network	N2	to	Network	N3.

Router	RD	connects	Network	N3	to	Network	N4.

To	make	this	example	more	interesting,	I	added	a	direct	link	between	Routers
RB	and	RC.

The	resulting	AS	is	shown	in	Figure	39-1.	Table	39-1	shows	what	the	LSDB	for
this	AS	might	look	like.

Figure	39-1.	Sample	OSPF	AS	This	is	the	same	AS	that	you	looked	at	in	RIP	(as	shown	in	Figure	38-1
in	Chapter	38),	but	with	the	addition	of	a	link	between	the	two	Routers	RB	and	RC.

Table	39-1.	Sample	OSPF	Link-State	Database	(LSDB)

To	Router/Network From	Router From	Network

	 RA RB RC RD N1 N2 N3 N4

RA 	 	 	 	 0 0 	 	

RB 	 	 • 	 	 0 0 	

RC 	 • 	 	 	 0 0 	

RD 	 	 	 	 	 	 0 0

N1 • 	 	 	 	 	 	 	

N2 • • • 	 	 	 	 	

N3 	 • • • 	 	 	 	

N4 	 	 	 • 	 	 	 	

In	practice,	each	of	the	bullets	(•)	in	Table	39-1	would	be	replaced	by	a	metric
value	indicating	the	cost	to	send	a	datagram	from	the	particular	router	to	another



router	or	network.	Note	that	the	chart	is	symmetric,	because	if	Router	RB	can
reach	Router	RC,	Router	RC	can	reach	Router	RB.	However,	the	costs	do	not
have	to	be	symmetric.	It	is	possible	for	Router	RB	to	have	a	metric	that	is	higher
for	it	to	send	to	Router	RC	than	for	Router	RC	to	send	to	Router	RB.

Note	too	that	there	is	no	cost	to	reach	a	router	from	a	network.	This	ensures	that
only	one	cost	is	applied	for	a	router	to	send	to	another	router	over	a	network.	The
cost	is	to	reach	the	network	from	the	router.	This	makes	sense,	since	each	router
is	a	member	of	the	network	on	which	it	is	connected.

LSDB	Information	Storage	and	Propagation
An	important	thing	to	remember	about	the	LSDB	is	that	even	though	each	router
maintains	it,	the	database	isn't	constructed	from	the	perspective	of	the	individual
router.	A	router's	LSDB	represents	the	topology	of	the	entire	AS,	including	links
between	routers	that	may	be	rather	distant	from	it.	So,	for	example,	Router	RA
would	keep	the	entire	database	in	its	storage	area,	including	information	about
Router	RC	and	Router	RD,	to	which	it	does	not	connect	directly.

Since	in	the	basic	topology,	all	the	routers	are	peers	and	maintain	information	for
the	entire	AS,	in	theory,	they	should	have	the	exact	same	LSDB	contents.	When
a	router	is	first	turned	on,	it	may	have	different	LSDB	information	than	its
neighbors,	but	this	will	be	corrected	through	the	exchange	of	update	messages
containing	LSAs.	Eventually,	all	routers	should	converge	to	the	same
information.	You	will	see	how	this	works	in	the	section	about	OSPF	messaging
later	in	this	chapter.

OSPF,	as	an	interior	routing	protocol,	is	used	only	within	the	AS.	In	most	cases,
the	AS	will	be	connected	to	other	ASes	through	one	or	more	of	its	routers.	The
routers	that	connect	the	AS	to	other	ASes	are	often	called	boundary	routers.
These	devices	will	use	OSPF	to	communicate	within	the	AS,	and	an	exterior
routing	protocol	(typically	BGP)	to	talk	to	routers	outside	the	AS.	The	word
boundary	in	its	name	refers	to	the	fact	that	these	devices	are	usually	located	on
the	periphery	of	the	AS.

TIP

KEY	CONCEPT	In	basic	OSPF	topology,	each	of	the	routers	running	OSPF	is	considered	a	peer	of	the
others.	Each	maintains	a	link-state	database	(LSDB)	that	contains	information	about	the	topology	of	the



entire	AS.	Each	link	between	a	router	and	network	or	between	two	routers	is	represented	by	an	entry	in
the	LSDB	that	indicates	the	cost	to	send	data	over	the	link.	The	LSDB	is	updated	regularly	through	the
exchange	of	OSPF	link-state	advertisements	(LSAs).



OSPF	Hierarchical	Topology
When	the	number	of	routers	in	an	AS	is	relatively	small,	using	the	previously
described	basic	topology	works	well.	Each	router	maintains	a	common	picture	of
the	network	topology	in	the	form	of	an	identical	LSDB.	The	routers
communicate	as	peers	using	LSAs.	While	changes	in	the	AS	may	cause	a	router
to	temporarily	have	different	information	than	its	peers,	routine	exchanges	of
data	will	keep	all	the	LSDBs	synchronized	and	up-to-date,	and	not	that	much
information	needs	to	be	sent	around	because	the	AS	is	small.

This	simpler	topology	does	scale	reasonably	well,	and	it	can	support	many
smaller	and	even	moderate-sized	ASes.	However,	as	the	number	of	routers
increases,	the	amount	of	communication	required	to	update	LSDBs	increases	as
well.	In	a	very	large	internetwork	with	dozens	or	even	hundreds	of	routers,
having	all	the	routers	be	OSPF	peers	using	the	basic	topology	can	result	in
performance	degradation.	This	problem	occurs	due	to	the	amount	of	routing
information	that	needs	to	be	passed	around	and	to	the	need	for	each	router	to
maintain	a	large	LSDB	containing	every	router	and	network	in	the	entire	AS.

OSPF	Areas
To	provide	better	support	for	these	larger	internetworks,	OSPF	supports	the	use
of	a	more	advanced,	hierarchical	topology.	In	this	technique,	the	AS	is	no	longer
considered	a	single,	flat	structure	of	interconnected	routers	all	of	which	are
peers.	Instead,	a	two-level	hierarchical	topology	is	constructed.	The	AS	is
divided	into	constructs	called	areas,	each	of	which	contains	a	number	of
contiguous	routers	and	networks.	These	areas	are	numbered	and	managed
independently	by	the	routers	within	them,	so	each	area	is	almost	as	if	it	were	an
AS	unto	itself.	The	areas	are	interconnected	so	that	routing	information	can	be
shared	among	areas	across	the	entire	AS.

The	easiest	way	to	understand	this	hierarchical	topology	is	to	consider	each	area
like	a	sub-AS	within	the	AS	as	a	whole.	The	routers	within	any	area	maintain	an
LSDB	that	contains	information	about	the	routers	and	networks	within	that	area.
Routers	within	more	than	one	area	maintain	LSDBs	about	each	area	that	they	are
a	part	of,	and	they	also	link	the	areas	together	to	share	routing	information
between	them.



between	them.

TIP

KEY	CONCEPT	To	allow	for	better	control	and	management	over	larger	internetworks,	OSPF	allows	a
large	AS	to	be	structured	into	a	hierarchical	form.	Contiguous	routers	and	networks	are	grouped	into
areas	that	connect	together	using	a	logical	backbone.	These	areas	act	as	the	equivalent	of	smaller	ASes
within	the	larger	AS,	yielding	the	same	benefits	of	localized	control	and	traffic	management	that	ASes
provide	for	a	large	internetwork	between	organizations.

Router	Roles	in	OSPF	Hierarchical	Topology
The	topology	just	described	is	hierarchical	because	the	routers	in	the	AS	are	no
longer	all	peers	in	a	single	group.	The	two-level	hierarchy	consists	of	the	lower
level,	which	contains	individual	areas,	and	the	higher	level	that	connects	them
together,	which	is	called	the	backbone	and	is	designated	as	Area	0.	The	routers
play	different	roles,	depending	on	where	they	are	located	and	how	they	are
connected.	There	are	three	different	labels	applied	to	routers	in	this
configuration:

Internal	Routers	These	are	routers	that	are	connected	only	to	other	routers	or
networks	within	a	single	area.	They	maintain	an	LSDB	for	only	that	area	and
have	no	knowledge	of	the	topology	of	other	areas.

Area	Border	Routers	These	are	routers	that	connect	to	routers	or	networks	in
more	than	one	area.	They	maintain	an	LSDB	for	each	area	of	which	they	are	a
part.	They	also	participate	in	the	backbone.

Backbone	Routers	These	are	routers	that	are	a	part	of	the	OSPF	backbone.	By
definition,	these	include	all	area	border	routers,	since	those	routers	pass	routing
information	between	areas.	However,	a	backbone	router	may	also	be	a	router
that	connects	only	to	other	backbone	(or	area	border)	routers	and	is	therefore	not
part	of	any	area	(other	than	Area	0).

To	summarize,	an	area	border	router	is	also	always	a	backbone	router,	but	a
backbone	router	is	not	necessarily	an	area	border	router.

NOTE

The	classifications	that	I	just	mentioned	are	independent	of	the	designation	of	a	router	as	being	a
boundary	router,	as	described	in	the	previous	section.	A	boundary	router	is	one	that	talks	to	routers	or



networks	outside	the	AS.	A	boundary	router	will	also	often	be	an	area	border	router	or	a	backbone
router,	but	this	is	not	necessarily	the	case.	A	boundary	router	could	be	an	internal	router	in	one	area.

The	point	of	all	this	is	the	same	as	the	point	of	using	AS	architecture	in	the	first
place.	The	topology	of	each	area	matters	only	to	the	devices	in	that	area.	This
means	that	changes	in	that	topology	need	to	be	propagated	only	within	the	area.
It	also	means	that	internal	routers	within	Area	1	don't	need	to	know	about
anything	that	goes	on	within	Area	2	and	don't	need	to	maintain	information
about	any	area	other	than	their	own.	Only	the	backbone	routers	(which	include	at
least	one	area	border	router	within	each	area)	need	to	know	the	details	of	the
entire	AS.	These	backbone	routers	condense	information	about	the	areas	so	that
only	a	summary	of	each	area's	topology	needs	to	be	advertised	on	the	backbone.

Routing	in	a	hierarchical	topology	AS	is	performed	in	one	of	two	ways,
depending	on	the	location	of	the	devices:

If	the	source	and	destination	are	in	the	same	area,	routing	occurs	only	over
networks	and	routers	in	that	area.

If	the	source	and	destination	are	in	different	areas,	the	datagram	is	routed
from	the	source	to	an	area	border	router	in	the	source's	area,	over	the
backbone	to	an	area	border	router	in	the	destination's	area,	and	then	finally
delivered	to	the	destination.

Again,	this	is	analogous	to	how	routing	works	between	ASes	in	the	big-picture
internetwork.

Let's	take	an	example	to	help	make	things	more	concrete.	We	can	use	the	AS	in
the	preceding	example.	This	AS	is	really	small	enough	that	it's	unlikely	we
would	use	hierarchical	topology,	but	it	will	suffice	for	sake	of	illustration.	Let's
divide	this	AS	into	two	areas,	as	follows	(see	Figure	39-2):

Area	1	contains	Network	N1,	Router	RA,	Network	N2,	Router	RB,	and
Router	RC.

Area	2	contains	Router	RB,	Router	RC,	Network	N3,	Router	RD,	and
Network	N4.



Figure	39-2.	Sample	OSPF	hierarchical	topology	AS	This	is	the	same	AS	you	saw	in	Figure	39-1,	but
it's	arranged	into	OSPF	hierarchical	topology.	The	AS	has	been	split	evenly	into	Area	1	and	Area	2.
Area	0	contains	Routers	RB	and	RC,	which	are	area	border	routers	for	both	Area	1	and	Area	2	in	this

very	simple	example.

In	this	example,	Router	RA	and	Router	RD	are	internal	routers.	Router	RB	and
Router	RC	are	area	border	routers	that	make	up	the	backbone	(Area	0)	of	the
internetwork.	Routers	RA,	RB,	and	RC	will	maintain	an	LSDB	describing	Area
1,	while	Routers	RB,	RC,	and	RD	will	maintain	an	LSDB	describing	Area	2.
Routers	RB	and	RC	maintain	a	separate	LSDB	for	the	backbone.	There	is	no
backbone	router	other	than	the	area	border	routers	RB	and	RC.	However,
suppose	we	had	a	Router	RE	that	had	only	direct	connections	to	Routers	RB	and
RC.	This	would	be	a	backbone	router	only.

This	example	has	illustrated	the	chief	drawback	to	hierarchical	topology
mentioned	earlier	in	this	chapter:	complexity.	For	large	ASes,	however,	it	has
significant	advantages	over	making	every	router	a	peer.	At	the	same	time,	the
conceptual	complexity	is	made	worse	by	the	need	for	very	careful	design,
especially	of	the	backbone.	If	the	hierarchy	is	not	set	up	properly,	a	single	failure
of	a	link	between	routers	could	disrupt	the	backbone	and	isolate	one	or	more	of
the	areas	(including	all	the	devices	on	all	networks	within	the	area!).



OSPF	Route	Determination	Using	SPF	Trees
The	key	data	structure	maintained	by	each	router	in	an	OSPF	AS	is	the	LSDB,
which	contains	a	representation	of	the	topology	of	either	the	entire	AS	(in	the
basic	topology)	or	a	single	area	(in	the	hierarchical	topology).	As	you	have	seen,
each	router	in	the	AS	or	area	has	the	same	LSDB,	so	it	represents	a	neutral	view
of	the	connections	between	routers	and	networks.

The	SPF	Tree
Each	router	needs	to	participate	in	keeping	the	LSDB	up-to-date,	but	it	also	has
its	own	concerns.	It	needs	to	be	able	to	determine	what	routes	it	should	use	for
datagrams	it	receives	from	its	connected	networks—this	is,	after	all,	the	entire
point	of	a	routing	protocol.	To	find	the	best	route,	it	must	determine	the	shortest
path	between	itself	and	each	router	or	network	in	the	AS	or	area.	For	this,	it
needs	not	a	neutral	view	of	the	internetwork	but	a	view	of	it	from	its	own
perspective.

The	router	creates	this	perspective	by	taking	the	information	in	the	LSDB	and
transforming	it	into	an	SPF	tree.	The	term	tree	refers	to	a	data	structure	with	a
root	that	has	branches	coming	out	that	go	to	other	nodes,	which	also	have
branches.	The	structure	as	a	whole	looks	like	an	upside-down	tree.	In	this	case,
the	SPF	tree	shows	the	topology	information	of	the	AS	or	area	with	the	router
that	constructs	the	tree	at	the	top.	Each	directly	connected	router	or	network	is
one	step	down	in	the	tree;	each	router	or	network	connected	to	these	first-level
routers	or	networks	is	then	connected,	and	so	on,	until	the	entire	AS	or	area	has
been	represented.

Again,	the	router	doesn't	really	make	the	tree;	it	is	just	an	algorithmic	calculation
performed	by	the	computer	within	the	router.	Once	this	is	done,	however,	this
logical	construct	can	be	used	to	calculate	the	cost	for	that	router	to	reach	any
router	or	network	in	the	AS	(or	area).	In	some	cases,	there	may	be	more	than	one
way	to	reach	a	router	or	network,	so	the	tree	is	constructed	to	show	only	the
shortest	(lowest-cost)	path	to	the	network.

Each	router	is	responsible	only	for	sending	a	datagram	on	the	next	leg	of	its
journey,	and	not	for	what	happens	to	the	journey	as	a	whole.	After	the	SPF	tree
is	created,	the	router	will	create	a	routing	table	with	an	entry	for	each	network,



is	created,	the	router	will	create	a	routing	table	with	an	entry	for	each	network,
showing	the	cost	to	reach	it,	and	also	the	next-hop	router	to	use	to	reach	it.

The	SPF	tree	is	created	dynamically	based	on	the	current	state	of	the	LSDB.	If
the	LSDB	ever	changes,	the	SPF	tree	and	the	routing	information	are
recalculated.

TIP

KEY	CONCEPT	To	determine	what	routes	it	should	use	to	reach	networks	in	its	AS,	a	router	generates
a	shortest-path	first	tree	(SPF	tree)	from	its	LSDB.	This	tree	contains	the	same	basic	information	as	the
LSDB,	but	presents	it	from	the	point	of	view	of	the	router	doing	the	calculation,	so	that	router	can	see	the
costs	of	various	paths	to	different	networks.

OSPF	Route	Determination
I	can	almost	see	your	eyes	glazing	over,	so	let's	go	back	to	the	example	we	have
been	using	in	this	chapter.	Let's	assume	that	we	are	looking	at	the	AS	as	a	whole
in	basic	topology,	for	simplicity.	Table	39-2	repeats	the	LSDB	for	this	AS	shown
earlier	in	Table	39-1,	but	I	have	taken	the	liberty	of	replacing	the	bullets	with
cost	metrics;	these	are	shown	in	Figure	39-3	as	well.	Again,	remember	that	there
is	no	cost	to	reach	a	router	from	a	network,	so	those	links	have	a	nonzero	cost
only	going	from	the	router	to	the	network.

Table	39-2.	Sample	OSPF	LSDB	with	Costs

To	Router/Network From	Router From	Network

	 RA RB RC RD N1 N2 N3 N4

RA 	 	 	 	 0 0 	 	

RB 	 	 5 	 	 0 0 	

RC 	 5 	 	 	 0 0 	

RD 	 	 	 	 	 	 0 0

N1 2 	 	 	 	 	 	 	

N2 3 4 3 	 	 	 	 	

N3 	 5 6 1 	 	 	 	



N3 	 5 6 1 	 	 	 	

N4 	 	 	 4 	 	 	 	

Figure	39-3.	Sample	OSPF	AS	with	Costs	This	is	the	same	sample	AS	that	is	shown	in	Figure	39-1,	but
with	costs	assigned	to	each	of	the	links	between	routers	and	networks.	Costs	between	routers	and

networks	are	applied	only	in	the	direction	from	the	router	to	the	network.

Now	let's	construct	the	SPF	tree	for	RC.	We	can	do	this	in	iterations,	as	follows
(see	Figure	39-4).

Figure	39-4.	OSPF	route	determination	using	the	SPF	algorithm	This	diagram	shows	graphically	how	a
router,	in	this	case	Router	RC,	determines	the	best	path	to	various	networks.	The	arrows	here	represent
not	the	transfer	of	data,	but	rather	the	examination	of	various	links	from	a	router	to	other	routers	or
networks.	In	panel	1,	Router	RC	examines	its	LSDB	and	determines	the	cost	for	each	of	its	directly
linked	devices.	In	panel	2,	the	second	level	of	the	SPF	tree	is	constructed	by	adding	to	those	numbers
the	costs	of	all	routers/networks	that	connect	to	the	routers/networks	found	in	panel	1.	(The	black

arrows	represent	looking	back	in	the	direction	we	came	from	in	the	prior	step,	which	we	don't	pursue.)
In	panel	3	the	process	continues,	resulting	in	the	determination	of	a	cost	of	5	for	Router	RC	to	reach

Network	N1	and	10	to	reach	Network	N4.

First	Level



To	construct	the	first	level	of	the	tree,	we	look	for	all	devices	that	Router	RC	can
reach	directly.	We	find	the	following:

Router	RB,	with	a	cost	of	5

Network	N2,	with	a	cost	of	3

Network	N3,	with	a	cost	of	6

Second	Level
To	construct	the	second	level,	we	look	for	all	devices	that	the	devices	on	the	first
level	can	reach	directly.	We	then	add	the	cost	to	reach	each	device	on	the	first
level	to	the	cost	of	each	device	at	the	second	level.

RB:	Router	RB	has	a	cost	of	5	and	can	reach	the	following:

Router	RC,	with	a	cost	of	5,	total	cost	of	10

Network	N2,	with	a	cost	of	4,	total	cost	of	9

Network	N3,	with	a	cost	of	5,	total	cost	of	10

N2:	Network	N2	has	a	cost	of	3	and	can	reach	the	following:

Router	RA,	with	a	cost	of	0,	total	cost	of	3

Router	RB,	with	a	cost	of	0,	total	cost	of	3

Router	RC,	with	a	cost	of	0,	total	cost	of	3

N3:	Network	N3	has	a	cost	of	6	and	can	reach	the	following:

Router	RB,	with	a	cost	of	0,	total	cost	of	6

Router	RC,	with	a	cost	of	0,	total	cost	of	6

Router	RD,	with	a	cost	of	0,	total	cost	of	6

You	probably	can	see	immediately	that	we	ended	up	with	a	number	of	different
paths	to	the	same	devices	or	networks,	some	of	which	make	no	sense.	For
example,	we	don't	really	care	about	any	path	that	goes	to	Router	RC,	since	we
are	Router	RC!	Similarly,	we	can	weed	out	certain	paths	immediately	because
we	already	have	a	shorter	path	to	them.	Taking	a	path	through	Router	RB	to
Network	N3	with	a	cost	of	10	makes	no	sense	when	we	can	go	directly	at	the
first	level	for	a	cost	of	6.	So,	after	separating	out	the	chaff,	we	end	up	with	the



following	wheat	at	the	second	level:

Network	N2	to	Router	RA,	with	a	cost	of	3

Network	N3	to	Router	RD,	with	a	cost	of	6

Third	Level
We	continue	the	process	by	looking	for	devices	that	connect	to	the	weeded-out
devices	that	we	found	on	the	second	level	(this	time	I	am	only	showing	the
meaningful	ones):

RA:	Router	RA	connects	to	Network	N1,	with	a	cost	of	2,	total	cost	of	5.

RD:	Router	RD	connects	to	Network	N4,	with	a	cost	of	4,	total	cost	of	10.

In	this	simple	example,	we	only	need	three	levels	to	construct	the	tree	for	Router
RC.	(We	would	need	more	for	Router	RA	or	RD.)	The	final	results	would	be	the
tree	shown	in	Figure	39-5	and	the	routing	information	for	RC	to	the	four
networks	that	is	shown	in	Table	39-3.

Figure	39-5.	OSPF	calculated	SPF	tree	This	is	a	graphical	representation	of	the	SPF	tree	calculated	in
Figure	39-4,	showing	only	the	final	results	of	the	calculation	process.

Table	39-3.	Example	of	Calculated	OSPF	Routes

Destination	Network Cost Next	Hop

N1 5 RA

N2 3 (local)

N3 6 (local)

N4 10 RD



N4 10 RD

This	is	what	you	would	expect	in	this	very	simple	example.	Note	that	there	are
no	specific	entries	for	other	routers,	since	they	are	the	means	to	the	end	of
reaching	networks.	However,	if	one	of	the	other	routers	were	a	boundary	router
that	connected	the	AS	to	the	outside	world,	there	would	be	entries	for	the
networks	to	which	the	boundary	router	connected,	so	Router	RC	knew	to	send
traffic	for	those	networks	to	that	boundary	router.



OSPF	General	Operation
As	a	routing	protocol,	the	main	job	of	OSPF	is	to	facilitate	the	exchange	of
routing	information	between	routers.	Each	router	in	an	OSPF	AS	that	runs	OSPF
software	is	responsible	for	various	tasks,	such	as	setting	timers	to	control	certain
activities	that	must	occur	on	a	regular	basis,	and	the	maintenance	of	important
data	structures,	such	as	the	LSDB.	Most	important,	each	OSPF	router	must	both
generate	and	respond	to	OSPF	messages.	It	is	this	messaging	system	that	allows
important	routing	information	to	be	shared	within	an	AS	or	area,	which	makes	it
crucial	to	understanding	how	OSPF	works.	So	it's	worth	starting	a	discussion	of
OSPF	operation	by	taking	a	look	at	the	message	types	and	how	they	are	used.

OSPF	Message	Types
Unlike	RIP,	OSPF	does	not	send	its	information	using	the	User	Datagram
Protocol	(UDP).	Instead,	OSPF	forms	IP	datagrams	directly,	packaging	them
using	protocol	number	89	for	the	Internet	Protocol	(IP)	Protocol	field.	OSPF
defines	five	different	message	types,	for	various	types	of	communication:

Hello	As	the	name	suggests,	these	messages	are	used	as	a	form	of	greeting	to
allow	a	router	to	discover	other	adjacent	routers	on	its	local	links	and	networks.
The	messages	establish	relationships	between	neighboring	devices	(called
adjacencies)	and	communicate	key	parameters	about	how	OSPF	is	to	be	used	in
the	AS	or	area.

Database	Description	These	messages	contain	descriptions	of	the	topology	of
the	AS	or	area;	that	is,	they	convey	the	contents	of	the	LSDB	for	the	AS	or	area
from	one	router	to	another.	Communicating	a	large	LSDB	may	require	several
messages	to	be	sent;	this	is	done	by	designating	the	sending	device	as	a	master
device	and	sending	messages	in	sequence,	with	the	slave	(recipient	of	the	LSDB
information)	responding	with	acknowledgments.

Link	State	Request	These	messages	are	used	by	one	router	to	request	updated
information	about	a	portion	of	the	LSDB	from	another	router.	The	message
specifies	the	link(s)	about	which	the	requesting	device	wants	more	current
information.



Link	State	Update	These	messages	contain	updated	information	about	the	state
of	certain	links	on	the	LSDB.	They	are	sent	in	response	to	a	Link	State	Request
message,	and	they	are	also	broadcast	or	multicast	by	routers	on	a	regular	basis.
Their	contents	are	used	to	update	the	information	in	the	LSDBs	of	routers	that
receive	them.

Link	State	Acknowledgment	These	messages	provide	reliability	to	the	link-
state	exchange	process	by	explicitly	acknowledging	receipt	of	a	Link	State
Update	message.

OSPF	Messaging
The	use	of	these	messages	is	approximately	as	follows.	When	a	router	first	starts
up	it	will	send	out	a	Hello	message	to	see	if	any	neighboring	routers	are	around
running	OSPF,	and	it	will	also	send	them	out	periodically	to	discover	any	new
neighbors	that	may	show	up.	When	an	adjacency	is	set	up	with	a	new	router,
Database	Description	messages	will	then	be	sent	to	initialize	the	router's	LSDB.

Routers	that	have	been	initialized	enter	a	steady	state	mode.	They	will	each
routinely	flood	their	local	networks	with	Link	State	Update	messages,
advertising	the	state	of	their	links.	They	will	also	send	out	updates	when	they
detect	a	change	in	topology	that	needs	to	be	communicated.	They	will	receive
Link	State	Update	messages	sent	by	other	devices,	and	respond	with	Link	State
Acknowledgments	accordingly.	Routers	may	also	request	updates	using	Link
State	Request	messages.

When	the	hierarchical	topology	is	used,	internal	routers	maintain	a	single	LSDB
and	perform	messaging	only	within	an	area.	Area	border	routers	have	multiple
LSDBs	and	perform	messaging	in	more	than	one	area.	They,	along	with	any
other	OSPF	backbone	routers,	also	exchange	messaging	information	on	the
backbone,	including	summarized	link-state	information	for	the	areas	they	border.

Again,	all	of	this	is	highly	simplified;	the	OSPF	standard	contains	pages	and
pages	of	detailed	rules	and	procedures	governing	the	exact	timing	for	sending
and	receiving	messages.

TIP

KEY	CONCEPT	The	operation	of	OSPF	involves	five	message	types.	Hello	messages	establish	contact



between	routers.	Database	Description	messages	initialize	a	router's	LSDB.	Routine	LSDB	updates	are
sent	using	Link	State	Update	messages,	which	are	acknowledged	using	Link	State	Acknowledgments.	A
device	may	also	request	a	specific	update	using	a	Link	State	Request	message.

OSPF	Message	Authentication
The	OSPF	standard	specifies	that	all	OSPF	messages	are	authenticated	for
security.	This	is	a	bit	misleading,	however,	since	one	of	the	authentication
methods	supported	is	null	authentication,	meaning	no	authentication	is	used.
More	security	is	provided	by	using	the	optional	simple	password	authentication
method,	and	the	most	security	is	available	through	the	use	of	cryptographic
authentication.	These	methods	are	described	in	Appendix	D	of	RFC	2328.

NOTE

The	Hello	messages	used	in	OSPF	are	also	sometimes	called	the	Hello	Protocol.	This	is	especially	poor
terminology,	because	there	is	an	actual	routing	protocol	called	the	HELLO	Protocol.	The	two	protocols
are	not	related.	However,	I	suspect	that	the	OSPF	Hello	messages	may	have	been	so	named	because	they
serve	a	similar	purpose	to	the	messages	used	in	the	independent	HELLO	Protocol.



OSPF	Message	Formats
As	explained	in	the	previous	section,	OSPF	uses	five	different	types	of	messages
to	communicate	both	link-state	and	general	information	between	routers	within
an	AS	or	area.	To	help	illustrate	how	the	OSPF	messages	are	used,	it's	worth
taking	a	look	at	the	format	of	each	of	these	messages.

OSPF	Common	Header	Format
Naturally,	each	type	of	OSPF	message	includes	a	slightly	different	set	of
information;	otherwise,	there	wouldn't	be	different	message	types.	However,	all
message	types	share	a	similar	message	structure,	beginning	with	a	shared	24-
byte	header.	This	common	header	allows	certain	standard	information	to	be
conveyed	in	a	consistent	manner,	such	as	the	number	of	the	version	of	OSPF	that
generated	the	message.	It	also	allows	a	device	receiving	an	OSPF	message	to
quickly	determine	which	type	of	message	it	has	received,	so	it	knows	whether	or
not	it	needs	to	bother	examining	the	rest	of	the	message.	Table	39-4	and
Figure	39-6	show	the	common	OSPF	header	format.

Table	39-4.	OSPF	Common	Header	Format

Field	Name Size
(Bytes)

Description

Version	# 1 Set	to	2	for	OSPF	version	2.

Type 1 Indicates	the	type	of	OSPF	message:

1	=	Hello

2	=	Database	Description

3	=	Link	State	Request

4	=	Link	State	Update

5	=	Link	State	Acknowledgment

Packet	Length 2 The	length	of	the	message,	in	bytes,	including	the	24	bytes	of	this
header.

Router	ID 4 The	ID	of	the	router	that	generated	this	message	(generally	its	IP
address	on	the	interface	over	which	the	message	was	sent).



Area	ID 4 An	identification	of	the	OSPF	area	to	which	this	message	belongs,
when	areas	are	used.

Checksum 2 A	16-bit	checksum	computed	in	a	manner	similar	to	a	standard	IP
checksum.	The	entire	message	is	included	in	the	calculation	except
for	the	Authentication	field.

AuType 2 Indicates	the	type	of	authentication	used	for	this	message:

0	=	No	Authentication

1	=	Simple	Password	Authentication

2	=	Cryptographic	Authentication

Authentication 8 A	64-bit	field	used	for	authentication	of	the	message,	as	needed.

Figure	39-6.	OSPF	common	header	format	Following	this	header,	the	body	of	the	message	includes	a
variable	number	of	fields	that	depend	on	the	message	type.	Each	of	the	message	formats	is	described	in

detail	in	RFC	2328.	Since	some	are	quite	long,	I	will	describe	their	fields	only	briefly	here.

OSPF	Hello	Message	Format
Hello	messages	have	a	Type	value	of	1	in	the	header,	and	the	field	structure
shown	in	Table	39-5	and	Figure	39-7	in	the	body	of	the	message.

Table	39-5.	OSPF	Hello	Message	Format

Field	Name Size
(Bytes)

Description

Network
Mask

4 The	subnet	mask	of	the	network	the	router	is	sending	to.



Mask

Hello	Interval 2 The	number	of	seconds	this	router	waits	between	sending	Hello
messages.

Options 1 Indicates	which	optional	OSPF	capabilities	the	router	supports.

Rtr	Pri 1 Indicates	the	router's	priority,	when	electing	a	backup	designated
router.

Router	Dead
Interval

4 The	number	of	seconds	a	router	can	be	silent	before	it	is	considered
to	have	failed.

Designated
Router

4 The	address	of	a	router	designated	for	certain	special	functions	on
some	networks.	Set	to	zeros	if	there	is	no	designated	router.

Backup
Designated
Router

4 The	address	of	a	backup	designated	router.	Set	to	all	zeros	if	there	is
no	backup	designated	router.

Neighbors Multiple
of	4

The	addresses	of	each	router	from	which	this	router	has	received
Hello	messages	recently.

Figure	39-7.	OSPF	Hello	message	format

OSPF	Database	Description	Message	Format
Database	Description	messages	have	a	Type	value	of	2	in	the	header	and	the
body	structure	depicted	in	Table	39-6	and	Figure	39-8.

Table	39-6.	OSPF	Database	Description	Message	Format

Field Size Description



Field
Name

Size
(Bytes)

Description

Interface
MTU

2 The	size	of	the	largest	IP	message	that	can	be	sent	on	this	router's
interface	without	fragmentation.

Options 1 Indicates	which	of	several	optional	OSPF	capabilities	the	router	supports.

Flags 1 Special	flags	used	to	indicate	information	about	the	exchange	of	Database
Description	messages,	as	shown	in	Table	39-7.

DD
Sequence
Number

4 Used	to	number	a	sequence	of	Database	Description	messages	so	that
they	are	kept	in	order.

LSA
Headers

Variable Contains	LSA	headers,	which	carry	information	about	the	LSDB.	See	the
"OSPF	Link	State	Advertisements	and	the	LSA	Header	Format"	section
later	in	this	chapter	for	more	information	about	LSAs.	Please	add	correct
cross-ref	info.

Table	39-7.	OSPF	Database	Description	Message	Flags

Subfield
Name

Size
(Bytes)

Description

Reserved 5/8	(5
bits)

Reserved:	Sent	and	received	as	zero.

I 1/8	(1
bit)

I-Bit:	Set	to	1	to	indicate	that	this	is	the	first	(initial)	in	a	sequence	of
Database	Description	messages.

M 1/8	(1
bit)

M-Bit:	Set	to	1	to	indicate	that	more	Database	Description	messages
follow	this	one.

MS 1/8	(1
bit)

MS-Bit:	Set	to	1	if	the	router	sending	this	message	is	the	master	in	the
communication,	or	0	if	it	is	the	slave.



Figure	39-8.	OSPF	Database	Description	message	format

OSPF	Link	State	Request	Message	Format
Link	State	Request	messages	have	a	Type	value	of	3	in	the	header.	Following	the
header	comes	one	or	more	sets	of	three	fields,	each	of	which	identify	an	LSA	for
which	the	router	is	requesting	an	update,	as	shown	in	Figure	39-9.	Each	LSA
identification	has	the	format	described	in	Table	39-8.

Table	39-8.	OSPF	Link	State	Request	Message	Format

Field	Name Size
(Bytes)

Description

LS	Type 4 The	type	of	LSA	being	sought.

Link	State	ID 4 The	identifier	of	the	LSA,	usually	the	IP	address	of	either	the
router	or	network	linked.

Advertising
Router

4 The	ID	of	the	router	that	created	the	LSA	whose	update	is	being
sought.



Figure	39-9.	OSPF	Link	State	Request	Message	format

OSPF	Link	State	Update	Message	Format
Link	State	Update	messages	have	a	Type	value	of	4	in	the	header	and	the	fields
illustrated	in	Table	39-9	and	Figure	39-10.

Table	39-9.	OSPF	Link	State	Update	Message	Format

Field
Name

Size
(Bytes)

Description

#
LSAs

4 The	number	of	LSAs	included	in	this	message.

LSAs Variable One	or	more	LSAs.	See	the	"OSPF	Link	State	Advertisements	and	the	LSA
Header	Format"	section	later	in	this	chapter	for	more	details.

Figure	39-10.	OSPF	Link	State	Update	message	format

OSPF	Link	State	Acknowledgment	Message



Format
Link	State	Acknowledgment	messages	have	a	Type	value	of	5	in	the	header.
They	then	contain	a	list	of	LSA	headers	corresponding	to	the	LSAs	being
acknowledged,	as	shown	in	Table	39-10	and	Figure	39-11.

Table	39-10.	OSPF	Link	State	Acknowledgment	Message	Format

Field	Name Size	(Bytes) Description

LSA	Headers Variable Contains	LSA	headers	that	identify	the	LSAs	acknowledged.

Figure	39-11.	OSPF	Link	State	Acknowledgment	message	format

OSPF	Link	State	Advertisements	and	the	LSA
Header	Format
Several	of	the	previous	message	types	include	LSAs,	which	are	the	fields	that
actually	carry	topological	information	about	the	LSDB.	There	are	several	types
of	LSAs,	which	are	used	to	convey	information	about	different	types	of	links.
Like	the	OSPF	messages	themselves,	each	LSA	has	a	common	header	with	20
bytes	and	then	a	number	of	additional	fields	that	describe	the	link.

The	LSA	header	contains	sufficient	information	to	identify	the	link.	It	uses	the
subfield	structure	shown	in	Table	39-11	and	Figure	39-12.

Table	39-11.	OSPF	Link	State	Advertisement	Header	Format

Subfield
Name

Size
(Bytes)

Description

LS	Age 2 The	number	of	seconds	elapsed	since	the	LSA	was	created.

Options 1 Indicates	which	of	several	optional	OSPF	capabilities	the	router
supports.



supports.

LS	Type 1 Indicates	the	type	of	link	this	LSA	describes,	as	shown	in	Table	39-

12.

Link	State	ID 4 Identifies	the	link.	This	usually	is	the	IP	address	of	either	the	router
or	the	network	the	link	represents.

Advertising
Router

4 The	ID	of	the	router	originating	the	LSA.

LS	Sequence
Number

4 A	sequence	number	used	to	detect	old	or	duplicate	LSAs.

LS	Checksum 2 A	checksum	of	the	LSA	for	data	corruption	protection.

Length 2 The	length	of	the	LSA,	including	the	20	bytes	of	the	header.

Table	39-12.	OSPF	Link	State	Advertisement	Header	LS	Types

Value Link	Type Description

1 Router-LSA Link	to	a	router.

2 Network-LSA Link	to	a	network.

3 Summary-LSA	(IP
Network)

When	areas	are	used,	summary	information	is	generated	about	a
network.

4 Summary-LSA
(ASBR)

When	areas	are	used,	summary	information	is	generated	about	a
link	to	an	AS	boundary	router.

5 AS-External-LSA An	external	link	outside	the	AS.

Figure	39-12.	OSPF	Link	State	Advertisement	header	format



Following	the	LSA	header	comes	the	body	of	the	LSA.	The	specific	fields	in	the
body	depend	on	the	value	of	the	LS	Type	field	(see	Table	39-12).	Here	is	a
summary:

For	normal	links	to	a	router,	the	LSA	includes	an	identification	of	the	router
and	the	metric	to	reach	it,	as	well	as	details	about	the	router	such	as	whether	it
is	a	boundary	or	area	border	router.

LSAs	for	networks	include	a	subnet	mask	and	information	about	other	routers
on	the	network.

Summary	LSAs	include	a	metric	and	a	summarized	address	as	well	as	a
subnet	mask.

External	LSAs	include	a	number	of	additional	fields	that	allow	the	external
router	to	be	communicated.

Refer	to	Appendix	A	of	RFC	2328	if	you	want	all	the	details	about	the	fields	in
the	LSA	body.



Chapter	40.	BORDER	GATEWAY
PROTOCOL	(BGP/BGP-4)

Modern	TCP/IP	internetworks	are	composed	of	autonomous	systems	(ASes)	that
are	run	independently.	Each	may	use	an	interior	routing	protocol	such	as	Routing
Information	Protocol	(RIP),	Open	Shortest	Path	First	(OSPF),	Interior	Gateway
Routing	Protocol	(IGRP),	or	Enhanced	Interior	Gateway	Routing	Protocol
(EIGRP)	to	select	routes	between	networks	within	the	AS.	To	form	larger
internetworks,	and	especially	the	"mother	of	all	internetworks,"	the	Internet,
these	ASes	must	be	connected	together.	This	requires	use	of	a	consistent	exterior
routing	protocol	that	all	ASes	can	agree	upon,	and	in	today's	TCP/IP,	that
protocol	is	the	Border	Gateway	Protocol	(BGP).

If	you	were	to	ask	the	average	Internet	user,	or	even	the	typical	network
administrator,	to	make	a	list	of	the	ten	most	important	TCP/IP	protocols,	BGP
probably	wouldn't	show	up	frequently.	Routing	protocols	are	worker	bees	of	the
TCP/IP	protocol	suite,	and	they	just	are	not	very	exciting.	The	reality,	however,
is	that	BGP	is	a	critically	important	protocol	to	the	operation	of	larger
internetworks	and	the	Internet	itself.	It	is	the	glue	that	binds	smaller
internetworks	(ASes)	together,	and	it	ensures	that	every	organization	is	able	to
share	routing	information.	It	is	this	function	that	lets	us	take	disparate	networks
and	internetworks	and	find	efficient	routes	from	any	host	to	any	other	host,
regardless	of	location.

In	this	chapter,	I	describe	the	characteristics,	general	operation,	and	detailed
operation	of	BGP.	I	start,	as	usual,	with	an	overview	of	the	protocol	and	discuss
its	history,	standards,	and	versions,	including	a	discussion	of	its	key	features	and
characteristics.	I	then	cover	basic	operational	concepts,	including	topology,	the
notion	of	BGP	speakers,	and	neighbor	relationships.	I	discuss	BGP	traffic	types



and	how	policies	can	be	used	to	control	traffic	flows	on	the	internetwork.	I
explain	how	BGP	routers	store	and	advertise	routes	and	how	Routing
Information	Bases	function.	I	describe	the	basic	algorithm	used	by	BGP	and	how
path	attributes	describe	routes.	I	provide	a	summary	of	how	the	BGP	route
selection	process	operates.	I	then	give	a	general	description	of	BGP's	operation
and	its	high-level	use	of	various	messages.	Finally,	I	present	a	more	detailed
analysis	of	the	different	message	types,	how	they	are	used,	and	their	format.

BGP	is	another	in	the	rather	large	group	of	protocols	and	technologies	that	is	so
complex	it	would	take	dozens	of	chapters	to	do	justice.	Therefore,	I	include	here
my	somewhat	standard	disclaimer	that	you	will	find	in	this	chapter	only	a
relatively	high-level	look	at	BGP.	You	will	need	to	refer	to	the	BGP	standards
(described	in	the	section	on	BGP	standards	and	versions)	if	you	need	more
details.

NOTE

The	current	version	of	BGP	is	version	4,	also	called	BGP-4.	This	is	the	only	version	widely	used	today,
so	unless	otherwise	indicated,	assume	that	I'm	talking	about	BGP-4	wherever	you	see	BGP.

BGP	Overview
As	I	described	briefly	in	the	overview	of	routing	protocol	concepts	in
Chapter	37,	the	way	that	routers	were	connected	in	the	early	Internet	was	quite
different	than	it	is	today.	The	early	Internet	had	a	set	of	centralized	routers
functioning	as	a	core	AS.	These	routers	used	the	Gateway-to-Gateway	Protocol
(GGP)	for	communication	between	them	within	the	AS	and	the	aptly	named
Exterior	Gateway	Protocol	(EGP)	to	talk	to	routers	outside	the	core.	GGP	and
EGP	are	discussed	in	Chapter	41.

When	the	Internet	grew	and	moved	to	AS	architecture,	EGP	was	still	able	to
function	as	the	exterior	routing	protocol	for	the	Internet.	However,	as	the	number
of	ASes	in	an	internetwork	grew,	the	importance	of	communication	between
them	grew	as	well.	EGP	was	functional	but	had	several	weaknesses	that	became
more	problematic	as	the	Internet	expanded.	It	was	necessary	to	define	a	new
exterior	routing	protocol	that	would	provide	enhanced	capabilities	for	use	on	the
growing	Internet.



In	June	1989,	the	first	version	of	this	new	routing	protocol	was	formalized,	with
the	publishing	of	RFC	1105,	"A	Border	Gateway	Protocol	(BGP)."	This	initial
version	of	the	BGP	standard	defined	most	of	the	concepts	behind	the	protocol,	as
well	as	key	fundamentals	such	as	messaging,	message	formats,	and	how	devices
operate	in	general	terms.	It	established	BGP	as	the	Internet's	exterior	routing
protocol	of	the	future.

BGP	Versions	and	Defining	Standards
Due	to	the	importance	of	a	protocol	that	spans	the	Internet,	work	continued	on
BGP	for	many	years	after	the	initial	standard	was	published.	The	developers	of
BGP	needed	to	correct	problems	with	the	initial	protocol,	refine	BGP's
operation,	improve	efficiency,	and	add	features.	It	was	also	necessary	to	make
adjustments	to	allow	BGP	to	keep	pace	with	other	changes	in	the	TCP/IP
protocol	suite,	such	as	the	invention	of	classless	addressing	and	routing.

The	result	of	this	ongoing	work	is	that	BGP	has	evolved	through	several	versions
and	standards.	These	are	sometimes	called	BGP-N,	where	N	is	the	version
number.	Table	40-1	shows	the	history	of	BGP	standards,	providing	the	RFC
numbers	and	names,	and	a	brief	summary	of	the	changes	made	in	each	version.

Table	40-1.	Border	Gateway	Protocol	(BGP)	Versions	and	Defining
Standards

RFC
Number

Date Name BGP
Version

Description

1105 June
1989

A
Border
Gateway
Protocol
(BGP)

BGP-1 Initial	definition	of	the	BGP.

1163 June
1990

A
Border
Gateway
Protocol
(BGP)

BGP-2 This	version	cleaned	up	several	issues	with	BGP-1
and	refined	the	meaning	and	use	of	several	of	the
message	types.	It	also	added	the	important	concept	of
path	attributes,	which	communicate	information
about	routes.	BGP-1	was	designed	around	the	notion
of	a	directional	topology,	with	certain	routers	being
up,	down,	or	horizontal	relative	to	each	other;	BGP-2
removed	this	concept,	making	BGP	better	suited	to



removed	this	concept,	making	BGP	better	suited	to
an	arbitrary	AS	topology.	(Note	that	the	RFC	title	is
not	a	typo;	they	didn't	put	"version	2"	in	the	title.)

1267 October
1991

Border
Gateway
Protocol
3	(BGP-
3)

BGP-3 This	version	optimized	and	simplified	route
information	exchange,	adding	an	identification
capability	to	the	messages	used	to	establish	BGP
communications,	and	incorporating	several	other
improvements	and	corrections.	(They	left	the	"A"	off
the	title	of	this	one	for	some	reason.)

1654 July
1994

A
Border
Gateway
Protocol
4	(BGP-
4)

BGP-4 Initial	standard	for	BGP-4,	revised	in	RFC	1771.

1771 March
1995

A
Border
Gateway
Protocol
4	(BGP-
4)

BGP-4 Current	standard	for	BGP-4.	The	primary	change	in
BGP-4	is	support	for	Classless	Inter-Domain	Routing
(CIDR).	The	protocol	was	changed	to	allow	prefixes
to	be	specified	that	represent	a	set	of	aggregated
networks.	Other	minor	improvements	were	also
made	to	the	protocol.

As	you	might	imagine,	changing	the	version	of	a	protocol	like	BGP	is	not	an
easy	undertaking.	Any	modification	of	the	protocol	would	require	the
coordination	of	many	different	organizations.	The	larger	the	Internet	grows,	the
more	difficult	this	would	be.	As	a	result,	despite	frequent	version	changes	in	the
early	1990s,	BGP-4	remains	today	the	current	version	of	the	standard	and	is	the
one	that	is	widely	used.	Unless	otherwise	specified,	any	mention	of	BGP	in	this
book	refers	to	BGP-4.

Supplementing	RFC	1771	are	three	other	consecutively	numbered	RFCs
published	simultaneously	with	it,	which	provide	supporting	information	about
BGP's	functions	and	use,	as	shown	in	Table	40-2.

Table	40-2.	Additional	Defining	Standards	for	BGP-4

RFC
Number

Name Description

1772 Application	of
the	Border
Gateway

Provides	additional	conceptual	information	on	the	operation	of
BGP	and	how	it	is	applied	to	and	used	on	the	Internet.	This
document	is	sometimes	considered	a	companion	of	RFC	1771



Gateway
Protocol	in	the
Internet

document	is	sometimes	considered	a	companion	of	RFC	1771
with	the	pair	defining	BGP-4.

1773 Experience	with
the	BGP-4
Protocol

Describes	the	experiences	of	those	testing	and	using	BGP-4	and
provides	information	that	justified	its	acceptance	as	a	standard.

1774 BGP-4	Protocol
Analysis

Provides	more	detailed	technical	information	about	the	operation
of	BGP-4.

TIP

KEY	CONCEPT	The	exterior	routing	protocol	used	in	modern	TCP/IP	internetworks	is	the	Border
Gateway	Protocol	(BGP).	Initially	developed	in	the	late	1980s	as	a	successor	to	the	Exterior	Gateway
Protocol	(EGP),	BGP	has	been	revised	many	times;	the	current	version	is	4,	so	BGP	is	also	commonly
called	BGP-4.	BGP's	primary	function	is	the	exchange	of	network	reachability	information	between
ASes	to	allow	each	AS	on	an	internetwork	to	send	messages	efficiently	to	every	other	one.

Overview	of	BGP	Functions	and	Features
If	I	were	to	summarize	the	job	of	BGP	in	one	phrase,	it	would	be	to	exchange
network	reachability	information	between	ASes	and	from	this	information
determine	routes	to	networks.	In	a	typical	internetwork	(and	in	the	Internet),
each	AS	designates	one	or	more	routers	that	run	BGP	software.	BGP	routers	in
each	AS	are	linked	to	those	in	one	or	more	other	ASes.	Each	BGP	stores
information	about	networks	and	the	routes	to	them	in	a	set	of	Routing
Information	Bases	(RIBs).	This	route	information	is	exchanged	between	BGP
routers	and	propagated	throughout	the	entire	internetwork,	allowing	each	AS	to
find	paths	to	each	other	AS,	and	thereby	enabling	routing	across	the	entire
internetwork.

BGP	supports	an	arbitrary	topology	of	ASes,	meaning	that	they	can	be	connected
in	any	manner.	An	AS	must	have	a	minimum	of	one	router	running	BGP,	but	can
have	more	than	one.	It	is	also	possible	to	use	BGP	to	communicate	between	BGP
routers	within	the	same	AS.

BGP	uses	a	fairly	complex	system	for	route	determination.	The	protocol	goes
beyond	the	limited	notion	of	considering	only	the	next	hop	to	a	network	the	way
distance-vector	algorithms	like	RIP	function.	Instead,	the	BGP	router	stores
more	complete	information	about	the	path	(sequence	of	ASes)	from	itself	to	a



network.	Special	path	attributes	describe	the	characteristics	of	paths	and	are	used
in	the	process	of	route	selection.	Because	of	its	storage	of	path	information,	BGP
is	sometimes	called	a	path-vector	protocol.
BGP	chooses	routes	using	a	deterministic	algorithm	that	assesses	path	attributes
and	chooses	an	efficient	route,	while	avoiding	router	loops	and	other	problem
conditions.	The	selection	of	routes	by	a	BGP	router	can	also	be	controlled
through	a	set	of	BGP	policies	that	specify,	for	example,	whether	an	AS	is	willing
to	carry	traffic	from	other	ASes.	However,	BGP	cannot	guarantee	the	most
efficient	route	to	any	destination,	because	it	cannot	know	what	happens	within
each	AS	and	therefore	what	the	cost	is	to	traverse	each	AS.

BGP's	operation	is	based	on	the	exchange	of	messages	that	perform	different
functions.	BGP	routers	use	Open	messages	to	contact	neighboring	routers	and
establish	BGP	sessions.	They	exchange	Update	messages	to	communicate
information	about	reachable	networks,	sending	only	partial	information	as
needed.	They	also	use	Keepalive	and	Notification	messages	to	maintain	sessions
and	inform	peers	of	error	conditions.	The	use	of	these	messages	is	explained
thoroughly	later	in	this	chapter.

TIP

KEY	CONCEPT	BGP	supports	an	arbitrary	topology	of	ASes.	Each	AS	using	BGP	assigns	one	or	more
routers	to	implement	the	protocol.	These	devices	then	exchange	messages	to	establish	contact	with	each
other	and	share	information	about	rates	through	the	internetwork	using	the	Transmission	Control
Protocol	(TCP).	BGP	employs	a	sophisticated	path	vector	route	calculation	algorithm	that	determines
routes	from	path	attributes	that	describe	how	different	networks	can	be	reached.

BGP	uses	the	Transmission	Control	Protocol	(TCP)	as	a	reliable	transport
protocol	so	that	it	can	take	advantage	of	the	many	connection	setup	and
maintenance	features	of	that	protocol.	This	also	means	that	BGP	doesn't	need	to
worry	about	issues	such	as	message	sequencing,	acknowledgments,	or	lost
transmissions.	Since	unauthorized	BGP	messages	could	wreak	havoc	with	the
operation	of	the	Internet,	BGP	includes	an	authentication	scheme	for	security.

NOTE

BGP	maintains	backward	compatibility	with	the	older	exterior	routing	protocol,	EGP.



BGP	Topology
In	the	preceding	section,	I	boiled	down	the	function	of	BGP	into	this	summary:
the	exchange	of	network	reachability	information	between	ASes	of	routers	and
networks,	and	the	determination	of	routes	from	this	information.	The	actual
method	that	BGP	uses	to	accomplish	this,	however,	is	fairly	complex.

One	of	the	most	important	characteristics	of	BGP	is	its	flexibility.	The	protocol
can	connect	together	any	internetwork	of	ASes	using	an	arbitrary	topology.	The
only	requirement	is	that	each	AS	have	at	least	one	router	that	is	able	to	run	BGP
and	that	this	router	connect	to	at	least	one	other	AS's	BGP	router.	Beyond	that,
"the	sky	is	the	limit,"	as	they	say.	BGP	can	handle	a	set	of	ASes	connected	in	a
full	mesh	topology	(each	AS	to	each	other	AS),	a	partial	mesh,	a	chain	of	ASes
linked	one	to	the	next,	or	any	other	configuration.	It	also	handles	changes	to
topology	that	may	occur	over	time.

Another	important	assumption	that	BGP	makes	is	that	it	doesn't	know	anything
about	what	happens	within	the	AS.	This	is	an	important	prerequisite	to	the
notion	of	an	AS	being	autonomous—it	has	its	own	internal	topology	and	uses	its
own	choice	of	routing	protocols	to	determine	routes.	BGP	just	takes	the
information	conveyed	to	it	from	the	AS	and	shares	it	with	other	ASes.

BGP	Speakers,	Router	Roles,	Neighbors,	and
Peers
Creating	a	BGP	internetwork	begins	with	the	designation	of	certain	routers	in
each	AS	as	ones	that	will	run	the	protocol.	In	BGP	parlance,	these	are	called
BGP	speakers,	since	they	speak	the	BGP	language.	A	protocol	can	reasonably	be
called	a	language,	but	I	have	not	encountered	this	notion	of	a	speaker	in	any
other	protocol,	so	it's	somewhat	interesting	terminology.

An	AS	can	contain	many	routers	that	are	connected	in	an	arbitrary	topology.	We
can	draw	a	distinction	between	routers	in	an	AS	that	are	connected	only	to	other
routers	within	the	AS	versus	those	that	connect	to	other	ASes.	Routers	in	the
former	group	are	usually	called	internal	routers,	while	those	in	the	latter	group
are	called	border	routers	in	BGP	(as	well	as	similar	names	in	other	protocols;	for



example,	in	OSPF	they	are	called	boundary	routers).

The	notion	of	a	border	is	the	basis	for	the	name	of	the	BGP	itself.	To	actually
create	the	BGP	internetwork,	the	BGP	speakers	bordering	each	AS	are
physically	connected	to	one	or	more	BGP	speakers	in	other	ASes,	in	whatever
topology	the	internetwork	designer	decrees.	When	a	BGP	speaker	in	one	AS	is
linked	to	a	BGP	speaker	in	another	AS,	they	are	deemed	neighbors.	The	direct
connection	between	them	allows	them	to	exchange	information	about	the	ASes
of	which	they	are	a	part.

Most	BGP	speakers	will	be	connected	to	more	than	one	other	speaker.	This
provides	both	greater	efficiency	in	the	form	of	more	direct	paths	to	different
networks	and	redundancy	to	allow	the	internetwork	to	cope	with	either	device	or
connection	failures.	It	is	possible	(and	in	many	cases,	likely)	for	a	BGP	speaker
to	have	neighbor	relationships	with	other	BGP	speakers	both	within	its	own	AS
and	outside	its	AS.	A	neighbor	within	the	AS	is	called	an	internal	peer,	while	a
neighbor	outside	the	AS	is	an	external	peer.	BGP	between	internal	peers	is
sometimes	called	Internal	BGP	(IBGP);	use	of	the	protocol	between	external
peers	is	External	BGP	(EBGP).	The	two	are	similar,	but	differ	in	certain	areas,
especially	path	attributes	and	route	selection.	You	can	see	an	example	of	BGP
topology	and	the	designation	of	internal	and	external	peers	in	Figure	40-1.

This	diagram	is	a	variation	on	Figure	37-1	in	Chapter	37.	It	shows	the	names
used	by	BGP	to	refer	to	different	types	of	routers	and	ASes.	Internal	routers	are
shown	in	faint	type,	while	border	routers	are	in	bold	type.	BGP	speakers	that
communicate	within	an	AS	are	internal	peers,	while	those	that	communicate
between	ASes	are	external	peers.	This	highly	simplified	internetwork	shows	two
stub	ASes,	both	of	which	only	connect	to	the	multihomed	AS	2.	A	peer
connection	between	BGP	speakers	can	be	either	a	direct	link	using	some	form	of
layer	2	technology	or	an	indirect	link	using	TCP.	This	allows	the	BGP	speakers
to	establish	BGP	sessions	and	then	exchange	routing	information,	using	the
messaging	system	you	will	see	later	in	this	chapter.	It	also	is	the	means	by	which
actual	end-user	traffic	moves	between	ASes.	External	peers	are	normally
connected	directly,	while	internal	peers	are	often	linked	indirectly.

You	will	see	in	a	moment	that	the	method	in	which	ASes	are	connected	has	an
important	impact	on	the	overall	function	of	the	internetwork	and	how	traffic	is
carried	on	it.



carried	on	it.

Figure	40-1.	Sample	BGP	topology	and	designations

TIP

KEY	CONCEPT	Each	router	configured	to	use	BGP	is	called	a	BGP	speaker;	these	devices	exchange
route	information	using	the	BGP	messaging	system.	Routers	that	connect	only	to	other	routers	in	the
same	AS	are	called	internal	routers,	while	those	that	connect	to	other	ASes	are	border	routers.
Neighboring	BGP	speakers	in	the	same	AS	are	called	internal	peers,	while	those	in	different	ASes	are
external	peers.

BGP	AS	Types,	Traffic	Flows,	and	Routing
Policies
When	we	connect	ASes	together	to	form	an	internetwork,	the	paths	between	AS
border	routers	form	the	conduit	by	which	messages	move	from	one	AS	to
another.	It	is	very	important	that	the	flow	of	messages	between	ASes	be
carefully	controlled.	Depending	on	circumstances,	we	may	wish	to	limit	or	even
prohibit	certain	types	of	messages	from	going	to	or	from	a	certain	AS.	These
decisions	in	turn	have	a	direct	impact	on	BGP	route	determination.

BGP	Traffic	Flow	and	Traffic	Types
The	flow	of	messages	in	an	internetwork	is	sometimes	collectively	called	traffic.



This	term	presents	a	good	analogy,	because	we	can	consider	the	matter	of	traffic
flow	control	in	a	BGP	internetwork	in	much	the	same	way	that	we	do	the	streets
of	a	city.	You	have	probably	seen	signs	on	residential	streets	that	say	"No
Through	Traffic"	or	"Local	Traffic	Only."	These	are	attempts	to	control	the	flow
of	traffic	over	those	streets.	A	more	extreme	example	of	this	would	be	a	street	in
the	neighborhood	where	I	used	to	live,	where	a	barricade	was	intentionally
erected	in	the	middle	to	turn	a	busy	through	street	into	a	pair	of	dead	ends.
Again,	the	goal	was	traffic	control.

These	measures	highlight	a	key	distinction	between	local	traffic	and	through
traffic	in	a	neighborhood.	The	very	same	categorization	is	important	in	BGP,	as
shown	here:

Local	Traffic	Traffic	carried	within	an	AS	that	either	originated	in	that	same	AS
or	is	intended	to	be	delivered	within	that	AS.	This	is	like	local	traffic	on	a	street.

Transit	Traffic	Traffic	that	was	generated	outside	that	AS	and	is	intended	to	be
delivered	outside	the	AS.	This	is	like	through	traffic	on	streets.

BGP	AS	Types
In	the	previous	section,	I	discussed	the	distinction	between	internal	routers	and
border	(or	boundary)	routers	in	an	AS.	We	can	make	a	similar	distinction
between	different	types	of	ASes,	based	on	how	they	are	interconnected	in	the
overall	BGP	topology.	There	are	two	main	types	of	ASes:

Stub	AS	This	is	an	AS	that	is	connected	to	only	one	other	AS.	It	is	comparable
to	a	cul-de-sac	(dead-end	street)	in	a	road	analogy;	usually,	only	vehicles	coming
from	or	going	to	houses	on	the	street	will	be	found	on	that	street.

Multihomed	AS	This	is	an	AS	that	is	connected	to	two	or	more	other	ASes.	It	is
comparable	to	a	through	street	in	the	road	analogy,	because	it	is	possible	that
vehicles	may	enter	the	street	and	pass	through	it,	without	stopping	at	any	of	the
street's	houses.

In	the	example	BGP	internetwork	in	Figure	40-1,	I	have	linked	border	routers	in
AS	2	to	both	AS	1	and	AS	3.	While	traffic	from	AS	2	can	flow	both	to	and	from
AS	1	and	AS	3,	it	is	possible	that	traffic	from	AS	1	may	also	flow	to	AS	3	and
vice	versa.	AS	2	acts	as	the	"through	street"	for	these	datagrams.



BGP	AS	Routing	Policies
The	reason	why	BGP	makes	a	distinction	between	traffic	types	and	AS	types	is
the	same	reason	why	it	is	done	on	the	streets:	Many	folks	have	a	dim	view	of
through	traffic.	In	a	neighborhood,	everyone	wants	to	be	able	to	get	from	their
homes	to	anywhere	they	need	to	go	in	the	city,	but	they	don't	want	a	lot	of	other
people	using	their	streets.	Similarly,	every	AS	must	use	at	least	one	other	AS	to
communicate	with	distant	ASes,	but	many	are	less	than	enthusiastic	about	being
a	conduit	for	a	lot	of	external	traffic.

This	reluctance	really	does	make	sense	in	many	cases,	either	in	the	case	of	a
neighborhood	or	in	the	case	of	BGP.	Having	many	cars	and	trucks	on	a
residential	street	can	be	a	problem	in	a	number	of	ways:	safety	issues,	wear	and
tear	on	the	road,	pollution,	and	so	forth.	Similarly,	if	a	multihomed	AS	was
forced	to	carry	all	transit	traffic	that	other	ASes	want	to	send	to	it,	it	might
become	overloaded.

To	provide	control	over	the	carrying	of	transit	traffic,	BGP	allows	an	AS	to	set
up	and	use	routing	policies.	These	are	sets	of	rules	that	govern	how	an	AS	will
handle	transit	traffic.	A	great	deal	of	flexibility	exists	in	how	an	AS	decides	to
handle	transit	traffic.	Some	of	the	many	options	include	the	following:

No	Transit	Policy	An	AS	can	have	a	policy	that	it	will	not	handle	transit	traffic
at	all.

Restricted	AS	Transit	Policy	An	AS	may	allow	for	the	handling	of	traffic	from
certain	ASes	but	not	others.	In	this	case,	it	tells	the	ASes	it	will	handle	that	they
may	send	it	traffic,	but	does	not	say	this	to	the	others.

Criteria-Based	Transit	Policy	An	AS	may	use	a	number	of	different	criteria	to
decide	whether	to	allow	transit	traffic.	For	example,	it	might	allow	transit	traffic
only	during	certain	times	or	only	when	it	has	enough	spare	capacity.

NOTE

An	AS	that	is	willing	to	carry	transit	traffic	is	sometimes	called	a	transit	AS.

In	a	similar	manner,	policies	can	be	set	that	control	how	an	AS	will	have	its	own
traffic	handled	by	other	ASes.	A	stub	AS	will	always	connect	to	the	internetwork
as	a	whole	using	the	single	AS	to	which	it	connects.	A	multihomed	AS,



as	a	whole	using	the	single	AS	to	which	it	connects.	A	multihomed	AS,
however,	may	have	policies	that	influence	route	selection	by	specifying	the
conditions	under	which	one	AS	should	be	used	over	another.	These	policies	may
be	based	on	considerations	of	security	(if	one	connecting	AS	is	deemed	more
secure	than	another),	performance	(if	one	AS	is	faster	than	another),	reliability,
or	other	factors.

TIP

KEY	CONCEPT	One	important	issue	in	BGP	is	how	to	handle	the	flow	of	traffic	between	ASes.	Each
AS	in	a	BGP	internetwork	is	either	a	stub	AS	if	it	connects	to	only	one	other	AS,	or	a	multihomed	AS	if
it	connects	to	two	or	more	others.	BGP	allows	the	administrators	of	a	multihomed	AS	to	establish
routing	policies	that	specify	under	what	conditions	the	AS	is	willing	to	handle	transit	traffic	(messages
sent	over	the	AS	whose	source	and	destination	are	both	external	to	that	AS).

Issues	with	Routing	Policies	and	Internetwork	Design
What	would	happen	to	a	city	if	every	street	only	allowed	local	traffic?	It	would
be	pretty	hard	to	get	around.	Of	course	this	problem	never	occurs	in	well-
designed	cities,	because	traffic	planners	understand	the	dual	need	for
connectivity	and	through-traffic	avoidance	in	residential	areas.	Cities	are	laid	out
in	a	somewhat	hierarchical	fashion,	so	local	traffic	funnels	to	thoroughfares
intended	specifically	to	carry	nonlocal	traffic.

The	same	basic	situation	exists	in	an	internetwork.	It	wouldn't	work	very	well	if
every	AS	declared	that	it	was	not	interested	in	carrying	transit	traffic!	Usually,
internetworks	are	designed	so	that	certain	ASes	are	intended	to	carry	large
amounts	of	transit	traffic.	This	is	typically	the	function	of	high-speed,	high-
capacity	backbone	connections	that	serve	other	ASes	as	customers.	An	AS	will
usually	carry	another	AS's	traffic	only	if	arrangements	have	been	made	to	allow
this.



BGP	Route	Storage	and	Advertisement
The	job	of	the	BGP	is	to	facilitate	the	exchange	of	route	information	between
BGP	devices	so	that	each	router	can	determine	efficient	routes	to	each	of	the
networks	on	an	IP	internetwork.	This	means	that	descriptions	of	routes	are	the
key	data	that	BGP	devices	work	with.	Every	BGP	speaker	is	responsible	for
managing	route	descriptions	according	to	specific	guidelines	established	in	the
BGP	standards.

BGP	Route	Information	Management	Functions
Conceptually,	the	overall	activity	of	route	information	management	can	be
considered	to	encompass	four	main	tasks:

Route	Storage	Each	BGP	stores	information	about	how	to	reach	networks	in	a
set	of	special	databases.	It	also	uses	databases	to	hold	routing	information
received	from	other	devices.

Route	Update	When	a	BGP	device	receives	an	Update	message	from	one	of	its
peers,	it	must	decide	how	to	use	this	information.	Special	techniques	are	applied
to	determine	when	and	how	to	use	the	information	received	from	peers	to
properly	update	the	device's	knowledge	of	routes.

Route	Selection	Each	BGP	uses	the	information	in	its	route	databases	to	select
good	routes	to	each	network	on	the	internetwork.

Route	Advertisement	Each	BGP	speaker	regularly	tells	its	peers	what	it	knows
about	various	networks	and	methods	to	reach	them.	This	is	called	route
advertisement	and	is	accomplished	using	BGP	Update	messages.	You'll	learn
more	about	these	messages	later	in	the	chapter.

BGP	Routing	Information	Bases	(RIBs)
The	heart	of	BGP's	system	of	routing	information	management	and	handling	is
the	database	where	routes	are	stored.	This	database	is	collectively	called	the
Routing	Information	Base	(RIB),	but	it	is	not	actually	a	monolithic	entity.	It	is
composed	of	three	separate	sections	that	are	used	by	a	BGP	speaker	to	handle
the	input	and	output	of	routing	information.	Two	of	these	sections	consist	of



several	individual	parts,	or	copies.

The	three	RIB	sections	(using	the	cryptic	names	given	them	by	the	BGP
standards)	are	as	follows:

Adj-RIBs-In	A	set	of	input	database	parts	that	holds	information	about	routes
received	from	peer	BGP	speakers.

Loc-RIB	The	local	RIB.	This	is	the	core	database	that	stores	routes	that	have
been	selected	by	this	BGP	device	and	are	considered	valid	to	it.

Adj-RIBs-Out	A	set	of	output	database	parts	that	holds	information	about	routes
that	this	BGP	device	has	selected	to	be	disseminated	to	its	peers.

Thus,	the	RIB	can	be	considered	either	a	single	database	or	a	set	of	related
databases,	depending	on	how	you	look	at	it.	(The	previous	divisions	are
conceptual	in	nature;	the	entire	RIB	can	be	implemented	as	a	single	database
with	an	internal	structure	representing	the	different	components,	or	implemented
as	separate	databases.)

The	RIB	is	a	fairly	complex	data	structure,	not	just	because	of	this	multisection
structure,	but	also	because	BGP	devices	store	considerably	more	information
about	routes	than	simpler	routing	protocols.	Routes	are	also	called	paths	in	BGP,
and	the	detailed	descriptions	of	them	are	stored	in	the	form	of	special	BGP	path
attributes,	which	we	will	examine	shortly.

The	three	sections	of	the	RIB	are	the	mechanism	by	which	information	flow	is
managed	in	a	BGP	speaker.	Data	received	from	Update	messages	transmitted	by
peer	BGP	speakers	is	held	in	the	Adj-RIBs-In,	with	each	Adj-RIB-In	holding
input	from	one	peer.	This	data	is	then	analyzed	and	appropriate	portions	of	it	are
selected	to	update	the	Loc-RIB,	which	is	the	main	database	of	routes	this	BGP
speaker	is	using.	On	a	regular	basis,	information	from	the	Loc-RIB	is	placed	into
the	Adj-RIBs-Out	to	be	sent	to	other	peers	using	Update	messages.	This
information	flow	is	accomplished	as	part	of	the	system	of	route	update,
selection,	and	advertisement	known	as	the	BGP	decision	process,	which	I'll
discuss	in	the	"BGP	Route	Determination	and	the	BGP	Decision	Process"
section	later	in	this	chapter.

TIP



KEY	CONCEPT	The	routine	operation	of	BGP	requires	BGP	speakers	to	store,	update,	select,	and
advertise	routing	information.	The	central	data	structure	used	for	this	purpose	is	the	BGP	Routing
Information	Base	(RIB).	The	RIB	actually	consists	of	three	sections:	a	set	of	input	databases	(Adj-RIBs-
In)	that	hold	routing	information	received	from	peers;	a	local	database	(Loc-RIB)	that	contains	the
router's	current	routes;	and	a	set	of	output	databases	(Adj-RIBs-Out)	used	by	the	router	to	send	its
routing	information	to	other	routers.



BGP	Path	Attributes	and	Algorithm	Overview
Routing	protocols	that	use	a	distance-vector	algorithm,	such	as	RIP,	are
relatively	simple	in	large	part	because	the	information	each	device	stores	about
each	route	is	itself	simple.	Each	router	only	knows	that	it	can	reach	a	network	at
a	specific	cost	through	a	particular	next-hop	router.	It	doesn't	have	knowledge	of
the	route	that	datagrams	will	take	to	reach	any	of	these	networks.	This	level	of
knowledge	is	simply	insufficient	for	the	needs	of	a	protocol	like	BGP.

In	order	to	handle	the	calculation	of	efficient,	nonlooping	routes	in	an	arbitrary
topology	of	ASes,	we	need	to	know	not	just	that	we	must	get	Network	N7	to
send	to	Router	R4,	but	also	the	characteristics	of	the	entire	path	between
ourselves	and	Network	N7.	By	storing	this	additional	information,	it	is	possible
to	make	decisions	about	how	to	compute	and	change	routes,	using	knowledge	of
the	entire	path	between	a	router	and	a	network.	Thus,	instead	of	advertising
networks	in	terms	of	a	destination	and	the	distance	to	that	destination,	BGP
devices	advertise	networks	as	destination	addresses	and	path	descriptions	to
reach	those	destinations.	This	means	BGP	uses,	instead	of	a	distance-vector
algorithm,	a	path-vector	algorithm.

Each	communication	of	a	reachable	network	provides	considerable	information
about	the	entire	sequence	of	routers	to	a	destination.	Due	to	this	inclusion	of
topology	information,	path-vector	protocols	are	sometimes	described	as	a
combination	of	distance-vector	and	link-state	algorithms.	This	doesn't	really	do
them	justice,	however,	since	they	do	not	function	in	the	same	way	as	either	of
those	algorithm	types.	(If	you	are	interested	in	additional	general	information
about	path-vector	algorithms,	you	can	find	some	in	RFC	1322,	"A	Unified
Approach	to	Inter-Domain	Routing."	(Warning:	do	not	read	before	operating
heavy	machinery.)

The	information	about	the	path	to	each	route	is	stored	in	the	RIB	of	each	BGP
speaker	in	the	form	of	BGP	path	attributes.	These	attributes	are	used	to	advertise
routes	to	networks	when	BGP	devices	send	out	Update	messages.	The	storing,
processing,	sending,	and	receiving	of	path	attributes	is	the	method	by	which
routers	decide	how	to	create	routes,	so	understanding	them	is	obviously	quite
important.



There	are	several	different	path	attributes,	each	of	which	describes	a	particular
characteristic	of	a	route.	Attributes	are	divided	into	different	categories	based	on
their	level	of	importance	and	specific	rules	designed	to	manage	their
propagation.	The	most	important	path	attributes	are	called	well-known	attributes;
every	BGP	speaker	must	recognize	and	process	these,	but	only	some	are	required
to	be	sent	with	every	route.	Other	attributes	are	optional	and	may	or	not	be
implemented.	These	are	further	differentiated	based	on	how	they	are	handled
when	received	by	a	device	that	does	not	recognize	them.

BGP	Path	Attribute	Classes
The	four	formal	classifications	of	path	attributes	are	as	follows:

Well-Known	Mandatory	These	are	the	most	important	path	attributes.	They
must	be	included	in	every	route	description	in	Update	messages,	and	must	be
processed	by	each	BGP	device	receiving	them.

Well-Known	Discretionary	A	BGP	device,	if	received,	must	recognize	these
path	attributes,	but	they	may	or	may	not	be	included	in	an	Update	message.
Thus,	they	are	optional	for	a	sender	of	information,	but	mandatory	for	a	receiver
to	process.

Optional	Transitive	These	path	attributes	may	be	recognized	by	a	BGP	router
and	may	be	included	in	an	Update	message.	They	must	be	passed	on	to	other
BGP	speakers	when	the	route	is	advertised,	even	if	received	by	a	device	that
does	not	recognize	the	attribute.

Optional	Nontransitive	Optional	attributes	that	may	be	recognized	by	a	BGP
device	and	may	be	included	in	an	Update	message.	If	received	by	a	device	that
does	not	recognize	the	attribute,	it	is	dropped	and	not	passed	on	to	the	next
router.

TIP

KEY	CONCEPT	Unlike	simpler	routing	protocols	that	store	only	limited	information	about	how	to
reach	a	network,	BGP	stores	detailed	information	about	complete	routes	to	various	networks.	This
information	takes	the	form	of	path	attributes	that	describe	various	characteristics	of	a	path	(route)
through	the	ASes	that	connect	a	router	to	a	destination	network.



NOTE

As	you	might	imagine,	all	well-known	attributes	are	by	definition	transitive—they	must	be	passed	on
from	one	BGP	speaker	to	the	next.

BGP	Path	Attribute	Characteristics
Table	40-3	provides	a	summary	of	the	characteristics	of	each	of	the	most
common	BGP	path	attributes	used	to	describe	the	route	to	a	destination.	It	also
provides	a	summary	of	the	Attribute	Type	code	assigned	to	each	characteristic	in
BGP	Update	messages.

Table	40-3.	Summary	of	BGP	Path	Attributes

BGP	Path
Attribute

Classification Attribute
Type
Value

Description

Origin Well-Known
Mandatory

1 Specifies	the	origin	of	the	path	information.
This	attribute	indicates	whether	the	path
came	originally	from	an	interior	routing
protocol,	the	older	exterior	routing	protocol,
or	some	other	source.

AS_Path Well-Known
Mandatory

2 A	list	of	AS	numbers	that	describes	the
sequence	of	ASes	through	which	this	route
description	has	passed.	This	is	a	critically
important	attribute,	since	it	contains	the
actual	path	of	ASes	to	the	network.	It	is	used
to	calculate	routes	and	to	detect	routing
loops.

Next_Hop Well-Known
Mandatory

3 The	next-hop	router	to	be	used	to	reach	this
destination.

Multi_Exit_Disc
(MED)

Optional	Non-
Transitive

4 When	a	path	includes	multiple	exit	or	entry
points	to	an	AS,	this	value	may	be	used	as	a
metric	to	discriminate	between	them	(that	is,
choose	one	exit	or	entry	point	over	the
others).

Local_Pref Well-Known
Discretionary

5 Used	in	communication	between	BGP
speakers	in	the	same	AS	to	indicate	the	level
of	preference	for	a	particular	route.



of	preference	for	a	particular	route.

Atomic_Aggregate Well-Known
Discretionary

6 In	certain	circumstances,	a	BGP	speaker
may	receive	a	set	of	overlapping	routes
whereby	one	is	more	specific	than	the	other.
For	example,	consider	a	route	to	the	network
34.15.67.0/24	and	to	the	network
34.15.67.0/26.	The	latter	network	is	a	subset
of	the	former,	which	makes	it	more	specific.
If	the	BGP	speaker	uses	the	less-specific
route	(in	this	case,	34.15.67.0/24),	it	sets	this
path	attribute	to	a	value	of	1	to	indicate	that
this	was	done.

Aggregator Optional
Transitive

7 Contains	the	AS	number	and	BGP	ID	of	the
router	that	performed	route	aggregation;
used	for	troubleshooting.

Some	of	these	path	attributes	are	straightforward;	others	are	fairly	cryptic	and
probably	confusing.	Delving	into	any	more	detail	on	the	path	attributes	leads	us
into	a	full-blown	description	of	detailed	inter-AS	route	calculations.	We'll	look
at	that	to	some	degree	in	the	next	section.



BGP	Route	Determination	and	the	BGP	Decision
Process
You	have	now	looked	at	the	fundamentals	of	how	BGP	devices	store	and
manage	information	about	routes	to	networks.	This	included	an	overview	of	the
four	route	information	management	activities	performed	by	BGP	speakers:	route
storage,	update,	selection,	and	advertisement.	Route	storage	is	the	function	of	the
RIB	in	each	BGP	speaker.	Path	attributes	are	the	mechanism	by	which	BGP
stores	details	about	routes	and	also	describes	those	details	to	BGP	peers.

BGP	Decision	Process	Phases
As	you	have	seen,	the	RIB	also	contains	sections	for	holding	input	information
received	from	BGP	peers	and	for	holding	output	information	that	each	BGP
device	wants	to	send	to	those	peers.	The	functions	of	route	update,	selection,	and
advertisement	are	concerned	with	analyzing	this	input	information.	They	also
decide	what	to	include	in	the	local	database,	update	that	database,	and	then
choose	what	routes	to	send	from	it	to	peer	devices.	In	BGP,	a	mechanism	called
the	decision	process	is	responsible	for	these	tasks.	It	consists	of	three	overall
phases:

Phase	1	Each	route	received	from	a	BGP	speaker	in	a	neighboring	AS	is
analyzed	and	assigned	a	preference	level.	The	routes	are	then	ranked	according
to	preference	and	the	best	one	for	each	network	advertised	to	other	BGP
speakers	within	the	AS.

Phase	2	The	best	route	for	each	destination	is	selected	from	the	incoming	data
based	on	preference	levels,	and	it's	used	to	update	the	local	routing	information
base	(the	Loc-RIB).

Phase	3	Routes	in	the	Loc-RIB	are	selected	to	be	sent	to	neighboring	BGP
speakers	in	other	ASes.

Criteria	for	Assigning	Preferences	to	Routes
Obviously,	if	a	BGP	speaker	only	knows	of	a	single	route	to	a	network,	it	will
install	and	use	that	route	(assuming	there	are	no	problems	with	it).	The	assigning
of	preferences	among	routes	becomes	important	only	when	more	than	one	route



of	preferences	among	routes	becomes	important	only	when	more	than	one	route
has	been	received	by	a	BGP	speaker	for	a	particular	network.	Preferences	can	be
determined	based	on	a	number	of	different	criteria.	The	following	are	a	few
typical	ones:

The	number	of	ASes	between	the	router	and	the	network	(fewer	generally
being	better).

The	existence	of	certain	policies	that	may	make	certain	routes	unusable;	for
example,	a	route	may	pass	through	an	AS	that	as	the	BGP	speaker	is	not
willing	to	trust	with	its	data.

The	origin	of	the	path—that	is,	where	it	came	from.

In	the	case	where	a	set	of	routes	to	the	same	network	are	all	calculated	to	have
the	same	preference,	a	tie-breaking	scheme	is	used	to	select	from	among	them.
Additional	logic	is	used	to	handle	special	circumstances,	such	as	the	case	of
overlapping	networks	(see	the	description	of	the	Atomic_Aggregate	path
attribute	in	Table	40-3	for	an	example	of	this).

The	selection	of	routes	for	dissemination	to	other	routers	in	phase	3	is	based	on	a
rather	complex	algorithm	that	I	cannot	explain	adequately	here.	Route
advertisement	is	guided	by	the	routing	policies	I	discussed	earlier	in	this	chapter.
Different	rules	are	used	to	select	routes	for	advertising	to	internal	peers
compared	to	external	peers.

TIP

KEY	CONCEPT	The	method	used	by	a	BGP	speaker	to	determine	what	new	routes	to	accept	from	its
peers	and	what	routes	to	advertise	back	them	is	called	the	BGP	decision	process.	It	is	a	complex
algorithm	in	three	phases	that	involves	the	computation	of	the	best	route	based	on	both	preexisting	and
incoming	path	information.

Limitations	on	BGP's	Ability	to	Select	Efficient
Routes
When	considering	route	selection,	it's	very	important	to	remember	that	BGP	is	a
routing	protocol	that	operates	at	the	inter-AS	level.	Thus,	routes	are	chosen
between	ASes,	not	at	the	level	of	individual	routers	within	an	AS.	So,	for
example,	when	BGP	stores	information	about	the	path	to	a	network,	it	stores	it	as



a	sequence	of	ASes,	not	a	sequence	of	specific	routers.

BGP	cannot	deal	with	individual	routers	in	an	AS	because,	by	definition,	the
details	of	what	happens	within	an	AS	are	supposed	to	be	hidden	from	the	outside
world.	It	doesn't	know	the	structure	of	ASes	outside	its	own.	This	has	an
important	implication	for	how	BGP	selects	routes:	BGP	cannot	guarantee	that	it
will	pick	the	fastest,	lowest-cost	route	to	every	network.	It	can	select	a	route	that
minimizes	the	number	of	ASes	that	lie	between	itself	and	a	particular	network,
but,	of	course,	ASes	are	not	all	the	same.	Some	ASes	are	large	and	consist	of
many	slow	links;	others	are	small	and	fast.	Choosing	a	route	through	two	of	the
latter	types	of	AS	will	be	better	than	choosing	a	route	through	one	of	the	former,
but	BGP	can't	know	that.	Policies	can	be	used	to	influence	AS	selection	to	some
extent,	but	in	general,	since	BGP	doesn't	know	what	happens	in	an	AS,	it	cannot
guarantee	the	efficiency	of	a	route	overall.	(Incidentally,	this	is	the	reason	why
there	is	no	general	cost	or	distance	path	attribute	in	BGP.)

TIP

KEY	CONCEPT	As	an	exterior	routing	protocol,	BGP	operates	at	the	AS	level.	Its	routes	are	calculated
based	on	paths	between	ASes,	not	individual	routers.	Since	BGP,	by	definition,	does	not	know	the
internal	structure	of	routers	within	an	AS,	it	cannot	know	for	certain	the	cost	to	send	a	datagram	across	a
given	AS.	This	means	that	BGP	cannot	always	guarantee	that	it	will	select	the	absolute	lowest-cost	route
between	any	two	networks.

Originating	New	Routes	and	Withdrawing
Unreachable	Routes
Naturally,	a	facility	exists	to	allow	BGP	speakers	to	originate	new	routes	to
networks.	A	BGP	speaker	may	obtain	knowledge	about	a	new	route	from	an
interior	routing	protocol	on	an	AS	to	which	it	is	directly	attached,	and	then	it
may	choose	to	share	this	information	with	other	ASes.	It	will	create	a	new	entry
in	its	RIB	for	this	network	and	then	send	information	about	it	out	to	other	BGP
peers.

BGP	also	includes	a	mechanism	for	advertising	routes	it	cannot	reach.	These	are
called	unfeasible	or	withdrawn	routes	and	are	mentioned	in	Update	messages	to
indicate	that	a	router	can	no	longer	reach	the	specific	network.



BGP	General	Operation	and	Messaging
In	the	previous	sections,	you	have	seen	how	BGP	stores	information	about	routes
and	uses	it	to	determine	paths	to	various	networks.	Let's	now	take	a	high-level
look	at	how	BGP	operates	in	general	terms.	Like	many	other	protocols	covered
in	this	book,	BGP's	operation	can	be	described	primarily	in	the	form	of
messaging.	The	use	of	messages	is	the	means	by	which	route	information	is
communicated	between	BGP	peers.	This	eventually	allows	the	knowledge	of
how	to	reach	networks	to	spread	throughout	the	entire	internetwork.

Speaker	Designation	and	Connection
Establishment
Before	messaging	can	begin,	BGP	speakers	must	be	designated	and	then	linked
together.	The	BGP	standard	does	not	specify	how	neighboring	speakers	are
determined;	this	must	be	done	outside	the	protocol.	Once	accomplished,	ASes
are	connected	into	a	BGP-enabled	internetwork.	Topological	linking	provides
the	physical	connection	and	the	means	for	datagrams	to	flow	between	ASes.	At
this	point,	the	dance	floor	is	prepared,	but	nobody	is	dancing;	BGP	can	function
but	isn't	yet	in	operation.

BGP	operation	begins	with	BGP	peers	forming	a	transport	protocol	connection.
BGP	uses	TCP	for	its	reliable	transport	layer,	so	the	two	BGP	speakers	establish
a	TCP	session	that	remains	in	place	during	the	course	of	the	subsequent	message
exchange.	When	this	is	done,	each	BGP	speaker	sends	a	BGP	Open	message.
This	message	is	like	an	invitation	to	dance,	and	it	begins	the	process	of	setting
up	the	BGP	link	between	the	devices.	In	this	message,	each	router	identifies
itself	and	its	AS,	and	also	tells	its	peer	what	parameters	it	would	like	to	use	for
the	link.	This	includes	an	exchange	of	authentication	parameters.	Assuming	that
each	device	finds	the	contents	of	its	peer's	Open	message	acceptable,	it
acknowledges	it	with	a	Keepalive	message,	and	the	BGP	session	begins.

Under	normal	circumstances,	most	BGP	speakers	will	maintain	simultaneous
sessions	with	more	than	one	other	BGP	speaker,	both	within	the	speaker's	own
AS	and	outside	its	AS.	Links	between	ASes	are	what	enable	BGP	routers	to
learn	how	to	route	through	the	internetwork.	Links	within	the	AS	are	important
to	ensure	that	each	BGP	speaker	in	the	AS	maintains	consistent	information.



to	ensure	that	each	BGP	speaker	in	the	AS	maintains	consistent	information.

Route	Information	Exchange
Assuming	the	link	is	initialized,	the	two	peers	begin	an	ongoing	process	of
telling	each	other	what	they	know	about	networks	and	how	to	reach	them.	Each
BGP	speaker	encodes	information	from	its	RIBs	into	BGP	Update	messages.
These	messages	contain	lists	of	known	network	addresses,	as	well	as	information
about	paths	to	various	networks,	as	described	in	the	form	of	path	attributes,	as
you	have	already	seen.	This	information	is	then	used	for	the	route	determination,
as	described	in	the	preceding	section.

When	a	link	is	first	set	up	between	two	peers,	those	peers	ensure	that	each	router
holds	complete	information	by	exchanging	their	complete	routing	tables.
Subsequently,	Update	messages	are	sent.	They	contain	only	incremental	updates
about	routes	that	have	changed.	Exchanging	only	updated	information	as	needed
reduces	unnecessary	bandwidth	on	the	network,	thereby	making	BGP	more
efficient	than	it	would	be	if	it	sent	full	routing	table	information	on	a	regular
basis.

Connectivity	Maintenance
The	TCP	session	between	BGP	speakers	can	be	kept	open	for	a	very	long	time.
Update	messages	need	to	be	sent	only	when	changes	occur	to	routes,	which	are
usually	infrequent.	This	means	many	seconds	may	elapse	between	the
transmission	of	Update	messages.

To	ensure	that	the	peers	maintain	contact	with	each	other,	they	both	send
Keepalive	messages	on	a	regular	basis	when	they	don't	have	other	information	to
send.	These	are	null	messages	that	contain	no	data	and	just	tell	the	peer	device
"I'm	still	here."	These	messages	are	sent	infrequently—no	more	often	than	one
per	second—but	regularly	enough	that	the	peers	won't	think	the	session	was
interrupted.

Error	Reporting
The	last	type	of	BGP	message	is	the	BGP	Notification	message.	This	is	an	error
message;	it	tells	a	peer	that	a	problem	occurred	and	describes	the	nature	of	the



error	condition.	After	sending	a	BGP	Notification	message,	the	device	that	sent
it	will	terminate	the	BGP	connection	between	the	peers.	A	new	connection	will
then	need	to	be	negotiated,	possibly	after	the	problem	that	led	to	the	Notification
message	has	been	corrected.

TIP

KEY	CONCEPT	BGP	is	implemented	through	the	exchange	of	four	different	message	types	between
BGP	speakers.	A	BGP	session	begins	with	a	TCP	connection	being	established	between	two	routers	and
each	sending	an	Open	message	to	the	other.	BGP	Update	messages	are	the	primary	mechanism	by	which
routing	information	is	exchanged	between	devices.	Small	BGP	Keepalive	messages	are	used	to	maintain
communication	between	devices	between	periods	when	they	need	to	exchange	information.	Finally,
Notification	messages	are	used	for	problem	reporting.



BGP	Detailed	Messaging,	Operation,	and
Message	Formats
So	far,	I	have	discussed	the	concepts	and	general	operation	of	the	BGP.	To	get	a
better	understanding	of	exactly	how	BGP	works,	it	is	helpful	to	take	a	detailed
look	at	its	four	different	message	types—Open,	Update,	Keepalive,	and
Notification—and	how	they	are	used.	As	we	do	this,	we	can	examine	the	fields
in	each	message	type,	so	that	you	can	comprehend	not	just	the	way	that
messaging	is	accomplished,	but	the	way	that	routing	data	is	actually
communicated.	Let's	begin	with	a	description	of	common	attributes	of	BGP
message	generation	and	transport,	and	the	general	format	used	for	all	BGP
messages.

BGP	Message	Generation	and	Transport
Each	router	running	BGP	generates	messages	to	implement	the	various	functions
of	the	protocol.	Some	of	these	messages	are	created	on	a	regular	basis	by	the
BGP	software	during	the	course	of	its	normal	operation.	These	are	generally
controlled	by	timers	that	are	set	and	counted	down	to	cause	them	to	be	sent.
Other	messages	are	sent	in	response	to	messages	received	from	BGP	peers,
possibly	after	a	processing	step.

BGP	is	different	from	most	other	routing	protocols	in	that	it	was	designed	from
the	start	to	operate	using	a	reliable	method	of	message	delivery.	TCP	is	present
in	the	software	of	every	Internet	Protocol	(IP)	router,	thereby	making	it	the
obvious	choice	for	reliable	data	communication	in	a	TCP/IP	Internet,	and	that's
what	BGP	uses.	Routing	protocols	are	usually	considered	part	of	layer	3,	but	this
one	runs	over	a	layer	4	protocol,	thereby	making	BGP	a	good	example	of	why
architectural	models	are	best	used	only	as	a	guideline.

TCP	provides	numerous	advantages	to	BGP	by	taking	care	of	most	of	the	details
of	session	setup	and	management,	thereby	allowing	BGP	to	focus	on	the	data	it
needs	to	send.	TCP	takes	care	of	session	setup	and	negotiation,	flow	control,
congestion	handling,	and	any	necessary	retransmissions	of	lost	messages,
thereby	ensuring	that	messages	are	received	and	acknowledged.	BGP	uses	well-
known	TCP	port	179	for	connections.



BGP	General	Message	Format
The	use	of	TCP	also	has	an	interesting	impact	on	the	way	BGP	messages	are
structured.	One	thing	that	stands	out	when	you	look	at	the	BGP	message	format
(as	you	will	see	shortly)	is	that	a	BGP	message	can	have	an	odd	number	of	bytes.
Most	routing	protocols	are	sized	in	units	of	4	or	8	bytes,	but	since	TCP	sends
data	as	a	stream	of	octets,	there	is	no	need	for	BGP	messages	to	break	on	a	32-
bit	or	64-bit	boundary.	The	other	impact	is	the	need	of	a	special	Marker	field	to
help	ensure	that	BGP	messages	can	be	differentiated	from	each	other	in	the	TCP
stream	(more	about	this	in	a	moment).

Like	most	messaging	protocols,	BGP	uses	a	common	message	format	for	each	of
its	four	message	types.	Each	BGP	message	is	conceptually	divided	into	a	header
and	a	body	(called	the	data	portion	in	the	BGP	standard).	The	header	has	three
fields	and	is	fixed	in	length	at	19	bytes.	The	body	is	variable	in	length	and	is
omitted	entirely	in	Keepalive	messages,	since	it	is	not	needed	for	them.

The	general	format	for	all	BGP	message	types	is	shown	in	Table	40-4	and
illustrated	in	Figure	40-2.

Table	40-4.	BGP	General	Message	Format

Field
Name

Size
(Bytes)

Description

Marker 16 This	large	field	at	the	start	of	each	BGP	message	is	used	for
synchronization	and	authentication.

Length 2 The	total	length	of	the	message	in	bytes,	including	the	fields	of	the
header.	The	minimum	value	of	this	field	is	19	for	a	Keepalive	message;
it	may	be	as	high	as	4096.

Type 1 Indicates	the	BGP	message	type:

1	=	Open

2	=	Update

3	=	Notification

4	=	Keepalive

Message
Body/Data
Portion

Variable Contains	the	specific	fields	used	to	implement	each	message	type	for
Open,	Update,	and	Notification	messages.



Portion

Figure	40-2.	BGP	general	message	format

The	Marker	field	is	the	most	interesting	one	in	the	BGP	message	format.	It	is
used	for	both	synchronization	and	authentication.	BGP	uses	a	single	TCP	session
to	send	many	messages	in	a	row.	TCP	is	a	stream-oriented	transport	protocol	that
sends	bytes	across	the	link	without	any	knowledge	of	what	the	bytes	represent.
This	means	that	the	protocol	using	TCP	is	responsible	for	deciding	where	the
line	is	drawn	between	data	units—in	this	case,	BGP	messages.

Normally,	the	Length	field	tells	each	BGP	device	where	to	draw	the	line
between	the	end	of	one	message	and	the	start	of	the	next.	However,	it	is	possible
that,	due	to	various	conditions,	a	device	might	lose	track	of	where	the	message
boundary	is.	The	Marker	field	is	filled	with	a	recognizable	pattern	that	clearly
marks	the	start	of	each	message;	BGP	peers	keep	synchronized	by	looking	for
that	pattern.

Before	a	BGP	connection	is	established,	the	Marker	field	is	filled	with	all	ones.
Thus,	this	is	the	pattern	used	for	Open	messages.	Once	a	BGP	session	is
negotiated,	if	agreement	is	reached	on	an	authentication	method	between	the	two
devices,	the	Marker	field	takes	on	the	additional	role	of	authentication.	Instead
of	looking	for	a	Marker	field	containing	all	ones,	BGP	devices	look	for	a	pattern
generated	using	the	agreed-upon	authentication	method.	Detection	of	this	pattern
simultaneously	synchronizes	the	devices	and	ensures	that	messages	are
authentic.

In	extreme	cases,	BGP	peers	may	be	unable	to	maintain	synchronization,	and	if



In	extreme	cases,	BGP	peers	may	be	unable	to	maintain	synchronization,	and	if
so,	a	Notification	message	is	generated	and	the	session	is	closed.	This	will	also
happen	if	the	Marker	field	contains	the	wrong	data	when	authentication	is
enabled.

TIP

KEY	CONCEPT	All	four	BGP	message	types	use	a	general	message	format	that	contains	three	fixed
header	fields—Marker,	Length,	and	Type—and	room	for	a	message	body	that	differs	for	each	message
type.	The	large	Marker	field	is	used	to	denote	the	start	of	a	new	BGP	message,	and	it	is	also	used	to
facilitate	the	BGP	authentication	method.

BGP	Connection	Establishment:	Open
Messages
Before	a	BGP	session	can	be	used	to	exchange	routing	information,	a	connection
must	first	be	established	between	BGP	peers.	This	process	begins	with	the
creation	of	a	TCP	connection	between	the	devices.	Once	this	is	done,	the	BGP
devices	will	attempt	to	create	a	BGP	session	by	exchanging	BGP	Open
messages.

BGP	Open	Message	Functions
The	Open	message	has	two	main	purposes.	The	first	is	identification	and
initiation	of	a	link	between	the	two	devices;	it	allows	one	peer	to	tell	the	other,	"I
am	a	BGP	speaker	named	X	on	AS	Y,	and	I	want	to	start	exchanging	BGP
information	with	you."	The	second	is	the	negotiation	of	session	parameters.
These	are	the	terms	by	which	the	BGP	session	will	be	conducted.	One	important
parameter	negotiated	using	Open	messages	is	the	method	that	each	device	wants
to	use	for	authentication.	The	importance	of	BGP	means	that	authentication	is
essential	in	order	to	prevent	bad	information	or	a	malicious	person	from
disrupting	routes.

Each	BGP	receiving	an	Open	message	processes	it.	If	the	message's	contents	are
acceptable,	including	the	parameters	the	other	device	wants	to	use,	it	responds
with	a	Keepalive	message	as	an	acknowledgment.	Each	peer	must	send	an	Open
message	and	receive	a	Keepalive	acknowledgment	for	the	BGP	link	to	be
initialized.	If	either	is	not	willing	to	accept	the	terms	of	the	Open	message,	the
link	is	not	established.	In	that	case,	a	Notification	message	may	be	sent	to
convey	the	nature	of	the	problem.



convey	the	nature	of	the	problem.

BGP	Open	Message	Format
The	specific	format	for	BGP	Open	messages	is	shown	in	Table	40-5	and
Figure	40-3.

Table	40-5.	BGP	Open	Message	Format

Field
Name

Size
(Bytes)

Description

Marker 16 This	large	field	at	the	start	of	each	BGP	message	is	used	for
synchronization	and	authentication.

Length 2 The	total	length	of	the	message	in	bytes,	including	the	fields	of	the
header.	Open	messages	are	variable	in	length.

Type 1 BGP	message	type;	value	is	1	for	Open	messages.

Version 1 Indicates	the	BGP	version	the	sender	of	the	Open	message	is	using.
This	field	allows	devices	to	reject	connections	with	devices	using
versions	that	they	may	not	be	capable	of	understanding.	The	current
value	is	4,	for	BGP-4,	and	is	used	by	most,	if	not	all,	current	BGP
implementations.

My
Autonomous
System

2 Identifies	the	AS	number	of	the	sender	of	the	Open	message.	AS
numbers	are	centrally	managed	across	the	Internet	in	a	manner	similar
to	how	IP	addresses	are	administered.

Hold	Time 2 The	number	of	seconds	that	this	device	proposes	to	use	for	the	BGP
hold	timer,	which	specifies	how	long	a	BGP	peer	will	allow	the
connection	to	be	left	silent	between	receipt	of	BGP	messages.	A	BGP
device	may	refuse	a	connection	if	it	doesn't	like	the	value	that	its	peer
is	suggesting;	usually,	however,	the	two	devices	agree	to	use	the
smaller	of	the	values	suggested	by	each	device.	The	value	must	be	at
least	3	seconds,	or	0.	If	0,	this	specifies	that	the	hold	timer	is	not	used.
See	the	Keepalive	message	discussion	later	in	this	chapter	for	more	on
how	the	hold	timer	is	used.

BGP
Identifier

4 Identifies	the	specific	BGP	speaker.	You'll	recall	that	IP	addresses	are
associated	with	interfaces,	not	devices,	so	each	router	will	have	at	least
two	IP	addresses.	Normally,	the	BGP	identifier	is	chosen	as	one	of
these	addresses.	Once	chosen,	this	identifier	is	used	for	all	BGP
communications	with	BGP	peers.	This	includes	BGP	peers	on	the
interface	from	which	the	identifier	was	chosen,	and	also	BGP	peers	on
other	interfaces	as	well.	So,	if	a	BGP	speaker	with	two	interfaces	has



other	interfaces	as	well.	So,	if	a	BGP	speaker	with	two	interfaces	has
addresses	IP1	and	IP2,	it	will	choose	one	as	its	identifier	and	use	it	on
both	of	its	interfaces.

Opt	Parm
Len

1 The	number	of	bytes	used	for	Optional	Parameters	(see	the	following
entry).	If	0,	no	optional	parameters	are	in	this	message.

Optional
Parameters

Variable Allows	the	Open	message	to	communicate	any	number	of	extra
parameters	during	BGP	session	setup.	Each	parameter	is	encoded
using	a	rather	standard	type/length/value	triple,	as	shown	in	Table	40-
6.

Table	40-6.	BGP	Open	Message	Optional	Parameters

Subfield
Name

Size
(Bytes)

Description

Parm
Type

1 Parameter	Type:	The	type	of	the	optional	parameter.	At	present,	only	one
value	is	defined,	1,	for	Authentication	Information.

Parm
Length

1 Parameter	Length:	Specifies	the	length	of	the	Parameter	Value	subfield
(thus,	this	value	is	the	length	of	the	entire	parameter,	less	2).

Parm
Value

Variable Parameter	Value:	The	value	of	the	parameter	being	communicated.

BGP	Open	messages	currently	use	only	one	optional	parameter:	Authentication
Information.	Its	Parameter	Value	subfield	contains	a	one-byte	Authentication
Code	sub-subfield,	which	specifies	the	type	of	authentication	a	device	wishes	to
use.	Following	this	is	a	variable-length	Authentication	Data	sub-subfield.	The
Authentication	Code	specifies	how	authentication	is	to	be	performed,	including
the	meaning	of	the	Authentication	Data	field,	and	the	manner	in	which	Marker
fields	are	to	be	calculated.

TIP

KEY	CONCEPT	BGP	sessions	begin	with	each	peer	in	a	connection	sending	the	other	a	BGP	Open
message.	The	purpose	of	this	message	is	to	establish	contact	between	devices,	identify	the	sender	of	the
message	and	its	AS,	and	negotiate	important	parameters	that	dictate	how	the	session	will	be	conducted.

BGP	Route	Information	Exchange:	Update
Messages



Once	BGP	speakers	have	made	contact	and	a	link	has	been	established	using
Open	messages,	the	devices	begin	the	actual	process	of	exchanging	routing
information.	Each	BGP	router	uses	the	BGP	decision	process	described	earlier	in
this	chapter	to	select	certain	routes	to	be	advertised	to	its	peer.	This	information
is	then	placed	into	BGP	Update	messages,	which	are	sent	to	every	BGP	device
for	which	a	session	has	been	established.	These	messages	are	the	way	that
network	reachability	knowledge	is	propagated	around	the	internetwork.

Figure	40-3.	BGP	Open	message	format

BGP	Update	Message	Contents
Each	Update	message	contains	either	one	or	both	of	the	following:

Route	Advertisement	The	characteristics	of	a	single	route.

Route	Withdrawal	A	list	of	networks	that	are	no	longer	reachable.

Only	one	route	can	be	advertised	in	an	Update	message,	but	several	can	be
withdrawn.	This	is	because	withdrawing	a	route	is	simple;	it	requires	just	the
address	of	the	network	for	which	the	route	is	being	removed.	In	contrast,	a	route
advertisement	requires	a	fairly	complex	set	of	path	attributes	to	be	described,
which	takes	up	a	significant	amount	of	space.	(Note	that	it	is	possible	for	an
Update	message	to	specify	only	withdrawn	routes	and	not	advertise	a	route	at



Update	message	to	specify	only	withdrawn	routes	and	not	advertise	a	route	at
all.)

BGP	Update	Message	Format
Because	of	the	amount	of	information	it	contains	and	the	complexity	of	that
information,	BGP	Update	messages	use	one	of	the	most	complicated	structures
in	TCP/IP.	The	basic	structure	of	the	message	is	described	in	Table	40-7	and
illustrated	in	Figure	40-4.	As	you	can	see	in	that	table,	several	of	the	fields	have
their	own	substructure.	The	Path	Attributes	field	has	a	complex	substructure,
which	I	have	shown	separately	in	other	tables.

Table	40-7.	BGP	Update	Message	Format

Field
Name

Size
(Bytes)

Description

Marker 16 This	large	field	at	the	start	of	each	BGP	message	is	used	for
synchronization	and	authentication.

Length 2 The	total	length	of	the	message	in	bytes,	including	the	fields	of	the
header.	Update	messages	are	variable	in	length.

Type 1 BGP	message	type;	value	is	2	for	Update	messages.

Unfeasible
Routes
Length

2 The	length	of	the	Withdrawn	Routes	field,	in	bytes.	If	0,	no	routes	are
being	withdrawn	and	the	Withdrawn	Routes	field	is	omitted.

Withdrawn
Routes

Variable Specifies	the	addresses	of	networks	for	which	routes	are	being
withdrawn	from	use.	Each	address	is	specified	using	the	two	subfields.
The	1-byte	Length	field	is	the	number	of	bits	in	the	IP	address	Prefix
subfield	that	are	significant.	The	variable-length	Prefix	subfield	is	the
IP	address	prefix	of	the	network	whose	route	is	being	withdrawn.	If	the
number	of	bits	in	the	prefix	is	not	a	multiple	of	8,	this	field	is	padded
with	zeros	so	that	it	falls	on	a	byte	boundary.	The	length	of	this	field	is
1	byte	if	the	preceding	Length	field	is	8	or	less;	2	bytes	if	it	is	9	to	16;
3	bytes	if	it	is	17	to	24;	and	4	bytes	if	it	is	25	or	greater.

Total	Path
Attribute
Length

2 The	length	of	the	Path	Attributes	field,	in	bytes.	If	0,	indicates	no	route
is	being	advertised	in	this	message,	so	Path	Attributes	and	Network
Layer	Reachability	Information	are	omitted.

Path
Attributes

Variable Describes	the	path	attributes	of	the	route	advertised.	Since	some
attributes	require	more	information	than	others,	attributes	are	described
using	a	flexible	structure	that	minimizes	message	size	compared	to



using	a	flexible	structure	that	minimizes	message	size	compared	to
using	fixed	fields	that	would	often	be	empty.	Unfortunately,	it	also
makes	the	field	structure	confusing.	Each	attribute	has	the	subfields

shown	in	Table	40-8.

Network
Layer
Reachability
Information
(NLRI)

Variable Contains	a	list	of	IP	address	prefixes	for	the	route	being	advertised.
Each	address	is	specified	using	the	same	general	structure	as	the	one
used	for	Withdrawn	Routes.	The	1-byte	Length	subfield	is	the	number
of	bits	in	the	Prefix	subfield	that	are	significant.	The	variable-length
Prefix	subfield	is	the	IP	address	prefix	of	the	network	whose	route	is
being	advertised.	If	the	number	of	bits	in	the	prefix	is	not	a	multiple	of
8,	this	field	is	padded	with	zeros	so	that	it	falls	on	a	byte	boundary.
The	length	of	this	field	is	1	byte	if	the	preceding	Length	field	is	8	or
less;	2	bytes	if	it	is	9	to	16;	3	bytes	if	it	is	17	to	24;	and	4	bytes	if	it
is25	or	greater.	Unlike	most	of	the	other	fields	in	the	Update	message,
the	length	of	the	NLRI	field	is	not	explicitly	stated.	It	is	computed
from	the	overall	message	Length	field,	minus	the	lengths	of	the	other
fields	that	are	explicitly	specified.

Table	40-8.	BGP	Update	Message	Path	Attributes

Subfield
Name

Size
(Bytes)

Description

Attribute
Type

2 Defines	the	type	of	attribute	and	describes	it.	This	subfield	itself	has	a
two-level	substructure,	with	Attribute	Type	flags	and	Attribute	Type
codes,	so	it	won't	even	fit	it	here!	See	Tables	Table	40-9	and	Table	40-10
for	details.

Attribute
Length

1	or	2 The	length	of	the	attribute	in	bytes.	This	field	is	normally	1	byte,	thereby
allowing	for	fields	with	a	length	up	to	255	bytes.	For	longer	attributes,	the
Extended	Length	flag	is	set	(see	Table	40-9),	indicating	that	this	Attribute
Length	field	is	2	bytes,	for	attributes	up	to	65,535	bytes.

Attribute
Value

Variable The	value	of	the	attribute.	The	size	and	meaning	of	this	field	depends	on
the	type	of	path	attribute.	For	example,	for	an	Origin	attribute,	it	is	a
single	integer	value	indicating	the	origin	of	the	route;	for	an	AS_Path
attribute,	this	field	contains	a	variable-length	list	of	the	ASes	in	the	path
to	the	network.



Figure	40-4.	BGP	Update	message	format	This	diagram	shows	the	complete	BGP	Update	message
format,	including	a	set	of	withdrawn	routes,	path	attributes,	and	NLRI	entries.	The	exploded	view	shows
the	substructure	of	the	Attribute	Type	subfield	of	the	Path	Attributes,	as	described	in	Tables	Table	40-9

and	Table	40-10.

Table	40-9	shows	the	structure	of	the	Attribute	Flags	sub-subfield	of	the
Attribute	Type	subfield	of	the	Path	Attributes	field.	This	subfield	contains	a	set
of	flags	that	describe	the	nature	of	the	attribute	and	how	to	process	it.	You	may
need	to	refer	to	the	path	attributes	description	in	the	"BGP	Path	Attributes	and
Algorithm	Overview"	section	earlier	in	this	chapter	to	make	sense	of	these	flags.

Table	40-9.	BGP	Update	Message	Attribute	Flags

Sub- Size
(Bytes)

Description



Sub-
Subfield
Name

(Bytes)

Optional 1/8	(1
bit)

Set	to	1	for	optional	attributes;	0	for	well-known	attributes.

Transitive 1/8	(1
bit)

Set	to	1	for	optional	transitive	attributes;	0	for	optional	nontransitive
attributes.	Always	set	to	1	for	well-known	attributes.

Partial 1/8	(1
bit)

When	1,	indicates	that	information	about	an	optional	transitive	attribute	is
partial.	This	means	that	since	it	was	optional	and	transitive,	one	or	more
of	the	routers	that	passed	the	path	along	did	not	implement	that	attribute
but	was	forced	to	pass	it	along,	so	information	about	it	may	be	missing
(not	supplied	by	the	routers	that	didn't	recognize	it	but	just	passed	along).
If	0,	it	means	information	is	complete.	This	bit	has	meaning	only	for
optional	transitive	attributes;	for	well-known	or	nontransitive	attributes,	it
is	0.

Extended
Length

1/8	(1
bit)

Set	to	1	for	long	attributes	to	indicate	that	the	Attribute	Length	field	is	2
bytes	in	size.	Normally	0,	meaning	the	Attribute	Length	field	is	a	single
byte.

Reserved 4/8	(4
bits)

Set	to	0	and	ignored.

The	Attribute	Type	Code	sub-subfield	of	the	Attribute	Type	subfield	of	the	Path
Attributes	field	contains	a	number	that	identifies	the	attribute	type.	Table	40-10
shows	the	current	values.

Table	40-10.	BGP	Update	Message	Attribute	Type	Codes

Value Attribute	Type

1 Origin

2 AS_Path

3 Next_Hop

4 Multi_Exit_Disc	(MED)

5 Local_Pref

6 Atomic_Aggregate



7 Aggregator

It	may	seem	confusing	that	there	can	be	more	than	one	prefix	in	the	Network
Layer	Reachability	Information	(NLRI)	field,	even	though	I	said	earlier	that	an
Update	message	advertises	only	one	route.	There	is,	in	fact,	no	inconsistency
here.	A	single	route	may	be	associated	with	more	than	one	networks;	to	put	it
another	way,	multiple	networks	may	have	the	same	path	and	path	attributes.	In
that	case,	specifying	multiple	network	prefixes	in	the	same	Update	message	is
more	efficient	than	generating	a	new	one	for	each	network.

TIP

KEY	CONCEPT	The	most	important	message	type	in	BGP	is	the	Update	message,	which	is	used	to
send	detailed	information	about	routes	between	BGP	devices.	It	uses	a	complex	structure	that	allows	a
BGP	speaker	to	efficiently	specify	new	routes,	update	existing	ones,	and	withdraw	routes	that	are	no
longer	valid.	Each	message	may	include	the	full	description	of	one	existing	route	and	may	also	withdraw
from	use	a	list	of	multiple	routes.

BGP	Connectivity	Maintenance:	Keepalive
Messages
Once	a	BGP	connection	is	established	using	Open	messages,	BGP	peers	will
initially	use	Update	messages	to	send	each	other	a	large	amount	of	routing
information.	They	will	then	settle	into	a	routine	in	which	the	BGP	session	is
maintained,	but	Update	messages	are	sent	only	when	needed.	Since	these
updates	correspond	to	route	changes,	and	route	changes	are	normally	infrequent,
this	means	many	seconds	may	elapse	between	the	receipt	of	consecutive	Update
messages.

The	BGP	Keepalive	Message	Interval
Hold	Timer	and	While	a	BGP	peer	is	waiting	to	hear	the	next	Update	message,	it
remains	sort	of	like	a	person	who	has	been	put	on	hold	on	the	telephone.	Now
seconds	may	not	seem	like	much	to	us,	but	to	a	computer,	they	are	a	very	long
time.	Like	you,	a	BGP	speaker	that	is	put	on	hold	for	too	long	might	become
impatient	and	might	start	to	wonder	if	maybe	the	other	guy	hung	up.	Computers
don't	get	offended	at	being	put	on	hold,	but	they	might	wonder	if	perhaps	a
problem	arose	that	led	to	the	connection	being	interrupted.



To	keep	track	of	how	long	it	has	been	on	hold,	each	BGP	device	maintains	a
special	hold	timer.	This	hold	timer	is	set	to	an	initial	value	each	time	its	peer
sends	a	BGP	message.	The	timer	then	counts	down	until	the	next	message	is
received,	and	then	it	is	reset.	If	the	hold	timer	ever	expires,	the	connection	is
assumed	to	have	been	interrupted	and	the	BGP	session	is	terminated.

The	length	of	the	hold	timer	is	negotiated	as	part	of	session	setup	using	Open
messages.	It	must	be	at	least	three	seconds	long,	or	may	be	negotiated	as	a	value
of	zero.	If	zero,	the	hold	timer	is	not	used;	this	means	the	devices	are	infinitely
patient	and	don't	care	how	much	time	elapses	between	messages.

To	ensure	that	the	timer	doesn't	expire	even	when	no	Update	messages	need	to
be	sent	for	a	long	while,	each	peer	periodically	sends	a	BGP	Keepalive	message.
The	name	says	it	all:	The	message	just	keeps	the	BGP	connection	alive.	The	rate
at	which	Keepalive	messages	is	sent	depends	on	the	implementation,	but	the
standard	recommends	that	they	be	sent	with	an	interval	of	one-third	the	value	of
the	hold	timer.	So	if	the	hold	timer	has	a	value	of	three	seconds,	each	peer	sends
a	Keepalive	message	every	second	(unless	it	needs	to	send	some	other	message
type	in	that	second).	To	prevent	excess	bandwidth	use,	Keepalive	messages	must
be	sent	no	more	often	than	once	per	second,	so	that	is	the	minimum	interval,
even	if	the	hold	timer	is	shorter	than	three	seconds.

BGP	Keepalive	Message	Format
The	point	of	a	Keepalive	message	is	the	message	itself;	there's	no	data	to	be
communicated.	In	fact,	we	want	to	keep	the	message	short	and	sweet.	Thus,	it	is
really	a	dummy	message	that	contains	only	a	BGP	header—a	nice	change	after
that	incredibly	long	Update	message	format!	The	format	of	the	Keepalive
message	is	shown	in	Table	40-11	and	Figure	40-5.

Table	40-11.	BGP	Keepalive	Message	Format

Field
Name

Size
(Bytes)

Description

Marker 16 This	large	field	at	the	start	of	each	BGP	message	is	used	for	synchronization
and	authentication.

Length 2 The	total	length	of	the	message	in	bytes,	including	the	fields	of	the	header.
Keepalive	messages	are	fixed	in	length	at	19	bytes.



Keepalive	messages	are	fixed	in	length	at	19	bytes.

Type 1 BGP	message	type;	value	is	4	for	Keepalive	messages.

Figure	40-5.	BGP	Keepalive	message	format

There	is	also	a	special	use	for	Keepalive	messages:	They	acknowledge	the
receipt	of	a	valid	Open	message	during	the	initial	BGP	session	setup.

TIP

KEY	CONCEPT	BGP	Keepalive	messages	are	sent	periodically	during	idle	periods	when	no	real
information	needs	to	be	sent	between	connected	BGP	speakers.	They	serve	only	to	keep	the	session
alive,	and	thus	contain	only	a	BGP	header	and	no	data.

BGP	Error	Reporting:	Notification	Messages
Once	established,	a	BGP	session	will	remain	open	for	a	considerable	period	of
time,	allowing	routing	information	to	be	exchanged	between	devices	on	a	regular
basis.	During	the	course	of	operation,	certain	error	conditions	may	crop	up	that
may	interfere	with	normal	communication	between	BGP	peers.

BGP	Notification	Message	Functions
Some	of	the	error	conditions	that	arise	are	serious	enough	that	the	BGP	session
must	be	terminated.	When	this	occurs,	the	device	detecting	the	error	will	inform
its	peer	of	the	nature	of	the	problem	by	sending	it	a	BGP	Notification	message,
and	then	it	will	close	the	connection.

Of	course,	having	someone	tell	you,	"I	found	an	error,	so	I	quit"	is	not	of	much
value.	Therefore,	the	BGP	Notification	message	contains	a	number	of	fields	that
provide	information	about	the	nature	of	the	error	that	caused	the	message	to	be
sent.	This	includes	a	set	of	primary	error	codes	as	well	as	subcodes	within	some
of	these	error	codes.	Depending	on	the	nature	of	the	error,	an	additional	data



of	these	error	codes.	Depending	on	the	nature	of	the	error,	an	additional	data
field	may	also	be	included	to	aid	in	diagnosing	the	problem.

In	addition	to	the	use	of	Notification	messages	to	convey	the	occurrence	of	an
error,	this	message	type	is	also	used	for	other	purposes.	For	example,	one	may	be
sent	if	two	devices	cannot	agree	on	how	to	negotiate	a	session,	which	isn't,
strictly	speaking,	an	error.	A	Notification	message	is	also	used	to	allow	a	device
to	tear	down	a	BGP	session	for	reasons	that	have	nothing	to	do	with	an	error.

BGP	Notification	Message	Format
The	format	for	the	BGP	Notification	messages	is	detailed	in	Table	40-12	and
illustrated	in	Figure	40-6.

Table	40-12.	BGP	Notification	Message	Format

Field
Name

Size
(Bytes)

Description

Marker 16 This	large	field	at	the	start	of	each	BGP	message	is	used	for
synchronization	and	authentication.

Length 2 The	total	length	of	the	message	in	bytes,	including	the	fields	of	the	header.
Notification	messages	are	variable	in	length.

Type 1 BGP	message	type;	value	is	3	for	Notification	messages.

Error
Code

1 Specifies	the	general	class	of	the	error.	Table	40-13	shows	the	possible
error	types	with	a	brief	description	of	each.

Error
Subcode

1 Provides	a	more	specific	indication	of	the	cause	of	the	error	for	three	of	the
Error	Code	values.	The	possible	values	of	this	field	for	each	Error	Code
value	are	shown	in	Table	40-14.

Data Variable Contains	additional	information	to	help	diagnose	the	error.	Its	meaning
depends	on	the	type	of	error	specified	in	the	Error	Code	and	Error	Subcode
fields.	In	most	cases,	this	field	is	filled	in	with	whatever	bad	value	caused
the	error	to	occur.	For	example,	for	"Message	Header	Error	/	Bad	Message
Type,"	the	value	of	the	bad	Type	field	is	placed	here.



Figure	40-6.	BGP	Notification	message	format

Tables	Table	40-13	and	Table	40-14	show	the	values	permitted	for	the	Error
Code	and	Error	Subcode	fields,	respectively,	and	thus	provide	a	good	summary
of	the	types	of	errors	that	Notification	messages	can	report.	They	also
demonstrate	the	other	nonerror	uses	of	the	message	type.

Table	40-13.	BGP	Notification	Message	Error	Codes

Error
Code
Value

Code
Name

Description

1 Message
Header
Error

A	problem	was	detected	either	with	the	contents	or	length	of	the	BGP
header.	The	Error	Subcode	field	provides	more	details	on	the	nature	of	the
problem.

2 Open
Message
Error

A	problem	was	found	in	the	body	of	an	Open	message.	The	Error	Subcode
field	describes	the	problem	in	more	detail.	Note	that	authentication	failures
or	the	inability	to	agree	on	a	parameter	such	as	hold	time	are	included	here.

3 Update
Message
Error

A	problem	was	found	in	the	body	of	an	Update	message.	Again,	the	Error
Subcode	field	provides	more	information.	Many	of	the	problems	that	fall
under	this	code	are	related	to	issues	detected	in	the	routing	data	or	path
attributes	sent	in	the	Update	message,	so	these	messages	provide	feedback
about	such	problems	to	the	device	sending	the	erroneous	data.

4 Hold
Timer
Expired

A	message	was	not	received	before	the	hold	time	expired.	See	the
description	of	the	Keepalive	message	earlier	in	this	chapter	for	details	on	this
timer.



5 Finite
State
Machine
Error

The	BGP	finite	state	machine	refers	to	the	mechanism	by	which	the	BGP
software	on	a	peer	moves	from	one	operating	state	to	another	based	on
events	(see	the	TCP	finite	state	machine	description	in	Chapter	47	for	some
background	on	this	concept).	If	an	event	occurs	that	is	unexpected	for	the
state	the	peer	is	currently	in,	it	will	generate	this	error.

6 Cease Used	when	a	BGP	device	wants	to	break	the	connection	to	a	peer	for	a
reason	not	related	to	any	of	the	error	conditions	described	by	the	other	codes.

Table	40-14.	BGP	Notification	Message	Error	Subcodes

Error
Type

Error
Subcode
Value

Subcode
Name

Description

Message
Header
Error
(Error
Code	1)

1 Connection
Not
Synchronized

The	expected	value	in	the	Marker	field	was	not	found,
indicating	that	the	connection	has	become
unsynchronized.	See	the	description	of	the	Marker
field	in	BGP	Notification	Message	Format.

	 2 Bad	Message
Length

The	message	was	less	than	19	bytes,	greater	than
4096	bytes,	or	not	consistent	with	what	was	expected
for	the	message	type.

	 3 Bad	Message
Type

The	Type	field	of	the	message	contains	an	invalid
value.

Open
Message
Error
(Error
Code	2)

1 Unsupported
Version
Number

The	device	does	not	"speak"	the	version	number	its
peer	is	trying	to	use.

	 2 Bad	Peer	AS The	router	doesn't	recognize	the	peer's	AS	number	or
is	not	willing	to	communicate	with	it.

	 3 Bad	BGP
Identifier

The	BGP	Identifier	field	is	invalid.

	 4 Unsupported
Optional
Parameter

The	Open	message	contains	an	optional	parameter
that	the	recipient	of	the	message	doesn't	understand.

	 5 Authentication
Failure

The	data	in	the	Authentication	Information	optional
parameter	could	not	be	authenticated.



	 6 Unacceptable
Hold	Time

The	router	refuses	to	open	a	session	because	the
proposed	hold	time	its	peer	specified	in	its	Open
message	is	unacceptable.

Update
Message
Error
(Error
Code	3)

1 Malformed
Attribute	List

The	overall	structure	of	the	message's	path	attributes
is	incorrect,	or	an	attribute	has	appeared	twice.

	 2 Unrecognized
Well-Known
Attribute

One	of	the	mandatory	well-known	attributes	was	not
recognized.

	 3 Missing	Well-
Known
Attribute

One	of	the	mandatory	well-known	attributes	was	not
specified.

	 4 Attribute
Flags	Error

An	attribute	has	a	flag	set	to	a	value	that	conflicts
with	the	attribute's	type	code.

	 5 Attribute
Length	Error

The	length	of	an	attribute	is	incorrect.

	 6 Invalid	Origin
Attribute

The	Origin	attribute	has	an	undefined	value.

	 7 AS	Routing
Loop

A	routing	loop	was	detected.

	 8 Invalid
Next_Hop
Attribute

The	Next_Hop	attribute	is	invalid.

	 9 Optional
Attribute
Error

An	error	was	detected	in	an	optional	attribute.

	 10 Invalid
Network	Field

The	Network	Layer	Reachability	Information	field	is
incorrect.

	 11 Malformed
AS_Path

The	AS_Path	attribute	is	incorrect.

Note	that,	perhaps	ironically,	no	mechanism	exists	to	report	an	error	in	a
Notification	message	itself.	This	is	likely	because	the	connection	is	normally
terminated	after	such	a	message	is	sent.



terminated	after	such	a	message	is	sent.

TIP

KEY	CONCEPT	BGP	Notification	messages	are	used	for	error	reporting	between	BGP	peers.	Each
message	contains	an	Error	Code	field	that	indicates	what	type	of	problem	occurred.	For	certain	Error
Code	fields,	an	Error	Subcode	field	provides	additional	details	about	the	specific	nature	of	the	problem.
Despite	these	field	names,	Notification	messages	are	also	used	for	other	types	of	special	nonerror
communication,	such	as	terminating	a	BGP	connection.



Chapter	41.	OTHER	ROUTING
PROTOCOLS

The	Routing	Information	Protocol	(RIP),	Open	Shortest	Path	First	(OSPF),	and
Border	Gateway	Protocol	(BGP)—detailed	in	the	preceding	chapters—are	the
three	most	well-known	routing	protocols	used	in	the	TCP/IP	protocol	suite.	But
there	are	several	other	TCP/IP	routing	protocols,	and	they	fall	into	one	of	two
categories.	Some	protocols	are	no	longer	in	use	today	but	are	nevertheless
interesting	from	a	historical	perspective.	Others	are	proprietary	RIP	and	OSPF
alternatives	that	you	may	occasionally	encounter	in	today's	networking	world.

In	this	chapter,	I	provide	a	brief	description	of	five	additional	TCP/IP	routing
protocols.	I	begin	with	a	look	at	two	obsolete	interior	routing	protocols	that
played	an	important	role	in	the	early	Internet:	the	Gateway-to-Gateway	Protocol
(GGP)	and	the	HELLO	Protocol.	I	then	describe	two	interior	routing	protocols
(developed	by	Cisco	Systems)	that	are	sometimes	seen	in	the	industry	today	as
alternatives	to	RIP	and	OSPF:	the	Interior	Gateway	Routing	Protocol	(IGRP)
and	the	Enhanced	Interior	Gateway	Routing	Protocol	(EIGRP).	I	conclude	with	a
discussion	of	the	Exterior	Gateway	Protocol	(EGP),	the	exterior	routing	protocol
that	preceded	BGP.

TCP/IP	Gateway-to-Gateway	Protocol	(GGP)
In	Chapter	37,	I	described	the	evolution	of	TCP/IP	routing	architectures.	The
modern	Internet	is	based	on	the	concept	of	independent	autonomous	systems
(ASes),	which	run	interior	routing	protocols	within	them	and	exterior	routing
protocols	between	them.	The	early	Internet,	however,	was	somewhat	simpler.	It
consisted	of	a	relatively	small	number	of	core	routers	that	carried	detailed
information	about	the	Internet	as	a	whole,	as	well	as	noncore	routers	that	knew



only	partial	information	about	the	whole	internetwork	and	were	located	around
the	core.

These	core	routers	used	a	special	routing	protocol	to	communicate	called	the
Gateway-to-Gateway	Protocol	(GGP).	Bolt,	Beranek,	and	Newman,	one	of	the
pioneers	of	the	Internet	and	TCP/IP,	originally	developed	GGP	in	the	early
1980s.	It	was	documented	in	RFC	823,	"The	DARPA	Internet	Gateway,"
published	September	1982.	This	protocol	is	now	obsolete,	but	it	played	an
important	role	in	the	early	Internet	by	introducing	certain	concepts	that
developers	used	in	later	routing	protocols.

GGP	is	similar	in	general	operation	to	RIP	(described	in	Chapter	38)	in	that	it
uses	a	distance-vector	algorithm	to	determine	the	best	routes	between	devices.
Like	RIP,	the	metric	is	a	simple	hop	count,	so	GGP	will	select	a	route	with	the
shortest	number	of	hops.	Although	you	have	seen	that	hop	count	is	not	always
the	best	metric	of	cost	for	a	router	in	RIP,	it	was	actually	a	pretty	good	method
of	route	determination	back	then.	This	is	because	the	early	Internet	used	both
computers	and	links	that	would	be	considered	glacially	slow	by	today's
standards,	thereby	making	each	hop	fairly	expensive	(in	terms	of	the	time
required	to	send	data)	compared	to	modern	routing.

A	router	using	GGP	initially	starts	out	in	a	null	state.	It	then	tests	the	status	of	its
local	networks	by	seeing	if	it	can	send	and	receive	messages	on	the	network.
Every	15	seconds,	the	router	sends	a	GGP	Echo	message	to	each	of	its
neighbors.	If	the	neighbor	receives	the	message,	it	responds	with	a	GGP	Echo
Reply	message.	The	router	sending	the	Echo	messages	considers	the	neighbor	up
if	it	receives	replies	to	a	certain	percentage	of	messages	(the	default	is	50
percent).

NOTE

These	messages	serve	a	similar	function	to	the	Internet	Control	Message	Protocol	version	4	(ICMPv4)
Echo	and	Echo	Reply	messages	(described	in	Chapter	33),	but	are	not	the	same.

Actual	routing	information	is	communicated	by	sending	GGP	Routing	Update
messages.	These	are	similar	in	nature	to	RIP	Response	messages	used	in	RIP.
Each	Routing	Update	message	contains	the	information	in	the	sending	router's
routing	table,	which	specifies	the	networks	the	router	can	reach	and	what	the



cost	(in	hops)	will	be	for	each.

A	router	that	receives	a	Routing	Update	message	knows	that	it	can	reach	the
router	that	sent	the	update.	Because	of	that,	it	can	reach	all	of	the	other	routers'
reachable	networks	at	the	cost	of	an	additional	hop.	The	router	uses	the
information	to	update	its	own	internal	tables	of	destinations	and	metrics,	and
then	it	sends	out	its	own	Routing	Update	on	its	own	attached	networks.	This
way,	it	can	propagate	the	information	it	acquired	from	other	routers	on	its	own
networks.	This	process	continues	until	eventually,	routes	to	all	GGP	routers
spreads	across	the	internetwork,	just	as	this	process	occurs	in	RIP.

One	interesting	difference	between	GGP	and	RIP	is	that	in	GGP	networks	and
costs	aren't	sent	in	pairs.	Instead,	a	GGP	router	sends	its	routing	table	in	groups.
If	it	has	three	networks	it	can	communicate	with	directly	at	a	cost	of	1,	it	sends
those	in	a	group	with	a	distance	value	of	1.	Next,	if	the	GGP	router	has	a	few
networks	it	can	reach	at	a	cost	of	2,	it	sends	those	in	a	group	with	a	distance
value	of	2,	and	so	on.

Another	difference	is	that	GGP	Routing	Update	messages	are	acknowledged.
Each	Routing	Update	message	is	sent	with	a	sequence	number,	which	ensures
that	out-of-date	information	is	not	propagated.	If	the	Routing	Update	is	received
and	it	has	a	new	sequence	number	(indicating	that	it	contains	recent
information),	the	router	processing	returns	a	GGP	Acknowledgment	message	to
the	originator.	If	the	sequence	number	indicates	the	message	is	stale,	a	Negative
Acknowledgment	is	sent	instead	and	the	message	is	discarded.

As	a	distance-vector	algorithm	using	hop	count	as	a	metric,	GGP	shared	most	of
the	same	pros	and	cons	as	RIP.	It	had	simplicity	on	its	side,	but	it	had	numerous
problems	such	as	slow	convergence	and	the	counting	to	infinity	issue.	GGP	was
a	much	more	rudimentary	protocol	than	RIP,	however,	and	did	not	include	many
of	the	features	included	in	RIP	to	handle	such	issues,	such	as	split	horizon.	GGP
was	also	limited	to	unsubnetted	classful	networks,	due	to	its	age.

When	Internet	architecture	moved	to	the	use	of	ASes,	GGP	was	obsoleted.
While	it	was	an	important	part	of	TCP/IP	history,	it	is	today	not	formally
considered	a	part	of	the	TCP/IP	protocol	suite.

TIP



KEY	CONCEPT	The	Gateway-to-Gateway	Protocol	(GGP)	was	used	to	communicate	route
information	between	core	routers	on	the	early	Internet.	It	is	a	distance-vector	protocol	that	operates	in	a
manner	that's	very	similar	to	RIP.	Each	router	periodically	sends	out	its	routing	table	to	neighboring
routers	so	that	each	router	can	learn	the	cost,	in	hops,	to	reach	every	network	in	the	AS.	GGP	is	now
considered	a	historical	protocol	and	is	no	longer	part	of	TCP/IP.



The	HELLO	Protocol	(HELLO)
The	TCP/IP	Internet	as	we	know	it	today	evolved	over	the	course	of	decades.	It
began	as	an	experimental	research	project	started	by	the	United	States	Defense
Advanced	Research	Projects	Agency	(DARPA	or	ARPA).	Called	the	ARPAnet,
the	project	grew	through	the	addition	of	other	networks,	such	as	the	important
NSFnet	developed	by	the	National	Science	Foundation	(NSF).	The	NSFnet
backbone	grew	over	the	course	of	many	years	and	was	instrumental	to	the
eventual	creation	of	the	modern	Internet.

The	original	NSFnet	backbone	consisted	of	six	Digital	Equipment	Corporation
(absorbed	by	Compaq	years	ago)	LSI-11	computers	located	across	the	United
States.	These	computers	ran	special	software	that	was	colloquially	called
"fuzzball."	This	software	enabled	the	computers	to	function	as	routers.	These
fuzzball	routers	connected	various	networks	to	the	NSFnet	and	the	ARPAnet.

The	six	NSFnet	routers	worked	as	an	AS,	and	like	any	AS,	used	an	interior
routing	protocol	to	exchange	routing	information.	The	routing	protocol	used	in
these	early	routers	was	called	the	HELLO	Protocol.	Developed	in	the	early
1980s,	it	was	documented	in	RFC	891,	"DCN	Local-Network	Protocols,"	which
was	published	in	December	1983.	The	name	HELLO	is	capitalized,	but	it	is	not
an	acronym;	it	simply	refers	to	the	word	hello,	because	the	protocol	uses
messages	that	are	sort	of	analogous	to	the	routers	greeting	each	other.

NOTE

The	OSPF	routing	protocol	has	a	message	type	called	Hello.	The	use	of	these	messages	is	sometimes
referred	to	as	the	Hello	protocol.	OSPF	is	not	directly	related	to	the	HELLO	Protocol	described	in	this
section,	other	than	the	fact	that	an	AS	could	use	both	protocols	for	routing.	OSPF	may	have	borrowed
the	name	Hello	from	the	HELLO	Protocol.

The	HELLO	Protocol	uses	a	distance-vector	algorithm,	like	RIP	and	GGP.
What's	interesting	about	it,	however,	is	that	unlike	RIP	and	GGP,	HELLO	does
not	use	hop	count	as	a	metric.	Instead,	it	attempts	to	select	the	best	route	by
assessing	network	delays	and	choosing	the	path	with	the	shortest	delay.

One	of	the	key	jobs	of	routers	that	use	HELLO	is	to	compute	the	time	delay
required	to	send	and	receive	datagrams	to	and	from	its	neighbors.	On	a	regular
basis,	routers	exchange	HELLO	messages	that	contain	clock	and	timestamp



basis,	routers	exchange	HELLO	messages	that	contain	clock	and	timestamp
information.	By	using	a	special	algorithm	to	compare	the	clock	value	and
timestamp	in	the	message	to	its	own	clock,	a	receiving	device	can	compute	an
estimate	for	the	amount	of	time	it	takes	to	send	a	datagram	over	the	link.

Like	RIP	and	GGP	messages,	HELLO	messages	also	contain	routing
information	in	the	form	of	pairs	of	destinations	and	metrics.	These	represent
places	that	the	sending	router	is	able	to	reach	and	a	cost	to	communicate	with
each	one.	However,	in	HELLO,	the	metric	is	an	estimate	of	the	round-trip	delay
cost	for	each	destination.	This	information	is	added	to	the	computed	round-trip
delay	time	for	the	link	over	which	the	message	was	received,	and	it	is	used	to
update	the	receiving	router's	own	routing	table.

This	seems	a	bit	confusing,	but	is	really	similar	to	the	way	a	hop-count	distance-
vector	protocol	like	RIP	works.	Router	A,	which	is	using	RIP	to	receive	an	RIP
Response	message	from	Router	B,	knows	it	can	reach	every	destination	Router	B
can,	but	at	a	cost	of	one	extra	hop	(the	hop	from	Router	A	to	Router	B).
Similarly,	Router	A,	which	receives	a	HELLO	message	from	Router	B,	knows	it
can	reach	every	destination	that	Router	B	can,	but	at	an	additional	cost	of	the
computed	delay	for	the	link	between	Router	A	and	Router	B.

In	theory,	using	delay	calculations	should	result	in	more	efficient	route	selection
than	simply	using	a	hop-count	algorithm,	but	this	comes	at	the	cost	of	more
complexity.	This	makes	HELLO	very	interesting	indeed,	especially	for	a
protocol	that	is	more	than	20	years	old.	However,	since	the	latency	of	a	link	is
often	unrelated	to	its	bandwidth,	using	time	delay	as	a	link	metric	may	lead	to
spurious	results.

Furthermore,	it	is	normal	for	the	delay	on	any	link	to	vary	over	time;	for
example,	if	two	routes	are	similar	in	cost,	fluctuations	in	the	delay	for	each	route
could	result	in	rapid	changes	between	routes	(a	phenomenon	sometimes	called
route	flapping).	Adjustments	are	needed	to	the	basic	overview	of	the	operation	of
the	HELLO	Protocol	in	order	to	avoid	these	sorts	of	problems.

Like	other	early	routing	protocols,	HELLO	does	not	include	anything	fancy	like
authentication.	Such	features	were	not	needed	in	the	early	days	of	the	Internet,
when	the	internetworks	were	small	and	could	easily	be	controlled.	As	the
Internet	grew,	newer	routing	protocols	such	as	RIP	eventually	replaced	HELLO.
It	is	now	considered	a	historical	protocol	(in	other	words,	obsolete)	and	is	no



It	is	now	considered	a	historical	protocol	(in	other	words,	obsolete)	and	is	no
longer	used.

TIP

KEY	CONCEPT	The	HELLO	Protocol	was	used	on	very	early	routers	on	the	precursors	of	the	Internet
to	exchange	routing	information.	It	is	a	distance-vector	protocol	like	RIP	and	GGP,	but	differs	because	it
uses	calculated	delay	instead	of	hop	count	as	a	metric.	Like	GGP,	it	is	now	considered	a	historical
protocol	and	is	no	longer	part	of	TCP/IP.



Interior	Gateway	Routing	Protocol	(IGRP)
I	greatly	prefer	universal,	open	standards	to	proprietary	standards.	I	explain	the
reasons	why	in	Chapter	3,	which	discusses	networking	standards.	I	am	not	alone
in	this	view,	and	it's	no	exaggeration	to	say	that	much	of	the	success	of	TCP/IP
and	the	Internet	is	tied	to	the	fact	that	they	were	both	developed,	and	still	are
being	developed,	with	the	open	RFC	process.

That	said,	in	certain	situations,	a	proprietary	protocol	can	be	a	benefit	and	can
even	achieve	considerable	success	if	a	minimum	of	two	factors	is	true:

There	is	a	lack	of	a	suitable	open	protocol	or	a	gap	in	the	feature	coverage	of
existing	open	protocols,	creating	an	opportunity	for	a	proprietary	protocol	to
succeed.

The	proprietary	protocol	must	be	either	initiated	or	strongly	supported	by	a
big	player	in	the	industry.	This	helps	to	ensure	that	other	companies	will	take
notice	and	give	the	protocol	a	chance	to	become	a	standard.

This	situation	arose	in	the	1980s	in	the	world	of	routing	protocols.	At	that	time,
the	most	popular	interior	routing	protocol	was	RIP,	which	does	a	basically	good
job,	but	has	a	number	of	limitations	and	problems	that	are	inherent	to	the
protocol	and	are	not	easily	resolved.	In	the	mid-1980s,	open	alternatives	like
OSPF	did	not	yet	exist;	even	if	they	had,	OSPF	is	much	more	complex	than	RIP
and	therefore	sometimes	not	a	good	alternative	to	it.

Cisco	Systems—definitely	one	of	the	big	names	in	networking,	internetworking,
and	routing—decided	to	develop	a	new	routing	protocol	that	would	be	similar	to
RIP	but	would	provide	greater	functionality	and	solve	some	of	RIP's	inherent
problems.	Called	the	Interior	Gateway	Routing	Protocol	(IGRP),	it	conveniently
uses	the	words	gateway	and	routing	in	its	name,	illustrating	that	these	two	words
are	used	interchangeably	in	internetworking	standards.	Cisco	designed	it	as	a
replacement	for	RIP.	It	is	similar	in	many	ways	and	keeps	RIP's	simplicity,	one
of	its	key	strengths.	At	the	same	time,	IGRP	overcomes	two	key	limitations	of
RIP:	the	use	of	hop	count	solely	as	a	routing	metric	and	the	hop	count	limit	of
15.

Like	RIP,	IGRP	is	a	distance-vector	routing	protocol	designed	for	use	with	an
AS,	and	thus	uses	the	same	basic	mechanism	for	route	determination.	Each



AS,	and	thus	uses	the	same	basic	mechanism	for	route	determination.	Each
router	routinely	sends	out	a	message	on	each	attached	local	network	that
contains	a	copy	of	its	routing	table.	This	message	contains	pairs	of	reachable
networks	and	costs	(metrics)	to	reach	each	network.	A	router	receiving	this
message	knows	it	can	reach	all	the	networks	in	the	message	as	long	as	it	can
reach	the	router	that	sent	the	message.	It	computes	the	cost	to	reach	those
networks	by	adding	what	it	costs	to	reach	the	router	that	sent	the	message	to	the
networks'	costs.	The	routers	update	their	tables	accordingly	and	send	this
information	out	in	their	next	routine	update.	Eventually,	each	router	in	the	AS
will	have	information	about	the	cost	to	reach	each	network	in	it.

There's	an	important	difference	between	RIP	and	IGRP,	however.	RIP	allows	the
cost	to	reach	a	network	to	be	expressed	only	in	terms	of	hop	count;	IGRP
provides	a	much	more	sophisticated	metric.	In	IGRP,	the	overall	cost	to	reach	a
network	is	computed	based	on	several	individual	metrics,	including	internetwork
delay,	bandwidth,	reliability,	and	load.	An	administrator	can	customize	the
calculation	of	cost	by	setting	relative	weightings	to	the	component	metrics	that
reflect	the	priorities	of	that	AS.	So,	if	a	particular	administrator	feels	that
emphasizing	reliability	over	bandwidth	would	best	minimize	route	cost,	he	can
do	this.	Such	a	system	provides	tremendous	flexibility	over	the	rigid	hop-count
system	of	RIP.	Unlike	RIP,	IGRP	also	does	not	have	an	inherent	limit	of	15	hops
between	networks.

To	this	basic	algorithm,	IGRP	adds	a	feature	called	multipath	routing.	This
allows	multiple	paths	between	routes	to	be	used	automatically,	with	traffic
shared	between	them.	The	traffic	can	either	be	shared	evenly	or	apportioned
unevenly	based	on	the	relative	cost	metric	of	each	path.	This	provides	improved
performance	and	flexibility.

Since	IGRP	is	a	distance-vector	protocol	like	RIP,	it	shares	many	of	RIP's
algorithmic	issues.	Unsurprisingly,	then,	IGRP	must	incorporate	many	of	the
same	stability	features	as	RIP,	including	the	use	of	split	horizon,	split	horizon
with	poisoned	reverse	(in	certain	circumstances),	and	the	employment	of	hold-
down	timers.	Like	RIP,	IGRP	also	uses	timers	to	control	how	often	updates	are
sent,	how	long	routers	are	held	down,	and	how	long	routes	are	held	in	the	routing
table	before	they	expire.



Cisco	originally	developed	IGRP	for	Internet	Protocol	(IP)	networks,	and	since
IP	is	predominant	in	the	industry,	these	networks	are	where	it	is	most	often	seen.
IGRP	is	not	specific	to	IP,	however,	and	can	be	used	with	other	internetworking
protocols	if	implemented	for	them.	As	you	will	see,	Cisco	also	used	IGRP	as	the
basis	for	an	improved	routing	protocol	called	EIGRP,	which	it	developed	several
years	after	the	original.
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KEY	CONCEPT	In	the	1980s,	Cisco	Systems	created	the	Interior	Gateway	Routing	Protocol	(IGRP)	as
an	improvement	over	the	industry	standard	protocol,	RIP.	Like	RIP,	IGRP	is	a	distance-vector	protocol,
but	it	includes	several	enhancements.	Most	important,	it	eliminates	the	15-hop	limit	between	routers	and
provides	the	ability	to	use	metrics	other	than	hop	count	to	determine	optimal	routes.



Enhanced	Interior	Gateway	Routing	Protocol
(EIGRP)
As	discussed	in	the	previous	section,	IGRP	represented	a	substantial
improvement	over	RIP,	but	like	any	successful	company,	Cisco	was	not	content
to	rest	on	its	laurels.	Cisco	developers	knew	that	IGRP	had	significant	room	for
improvement,	so	they	set	to	work	on	creating	a	better	version	of	IGRP	in	the
early	1990s.	The	result	was	the	Enhanced	Interior	Gateway	Routing	Protocol
(EIGRP).

Compared	to	the	original	protocol,	EIGRP	is	more	of	an	evolution	than	a
revolution.	EIGRP	is	still	a	distance-vector	protocol,	but	it	is	more	sophisticated
than	other	distance-vector	protocols	like	IGRP	or	RIP,	and	it	includes	certain
features	that	are	more	often	associated	with	link-state	routing	protocols	like
OSPF	than	distance-vector	algorithms.	Also,	since	the	Cisco	developers	realized
that	many	of	the	organizations	that	had	decided	to	use	EIGRP	would	be
migrating	to	it	from	IGRP,	they	took	special	steps	to	ensure	compatibility
between	the	two.

The	chief	differences	between	IGRP	and	EIGRP	are	not	in	what	they	do,	but
how	they	do	it.	In	an	effort	to	improve	the	efficiency	and	speed	of	route
convergence	(that	is,	to	improve	the	agreement	between	different	routers	in	the
internetwork),	EIGRP	changes	the	way	that	routes	are	calculated.	EIGRP	is
based	on	a	new	route	calculation	algorithm	called	the	Diffusing	Update
Algorithm	(DUAL),	developed	at	SRI	International	by	Dr.	J.	J.	Garcia-Luna-
Aceves.

DUAL	differs	from	a	typical	distance-vector	algorithm	primarily	in	that	it
maintains	more	topology	information	about	the	internetwork	than	RIP	or	IGRP
do.	It	uses	this	information	to	automatically	select	least-cost,	loop-free	routes
between	networks.	EIGRP	uses	a	metric	that	combines	an	assessment	of	the
bandwidth	of	a	link	with	the	total	delay	to	send	over	the	link.	(Other	metrics	are
configurable	as	well,	though	not	recommended.)	When	a	neighboring	router
sends	changed	metric	information,	routes	are	recalculated	and	updates	sent	as
needed.	DUAL	will	query	neighboring	routers	for	reachability	information	if
needed	(for	example,	if	an	existing	route	fails).



This	"as	needed"	aspect	of	operation	highlights	an	important	way	that	EIGRP
improves	performance	over	IGRP.	EIGRP	does	not	send	routine	route	updates,
but	instead	sends	only	partial	updates	as	required,	thereby	reducing	the	amount
of	traffic	generated	between	routers.	Furthermore,	these	updates	are	designed	so
that	only	the	routers	that	need	the	updated	information	receive	them.

In	order	to	build	the	tables	of	information	that	it	needs	to	calculate	routes,
EIGRP	requires	routers	to	make	and	maintain	contact	with	other	routers	on	their
local	networks.	To	facilitate	this,	EIGRP	incorporates	a	neighbor	discovery	and
recovery	process.	This	system	involves	the	exchange	of	small	Hello	messages
that	let	routers	discover	the	other	routers	on	the	local	network	and	periodically
check	to	see	whether	they're	reachable.	This	is	very	similar	to	the	way	the
identically	named	Hello	messages	are	used	in	OSPF	(as	described	in	Chapter	39)
and	has	a	low	impact	on	bandwidth	use	because	the	messages	are	small	and
infrequently	sent.

Some	of	the	features	in	IGRP	carry	through	to	its	successor,	such	as	the	use	of
split	horizon	with	poisoned	reverse	for	improved	stability.	In	addition	to	the
basic	improvements	of	efficiency	and	route	convergence	that	accrue	from	the
algorithm	itself,	EIGRP	includes	some	other	features.	These	include	support	for
Variable	Length	Subnet	Masks	(VLSM)	as	well	as	support	for	multiple	network-
layer	protocols.	This	means	that	EIGRP	could	be	configured	to	function	on	a
network	that	is	running	IP	as	well	as	another	layer	3	protocol.
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KEY	CONCEPT	Developed	in	the	1990s,	the	Enhanced	Interior	Gateway	Routing	Protocol	(EIGRP)	is
an	improved	version	of	Cisco's	IGRP.	It	is	similar	to	IGRP	in	many	respects,	but	it	uses	a	more
sophisticated	route	calculation	method	called	the	Diffusing	Update	Algorithm	(DUAL).	EIGRP	also
includes	several	features	that	make	it	more	intelligent	with	regard	to	how	it	computes	routes;	it	borrows
concepts	from	link-state	routing	protocols	and	uses	more	efficient	partial	updates,	rather	than	sending	out
entire	routing	tables.



TCP/IP	Exterior	Gateway	Protocol	(EGP)
In	the	days	of	the	early	Internet,	a	small	number	of	centralized	core	routers	that
maintained	complete	information	about	network	reachability	did	the	routing.
These	core	routers	exchanged	information	using	the	historical	interior	routing
protocol,	GGP,	which	we	examined	earlier	in	this	chapter.	Other	noncore	routers
located	around	the	periphery	of	this	core,	both	stand-alone	and	in	groups,
exchanged	network	reachability	information	with	the	core	routers	using	the	first
TCP/IP	exterior	routing	protocol:	the	Exterior	Gateway	Protocol	(EGP).

Internet	pioneers	Bolt,	Beranek,	and	Newman	developed	EGP	in	the	early	1980s.
It	was	first	formally	described	in	an	Internet	standard	in	RFC	827,	"Exterior
Gateway	Protocol	(EGP),"	published	in	October	1982,	which	was	later
superseded	by	RFC	904,	"Exterior	Gateway	Protocol	Formal	Specification,"	in
April	1984.	Like	GGP,	EGP	is	now	considered	obsolete,	having	been	replaced
by	BGP.	However,	like	GGP,	it	is	an	important	part	of	the	history	of	TCP/IP
routing,	so	it	is	worth	examining	briefly.

NOTE

As	I	explained	in	Chapter	37,	routers	were	in	the	past	often	called	gateways.	As	such,	exterior	routing
protocols	were	exterior	gateway	protocols.	The	EGP	protocol	discussed	here	is	a	specific	instance	of	an
exterior	gateway	protocol	(also	known	as	EGP).	Thus,	you	may	occasionally	see	BGP	also	called	an
exterior	gateway	protocol	or	an	EGP,	which	is	the	generic	use	of	the	term.

EGP	is	responsible	for	the	communication	of	network	reachability	information
between	neighboring	routers	that	may	or	may	not	be	in	different	ASes.	The
operation	of	EGP	is	somewhat	similar	to	that	of	BGP	(discussed	in	Chapter	40).
Each	EGP	router	maintains	a	database	of	information	about	which	networks	it
can	reach	and	how	to	reach	them.	It	sends	this	information	out	on	a	regular	basis
to	each	router	to	which	it	is	directly	connected.	Routers	receive	these	messages
and	update	their	routing	tables,	and	then	use	this	new	information	to	update	other
routers.	Information	about	how	to	reach	each	network	propagates	across	the
entire	internetwork.

The	actual	process	of	exchanging	routing	information	involves	several	steps	that
discover	neighbors	and	then	set	up	and	maintain	communications.	The	steps	are
as	follows:



as	follows:

1.	 Neighbor	Acquisition	Each	router	attempts	to	establish	a	connection	to
each	of	its	neighboring	routers	by	sending	Neighbor	Acquisition	Request
messages.	A	neighbor	hearing	a	request	can	respond	with	a	Neighbor
Acquisition	Confirm	message,	which	says	that	it	recognized	the	request
and	wishes	to	connect.	It	may	reject	the	acquisition	by	replying	with	a
Neighbor	Acquisition	Refuse	message.	For	an	EGP	connection	to	be
established	between	a	pair	of	neighbors,	each	message	must	first
successfully	acquire	the	other	with	a	Confirm	message.

2.	 Neighbor	Reachability	After	acquiring	a	neighbor,	a	router	checks	to
make	sure	the	neighbor	is	reachable	and	functioning	properly	on	a	regular
basis.	This	is	done	by	sending	an	EGP	Hello	message	to	each	neighbor	for
which	a	connection	has	been	established.	The	neighbor	replies	with	an	I
Heard	You	(IHU)	message.	These	messages	are	somewhat	analogous	to	the
BGP	Keepalive	message,	but	they	are	used	in	matched	pairs.

3.	 Network	Reachability	Update	A	router	sends	Poll	messages	on	a	regular
basis	to	each	of	its	neighbors.	The	neighbor	responds	with	an	Update
message,	which	contains	details	about	the	networks	that	it	is	able	to	reach.
This	information	is	used	to	update	the	routing	tables	of	the	device	that	sent
the	Poll	message.

A	neighbor	can	decide	to	terminate	a	connection	(called	neighbor	deacquisition)
by	sending	a	Cease	message;	the	neighbor	responds	with	a	Cease-ack
(acknowledge)	message.

An	Error	message,	similar	to	the	BGP	Notification	message	in	role	and	structure
(see	Chapter	40),	is	also	defined.	A	neighbor	may	send	this	message	in	response
to	the	receipt	of	an	EGP	message	either	when	the	message	itself	has	a	problem
(such	as	a	bad	message	length	or	unrecognized	data	in	a	field)	or	to	indicate	a
problem	with	how	the	message	is	being	used	(such	as	receipt	of	Hello	or	Poll
messages	at	a	rate	deemed	excessive).	Unlike	with	the	BGP	Notification
message,	an	EGP	router	does	not	necessarily	close	the	connection	when	sending
an	Error	message.

TIP



KEY	CONCEPT	The	Exterior	Gateway	Protocol	(EGP)	was	the	first	TCP/IP	exterior	routing	protocol
and	was	used	with	GGP	on	the	early	Internet.	It	functions	in	a	manner	similar	to	BGP.	For	example,	an
EGP	router	makes	contact	with	neighboring	routers	and	exchanges	routing	information	with	them.	A
mechanism	is	also	provided	to	maintain	a	session	and	report	errors.	EGP	is	more	limited	than	BGP	in
capability	and	is	now	considered	a	historical	protocol.

The	early	Internet	was	designed	to	connect	peripheral	routers	or	groups	of
routers	to	the	Internet	core.	It	was	therefore	designed	under	the	assumption	that
the	internetwork	was	connected	as	a	hierarchical	tree,	with	the	core	as	the	root.
EGP	was	designed	based	on	this	assumption	of	a	tree	structure	and,	for	that
reason,	cannot	handle	an	arbitrary	topology	of	ASes	like	BGP.	It	likewise	cannot
guarantee	the	absence	of	routing	loops	if	such	loops	exist	in	the	interconnection
of	neighboring	routers.	This	is	part	of	why	BGP	needed	to	be	developed	as	the
Internet	moved	to	a	more	arbitrary	structure	of	AS	connections,	where	loops
would	be	possible	if	steps	weren't	taken	to	avoid	them.



Part	II-8.	TCP/IP	TRANSPORT	LAYER
PROTOCOLS
Chapter	42

Chapter	43

Chapter	44

Chapter	45

Chapter	46

Chapter	47

Chapter	48

Chapter	49

The	first	three	layers	of	the	OSI	Reference	Model—the	physical	layer,	data	link
layer,	and	network	layer—are	very	important	layers	for	understanding	how
networks	function.	The	physical	layer	moves	bits	over	wires;	the	data	link	layer
moves	frames	on	a	network;	and	the	network	layer	moves	datagrams	on	an
internetwork.	Taken	as	a	whole,	they	are	the	parts	of	a	protocol	stack	that	are
responsible	for	the	actual	nuts	and	bolts	of	getting	data	from	one	place	to
another.

Immediately	above	these	three	layers	is	the	fourth	layer	of	the	OSI	Reference
Model:	the	transport	layer,	called	the	host-to-host	transport	layer	in	the	TCP/IP
model.	This	layer	is	interesting	in	that	it	resides	in	the	very	architectural	center
of	the	model.	Accordingly,	it	represents	an	important	transition	point	between
the	hardware-associated	layers	below	it	that	do	the	grunt	work	and	the	layers
above	that	are	more	software-oriented	and	abstract.

Protocols	running	at	the	transport	layer	are	charged	with	providing	several
important	services	to	enable	software	applications	in	higher	layers	to	work	over
an	internetwork.	They	are	typically	responsible	for	allowing	connections	to	be
established	and	maintained	between	software	services	on	possibly	distant
machines.	Many	higher-layer	applications	need	to	send	data	in	a	reliable	way,
without	needing	to	worry	about	error	correction,	lost	data,	or	flow	management.
However,	network	layer	protocols	are	typically	unreliable	and	unacknowledged.



However,	network	layer	protocols	are	typically	unreliable	and	unacknowledged.
Transport	layer	protocols	are	often	very	tightly	tied	to	the	network	layer
protocols	directly	below	them	and	designed	specifically	to	take	care	of	functions
that	are	not	dealt	with	by	those	protocols.

This	part	describes	transport	layer	protocols	and	related	technologies	used	in	the
TCP/IP	protocol	suite.	There	are	two	main	protocols	at	this	layer:	the
Transmission	Control	Protocol	(TCP)	and	the	User	Datagram	Protocol	(UDP).
UDP	is	the	simpler	of	the	two	and	doesn't	take	a	great	deal	of	time	to	explain.	In
contrast,	TCP	is	a	rather	complex	protocol	that	is	also	a	very	important	part	of
the	TCP/IP	protocol	suite,	and	thus	it	requires	considerably	more	explanation.

The	first	chapter	in	this	part	provides	a	quick	overview	of	the	roles	of	these	two
protocols	in	the	TCP/IP	protocol	suite,	a	discussion	of	why	they	are	both
important,	and	a	summary	that	compares	their	key	attributes.	The	second	chapter
describes	the	method	that	both	protocols	employ	for	addressing,	using	transport
layer	ports	and	sockets.	The	third	chapter	contains	a	discussion	of	UDP.

The	remaining	five	chapters	encompass	a	comprehensive	description	of	the
concepts,	characteristics,	and	functions	of	TCP.	The	fourth	chapter	in	this	part
provides	an	overview	of	TCP,	describing	its	history,	what	it	does,	and	how	it
works.	The	fifth	chapter	covers	some	important	background	information	that	is
necessary	to	understanding	how	TCP	operates,	explaining	key	concepts	such	as
streams	and	segments,	sliding	windows,	and	TCP	ports	and	connections.	The
sixth	chapter	describes	the	process	used	by	TCP	to	establish,	maintain,	and
terminate	sessions.	The	seventh	chapter	describes	TCP	messages	and	how	they
are	formatted	and	transferred.	Finally,	the	last	chapter	in	this	part	shows	how
TCP	provides	reliability	and	other	important	transport	layer	functions,	such	as
flow	control,	retransmission	of	lost	data,	and	congestion	avoidance.

Since	TCP	is	built	on	top	of	the	Internet	Protocol	(IP),	in	describing	TCP,	I
assume	that	you	have	at	least	a	basic	familiarity	with	IP	(covered	in	Part	II-3;
specifically,	see	Chapters	Chapter	15	and	Chapter	16	for	descriptions	of	basic	IP
concepts).



Chapter	42.	OVERVIEW	AND
COMPARISON	OF	TCP	AND	UDP

TCP/IP	is	the	most	important	internetworking	protocol	suite	in	the	world.	It	is
the	basis	for	the	Internet	and	the	"language"	spoken	by	the	vast	majority	of	the
world's	networked	computers.	TCP/IP	includes	a	large	set	of	protocols	that
operate	at	the	network	layer	and	the	layers	above	it.	The	suite	as	a	whole	is
anchored	at	layer	3	by	the	Internet	Protocol	(IP),	which	many	people	consider
the	single	most	important	protocol	in	the	world	of	networking.

Of	course,	there's	a	bit	of	architectural	distance	between	the	network	layer	and
the	applications	that	run	at	the	layers	well	above	that	layer.	IP	is	the	protocol	that
performs	the	bulk	of	the	functions	needed	to	make	an	internetwork	work,	but	it
does	not	include	some	capabilities	that	many	applications	need.	In	TCP/IP,	a	pair
of	protocols	that	operate	at	the	transport	layer	performs	these	tasks.	The
protocols	are	the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram
Protocol	(UDP).

Of	these	two,	TCP	gets	the	most	attention.	It	is	the	transport	layer	protocol	that	is
most	often	associated	with	TCP/IP.	It	is	also	the	transport	protocol	that	many	of
the	Internet's	most	popular	applications	use.

UDP,	on	the	other	hand,	gets	second	billing.	However,	UDP	and	TCP	are	really
peers	that	play	the	same	role	in	TCP/IP.	They	function	very	differently	and
provide	different	benefits	for	and	drawbacks	to	the	applications	that	use	them.
Yet	they	are	both	important	to	the	protocol	suite	as	a	whole.	This	chapter
introduces	what	TCP	and	UDP	do	and	highlights	the	similarities	and	differences
between	them.

Two	Protocols	for	TCP/IP	Transport	Layer



Requirements
The	transport	layer	in	a	protocol	suite	is	responsible	for	a	specific	set	of
functions.	For	this	reason,	you	might	expect	that	the	TCP/IP	suite	would	have	a
single	main	transport	protocol	that	performs	those	functions,	just	as	it	has	IP	as
its	core	protocol	at	the	network	layer.	But	there	are	two	different	widely	used
TCP/IP	transport	layer	protocols,	an	arrangement	that	is	probably	one	of	the	best
examples	of	the	power	of	protocol	layering	(showing	that	it	was	worth	all	the
time	you	spent	learning	to	understand	that	pesky	OSI	Reference	Model	back	in
Chapters	Chapter	5	through	Chapter	7).

Let's	start	with	a	look	back	at	layer	3.	In	my	overview	of	the	key	operating
characteristics	of	IP	in	Chapter	15,	I	described	several	limitations	of	IP.	The
most	important	limitations	are	that	IP	is	connectionless,	unreliable,	and
unacknowledged.	Using	a	best-effort	paradigm,	data	is	sent	over	an	IP
internetwork	without	first	establishing	a	connection.	Messages	usually	get	where
they	need	to	go,	but	there	are	no	guarantees,	and	the	sender	usually	doesn't	even
know	if	the	data	arrived	at	its	destination.

These	characteristics	present	serious	problems	for	software.	Many,	if	not	most,
applications	need	to	be	able	to	count	on	the	fact	that	the	data	they	send	will	get
to	its	destination	without	loss	or	error.	Applications	also	want	the	connection
between	two	devices	to	be	automatically	managed,	with	problems	such	as
congestion	and	flow	control	taken	care	of	as	needed.	Unless	some	mechanism	is
provided	for	this	at	lower	layers,	every	application	would	need	to	perform	these
jobs,	and	that	would	be	a	massive	duplication	of	effort.

In	fact,	you	might	argue	that	establishing	connections,	providing	reliability,	and
handling	retransmissions,	buffering,	and	data	flow	are	sufficiently	important	that
it	might	have	been	best	to	simply	build	these	abilities	directly	into	IP.
Interestingly,	that	was	exactly	the	case	in	the	early	days	of	TCP/IP.	In	the
beginning	there	was	just	a	single	protocol	called	TCP.	It	combined	the	tasks	of
IP	with	the	reliability	and	session	management	features	that	I	just	mentioned.
There's	a	big	problem	with	this,	however:	Establishing	connections,	providing	a
mechanism	for	reliability,	managing	flow	control,	managing	acknowledgments,
and	managing	retransmissions	all	come	at	a	cost	of	time	and	bandwidth.
Building	all	of	these	capabilities	into	a	single	protocol	that	spanned	layers	3	and
4	would	mean	that	all	applications	would	receive	the	benefits	of	reliability,	but



4	would	mean	that	all	applications	would	receive	the	benefits	of	reliability,	but
would	also	take	on	the	costs.	While	this	approach	would	be	fine	for	many
applications,	there	are	others	that	either	don't	need	the	reliability	or	can't	afford
the	overhead	required	to	provide	it.

The	solution	was	simple:	Let	the	network	layer	(IP)	take	care	of	basic	data
movement	on	the	internetwork,	and	define	two	protocols	at	the	transport	layer.
One	protocol	would	provide	a	rich	set	of	services	for	applications	that	need	that
functionality,	and	the	understanding	would	be	that	some	overhead	would	be
required	when	using	this	protocol.	The	other	protocol	would	be	simpler,
providing	little	in	the	way	of	classic	layer	4	functions,	but	it	would	be	fast	and
easy	to	use.	Thus,	the	result	was	two	TCP/IP	transport	layer	protocols:

Transmission	Control	Protocol	(TCP)	TCP	is	a	full-featured,	connection-
oriented,	reliable	transport	protocol	for	TCP/IP	applications.	It	provides	transport
layer	addressing	that	allows	multiple	software	applications	to	simultaneously	use
a	single	IP	address,	and	it	allows	a	pair	of	devices	to	establish	a	virtual
connection	and	then	pass	data	bidirectionally.	Transmissions	are	managed	using
a	special	sliding	window	system,	with	unacknowledged	transmissions	detected
and	automatically	retransmitted.	Additional	functionality	allows	the	flow	of	data
between	devices	to	be	managed,	and	special	circumstances	to	be	addressed.

User	Datagram	Protocol	(UDP)	In	contrast,	UDP	is	a	very	simple	transport
protocol	that	provides	transport	layer	addressing	like	TCP,	but	little	else.	UDP	is
barely	more	than	a	wrapper	protocol	that	provides	a	way	for	applications	to
access	IP.	No	connection	is	established,	transmissions	are	unreliable,	and	data
can	be	lost.

TIP

KEY	CONCEPT	Many	TCP/IP	applications	require	different	transport	requirements,	thus	two	TCP/IP
transport	layer	protocols	are	necessary.	The	Transmission	Control	Protocol	(TCP)	is	a	full-featured,
connection-oriented	protocol	that	provides	the	acknowledged	delivery	of	data	while	managing	traffic
flow	and	handling	issues	such	as	congestion	and	transmission	loss.	The	User	Datagram	Protocol	(UDP),
in	contrast,	is	a	much	simpler	protocol	that	concentrates	only	on	delivering	data	in	order	to	maximize	the
speed	of	communication	when	the	features	of	TCP	are	not	required.



Applications	of	TCP	and	UDP
To	use	an	analogy,	TCP	is	a	fully	loaded	luxury	performance	sedan	with	a
chauffeur	and	a	satellite	tracking/navigation	system.	It	provides	a	lot	of	frills,
comfort,	and	performance.	It	virtually	guarantees	that	you	will	get	where	you
need	to	go	without	any	problems,	and	any	concerns	that	do	arise	can	be
corrected.	In	contrast,	UDP	is	a	stripped-down	race	car.	Its	goal	is	simplicity	and
speed;	everything	else	is	secondary.	You	will	probably	get	where	you	need	to	go,
but	you	can	have	trouble	keeping	race	cars	up	and	running.

Having	two	transport	layer	protocols	with	such	complementary	strengths	and
weaknesses	provides	considerable	flexibility	to	the	creators	of	networking
software.

TCP	Applications
Most	typical	applications	need	the	reliability	and	other	services	provided	by
TCP,	and	most	applications	don't	care	about	the	loss	of	a	small	amount	of
performance	due	to	TCP's	overhead	requirements.	For	example,	most
applications	that	transfer	files	or	important	data	between	machines	use	TCP,
because	the	loss	of	any	portion	of	the	file	renders	the	data	useless.	Examples
include	such	well-known	applications	as	the	Hypertext	Transfer	Protocol
(HTTP),	which	is	used	by	the	World	Wide	Web	(WWW),	the	File	Transfer
Protocol	(FTP),	and	the	Simple	Mail	Transfer	Protocol	(SMTP).	I	describe	TCP
applications	in	more	detail	in	Section	III.

UDP	Applications
What	sort	of	application	doesn't	care	if	its	data	gets	there,	and	why	would	anyone
want	to	use	such	an	unreliable	application?	You	might	be	surprised.	A	lot	of
TCP/IP	protocols	use	UDP.	It	is	a	good	match	when	the	application	doesn't
really	care	if	some	of	the	data	gets	lost,	such	as	if	you	are	streaming	video	or
multimedia.	The	application	won't	notice	one	lost	byte	of	data.	UDP	is	also	a
good	match	when	the	application	itself	chooses	to	provide	some	other
mechanism	to	make	up	for	the	lack	of	functionality	in	UDP.

Applications	that	send	very	small	amounts	of	data	often	use	UDP	and	assume



that	the	client	will	just	send	a	new	request	later	on	if	a	request	is	sent	and	a	reply
is	not	received.	This	provides	enough	reliability	without	the	overhead	of	a	TCP
connection.	I	discuss	some	common	UDP	applications	in	Chapter	44.

TIP

KEY	CONCEPT	Most	typical	applications,	especially	ones	that	send	files	or	messages,	require	that	data
be	delivered	reliably,	and	therefore	use	TCP	for	transport.	The	loss	of	a	small	amount	of	data	usually	is
not	a	concern	to	applications	that	use	UDP	or	that	use	their	own	application-specific	procedures	for
dealing	with	potential	delivery	problems.

Note	that	even	though	TCP	is	often	described	as	being	slower	than	UDP,	this	is	a
relative	measurement.	TCP	is	a	very	well-written	protocol	that	is	capable	of
highly	efficient	data	transfers.	It	is	slow	only	compared	to	UDP	because	of	the
overhead	of	establishing	and	managing	connections.	The	difference	can	be
significant,	but	it	is	not	enormous.

Incidentally,	if	you	want	a	good	real-world	illustration	of	why	it's	valuable	to
have	both	UDP	and	TCP,	consider	message	transport	under	the	Domain	Name
System	(DNS).	As	described	in	Chapter	57,	DNS	actually	uses	UDP	for	certain
types	of	communication	and	TCP	for	others.



Summary	Comparison	of	UDP	and	TCP
In	the	next	few	chapters,	we	will	explore	both	UDP	and	TCP	in	further	detail.	I
will	help	you	to	understand	much	better	the	strengths	and	drawbacks	of	both
protocols.	While	informative,	these	chapters	are	time-consuming	to	read.	Thus,
for	your	convenience,	I	have	included	Table	42-1,	which	describes	the	most
important	attributes	of	both	protocols	and	how	they	contrast	with	each	other.

Table	42-1.	Summary	Comparison	of	UDP	and	TCP

Characteristic/Description UDP TCP

General	Description Simple,	high-speed,	low-
functionality	wrapper	that
interfaces	applications	to	the
network	layer	and	does	little	else

Full-featured	protocol	that
allows	applications	to	send
data	reliably	without
worrying	about	network
layer	issues

Protocol	Connection	Setup Connectionless;	data	is	sent
without	setup

Connection-oriented;
connection	must	be
established	prior	to
transmission

Data	Interface	to	Application Message-based;	the	application
sends	data	in	discrete	packages

Stream-based;	the
application	sends	data	with
no	particular	structure

Reliability	and
Acknowledgments

Unreliable,	best-effort	delivery
without	acknowledgments

Reliable	delivery	of
messages;	all	data	is
acknowledged

Retransmissions Not	performed;	application	must
detect	lost	data	and	retransmit	if
needed

Delivery	of	all	data	is
managed,	and	lost	data	is
retransmitted	automatically

Features	Provided	to	Manage
Flow	of	Data

None Flow	control	using	sliding
windows;	window	size
adjustment	heuristics;
congestion-avoidance
algorithms

Overhead Very	low Low,	but	higher	than	UDP

Transmission	Speed Very	high High,	but	not	as	high	as



Transmission	Speed Very	high High,	but	not	as	high	as
UDP

Data	Quantity	Suitability Small	to	moderate	amounts	of
data	(up	to	a	few	hundred	bytes)

Small	to	very	large
amounts	of	data	(up	to	a
few	gigabytes)

Types	of	Applications	That
Use	the	Protocol

Applications	where	data	delivery
speed	matters	more	than
completeness,	where	small
amounts	of	data	are	sent,	or
where	multicast/broadcast	are
used

Most	protocols	and
applications	sending	data
that	must	be	received
reliably,	including	most	file
and	message	transfer
protocols

Well-Known	Applications	and
Protocols

Multimedia	applications,	DNS,
BOOTP,	DHCP,	TFTP,	SNMP,
RIP,	NFS	(early	versions)

FTP,	Telnet,	SMTP,	DNS,
HTTP,	POP,	NNTP,	IMAP,
BGP,	IRC,	NFS	(later
versions)



Chapter	43.	TCP	AND	UDP
ADDRESSING:	PORTS	AND
SOCKETS

Internet	Protocol	(IP)	addresses	are	the	main	form	of	addressing	used	on	a
TCP/IP	network.	These	network	layer	addresses	uniquely	identify	each	network
interface,	and	as	such,	they	serve	as	the	mechanism	by	which	data	is	routed	to
the	correct	network	on	the	internetwork	and	then	to	the	correct	device	on	that
network.

But	there	is	an	additional	level	of	addressing	that	occurs	at	the	transport	layer	in
TCP/IP,	above	that	of	the	IP	address.	Both	of	the	TCP/IP	transport	protocols—
the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram	Protocol
(UDP)—use	the	concepts	of	ports	and	sockets	for	virtual	software	addressing.
Ports	and	sockets	enable	many	applications	to	function	simultaneously	on	an	IP
device.

In	this	chapter,	I	describe	the	special	mechanism	used	for	addressing	in	both
TCP	and	UDP.	I	begin	with	a	discussion	of	TCP/IP	application	processes,
including	the	client/server	nature	of	communication,	which	provides	a
background	for	explaining	how	ports	and	sockets	are	used.	I	then	give	an
overview	of	the	concept	of	ports	and	how	they	enable	the	multiplexing	of	data
over	an	IP	address.	I	describe	the	way	that	port	numbers	are	categorized	in
ranges	and	assigned	to	server	processes	for	common	applications.	I	explain	the
concept	of	ephemeral	port	numbers	used	for	clients.	I	then	discuss	sockets	and
their	use	for	connection	identification,	including	the	means	by	which	multiple
devices	can	talk	to	a	single	port	on	another	device.	I	then	provide	a	summary
table	of	the	most	common	registered	port	numbers.



TCP/IP	Processes,	Multiplexing,	and
Client/Server	Application	Roles
The	most	sensible	place	to	start	learning	about	how	the	TCP/IP	protocol	suite
works	is	by	examining	IP	itself,	as	well	as	the	support	protocols	that	function	in
tandem	with	it	at	the	network	layer.	IP	is	the	foundation	upon	which	most	of	the
rest	of	TCP/IP	is	built.	It	is	the	mechanism	by	which	data	is	packaged	and	routed
throughout	a	TCP/IP	internetwork.

It	makes	sense,	then,	that	when	we	examine	the	operation	of	TCP/IP	from	the
perspective	of	IP,	we	talk	very	generically	about	sending	and	receiving
datagrams.	To	the	IP	layer	software	that	sends	and	receives	IP	datagrams,	the
higher-level	application	that	datagrams	come	from	and	go	to	is	really
unimportant.	To	IP,	a	datagram	is	a	datagram.	All	datagrams	are	packaged	and
routed	in	the	same	way,	and	IP	is	mainly	concerned	with	lower-level	aspects	of
moving	them	between	devices	in	an	efficient	manner.	It's	important	to
remember,	however,	that	this	is	really	an	abstraction	for	the	convenience	of
describing	a	layer	3	operation.	It	doesn't	consider	how	datagrams	are	really
generated	and	used	above	layer	3.

Layer	4	represents	a	transition	point	between	the	OSI	model	hardware-related
layers	(1,	2,	and	3)	and	the	software-related	layers	(5	to	7).	This	means	that	the
TCP/IP	transport	layer	protocols,	TCP	and	UDP,	need	to	pay	attention	to	the
way	that	software	uses	TCP/IP,	even	if	IP	really	does	not.

Ultimately,	the	entire	point	of	having	networks,	internetworks,	and	protocol
suites	like	TCP/IP	is	to	enable	networking	applications.	Most	Internet	users
employ	these	applications	on	a	daily	basis.	In	fact,	most	of	us	run	many	different
applications	simultaneously.	For	example,	you	might	use	a	web	browser	to	check
the	news,	a	File	Transfer	Program	(FTP)	client	to	upload	some	pictures	to	share
with	family,	and	an	Internet	Relay	Chat	(IRC)	program	to	discuss	something
with	a	friend	or	colleague.	In	fact,	it	is	common	to	have	multiple	instances	of	a
single	application.	The	most	common	example	is	having	multiple	web	browser
windows	open	(I	sometimes	find	myself	with	as	many	as	30	going	at	one	time!).

Multiplexing	and	Demultiplexing



Most	communication	in	TCP/IP	takes	the	form	of	exchanges	of	information
between	a	program	running	on	one	device	and	a	matching	program	running	on
another	device.	Each	instance	of	an	application	represents	a	copy	of	that
application's	software	that	needs	to	send	and	receive	information.	These
application	instances	are	commonly	called	processes.	A	TCP/IP	application
process	is	any	piece	of	networking	software	that	sends	and	receives	information
using	the	TCP/IP	protocol	suite.	This	includes	classic	end-user	applications	such
as	the	ones	described	earlier,	and	support	protocols	that	behave	like	applications
when	they	send	messages.	Examples	of	the	latter	would	include	a	network
management	protocol	like	the	Simple	Network	Management	Protocol	(SNMP;
see	Chapters	Chapter	65	through	Chapter	69),	or	even	the	routing	protocol
Border	Gateway	Protocol	(BGP;	see	Chapter	40),	which	sends	messages	using
TCP	the	way	an	application	does.

So,	a	typical	TCP/IP	host	has	multiple	processes,	and	each	one	needs	to	send	and
receive	datagrams.	All	of	these	datagrams,	however,	must	be	sent	using	the	same
interface	to	the	internetwork,	using	the	IP	layer.	This	means	that	the	data	from
all	applications	(with	some	possible	exceptions)	is	initially	funneled	down	to	the
transport	layer,	where	TCP	or	UDP	handles	it.	From	there,	messages	pass	to	the
device's	IP	layer,	where	they	are	packaged	in	IP	datagrams	and	sent	out	over	the
internetwork	to	different	destinations.	The	technical	term	for	this	is	multiplexing.
This	term	simply	means	combining,	and	its	use	here	is	a	software	analog	to	the
way	multiplexing	is	done	with	signals	(such	as	how	individual	telephone	calls
are	packaged).

A	complementary	mechanism	is	responsible	for	the	receipt	of	datagrams.	At	the
same	time	that	the	IP	layer	multiplexes	datagrams	to	send	from	many	application
processes,	it	receives	many	datagrams	that	are	intended	for	different	processes.
The	IP	layer	must	take	this	stream	of	unrelated	datagrams	and	pass	them	to	the
correct	process	(through	the	transport	layer	protocol	above	it).	This	is
demultiplexing,	the	opposite	of	multiplexing.

You	can	see	an	illustration	of	the	concept	behind	TCP/IP	process	multiplexing
and	demultiplexing	in	Figure	43-1.

TIP



KEY	CONCEPT	TCP/IP	is	designed	to	allow	many	different	applications	to	send	and	receive	data
simultaneously	using	the	same	IP	software	on	a	given	device.	To	accomplish	this,	it	is	necessary	to
multiplex	transmitted	data	from	many	sources	as	it	is	passed	down	to	the	IP	layer.	As	a	stream	of	IP
datagrams	is	received,	it	is	demultiplexed	and	the	appropriate	data	passed	to	each	application	software
instance	on	the	receiving	host.

TCP/IP	Client	Processes	and	Server	Processes
TCP/IP	software	is	generally	asymmetric.	This	means	that	when	a	TCP/IP
application	process	on	one	computer	tries	to	talk	to	an	application	process	on
another	computer,	the	two	processes	are	usually	not	exactly	the	same.	They	are
instead	complements	of	each	other,	designed	to	function	together	as	a	team.

As	I	explained	in	the	overview	description	of	TCP/IP	in	Chapter	8,	most
networking	applications	use	a	client/server	model	of	operation.	This	term	can	be
used	to	refer	to	the	roles	of	computers,	where	a	server	is	a	relatively	powerful
machine	that	provides	services	to	a	large	number	of	user-operated	clients.	It	also
applies	to	software.	In	a	software	context,	a	client	process	usually	runs	on	a
client	machine	and	initiates	contact	to	perform	some	sort	of	function.	A	server
process	usually	runs	on	a	hardware	server,	listens	for	requests	from	clients,	and
responds	to	them.

The	classic	example	of	this	client/server	operation	is	the	World	Wide	Web
(WWW).	The	Web	uses	the	Hypertext	Transfer	Protocol	(HTTP;	see
Chapter	80),	which	is	a	good	example	of	an	application	protocol.	A	web	browser
is	an	HTTP	client	that	normally	runs	on	an	end-user	client	machine.	It	initiates
an	exchange	of	HTTP	(web)	data	by	sending	a	request	to	a	web	(HTTP)	server.
A	server	process	on	that	web	server	hears	the	request	and	replies	either	with	the
requested	item(s)—a	web	page	or	other	data—or	an	error	message.	The	server	is
usually	specifically	designed	to	handle	many	incoming	client	requests,	and	in
many	cases,	has	no	other	use.

Why	am	I	telling	you	all	of	this	in	a	section	that	is	supposed	to	explain	TCP	and
UDP	ports?	I	started	here	because	many	application	processes	run
simultaneously	and	have	their	data	multiplexed	for	transmission.	The
simultaneity	of	application	processes	and	the	multiplexing	of	data	are	the
impetus	for	why	higher-level	addressing	is	a	necessity	in	TCP/IP.	The
client/server	arrangement	used	by	TCP/IP	has	an	important	impact	on	the	way



that	ports	are	used	and	the	mechanisms	for	how	they	are	assigned.	The	next	two
sections	explore	these	concepts	more	completely.

Figure	43-1.	Process	multiplexing	and	demultiplexing	in	TCP/IP	In	a	typical	machine	that	is	running
TCP/IP,	there	are	many	different	protocols	and	applications	running	simultaneously.	This	example
shows	four	different	applications	communicating	between	a	client	and	server	machine.	All	four	are
multiplexed	for	transmission	using	the	same	IP	software	and	physical	connection;	received	data	is

demultiplexed	and	passed	to	the	appropriate	application.	IP,	TCP,	and	UDP	provide	a	way	of	keeping
the	data	from	each	application	distinct.



TCP/IP	Ports:	TCP/UDP	Addressing
A	typical	host	on	a	TCP/IP	internetwork	has	many	different	software	application
processes	running	concurrently.	Each	process	generates	data	that	it	sends	to
either	TCP	or	UDP,	which	then	passes	it	to	IP	for	transmission.	The	IP	layer
sends	out	this	multiplexed	stream	of	datagrams	to	various	destinations.
Simultaneously,	each	device's	IP	layer	is	receiving	datagrams	that	originated	in
numerous	application	processes	on	other	hosts.	These	datagrams	need	to	be
demultiplexed	so	that	they	end	up	at	the	correct	process	on	the	device	that
receives	them.

Multiplexing	and	Demultiplexing	Using	Ports
The	question	is	how	do	we	demultiplex	a	sequence	of	IP	datagrams	that	need	to
go	to	many	different	application	processes?	Let's	consider	a	particular	host	with
a	single	network	interface	bearing	the	IP	address	24.156.79.20.	Normally,	every
datagram	received	by	the	IP	layer	will	have	this	value	in	the	IP	Destination
Address	field.	The	consecutive	datagrams	that	IP	receives	may	contain	a	piece	of
a	file	you	are	downloading	with	your	web	browser,	an	email	your	brother	sent	to
you,	and	a	line	of	text	a	buddy	wrote	in	an	IRC	chat	channel.	How	does	the	IP
layer	know	which	datagrams	go	where	if	they	all	have	the	same	IP	address?

The	first	part	of	the	answer	lies	in	the	Protocol	field	included	in	the	header	of
each	IP	datagram.	This	field	carries	a	code	that	identifies	the	protocol	that	sent
the	data	in	the	datagram	to	IP.	Since	most	end-user	applications	use	TCP	or	UDP
at	the	transport	layer,	the	Protocol	field	in	a	received	datagram	tells	IP	to	pass
data	to	either	TCP	or	UDP	as	appropriate.	Of	course,	this	just	defers	the	problem
to	the	transport	layer.

Many	applications	use	both	TCP	and	UDP	at	once.	This	means	that	TCP	or	UDP
must	figure	out	which	process	to	send	the	data	to.	To	make	this	possible,	an
additional	addressing	element	is	necessary.	This	address	allows	a	more	specific
location—a	software	process—to	be	identified	within	a	particular	IP	address.	In
TCP/IP,	this	transport	layer	address	is	called	a	port.

Source	Port	and	Destination	Port	Numbers



In	UDP	and	TCP	messages	two	addressing	fields	appear:	a	source	port	and	a
destination	port.	These	are	analogous	to	the	source	address	and	destination
address	fields	at	the	IP	level,	but	at	a	higher	level	of	detail.	They	identify	the
originating	process	on	the	source	machine	and	the	destination	process	on	the
destination	machine.	The	TCP	or	UDP	software	fills	them	in	before
transmission,	and	they	direct	the	data	to	the	correct	process	on	the	destination
device.

NOTE

The	term	port	has	many	meanings	aside	from	this	one	in	TCP/IP.	For	example,	a	physical	outlet	in	a
network	device	is	often	called	a	port.	Usually,	you	can	discern	whether	the	port	in	question	refers	to	a
hardware	port	or	a	software	port	from	the	context.

TCP	and	UDP	port	numbers	are	16	bits	in	length.	Valid	port	numbers	can
theoretically	take	on	values	from	0	to	65,535.	As	you	will	see	in	the	next	section,
these	values	are	divided	into	ranges	for	different	purposes,	with	certain	ports
reserved	for	particular	uses.

One	fact	that	is	sometimes	a	bit	confusing	is	that	both	UDP	and	TCP	use	the
same	range	of	port	numbers,	but	they	are	independent.	In	theory,	it	is	possible
for	UDP	port	number	77	to	refer	to	one	application	process	and	TCP	port
number	77	to	refer	to	an	entirely	different	one.	There	is	no	ambiguity,	at	least	to
the	computers,	because	as	mentioned	earlier,	each	IP	datagram	contains	a
Protocol	field	that	specifies	whether	it	is	carrying	a	TCP	message	or	a	UDP
message.	IP	passes	the	datagram	to	either	TCP	or	UDP,	which	sends	the	message
on	to	the	right	process	using	the	port	number	in	the	TCP	or	UDP	header.	This
mechanism	is	illustrated	in	Figure	43-2.



Figure	43-2.	TCP/IP	process	multiplexing/demultiplexing	using	TCP/UDP	ports	A	more	concrete
version	of	Figure	43-1,	this	figure	shows	how	TCP	and	UDP	ports	accomplish	software	multiplexing
and	demultiplexing.	Again	there	are	four	different	TCP/IP	applications	communicating,	but	this	time	I
am	showing	only	the	traffic	going	from	the	client	to	the	server.	Two	of	the	applications	use	TCP,	and
two	use	UDP.	Each	application	on	the	client	sends	messages	using	a	specific	TCP	or	UDP	port	number.
The	server's	UDP	or	TCP	software	uses	these	port	numbers	to	pass	the	datagrams	to	the	appropriate

application	process.

In	practice,	having	TCP	and	UDP	use	different	port	numbers	is	confusing,
especially	for	the	reserved	port	numbers	that	common	applications	use.	To	avoid
confusion,	by	convention,	most	reserved	port	numbers	are	reserved	for	both	TCP
and	UDP.	For	example,	port	80	is	reserved	for	HTTP	for	both	TCP	and	UDP,
even	though	HTTP	only	uses	TCP.	We'll	examine	this	in	greater	detail	in	the
following	section.

TIP

KEY	CONCEPT	TCP/IP	transport	layer	addressing	is	accomplished	by	using	TCP	and	UDP	ports.
Each	port	number	within	a	particular	IP	device	identifies	a	particular	software	process.

Summary	of	Port	Use	for	Datagram



Transmission	and	Reception
Here's	how	transport	layer	addressing	(port	addressing)	works	in	TCP	and	UDP:

Sending	Datagrams	An	application	specifies	the	source	and	destination	port	it
wishes	to	use	for	the	communication.	The	port	numbers	are	encoded	into	the
TCP	or	UDP	header,	depending	on	which	transport	layer	protocol	the	application
is	using.	When	TCP	or	UDP	passes	data	to	IP,	IP	indicates	the	protocol	type
that's	appropriate	for	TCP	or	UDP	in	the	Protocol	field	of	the	IP	datagram.	The
source	and	destination	port	numbers	are	encapsulated	as	part	of	the	TCP	or	UDP
message,	within	the	IP	datagram's	data	area.

Receiving	Datagrams	The	IP	software	receives	the	datagram,	inspects	the
Protocol	field,	and	decides	which	protocol	the	datagram	belongs	to	(in	this	case,
TCP	or	UDP).	TCP	or	UDP	receives	the	datagram	and	passes	its	contents	to	the
appropriate	process	based	on	the	destination	port	number.

TIP

KEY	CONCEPT	Application	process	multiplexing	and	demultiplexing	in	TCP/IP	is	implemented	using
the	IP	Protocol	field	and	the	UDP/TCP	Source	Port	and	Destination	Port	fields.	Upon	transmission,	the
Protocol	field	is	given	a	number	to	indicate	whether	TCP	or	UDP	was	used,	and	the	port	numbers	are
filled	in	to	indicate	the	sending	and	receiving	software	process.	The	device	receiving	the	datagram	uses
the	Protocol	field	to	determine	whether	TCP	or	UDP	was	used	and	then	passes	the	data	to	the	software
process	that	the	destination	port	number	indicates.



TCP/IP	Application	Assignments	and	Server
Port	Number	Ranges
The	port	numbers	I	just	discussed	provide	a	method	of	transport	layer	addressing
that	allows	many	applications	to	use	TCP	and	UDP	simultaneously.	By
specifying	the	appropriate	destination	port	number,	an	application	sending	data
can	be	sure	that	the	right	process	on	the	destination	device	will	receive	the
message.	Unfortunately,	there's	still	a	problem	to	be	solved.

Let's	go	back	to	using	the	World	Wide	Web.	You	fire	up	a	web	browser,	which
is	client	software	that	sends	requests	using	HTTP.	You	need	to	know	the	IP
address	of	the	website	you	want	to	access,	or	you	may	have	the	Domain	Name
System	(DNS)	supply	the	IP	address	to	you	automatically.	Once	you	have	the
address,	the	web	browser	can	generate	an	HTTP	message	and	send	it	to	the
website's	IP	address.

This	HTTP	message	is	intended	for	the	web	server	process	on	the	site	you	are
trying	to	reach.	The	problem	is	how	does	the	web	browser	(client	process)	know
which	port	number	has	been	assigned	to	the	server	process	on	the	website?	Port
numbers	can	range	from	0	to	65535,	which	means	a	lot	of	choices.	And,	in
theory,	every	website	could	assign	a	different	port	number	to	its	web	server
process.

There	are	a	couple	of	different	ways	to	resolve	this	problem.	TCP/IP	takes	what
is	probably	the	simplest	possible	approach:	It	reserves	certain	port	numbers	for
particular	applications.

Reserved	Port	Numbers
Server	processes,	which	listen	for	requests	for	that	application	and	then	respond
to	them,	assign	each	common	application	a	specific	port	number.	To	avoid
chaos,	the	software	that	implements	a	particular	server	process	normally	uses	the
same	reserved	port	number	on	every	IP	device	so	that	clients	can	find	it	easily.

In	the	example	of	accessing	a	website	with	a	web	browser,	the	reserved	port
number	for	HTTP	is	80.	Every	web	browser	knows	that	web	designers	design
websites	to	listen	for	requests	sent	to	port	80.	The	web	browser	will	thus	use	this
value	in	requests	to	ensure	that	the	IP	and	TCP	software	on	the	web	browser



value	in	requests	to	ensure	that	the	IP	and	TCP	software	on	the	web	browser
directs	these	HTTP	messages	to	the	web	server	software.	It	is	possible	for	a
particular	web	server	to	use	a	different	port	number,	but	in	this	case,	the	web
server	must	inform	the	user	of	this	number	somehow,	and	must	explicitly	tell	the
web	browser	to	use	it	instead	of	the	default	port	number	(80).

TIP

KEY	CONCEPT	To	allow	client	devices	to	establish	connections	to	TCP/IP	servers	more	easily,	server
processes	for	common	applications	use	universal	server	port	numbers.	Clients	are	preprogrammed	to
know	to	use	the	port	numbers	by	default.

In	order	for	this	system	to	work	well,	universal	agreement	on	port	assignments	is
essential.	Thus,	this	becomes	another	situation	where	a	central	authority	is
needed	to	manage	a	list	of	port	assignments	that	everyone	uses.	For	TCP/IP,	it	is
the	same	authority	responsible	for	the	assignment	and	coordination	of	other
centrally	managed	numbers,	including	IP	addresses,	IP	protocol	numbers,	and	so
forth:	the	Internet	Assigned	Numbers	Authority	(IANA;	see	Chapter	3).

TCP/UDP	Port	Number	Ranges
As	you	have	seen,	there	are	65,536	port	numbers	that	can	be	used	for	processes.
But	there	are	also	a	fairly	large	number	of	TCP/IP	applications,	and	the	list
grows	every	year.	IANA	needs	to	carefully	manage	the	port	number	address
space	in	order	to	ensure	that	port	numbers	are	not	wasted	on	protocols	that	won't
be	widely	used.	IANA	also	needs	to	provide	flexibility	for	organizations	that
must	make	use	of	obscure	applications.	To	this	end,	the	full	spectrum	of	TCP
and	UDP	port	numbers	is	divided	into	three	ranges:

Well-Known	(Privileged)	Port	Numbers	(0	to	1023)	IANA	manages	these	port
numbers	and	reserves	them	for	only	the	most	universal	TCP/IP	applications.	The
IANA	assigns	these	port	numbers	only	to	protocols	that	have	been	standardized
using	the	TCP/IP	RFC	process,	protocols	that	are	in	the	process	of	being
standardized,	or	protocols	that	are	likely	to	be	standardized	in	the	future.	On
most	computers,	only	server	processes	run	by	system	administrators	or
privileged	users	use	these	port	numbers.	These	processes	generally	correspond	to
processes	that	implement	key	IP	applications,	such	as	web	servers,	FTP	servers,
and	the	like.	For	this	reason,	these	processes	are	sometimes	called	system	port



numbers.

Registered	(User)	Port	Numbers	(1024	to	49151)	There	are	many	applications
that	need	to	use	TCP/IP,	but	are	not	specified	in	RFCs	or	are	not	as	universally
used	as	other	applications,	so	they	do	not	warrant	a	worldwide	well-known	port
number.	To	ensure	that	these	various	applications	do	not	conflict	with	each
other,	IANA	uses	the	bulk	of	the	overall	port	number	range	for	registered	port
numbers.	Anyone	who	creates	a	viable	TCP/IP	server	application	can	request	to
reserve	one	of	these	port	numbers,	and	if	the	request	is	approved,	the	IANA	will
register	that	port	number	and	assign	it	to	the	application.	Any	user	on	a	system
can	generally	access	registered	port	numbers;	thus	they	are	sometimes	called
user	port	numbers.

Private/Dynamic	Port	Numbers	(49152	to	65535)	IANA	neither	reserves	nor
maintains	these	ports.	Anyone	can	use	them	for	any	purpose	without	registration,
so	they	are	appropriate	for	a	private	protocol	that	only	a	particular	organization
uses.

TIP

KEY	CONCEPT	IANA	manages	port-number	assignments	to	ensure	universal	compatibility	around	the
global	Internet.	The	numbers	are	divided	into	three	ranges:	well-known	port	numbers	used	for	the	most
common	applications,	registered	port	numbers	for	other	applications,	and	private/dynamic	port	numbers
that	can	be	used	without	IANA	registration.

Use	of	these	ranges	ensures	that	there	will	be	universal	agreement	on	how	to
access	a	server	process	for	the	most	common	TCP/IP	protocols.	They	also	allow
flexibility	for	special	applications.	Most	of	the	TCP/IP	applications	and
application	protocols	use	numbers	in	the	well-known	port	number	range	for	their
servers.	These	port	numbers	are	not	generally	used	for	client	processes,	but	there
are	some	exceptions.	For	example,	port	68	is	reserved	for	a	client	using	the
Bootstrap	Protocol	(BOOTP)	or	Dynamic	Host	Configuration	Protocol	(DHCP).



TCP/IP	Client	(Ephemeral)	Ports	and
Client/Server	Application	Port	Use
The	significance	of	the	asymmetry	between	clients	and	servers	in	TCP/IP
becomes	evident	when	you	examine	in	detail	how	port	numbers	are	used.	Since
clients	initiate	application	data	transfers	using	TCP	and	UDP,	they	need	to	know
the	port	number	of	the	server	process.	Consequently,	servers	are	required	to	use
universally	known	port	numbers.	Thus,	well-known	and	registered	port	numbers
identify	server	processes.	Clients	that	send	requests	use	the	well-known	or
registered	port	number	as	the	destination	port	number.

In	contrast,	servers	respond	to	clients;	they	do	not	initiate	contact	with	them.
Thus,	the	client	doesn't	need	to	use	a	reserved	port	number.	In	fact,	this	is	really
an	understatement.	A	server	shouldn't	use	a	well-known	or	registered	port
number	to	send	responses	back	to	clients	because	it	is	possible	for	a	particular
device	to	have	client	and	server	software	from	the	same	protocol	running	on	the
same	machine.	If	a	server	received	an	HTTP	request	on	port	80	of	its	machine
and	sent	the	reply	back	to	port	80	on	the	client	machine,	the	server	would	be
sending	the	reply	to	the	client	machine's	HTTP	server	process	(if	present),	rather
than	the	client	process	that	sent	the	initial	request.

To	know	where	to	send	the	reply,	the	server	must	know	the	port	number	the
client	is	using.	The	client	supplies	the	port	number	as	the	source	port	in	the
request,	and	then	the	server	uses	the	source	port	as	the	destination	port	to	send
the	reply.	Client	processes	don't	use	well-known	or	registered	ports.	Instead,
each	client	process	is	assigned	a	temporary	port	number	for	its	use.	This	is
commonly	called	an	ephemeral	port	number.

NOTE

Your	$10	word	for	the	day:	ephemeral:	"short-lived;	existing	or	continuing	for	a	short	time	only."	—
Webster's	Revised	Unabridged	Dictionary.

Ephemeral	Port	Number	Assignment
The	TCP/IP	software	assigns	ephemeral	port	numbers	as	needed	to	processes.



Obviously,	each	client	process	that's	running	concurrently	needs	to	use	a	unique
ephemeral	port	number,	so	the	TCP	and	UDP	layers	must	keep	track	of	which
ones	are	in	use.	The	TCP/IP	software	generally	assigns	these	port	numbers	in	a
pseudo-random	manner	from	a	reserved	pool	of	numbers.	I	say	pseudo-random
because	there	is	no	specific	meaning	to	an	ephemeral	port	number	that	is
assigned	to	a	process,	so	the	TCP/IP	software	could	select	a	random	one	for	each
client	process.	However,	since	it	is	necessary	to	reuse	the	port	numbers	in	this
pool	over	time,	many	implementations	use	a	set	of	rules	to	minimize	the	chance
of	confusion	due	to	reuse.

Consider	a	client	process	that	used	only	ephemeral	port	number	4121	to	send	a
request.	The	client	process	received	a	reply	and	then	terminated.	Suppose	you
immediately	reallocate	4121	to	some	other	process.	However,	the	prior	user	of
port	4121	accesses	the	server,	which	for	some	reason	sends	an	extra	reply.	The
reply	would	go	to	the	new	process,	thereby	creating	confusion.	To	avoid	this,	it
is	wise	to	wait	as	long	as	possible	before	reusing	port	number	4121	for	another
client	process.	Some	implementations	will	therefore	cycle	through	the	port
numbers	in	order	to	ensure	that	the	maximum	amount	of	time	elapses	between
consecutive	uses	of	the	same	ephemeral	port	number.

TIP

KEY	CONCEPT	Well-known	and	registered	port	numbers	are	needed	for	server	processes	since	a
client	must	know	the	server's	port	number	to	initiate	contact.	On	the	other	hand,	client	processes	can	use
any	port	number.	Each	time	a	client	process	initiates	a	UDP	or	TCP	communication,	the	TCP/IP
software	assigns	it	a	temporary,	or	ephemeral,	port	number	to	use	for	that	conversation.	The	TCP/IP
software	assigns	these	port	numbers	in	a	pseudo-random	way	because	the	exact	number	that	the	software
uses	is	not	important	as	long	as	each	process	has	a	different	number.

Ephemeral	Port	Number	Ranges
The	range	of	port	numbers	that	TCP/IP	software	uses	for	ephemeral	ports	on	a
device	also	depends	on	the	implementation.	The	TCP/IP	implementation	in
Berkeley	Standard	Distribution	(BSD)	UNIX	established	the	classic	ephemeral
port	range.	BSD	UNIX	defined	it	as	1024	to	4999,	thereby	providing	3,976
ephemeral	ports.	This	seems	like	a	very	large	number,	and	it	is	indeed	usually
more	than	enough	for	a	typical	client.	However,	the	size	of	this	number	can	be



deceiving.	Many	applications	use	more	than	one	process,	and	it	is	theoretically
possible	to	run	out	of	ephemeral	port	numbers	on	a	very	busy	IP	device.	For	this
reason,	most	of	the	time,	the	ephemeral	port	number	range	can	be	changed.	The
default	range	may	be	different	for	other	operating	systems.

Just	as	well-known	and	registered	port	numbers	are	used	for	server	processes,
ephemeral	port	numbers	are	for	client	processes	only.	This	means	that	the	use	of
a	range	of	addresses	from	1024	to	4999	does	not	conflict	with	the	use	of	that
same	range	for	registered	port	numbers.	I	discussed	this	in	the	previous	section,
"Ephemeral	Port	Number	Assignment."

Port	Number	Use	During	a	Client/Server
Exchange
Now	let's	return	to	the	matter	of	client/server	application	message	exchange.
Once	a	client	is	assigned	an	ephemeral	port	number,	that	port	number	is	used	as
the	source	port	in	the	client's	request	TCP/UDP	message.	The	server	receives	the
request	and	then	generates	a	reply.	In	forming	this	response	message,	the	server
swaps	the	source	and	destination	port	numbers,	just	as	it	does	the	source	and
destination	IP	addresses.	So	the	server's	reply	is	sent	from	the	well-known	or
registered	port	number	on	the	server	process	back	to	the	ephemeral	port	number
on	the	client	machine.

Now	back	to	the	web	browser	example.	The	web	browser,	with	IP	address
177.41.72.6,	wants	to	send	an	HTTP	request	to	a	particular	website	at	IP	address
41.199.222.3.	The	TCP/IP	software	sends	the	HTTP	request	with	a	destination
port	number	of	80	(the	one	reserved	for	HTTP	servers).	The	TCP/IP	software
allocates	the	source	port	number	from	a	pool	of	ephemeral	ports;	let's	say	it's
port	3022.	When	the	HTTP	request	arrives	at	the	web	server,	it	is	conveyed	to
port	80	where	the	HTTP	server	receives	it.	That	process	generates	a	reply	and
sends	it	back	to	177.41.72.6,	using	destination	port	3022	and	source	port	80.	The
two	processes	can	exchange	information	back	and	forth	each	time	the	TCP/IP
software	swaps	the	source	port	number	and	destination	port	number	along	with
the	source	and	destination	IP	addresses.	This	example	is	illustrated	in	Figure	43-
3.



Figure	43-3.	TCP/IP	client/server	application	port	mechanics	This	highly	simplified	example	shows
how	clients	and	servers	use	port	numbers	for	a	request.reply	exchange.	The	client	is	making	an	HTTP
request	and	sends	it	to	the	server	at	HTTP's	well-known	port	number,	80.	Its	port	number	for	this
exchange	is	the	pseudo-randomly	selected	port	3022.	The	server	sends	its	reply	back	to	that	port

number,	which	it	reads	from	the	request.

TIP

KEY	CONCEPT	In	most	TCP/IP	client/server	communications,	the	client	uses	a	random	ephemeral
port	number	and	sends	a	request	to	the	appropriate	reserved	port	number	at	the	server's	IP	address.	The
server	sends	its	reply	back	to	whatever	port	number	it	finds	in	the	Source	Port	field	of	the	request.



TCP/IP	Sockets	and	Socket	Pairs:	Process	and
Connection	Identification
In	this	chapter,	I	have	discussed	the	key	difference	between	addressing	at	the
level	of	IP	and	addressing	with	regard	to	application	processes.	To	summarize,	at
layer	3	an	IP	address	is	all	that	is	really	important	for	properly	transmitting	data
between	IP	devices.	In	contrast,	application	protocols	must	be	concerned	with
the	port	assigned	to	each	instance	of	the	application	so	that	the	protocols	can
properly	use	TCP	or	UDP.

So,	the	overall	identification	of	an	application	process	actually	uses	the
combination	of	the	IP	address	of	the	host	it	runs	on—or	the	network	interface
over	which	it	is	talking,	to	be	more	precise—and	the	port	number	that	has	been
assigned	to	it.	This	combined	address	is	called	a	socket.	Sockets	are	specified
using	the	notation	<IP	Address>:<Port	Number>.	For	example,	if	you	have	a
website	running	on	IP	address	41.199.222.3,	the	socket	corresponding	to	the
HTTP	server	for	that	site	would	be	41.199.222.3:80.

TIP

KEY	CONCEPT	The	overall	identifier	of	a	TCP/IP	application	process	on	a	device	is	the	combination
of	its	IP	address	and	port	number,	which	is	called	a	socket.

You	will	also	sometimes	see	a	socket	specified	using	a	host	name	instead	of	an
IP	address,	like	this:	<Host	Name>:<Port	Number>.	To	use	this	descriptor,	the
web	browser	must	first	resolve	the	name	to	an	IP	address	using	DNS.	For
example,	you	might	find	a	website	URL	such	as
http://www.thisisagreatsite.com:8080.	This	tells	the	web	browser	to	resolve	the
name	www.thisisagreatsite.com	first	to	an	IP	address	using	DNS.	Then	it	tells
the	browser	to	send	a	request	to	that	address	using	the	nonstandard	server	port
8080,	which	the	browser	occasionally	uses	instead	of	port	80.	(See	Chapter	70's
discussion	of	application	layer	addressing	using	URLs	for	more	information.)

The	socket	is	a	fundamental	concept	to	the	operation	of	TCP/IP	application
software.	In	fact,	it	is	the	basis	for	an	important	TCP/IP	application	program
interface	(API)	with	the	same	name:	sockets.	A	version	of	this	API	for	Windows

http://www.thisisagreatsite.com:8080
http://www.thisisagreatsite.com


is	called	Windows	Sockets	or	Winsock,	which	you	may	have	heard	of	before.
These	APIs	allow	application	programs	to	easily	use	TCP/IP	to	communicate.

So	the	exchange	of	data	between	a	pair	of	devices	consists	of	a	series	of
messages	sent	from	a	socket	on	one	device	to	a	socket	on	the	other.	Each	device
will	normally	have	multiple	simultaneous	conversations	going	on.	In	the	case	of
TCP,	a	connection	is	established	for	each	pair	of	devices	for	the	duration	of	the
communication	session.	These	connections	must	be	managed,	and	this	requires
that	they	be	uniquely	identified.	This	is	done	using	the	socket	identifiers	for	each
of	the	two	devices	that	are	connected.

TIP

KEY	CONCEPT	Each	device	may	have	multiple	TCP	connections	active	at	any	given	time.	Each
connection	is	uniquely	identified	using	the	combination	of	the	client	socket	and	server	socket,	which	in
turn	contains	four	elements:	the	client	IP	address	and	port,	and	the	server	IP	address	and	port.

Let's	return	to	the	example	in	Figure	43-3.	You	are	sending	an	HTTP	request
from	your	client	at	177.41.72.6	to	the	website	at	41.199.222.3.	The	server	for
that	website	will	use	well-known	port	number	80,	so	its	socket	is
41.199.222.3:80,	as	you	saw	before.	You	have	been	ephemeral	port	number
3022	for	the	web	browser,	so	the	client	socket	is	177.41.72.6:3022.	The	overall
connection	between	these	devices	can	be	described	using	this	socket	pair:
(41.199.222.3:80,	177.41.72.6:3022).

For	much	more	on	how	TCP	identifies	connections,	see	the	topic	on	TCP	ports
and	connection	identification	in	Chapter	46.

Unlike	TCP,	UDP	is	a	connectionless	protocol,	so	it	obviously	doesn't	use
connections.	The	pair	of	sockets	on	the	sending	and	receiving	devices	can	still	be
used	to	identify	the	two	processes	that	are	exchanging	data,	but	because	there	are
no	connections,	the	socket	pair	doesn't	have	the	significance	that	it	does	in	TCP.



Common	TCP/IP	Applications	and	Well-Known
and	Registered	Port	Numbers
The	great	popularity	of	the	TCP/IP	protocol	suite	has	led	to	the	development	of
literally	thousands	of	different	applications	and	protocols.	Most	of	these	use	the
client/server	model	of	operation	that	I	discussed	earlier	in	this	chapter.	Server
processes	for	a	particular	application	are	designed	to	use	a	particular	reserved
port	number,	and	clients	use	an	ephemeral	(temporary)	port	number	to	initiate	a
connection	to	the	server.	To	ensure	that	everyone	agrees	on	which	port	numbers
each	server	application	should	use	for	each	application,	port	numbers	are
centrally	managed	by	the	IANA.

Originally,	IANA	kept	the	list	of	well-known	and	registered	port	numbers	in	a
lengthy	text	document	along	with	all	the	many	other	parameters	for	which	IANA
was	centrally	responsible	(such	as	IP	Protocol	field	numbers,	Type	and	Code
field	values	for	ICMP,	and	so	on).	These	port	numbers	were	published	on	a
periodic	basis	in	Internet	(RFC)	standards	documents	titled	"Assigned
Numbers."	This	system	worked	fine	in	the	early	days	of	the	Internet,	but	by	the
mid-1990s,	these	values	were	changing	so	rapidly	that	using	the	RFC	process
was	not	feasible.	It	was	too	much	work	to	keep	publishing	them,	and	the	RFC
was	practically	out	of	date	the	day	after	it	was	published.

The	last	"Assigned	Numbers"	standard	was	RFC	1700,	which	was	published	in
October	1994.	After	that	time,	IANA	moved	to	a	set	of	World	Wide	Web
documents	that	contained	the	parameters	they	manage.	This	allowed	IANA	to
keep	the	lists	constantly	up-to-date,	and	enabled	TCP/IP	users	to	get	more
current	information.	RFC	1700	was	officially	obsoleted	in	2002.

You	can	find	complete	information	on	all	the	parameters	that	IANA	maintains	at
http://www.iana.org/numbers.html.	The	URL	of	the	file	that	contains	TCP/UDP
port	assignments	is	http://www.iana.org/assignments/port-numbers.

This	document	is	the	definitive	list	of	all	well-known	and	registered	TCP	and
UDP	port	assignments.	Each	port	number	is	assigned	a	short	keyword	with	a
brief	description	of	the	protocol	that	uses	it.	There	are	two	problems	with	this
document.	First,	it	is	incredibly	long;	it	contains	over	10,000	lines	of	text.	Most

http://www.iana.org/numbers.html
http://www.iana.org/assignments/port-numbers


of	the	protocols	mentioned	in	those	thousands	of	lines	are	for	obscure
applications	that	you	have	probably	never	heard	of	before	(I	certainly	have	never
heard	of	most	of	them!).	This	makes	it	hard	to	easily	see	the	port	assignments	for
the	protocols	that	are	most	commonly	used.

The	other	problem	with	this	document	is	that	it	shows	the	same	port	number	as
reserved	for	both	TCP	and	UDP	for	an	application.	As	I	mentioned	earlier,	TCP
and	UDP	port	numbers	are	actually	independent,	so,	in	theory,	one	port	number
could	assign	TCP	port	80	to	one	server	application	type	and	UDP	port	80	to
another.	It	was	believed	that	this	would	lead	to	confusion,	so	with	very	few
exceptions,	the	same	port	number	is	shown	in	the	list	for	the	same	application	for
both	TCP	and	UDP.	Nevertheless,	showing	this	in	the	list	has	a	drawback:	You
can't	tell	which	protocol	the	application	actually	uses,	and	which	has	just	been
reserved	for	consistency.

Given	all	that,	I	have	decided	to	include	a	couple	of	summary	tables	that	show
the	well-known	and	registered	port	numbers	for	the	most	common	TCP/IP
applications.	I	have	indicated	whether	or	not	the	protocol	uses	TCP,	UDP,	or
both.	Table	43-1	lists	the	well-known	port	numbers	for	the	most	common
TCP/IP	application	protocols.

Table	43-1.	Common	TCP/IP	Well-Known	Port	Numbers	and	Applications

Port
#

TCP/UDP Keyword Protocol
Abbreviation

Application	or	Protocol
Name/Comments

7 TCP	+
UDP

echo — Echo	Protocol

9 TCP	+
UDP

discard — Discard	Protocol

11 TCP	+
UDP

systat — Active	Users	Protocol

13 TCP	+
UDP

daytime — Daytime	Protocol

17 TCP	+
UDP

qotd QOTD Quote	of	the	Day	Protocol

19 TCP	+ chargen — Character	Generator	Protocol



19 TCP	+
UDP

chargen — Character	Generator	Protocol

20 TCP ftp-data FTP	(data) File	Transfer	Protocol	(default	data	port)

21 TCP ftp FTP	(control) File	Transfer	Protocol	(control/commands)

23 TCP telnet — Telnet	Protocol

25 TCP smtp SMTP Simple	Mail	Transfer	Protocol

37 TCP	+
UDP

time — Time	Protocol

43 TCP nicname — Whois	Protocol	(also	called	Nicname)

53 TCP	+
UDP

domain DNS Domain	Name	Server	(Domain	Name
System)

67 UDP bootps BOOTP/DHCP Bootstrap	Protocol/Dynamic	Host
Configuration	Protocol	(server)

68 UDP bootpc BOOTP/DHCP Bootstrap	Protocol/Dynamic	Host
Configuration	Protocol	(client)

69 UDP tftp TFTP Trivial	File	Transfer	Protocol

70 TCP gopher — Gopher	Protocol

79 TCP finger — Finger	User	Information	Protocol

80 TCP http HTTP Hypertext	Transfer	Protocol	(World	Wide
Web)

110 TCP pop3 POP Post	Office	Protocol	(version	3)

119 TCP nntp NNTP Network	News	Transfer	Protocol

123 UDP ntp NTP Network	Time	Protocol

137 TCP	+
UDP

netbios-ns — NetBIOS	(Name	Service)

138 UDP netbios-
dgm

— NetBIOS	(Datagram	Service)

139 TCP netbios-
ssn

— NetBIOS	(Session	Service)



143 TCP imap IMAP Internet	Message	Access	Protocol

161 UDP snmp SNMP Simple	Network	Management	Protocol

162 UDP snmptrap SNMP Simple	Network	Management	Protocol
(Trap)

179 TCP bgp BGP Border	Gateway	Protocol

194 TCP irc IRC Internet	Relay	Chat

443 TCP https HTTP	over	SSL Hypertext	Transfer	Protocol	over	Secure
Sockets	Layer

500 UDP isakmp IKE IPsec	Internet	Key	Exchange

520 UDP router RIP Routing	Information	Protocol	(RIP-1	and
RIP-2)

521 UDP ripng RIPng Routing	Information	Protocol	-	Next
Generation

The	registered	port	numbers	are	by	definition	for	protocols	that	are	not
standardized	using	the	RFC	process,	so	they	are	mostly	esoteric	applications,	and
I	don't	think	it's	necessary	to	list	all	of	them.	Table	43-2	shows	a	few	that	I	feel
are	of	particular	interest.

Table	43-2.	Common	TCP/IP	Registered	Port	Numbers	and	Applications

Port	# TCP/UDP Keyword Protocol
Abbreviation

Application	or	Protocol
Name/Comments

1512 TCP	+
UDP

wins WINS Microsoft	Windows	Internet	Naming
Service

1701 UDP l2tp L2TP Layer	2	Tunneling	Protocol

1723 TCP pptp PPTP Point-to-Point	Tunneling	Protocol

2049 TCP	+
UDP

nfs NFS Network	File	System

6000–
6063

TCP x11 X11 X	Window	System



Chapter	44.	TCP/IP	USER
DATAGRAM	PROTOCOL	(UDP)

The	very	fact	that	the	TCP/IP	protocol	suite	bears	the	name	of	the	Internet
Protocol	(IP)	and	the	Transmission	Control	Protocol	(TCP)	suggests	that	these
are	the	two	key	protocols	in	the	suite.	IP	resides	at	the	network	layer,	and	TCP	is
at	the	transport	layer.	It's	no	wonder	that	many	people	don't	even	realize	that
there	is	a	second	transport	layer	protocol	in	TCP/IP.

Like	a	shy	younger	brother,	the	User	Datagram	Protocol	(UDP)	sits	in	the
shadows	while	TCP	gets	the	glory.	The	fancier	sibling	deserves	much	of	this
limelight,	since	TCP	is	arguably	the	more	important	of	the	two.	However,	UDP
fills	a	critical	niche	in	the	TCP/IP	protocol	suite,	because	it	allows	many
applications	to	work	at	their	best	when	using	TCP	would	be	less	than	ideal.

In	this	chapter,	I	discuss	UDP,	the	simpler	and	less-known	TCP/IP	transport
protocol.	I	begin	with	an	overview	of	the	protocol	and	describe	its	history	and
standards.	I	outline	how	UDP	operates,	and	explain	the	format	used	for	UDP
messages.	I	conclude	with	a	discussion	of	what	kinds	of	applications	use	UDP
and	the	well-known	or	registered	ports	that	are	assigned	to	them.

UDP	Overview,	History,	and	Standards
I	suppose	the	sibling	rivalry	analogy	I	mentioned	in	the	introduction	to	this
section	may	be	a	bit	silly.	I	highly	doubt	that	protocols	lie	awake	at	night
worrying	about	how	much	we	use	them.	However,	it's	interesting	to	discover	just
how	important	UDP	really	is,	given	how	little	attention	it	gets	compared	to	TCP.
In	fact,	in	true	older-sibling,	spotlight-stealing	fashion,	you	can't	even	really
understand	the	history	of	UDP	without	first	discussing	TCP.



In	Chapter	8,	where	I	described	the	history	of	TCP/IP,	I	explained	that	very	early
on	in	the	development	of	the	protocol	suite,	there	was	only	one	protocol	that
handled	the	functions	IP	and	TCP	perform.	This	protocol,	called	TCP,	provided
network	layer	connectivity	like	IP,	and	also	established	connections,	offered
reliability,	and	took	care	of	the	typical	transport	layer	quality	requirements	that
you	associate	with	modern	TCP,	such	as	flow	control	and	retransmission
handling.

It	didn't	take	long	before	the	developers	of	the	fledgling	combined	TCP	protocol
quickly	realized	that	mixing	these	functions	together	was	a	mistake.	While	most
conventional	applications	needed	the	classic	transport	layer	reliability	functions,
some	did	not.	These	features	introduced	overhead,	which	was	added	whether	or
not	applications	actually	needed	the	reliability	features.	Worse,	there	were	some
applications	for	which	the	features	not	only	were	of	no	value,	but	also	were	a
detriment,	since	even	a	small	amount	of	lost	performance	due	to	the	overhead
would	be	a	problem.

The	solution	was	to	separate	the	original	protocol	into	IP	and	TCP.	IP	would	do
basic	internetworking,	and	TCP	would	do	the	reliability	features.	This	paved	the
way	for	the	creation	of	an	alternative	transport	layer	protocol—UDP—for
applications	that	didn't	want	or	need	the	features	that	TCP	provided.

There	are	two	main	attributes	that	are	always	associated	with	UDP:	simple	and
fast.	UDP	is	a	simple	protocol	that	uses	a	very	straightforward	messaging
structure	that	is	similar	to	the	message	format	that	many	other	TCP/IP	protocols
use	(in	contrast	to	the	more	complex	data	structures—streams	and	segments—
that	TCP	uses).	In	fact,	when	you	boil	it	down,	UDP's	only	real	goal	is	to	serve
as	an	interface	between	networking	application	processes	that	are	running	at	the
higher	layers,	and	the	internetworking	capabilities	of	IP.

Like	TCP,	UDP	layers	a	method	of	transport	layer	addressing	(and	hence,
process	identification)	on	top	of	IP	through	the	use	of	UDP	port	numbers.	UDP
includes	an	optional	checksum	capability	for	error	detection,	but	adds	virtually
no	other	functionality.

The	best	way	to	see	the	simplicity	of	UDP	is	to	look	at	the	standards	that	define
it.	Or	rather,	I	should	say	standard	in	the	singular,	because	there	is	only	one.
UDP	was	defined	in	RFC	768,	"User	Datagram	Protocol,"	in	1980.	This



document	is	three	pages	in	length,	and	no	one	has	ever	needed	to	revise	it.

UDP	is	a	fast	protocol	specifically	because	it	doesn't	have	all	the	bells	and
whistles	of	TCP.	This	makes	it	unsuitable	for	use	by	many,	if	not	most,	typical
networking	applications.	But	for	some	applications,	this	speed	is	exactly	what
the	applications	want	from	a	transport	layer	protocol,	namely	something	that
takes	the	applications'	data	and	quickly	shuffles	it	down	to	the	IP	layer	with
minimal	fuss.	In	choosing	to	use	UDP,	the	application	writer	takes	it	upon
himself	to	take	care	of	issues	such	as	reliability	and	retransmissions,	if
necessary.	This	can	be	a	recipe	for	success	or	failure,	depending	on	the
application	and	how	carefully	the	writer	uses	UDP.

TIP

KEY	CONCEPT	The	User	Datagram	Protocol	(UDP)	was	developed	for	use	by	application	protocols
that	do	not	require	reliability,	acknowledgment,	or	flow	control	features	at	the	transport	layer.	It	is
designed	to	be	simple	and	fast.	It	provides	only	transport	layer	addressing	(in	the	form	of	UDP	ports),	an
optional	checksum	capability,	and	little	else.



UDP	Operation
UDP	is	so	simple	that	I	can't	say	a	great	deal	about	how	it	works.	It	is	designed
to	do	as	little	as	possible.

What	UDP	Does
UDP's	only	real	task	is	to	take	data	from	higher-layer	protocols	and	place	it	in
UDP	messages,	which	are	then	passed	down	to	IP	for	transmission.	The	basic
steps	for	transmission	using	UDP	are	as	follows:

1.	 Higher-Layer	Data	Transfer	An	application	sends	a	message	to	the	UDP
software.

2.	 UDP	Message	Encapsulation	The	higher-layer	message	is	encapsulated
into	the	Data	field	of	a	UDP	message.	The	headers	of	the	UDP	message	are
filled	in,	including	the	Source	Port	field	of	the	application	that	sent	the	data
to	UDP	and	the	Destination	Port	field	of	the	intended	recipient.	The
checksum	value	may	also	be	calculated.

3.	 Transfer	Message	to	IP	The	UDP	message	is	passed	to	IP	for
transmission.

And	that's	about	it.	Of	course,	when	the	destination	device	receives	the	message,
this	short	procedure	is	reversed.

What	UDP	Does	Not	Do
UDP	is	so	simple	that	its	operation	is	often	described	in	terms	of	what	it	does	not
do,	instead	of	what	it	does.	As	a	transport	protocol,	UDP	does	not	do	the
following:

Establish	connections	before	sending	data.	It	just	packages	the	data	and	sends
it	off.

Provide	acknowledgments	to	show	that	data	was	received.

Provide	any	guarantees	that	its	messages	will	arrive.

Detect	lost	messages	and	retransmit	them.

Ensure	that	data	is	received	in	the	same	order	that	it	was	sent.



Provide	any	mechanism	to	handle	congestion	or	manage	the	flow	of	data
between	devices.

TIP

KEY	CONCEPT	UDP	is	probably	the	simplest	protocol	in	all	of	TCP/IP.	It	takes	application	layer	data
that	has	been	passed	to	it,	packages	it	in	a	simplified	message	format,	and	sends	it	to	IP	for	transmission.

If	these	limitations	sound	similar	the	ones	for	IP,	then	you're	paying	attention.
UDP	is	basically	IP	with	transport	layer	port	addressing.	(For	this	reason,	UDP	is
sometimes	called	a	wrapper	protocol,	since	all	it	does	is	wrap	application	data	in
its	simple	message	format	and	send	it	to	IP.)

However,	despite	the	previous	list,	there	are	a	couple	of	limited	feedback	and
error-checking	mechanisms	that	do	exist	within	UDP.	One	is	the	optional
checksum	capability,	which	can	allow	for	the	detection	of	an	error	in
transmission	or	the	situation	in	which	a	UDP	message	is	delivered	to	the	wrong
place	(see	the	next	section,	"UDP	Message	Format"	for	details).	The	other	is
Internet	Control	Message	Protocol	(ICMP)	error	reporting	(see	Chapter	31).	For
example,	if	a	UDP	message	is	sent	that	contains	a	destination	port	number	that
the	destination	device	does	not	recognize,	the	destination	host	will	send	an	ICMP
Destination	Unreachable	message	back	to	the	original	source.	Of	course,	ICMP
exists	for	all	IP	errors	of	this	sort,	so	I'm	stretching	a	bit	here.



UDP	Message	Format
What's	the	magic	word	when	it	comes	to	UDP?	It's	simple.	This	is	true	of	the
operation	of	the	protocol,	and	it	is	also	true	of	the	format	used	for	UDP
messages.	Interestingly,	however,	there	is	one	aspect	of	UDP	that	is	not	simple.

In	keeping	with	the	goal	of	efficiency,	the	UDP	header	is	only	8	bytes	in	length.
You	can	contrast	this	with	the	TCP	header	size	of	20	bytes	or	more.	Table	44-1
and	Figure	44-1	show	the	format	of	UDP	messages.

The	UDP	Checksum	field	is	the	one	area	where	the	protocol	is	a	bit	confusing.
The	concept	of	a	checksum	itself	is	nothing	new;	checksums	are	used	widely	in
networking	protocols	to	provide	protection	against	errors.	What's	a	bit	odd	is	this
notion	of	computing	the	checksum	over	the	regular	datagram	as	well	as	a	pseudo
header.	So	instead	of	calculating	the	checksum	over	only	the	fields	in	the	UDP
datagram,	the	UDP	software	first	constructs	a	fake	additional	header	that
contains	the	following	fields:

IP	Source	Address	field

IP	Destination	Address	field

IP	Protocol	field

UDP	Length	field

Figure	44-1.	UDP	message	format

Table	44-1.	UDP	Message	Format

Field
Name

Size
(Bytes)

Description



Source
Port

2 The	16-bit	port	number	of	the	process	that	originated	the	UDP	message
on	the	source	device.	This	will	normally	be	an	ephemeral	(client)	port

number	for	a	request	that	a	client	sends	to	a	server	or	a	well-
known/registered	(server)	port	number	for	a	reply	that	a	server	sends	to
a	client.	(See	Chapter	43	for	details.)

Destination
Port

2 The	16-bit	port	number	of	the	process	that	is	the	ultimate	intended
recipient	of	the	message	on	the	destination	device.	This	will	usually	be
a	well-known/registered	(server)	port	number	for	a	client	request	or	an
ephemeral	(client)	port	number	for	a	server	reply.	(See	Chapter	43	for
details.)

Length 2 The	length	of	the	entire	UDP	datagram,	including	both	header	and	Data
fields.

Checksum 2 An	optional	16-bit	checksum	computed	over	the	entire	UDP	datagram
plus	a	special	pseudo	header	of	fields.	See	below	for	more	information.

Data Variable The	encapsulated	higher-layer	message	that	will	be	sent.

The	UDP	pseudo	header	format	is	illustrated	in	Figure	44-2.

Figure	44-2.	UDP	pseudo	header	format

The	total	length	of	this	pseudo	header	is	11	bytes.	It	is	padded	to	12	bytes	with	a
byte	of	zeros	and	then	prepended	to	the	real	UDP	message.	The	checksum	is
then	computed	over	the	combination	of	the	pseudo	header	and	the	real	UDP
message,	and	the	value	is	placed	into	the	Checksum	field.	The	pseudo	header	is
used	only	for	this	calculation	and	is	then	discarded;	it	is	not	actually	transmitted.
The	UDP	software	in	the	destination	device	creates	the	same	pseudo	header
when	calculating	its	checksum	in	order	to	compare	it	to	the	one	transmitted	in
the	UDP	header.

Computing	the	checksum	over	the	regular	UDP	fields	protects	the	UDP	message
against	bit	errors.	Adding	the	pseudo	header	allows	the	checksum	to	also	protect
the	UDP	message	against	other	types	of	problems	as	well,	most	notably	the



accidental	delivery	of	a	message	to	the	wrong	destination.	The	checksum
calculation	in	UDP,	including	the	use	of	the	pseudo	header,	is	exactly	the	same
as	the	method	used	in	TCP	(except	that	the	Length	field	is	different	in	TCP).	See
Chapter	48	for	a	full	description	of	why	the	pseudo	header	is	important,	as	well
as	some	of	the	interesting	implications	of	using	IP	fields	in	transport	layer
datagram	calculations.

TIP

KEY	CONCEPT	UDP	packages	application	layer	data	into	a	very	simple	message	format	that	includes
only	four	header	fields.	One	of	these	is	an	optional	Checksum	field.	When	the	Checksum	field	is	used,
the	checksum	is	computed	over	both	the	real	header	and	a	pseudo	header	of	fields	from	the	UDP	and	IP
headers,	in	a	manner	that's	very	similar	to	the	way	the	TCP	checksum	is	calculated.

Note	that	the	use	of	the	Checksum	field	is	optional	in	UDP.	If	UDP	doesn't	use
the	Checksum	field,	UDP	sets	it	to	a	value	of	all	zeros.	This	could	potentially
create	confusion,	however,	since	when	UDP	uses	the	checksum,	the	calculation
can	sometimes	result	in	a	value	of	zero.	To	avoid	having	the	destination	think
that	UDP	didn't	use	the	checksum	in	this	case,	UDP	instead	represents	this	zero
value	as	a	value	of	all	ones	(65,535	decimal).



UDP	Common	Applications	and	Server	Port
Assignments
As	you	have	seen,	UDP	contains	very	little	functionality.	With	the	exception	of
the	important	addressing	capability	that	UDP	ports	represent,	using	UDP	is	very
much	like	using	IP.	This	means	that	UDP	has	most	of	the	same	disadvantages
that	IP	has.	It	doesn't	establish	a	lasting	connection	between	devices;	it	doesn't
acknowledge	received	data	or	retransmit	lost	messages;	and	it	certainly	isn't
concerned	with	obscurities	such	as	flow	control	and	congestion	management.

The	absence	of	those	features	makes	UDP	simply	unsuitable	for	the	majority	of
classic	networking	applications.	These	applications	usually	need	to	establish	a
connection	so	that	the	two	devices	can	exchange	data.	Many	applications	also
must	have	the	ability	to	occasionally,	or	even	regularly,	send	very	large	amounts
of	data	that	must	be	received	intact	for	it	to	be	of	value.	For	example,	consider	a
message	transfer	protocol	like	the	Hypertext	Transfer	Protocol	(HTTP).	If	only
part	of	a	web	page	gets	from	a	server	back	to	a	web	browser,	it's	useless.	HTTP
and	other	file	and	message	transfer	protocols	like	it	need	the	capabilities	of	TCP.

Why	Some	TCP/IP	Applications	Use	UDP
So	what	applications	use	UDP	then?	UDP's	classic	limitation	is	that	because	it
doesn't	provide	reliability	features,	an	application	that	uses	UDP	is	responsible
for	those	functions.	In	reality,	if	an	application	needs	the	features	that	TCP
provides	but	not	the	ones	that	UDP	provides,	it's	inefficient	to	allow	the
application	to	implement	those	features,	except	in	special	cases.	If	the
application	needs	what	TCP	provides,	it	should	just	use	TCP!	However,
applications	that	only	need	some	of	what	TCP	implements	are	sometimes	better
off	using	UDP	and	implementing	that	limited	set	of	functionality	at	the
application	level.

So,	the	applications	that	run	over	UDP	are	normally	the	ones	that	do	not	require
all	or	even	most	of	the	features	that	TCP	has.	These	applications	can	benefit
from	the	increased	efficiency	that	comes	about	from	avoiding	the	setup	and
overhead	associated	with	TCP.	Applications	usually	(but	not	always)	meet	this
description	because	the	data	they	send	falls	into	one	of	two	categories:



Data	Where	Performance	Is	More	Important	Than	Completeness	The
classic	example	of	this	category	is	a	multimedia	application.	For	streaming	a
video	clip	over	the	Internet,	the	most	important	feature	is	that	the	stream	starts
flowing	quickly	and	keeps	flowing.	Human	beings	notice	only	significant
disruptions	in	the	flow	of	this	type	of	information,	so	a	few	bytes	of	data	missing
due	to	a	lost	datagram	is	not	a	big	problem.	Furthermore,	even	if	someone	used
TCP	for	something	like	this	and	noticed	and	retransmitted	a	lost	datagram,	it
would	be	useless,	because	the	lost	datagram	would	belong	to	a	part	of	the	clip
that	is	long	past—and	the	time	spent	in	that	retransmission	might	make	the
current	part	of	the	clip	arrive	late.	Clearly,	UDP	is	best	for	this	situation.

Data	Exchanges	That	Are	"Short	and	Sweet"	There	are	many	TCP/IP
applications	in	which	the	underlying	protocol	consists	of	only	a	very	simple
request/reply	exchange.	A	client	sends	a	short	request	message	to	a	server,	and	a
short	reply	message	goes	back	from	the	server	to	the	client.	In	this	situation,
there	is	no	real	need	to	set	up	a	connection	the	way	that	TCP	does.	Also,	if	a
client	sends	only	one	short	message,	a	single	IP	datagram	can	carry	the	message.
This	means	that	there	is	no	need	to	worry	about	data	arriving	out	of	order,	flow
control	between	the	devices,	and	so	forth.	How	about	the	loss	of	the	request	or
the	reply?	These	can	be	handled	simply	at	the	application	level	using	timers.	If	a
client	sends	a	request	and	the	server	doesn't	get	it,	the	server	won't	reply,	and	the
client	will	eventually	send	a	replacement	request.	The	same	logic	applies	if	the
server	sends	a	response	that	never	arrives.

These	are	the	most	common	cases	where	UDP	is	used,	but	there	are	other
reasons.	For	example,	if	an	application	needs	to	multicast	or	broadcast	data,	it
must	use	UDP,	because	TCP	is	supported	only	for	unicast	communication
between	two	devices.

TIP

KEY	CONCEPT	A	protocol	uses	UDP	instead	of	TCP	in	two	situations.	The	first	is	when	an
application	values	timely	delivery	over	reliable	delivery,	and	when	TCP's	retransmission	of	lost	data
would	be	of	limited	or	even	no	value.	The	second	is	when	a	simple	protocol	can	handle	the	potential	loss
of	an	IP	datagram	itself	at	the	application	layer	using	a	timer/retransmit	strategy,	and	when	the	other
features	of	TCP	are	not	required.	Applications	that	require	multicast	or	broadcast	transmissions	also	use
UDP,	because	TCP	does	not	support	those	transmissions.

Incidentally,	I	have	read	about	problems	that	have	occurred	in	the	past	in



Incidentally,	I	have	read	about	problems	that	have	occurred	in	the	past	in
applications	using	UDP.	Sometimes,	programmers	don't	realize	how	little	UDP
does,	how	it	leaves	the	application	responsible	for	handling	all	the	potential
vagaries	of	an	internetworking	environment.	Someone	writing	a	UDP-based
application	must	always	keep	in	mind	that	no	one	can	make	assumptions	about
how	or	even	whether	a	destination	will	receive	any	message.	Insufficient	testing
can	lead	to	disaster	in	worst-case	scenarios	on	a	larger	internetwork,	especially
the	Internet.

Common	UDP	Applications	and	Server	Port	Use
Table	44-2	shows	some	of	the	more	interesting	protocols	that	use	UDP	and	the
well-known	and	registered	port	numbers	used	for	each	one's	server	processes.	It
also	provides	a	very	brief	description	of	why	these	protocols	use	UDP	instead	of
TCP.

Applications	That	Use	Both	UDP	and	TCP
There	are	some	protocols	that	use	both	of	the	TCP/IP	transport	layer	protocols.
This	is	often	the	case	either	for	utility	protocols	that	are	designed	to	accept
connections	using	both	transport	layer	protocols,	or	for	applications	that	need	the
benefits	of	TCP	in	some	cases	but	not	others.

The	classic	example	of	the	latter	is	the	TCP/IP	Domain	Name	System	(DNS),
which	normally	uses	UDP	port	53	for	simple	requests	and	replies,	which	are
usually	short.	Larger	messages	requiring	reliable	delivery,	such	as	zone	transfers,
use	TCP	port	53	instead.	Note	that	in	Table	44-2,	I	have	omitted	some	of	the
less-significant	protocols	such	as	the	ones	used	for	diagnostic	purposes	(Echo,
Discard,	CharGen,	and	so	on).	For	a	full	list	of	all	common	applications,	see
Chapter	43.

Table	44-2.	Common	UDP	Applications	and	Server	Port	Assignments

Port
#

Keyword Protocol Comments

53 domain Domain
Name	Server
(DNS)

Uses	a	simple	request/reply	messaging	system	for	most
exchanges	(but	also	uses	TCP	for	longer	ones).



67
and
68

bootps/bootpc Bootstrap
Protocol
(BOOTP)
and	Dynamic
Host
Configuration
Protocol
(DHCP)

Host	configuration	protocols	that	consist	of	short	request
and	reply	exchanges.

69 tftp Trivial	File
Transfer
Protocol
(TFTP)

TFTP	is	a	great	example	of	a	protocol	that	was
specifically	designed	for	UDP,	especially	when	you
compare	it	to	regular	FTP.	The	latter	protocol	uses	TCP
to	establish	a	session	between	two	devices	and	then
makes	use	of	its	own	large	command	set	and	TCP's
features	in	order	to	ensure	the	reliable	transfer	of
possibly	very	large	files.	In	contrast,	TFTP	is	designed
for	the	quick	and	easy	transfer	of	small	files.	To	avoid
file	corruption,	TFTP	includes	simple	versions	of	some
of	TCP's	features,	such	as	acknowledgments.

161
and
162

snmp Simple
Network
Management
Protocol

An	administrative	protocol	that	uses	relatively	short
messages.

520
and
521

router/ripng Routing
Information
Protocol
(RIP-1,	RIP-
2,	RIPng)

Unlike	more	complex	routing	protocols	like	BGP,	RIP
uses	a	simple	request/reply	messaging	system,	doesn't
require	connections,	and	does	require
multicasts/broadcasts.	This	makes	it	a	natural	choice	for
UDP.	If	a	routing	update	is	sent	due	to	a	request	and	is
lost,	it	can	be	replaced	by	sending	a	new	request.	Routine
(unsolicited)	updates	that	are	lost	are	replaced	in	the	next
cycle.

2049 nfs Network	File
System

NFS	is	an	interesting	case.	Since	it	is	a	file-sharing
protocol,	you	would	think	that	it	would	use	TCP	instead
of	UDP,	but	it	was	originally	designed	to	use	UDP	for
performance	reasons.	There	were	many	people	who	felt
that	this	was	not	the	best	design	decision,	and	later
versions	moved	to	the	use	of	TCP.	The	latest	version	of
NFS	uses	only	TCP.



Chapter	45.	TCP	OVERVIEW,
FUNCTIONS,	AND
CHARACTERISTICS

As	I	mentioned	in	Chapter	42,	the	Transmission	Control	Protocol	(TCP)	is	a
critically	important	part	of	the	TCP/IP	protocol	suite.	It's	also	a	fairly
complicated	protocol,	with	a	lot	of	important	concepts	and	mechanisms	that	you
need	to	understand.	The	old	joke	says	the	"best	way	to	eat	an	elephant	is	one	bite
at	a	time."	Similarly	here,	you	can	best	comprehend	the	operation	of	this
complicated	protocol	by	going	slowly,	starting	with	a	high-level	look	at	it,	where
it	came	from,	and	what	it	does.

In	this	chapter,	I	begin	by	introducing	you	to	TCP.	I	first	provide	an	overview
and	history	of	TCP	and	then	describe	the	standards	that	define	it.	Then	I
illustrate	what	TCP	actually	does	by	listing	its	functions	and	explaining	how
TCP	works	by	describing	its	most	important	characteristics.	This	will	give	you	a
feel	for	what	TCP	is	all	about,	and	it	will	set	the	stage	for	the	more	complex
technical	discussions	in	subsequent	chapters.

TCP	Overview,	History,	and	Standards
Between	them,	layers	3	and	4	of	the	OSI	Reference	Model	represent	the
interface	between	networking	software	(the	applications	that	need	to	move	data
across	networks)	and	networking	hardware	(the	devices	that	carry	the	data	over
networks).	Any	protocol	suite	must	have	a	protocol	or	set	of	protocols	that
handles	these	layer	3	and	layer	4	functions.

The	TCP/IP	protocol	suite	is	named	for	the	two	main	protocols	that	provide
these	capabilities.	Both	TCP	and	the	Internet	Protocol	(IP)	allow	software	to	run



on	an	internetwork.	IP	deals	with	internetwork	datagram	delivery	and	routing,
while	TCP	handles	connections	and	provides	reliability.	What's	interesting,
however,	is	that	in	the	early	days	of	the	protocol	suite,	there	was,	in	fact,	no
TCP/IP	at	all.

TCP	History
Due	to	its	prominent	role	in	the	history	of	networking,	TCP	is	impossible	to
describe	without	going	back	to	the	early	days	of	the	protocol	suite.	In	the	early
1970s,	what	we	know	today	as	the	global	Internet	was	a	small	research
internetwork	called	the	ARPAnet,	an	acronym	that	came	from	the	United	States
Defense	Advanced	Research	Projects	Agency	(DARPA	or	ARPA).	This	network
used	a	technology	called	the	Network	Control	Protocol	(NCP),	which	allowed
hosts	to	connect	to	each	other.	NCP	did	approximately	the	same	job	that	TCP
and	IP	do	together	today.

Due	to	limitations	in	NCP,	development	began	on	a	new	protocol	that	would	be
better	suited	to	a	growing	internetwork.	This	new	protocol,	first	formalized	in
RFC	675,	was	called	the	Internet	Transmission	Control	Program	(TCP).	Like	its
predecessor	NCP,	TCP	was	responsible	for	basically	everything	that	was	needed
to	allow	applications	to	run	on	an	internetwork.	Thus,	TCP	was	at	first	both	TCP
and	IP.

As	I	explain	in	detail	in	the	description	of	the	history	of	TCP/IP	as	a	whole	in
Chapter	8,	several	years	were	spent	adjusting	and	revising	TCP,	with	version	2
of	the	protocol	documented	in	1977.	While	the	functionality	of	TCP	was	steadily
improved,	there	was	a	problem	with	the	basic	concept	behind	the	protocol.
Having	TCP	handle	datagram	transmissions,	routing	(layer	3	functions),	and
connections,	reliability,	and	data-flow	management	(layer	4	functions)	meant
that	TCP	violated	key	concepts	of	protocol	layering	and	modularity.	TCP	forced
all	applications	to	use	the	layer	4	functions	in	order	to	use	the	layer	3	functions.
This	made	TCP	inflexible	and	poorly	suited	to	the	needs	of	applications	that
required	only	the	lower-level	functions	and	not	the	higher-level	ones.

As	a	result,	the	decision	was	made	to	split	TCP	into	two:	the	layer	4	functions
were	retained,	with	TCP	renamed	the	Transmission	Control	Protocol	(as	opposed
to	Transmission	Control	Program).	The	layer	3	functions	became	the	Internet



Protocol.	This	split	was	finalized	in	version	4	of	TCP,	and	so	the	first	IP	was
given	"version	4"	as	well,	for	consistency.	RFC	793,	"Transmission	Control
Protocol,"	published	in	September	1981,	defined	TCP	version	4,	and	it	is	still	the
current	version	of	the	standard.

Even	though	it	is	more	than	20	years	old	and	is	the	first	version	most	people
have	ever	used,	version	4	was	the	result	of	several	years'	work	and	many	earlier
TCP	versions	tested	on	the	early	Internet.	It	is	therefore	a	very	mature	protocol
for	its	age.	A	precocious	protocol,	you	might	say.	(To	be	fair,	other	standards
have	described	many	additional	features	and	modifications	to	TCP,	rather	than
upgrading	the	main	document.)

Overview	of	TCP	Operation
TCP	is	a	full-featured	transport	layer	protocol	that	provides	all	the	functions	that
a	typical	application	needs	for	the	reliable	transportation	of	data	across	an
arbitrary	internetwork.	It	provides	transport	layer	addressing	for	application
processes	in	the	form	of	TCP	ports	and	allows	machines	to	use	these	ports	in
order	to	establishing	connections	between	them.	Once	the	devices	have
connected	to	each	other,	they	can	pass	data	bidirectionally	between	them.
Applications	can	send	data	to	TCP	as	a	simple	stream	of	bytes,	and	TCP	takes
care	of	packaging	and	sending	the	data	as	segments	that	TCP	packages	into	IP
datagrams.	The	receiving	device's	TCP	implementation	reverses	the	process,
passing	up	to	the	application	the	stream	of	data	that	the	device	originally	sent.

TCP	includes	an	extensive	set	of	mechanisms.	These	mechanisms	ensure	that
data	gets	from	source	to	destination	reliably,	consistently,	and	in	a	timely
fashion.	The	key	to	its	operation	in	this	regard	is	the	sliding	window
acknowledgment	system,	which	allows	each	device	to	keep	track	of	the	bytes	of
data	it	has	sent	and	to	confirm	the	receipt	of	data	received	from	the	other	device
in	the	connection.	Unacknowledged	data	is	eventually	retransmitted
automatically,	and	the	parameters	of	the	system	can	be	adjusted	to	the	needs	of
the	devices	and	the	connection.	This	same	system	also	provides	buffering	and
flow	control	capabilities	between	devices.	These	capabilities	handle	uneven	data
delivery	rates	and	other	problems.

TIP



KEY	CONCEPT	The	primary	transport	layer	protocol	in	the	TCP/IP	protocol	suite	is	the	Transmission
Control	Protocol	(TCP).	TCP	is	a	connection-oriented,	acknowledged,	reliable,	full-featured	protocol
designed	to	provide	applications	with	a	reliable	way	to	send	data	using	the	unreliable	Internet	Protocol
(IP).	It	allows	applications	to	send	bytes	of	data	as	a	stream	of	bytes	and	automatically	packages	them
into	appropriately	sized	segments	for	transmission.	It	uses	a	special	sliding	window	acknowledgment
system	to	ensure	that	its	recipient	receives	all	data,	handles	necessary	retransmissions,	and	provides	flow
control	so	that	each	device	in	a	connection	can	manage	the	rate	at	which	other	devices	send	data	to	it.

Because	of	TCP's	many	capabilities,	it's	likely	that	the	protocol	will	satisfy	just
about	any	application	that	requires	reliable,	connection-oriented	data	delivery.	A
primary	goal	of	TCP,	reliable	data	delivery	means	that	higher-layer	applications
don't	need	to	provide	TCP's	common	functions.	Because	the	majority	of
conventional	message-passing	applications	employ	it,	the	TCP/IP	transport
protocol	is	the	most	widely	used	transport	protocol.

TCP	Standards
RFC	793	is	the	defining	standard	for	TCP,	but	it	doesn't	include	all	the	details
about	how	modern	TCP	operates.	Several	other	standards	include	additional
information	about	how	the	protocol	works	and	describe	enhancements	to	the
basic	TCP	mechanisms	that	were	developed	over	the	years.	Some	of	these	are
fairly	esoteric,	but	they	are	useful	for	gaining	a	more	complete	understanding	of
TCP.	I	have	listed	some	of	them	in	Table	45-1.

Table	45-1.	Supplementary	TCP	Standards

RFC
#

Name Description

813 Window	and
Acknowledgment
Strategy	in	TCP

Discusses	the	TCP	sliding	window	acknowledgment	system,
describes	certain	problems	that	can	occur	with	it,	and	offers
methods	to	correct	them.

879 The	TCP	Maximum
Segment	Size	and
Related	Topics

Discusses	the	important	maximum	segment	size	(MSS)
parameter	that	controls	the	size	of	TCP	messages,	and	then
relates	this	parameter	to	IP	datagram	size.

896 Congestion	Control	in
IP/TCP	Internetworks

Talks	about	congestion	problems	and	how	you	can	use	TCP	to
handle	them.	Note	the	interesting	inversion	of	the	normal
protocol	suite	name:	IP/TCP.

1122 Requirements	for Describes	important	details	of	how	TCP	should	be	implemented



1122 Requirements	for
Internet	Hosts	—
Communication
Layers

Describes	important	details	of	how	TCP	should	be	implemented
on	hosts.

1146 TCP	Alternate
Checksum	Options

Specifies	a	mechanism	for	having	TCP	devices	use	an
alternative	method	of	checksum	generation.

1323 TCP	Extensions	for
High	Performance

Defines	extensions	to	TCP	for	high-speed	links	and	new	TCP
options.

2018 TCP	Selective
Acknowledgment
Options

An	enhancement	to	basic	TCP	functionality	that	allows	TCP
devices	to	selectively	specify	specific	segments	for
retransmission.

2581 TCP	Congestion
Control

Describes	four	algorithms	used	for	congestion	control	in	TCP
networks:	slow	start,	congestion	avoidance,	fast	retransmit,	and
fast	recovery.

2988 Computing	TCP's
Retransmission	Timer

Discusses	issues	related	to	setting	the	TCP	retransmission	timer,
which	controls	how	long	a	device	waits	for	acknowledgment	of
sent	data	before	retransmitting	it.

There	are	hundreds	of	higher-layer	application	protocols	that	use	TCP	and	whose
defining	standards	therefore	make	at	least	glancing	reference	to	it.

TCP	is	designed	to	use	IP,	since	they	were	developed	together	and	as	you	have
seen,	were	even	once	part	of	the	same	specification.	They	were	later	split	up	in
order	to	respect	the	principles	of	architectural	layering.	For	this	reason,	TCP	tries
to	make	as	few	assumptions	as	possible	regarding	the	underlying	protocol	over
which	it	runs.	It	is	not	as	strictly	tied	to	the	use	of	IP	as	you	might	imagine,	and
you	can	even	adapt	it	for	use	over	other	network	layer	protocols.	For	our
purposes,	however,	this	should	be	considered	mainly	an	interesting	aside.



TCP	Functions
You	have	now	seen	where	TCP	comes	from	and	the	standards	that	describe	it.
As	I	said	in	the	introduction	to	this	chapter,	TCP	is	a	complicated	protocol,	so	it
will	take	some	time	to	explain	how	it	works.	Here,	I'll	describe	what	TCP	does
and	what	it	doesn't	do.

Functions	That	TCP	Performs
Despite	the	TCP's	complexity,	I	can	simplify	its	basic	operation	by	describing	its
primary	functions.	The	following	are	what	I	believe	to	be	the	five	main	tasks	that
TCP	performs:

Addressing/Multiplexing	Many	different	applications	use	TCP	for	a	transport
protocol.	Therefore,	like	its	simpler	sibling,	the	User	Datagram	Protocol	(UDP),
multiplexing	the	data	that	TCP	receives	from	these	different	processes	so	that	the
data	can	be	sent	out	using	the	underlying	network	layer	protocol	is	an	important
job	for	TCP.	At	the	same	time,	these	higher-layer	application	processes	are
identified	using	TCP	ports.	Chapter	43	contains	a	great	deal	of	detail	about	how
this	addressing	works.

Establishing,	Managing,	and	Terminating	Connections	TCP	provides	a	set	of
procedures	that	devices	can	follow	in	order	to	negotiate	and	establish	a	TCP
connection	over	which	data	can	travel.	Once	a	connection	is	opened,	TCP
includes	logic	for	managing	the	connection	and	handling	problems	that	may
result	with	the	connection.	When	a	device	is	finished	with	a	TCP	connection,	a
special	process	is	followed	to	terminate	it.

Handling	and	Packaging	Data	TCP	defines	a	mechanism	by	which
applications	are	able	to	send	data	to	TCP	from	higher	layers.	This	data	is	then
packaged	into	messages	that	will	be	sent	to	the	destination	TCP	software.	The
destination	software	unpackages	the	data	and	gives	it	to	the	application	on	the
destination	machine.

Transferring	Data	Conceptually,	the	TCP	implementation	on	a	transmitting
device	is	responsible	for	the	transfer	of	packaged	data	to	the	TCP	process	on	the
other	device.	Following	the	principle	of	layering,	this	transfer	is	done	by	having



the	TCP	software	on	the	sending	machine	pass	the	data	packets	to	the	underlying
network	layer	protocol,	which	again	normally	means	IP.

Providing	Reliability	and	Transmission	Quality	Services	TCP	includes	a	set
of	services	and	features	that	allows	an	application	to	consider	the	protocol	a
reliable	means	of	sending	of	data.	This	means	that	normally	a	TCP	application
doesn't	need	to	worry	about	data	being	sent	and	never	showing	up	or	arriving	in
the	wrong	order.	It	also	means	that	other	common	problems	that	might	arise	if	IP
were	used	directly	are	avoided.

Providing	Flow	Control	and	Congestion	Avoidance	Features	TCP	allows	the
flow	of	data	between	two	devices	to	be	controlled	and	managed.	It	also	includes
features	that	deal	with	congestion	that	devices	may	experience	during
communication	between	each	other.

Functions	That	TCP	Doesn't	Perform
Clearly,	TCP	is	responsible	for	a	fairly	significant	number	of	key	functions.	The
items	listed	in	the	preceding	section	may	not	seem	that	impressive,	but	this	is
just	a	high-level	look	at	the	protocol.	When	you	look	at	these	functions	in	detail,
you	will	see	that	each	one	actually	involves	a	rather	significant	amount	of	work
for	TCP	to	do.

Conversely,	sometimes	TCP	is	described	as	doing	everything	an	application
needs	in	order	to	use	an	internetwork.	However,	the	protocol	doesn't	do
everything.	It	has	limitations	and	certain	areas	that	its	designers	specifically	did
not	address.	The	following	are	some	of	the	notable	functions	that	TCP	does	not
perform:

Specifying	Application	Use	TCP	defines	the	transport	protocol.	It	does	not
specifically	describe	how	applications	should	use	TCP.	That	is	up	to	the
application	protocol.

Providing	Security	TCP	does	not	provide	any	mechanism	for	ensuring	the
authenticity	or	privacy	of	data	that	it	transmits.	If	authenticity	and	privacy	are
important	to	applications,	they	must	accomplish	them	using	some	other	means,
such	as	IPsec,	for	example.

Maintaining	Message	Boundaries	TCP	sends	data	as	a	continuous	stream



rather	than	discrete	messages.	It	is	up	to	the	application	to	specify	where	one
message	ends	and	the	next	begins.

Guaranteeing	Communication	Wait	a	minute;	isn't	TCP	supposed	to	guarantee
that	data	will	get	to	its	destination?	Well,	yes	and	no.	TCP	will	detect
unacknowledged	transmissions	and	resend	them	if	needed.	However,	if	some
sort	of	problem	prevents	reliable	communication,	all	TCP	can	do	is	keep	trying.
It	can't	make	any	guarantees,	because	there	are	too	many	things	out	of	its
control.	Similarly,	it	can	attempt	to	manage	the	flow	of	data,	but	it	cannot
resolve	every	problem.

This	last	point	might	seem	a	bit	pedantic,	but	it	is	important	to	keep	in	mind,
especially	since	many	people	tend	to	think	of	TCP	as	bulletproof.	The	overall
success	of	communication	depends	entirely	on	the	underlying	internetwork	and
the	networks	that	constitute	it.	A	chain	is	as	strong	as	its	weakest	link,	and	if
there	is	a	problem	at	the	lower	layers,	nothing	TCP	can	do	will	guarantee
successful	data	transfer.

TIP

KEY	CONCEPT	TCP	provides	reliable	communication	only	by	detecting	failed	transmissions	and
resending	them.	It	cannot	guarantee	any	particular	transmission,	because	it	relies	on	IP,	which	is
unreliable.	All	it	can	do	is	keep	trying	if	an	initial	delivery	attempt	fails.



TCP	Characteristics
In	many	ways,	it	is	more	interesting	to	look	at	how	TCP	does	its	job	than	the
functions	of	the	job.	By	examining	the	most	important	attributes	of	TCP	and	its
operation,	you	can	get	a	better	handle	on	the	way	TCP	works.	You	can	also	see
the	many	ways	that	it	contrasts	with	its	simpler	transport	layer	sibling,	UDP.

TCP	has	the	following	characteristics,	which	allow	it	to	perform	its	functions:

Connection-Oriented	TCP	requires	that	devices	first	establish	a	connection
with	each	other	before	they	send	data.	The	connection	creates	the	equivalent	of	a
circuit	between	the	units;	it	is	analogous	to	a	telephone	call.	A	process	of
negotiation	occurs,	and	that	process	establishes	the	connection,	thereby	ensuring
that	both	devices	agree	on	how	they	will	exchange	data.

Bidirectional	Once	a	connection	is	established,	TCP	devices	send	data
bidirectionally.	Both	devices	on	the	connection	can	send	and	receive,	regardless
of	which	one	initiated	the	connection.

Multiply	Connected	and	Endpoint	Identified	The	pair	of	sockets	used	by	the
two	devices	in	the	connection	identifies	the	endpoints	of	the	TCP	connection.
This	identification	method	allows	each	device	to	have	multiple	connections
opened,	either	to	the	same	IP	device	or	different	IP	devices,	and	to	handle	each
connection	independently	without	conflicts.

Reliable	Communication	using	TCP	is	said	to	be	reliable	because	TCP	keeps
track	of	data	that	has	been	sent	and	received	to	ensure	that	all	the	data	gets	to	its
destination.	As	you	saw	in	the	previous	section	earlier,	TCP	can't	really
guarantee	that	data	will	always	be	received.	However,	it	can	guarantee	that	all
data	sent	will	be	checked	for	reception,	checked	for	data	integrity,	and	then
retransmitted	when	needed.

Acknowledged	A	key	to	providing	reliability	is	that	TCP	acknowledges	all
transmissions	at	the	TCP	layer.	Furthermore,	TCP	cannot	guarantee	that	the
remote	application	will	receive	all	such	transmissions.	The	recipient	must	tell	the
sender,	"Yes,	I	got	that"	for	each	piece	of	data	transferred.	This	is	in	stark
contrast	to	typical	messaging	protocols	in	which	the	sender	never	knows	what
happened	to	its	transmission.	As	you	will	see,	this	acknowledgment	is



fundamental	to	the	operation	of	TCP	as	a	whole.

Stream-Oriented	Most	lower-layer	protocols	are	designed	so	that	higher-layer
protocols	must	send	them	data	in	blocks	in	order	to	use	them.	IP	is	the	best
example	of	this;	you	send	it	a	message	to	be	formatted	and	IP	puts	that	message
into	a	datagram.	UDP	works	the	same	way.	In	contrast,	TCP	allows	applications
to	send	it	a	continuous	stream	of	data	for	transmission.	Applications	don't	need
to	worry	about	dividing	this	stream	into	chunks	for	transmission;	TCP	does	it.

Unstructured	Data	An	important	consequence	of	TCP's	stream	orientation	is
that	there	are	no	natural	divisions	between	data	elements	in	the	application's	data
stream.	When	multiple	messages	are	sent	over	TCP,	applications	must	provide	a
way	of	differentiating	one	message	(data	element,	record,	and	so	on)	from	the
next.

Managed	Data	Flow	TCP	does	more	than	just	package	data	and	send	it	as	fast
as	possible.	A	TCP	connection	is	managed	to	ensure	that	data	flows	evenly	and
smoothly	and	that	connection	includes	the	ability	to	deal	with	problems	that	arise
along	the	way.

You'll	notice	that	I	have	not	listed	"slow"	as	one	of	TCP's	characteristics.	It	is
true	that	applications	use	UDP	for	performance	reasons	when	they	don't	want	to
deal	with	the	overhead	that	TCP	incorporates	for	connections	and	reliability.
That,	however,	should	not	lead	you	to	conclude	that	TCP	is	glacially	slow.	It	is
in	fact	quite	efficient—were	it	not,	it's	unlikely	that	it	would	have	ever	achieved
such	widespread	use.

TIP

KEY	CONCEPT	To	summarize	TCP's	key	characteristics,	we	can	say	that	it	is	connection-oriented,
bidirectional,	multiply	connected,	reliable,	acknowledged,	stream-oriented,	and	flow-managed.



The	Robustness	Principle
The	TCP	standard	says	that	TCP	follows	the	robustness	principle,	which	is
described	in	this	way:	"Be	conservative	in	what	you	do;	be	liberal	in	what	you
accept	from	others."	This	rule	means	that	every	TCP	implementation	tries	to
avoid	doing	anything	that	would	cause	a	problem	for	another	device's	TCP	layer.
At	the	same	time,	every	TCP	implementation	is	also	trying	to	anticipate
problems	that	another	TCP	may	cause	and	attempting	to	deal	with	those
problems	gracefully.

This	principle	represents	a	"belt	and	suspenders"	approach	that	helps	provide
extra	protection	against	unusual	conditions	in	TCP	operation.	In	fact,	this	general
principle	is	applied	to	many	other	protocols	in	the	TCP/IP	protocol	suite,	which
is	part	of	the	reason	why	it	has	proven	to	be	so	capable	over	the	years.	The
principle	allows	TCP	and	other	protocols	to	deal	with	unanticipated	problems
that	might	show	up	in	the	difficult	environment	of	a	large	internetwork	such	as
the	Internet.



Chapter	46.	TRANSMISSION
CONTROL	PROTOCOL	(TCP)
FUNDAMENTALS	AND	GENERAL
OPERATION

Many	people	have	a	difficult	time	understanding	how	the	Transmission	Control
Protocol	(TCP)	works.	After	spending	dozens	of	hours	writing	almost	100	pages
on	the	protocol,	I	am	quite	sympathetic!	I	think	a	main	reason	for	the	difficulty	is
that	many	descriptions	of	the	protocol	leap	too	quickly	from	a	brief	introduction
straight	into	the	mind-boggling	details	of	TCP's	operation.	The	problem	is	that
TCP	works	in	a	very	particular	way.	Its	operation	is	built	around	a	few	very
important	fundamentals	that	you	absolutely	must	understand	before	the	details	of
TCP	operation	will	make	much	sense.

In	this	chapter,	I	describe	some	of	the	key	operating	fundamentals	of	TCP.	I
begin	with	a	discussion	of	how	TCP	handles	data	and	introduce	the	concepts	of
streams,	segments,	and	sequences.	I	then	describe	the	very	important	TCP
sliding	window	system,	which	is	used	for	acknowledgment,	reliability,	and	data
flow	control.	I	discuss	how	TCP	uses	ports	and	how	it	identifies	connections.	I
also	describe	the	most	important	applications	that	use	TCP	and	what	ports	they
use	for	server	applications.

TCP	Data	Handling	and	Processing
One	of	the	givens	in	the	operation	of	most	of	the	protocols	you'll	find	at	upper
layers	in	the	OSI	Reference	Model	is	that	the	protocols	are	oriented	around	the
use	of	messages.	These	messages	are	analogous	to	a	written	letter	in	an	envelope
that	contains	a	specific	piece	of	information.	They	are	passed	from	higher	layers



that	contains	a	specific	piece	of	information.	They	are	passed	from	higher	layers
down	to	lower	ones,	where	they	are	encapsulated	in	the	lower	layers'	headers
(like	putting	them	in	another	envelope),	and	then	passed	down	further	until	they
are	actually	sent	out	at	the	physical	layer.

You	can	see	a	good	example	of	this	by	looking	at	the	User	Datagram	Protocol
(UDP),	TCP's	transport	layer	peer.	To	use	UDP,	an	application	passes	it	a
distinct	block	of	data	that	is	usually	fairly	short.	The	block	is	packaged	into	a
UDP	message,	then	sent	to	the	Internet	Protocol	(IP).	IP	packs	the	message	into
an	IP	datagram	and	eventually	passes	it	to	a	layer	2	protocol	such	as	Ethernet.
There,	IP	places	it	into	a	frame	and	sends	it	to	layer	1	for	transmission.

Increasing	the	Flexibility	of	Application	Data
Handling:	TCP's	Stream	Orientation
The	use	of	discrete	messaging	is	pretty	simple,	and	it	obviously	works	well
enough	since	most	protocols	make	use	of	it.	However,	it	is	inherently	limiting
because	it	forces	applications	to	create	discrete	blocks	of	data	in	order	to
communicate.	There	are	many	applications	that	need	to	send	information
continuously	in	a	manner	that	doesn't	lend	itself	well	to	creating	"chunks"	of
data.	Others	need	to	send	data	in	chunks	that	are	so	large	that	applications	could
never	send	them	as	a	single	message	at	the	lower	layers.

To	use	a	protocol	like	UDP,	many	applications	would	be	forced	to	artificially
divide	their	data	into	messages	of	a	size	that	has	no	inherent	meaning	to	them.
This	would	immediately	introduce	new	problems	that	would	require	more	work
for	the	application.	The	application	would	have	to	keep	track	of	what	data	is	in
what	message,	and	replace	any	data	that	was	lost.	It	would	need	to	ensure	that
the	messages	could	be	reassembled	in	the	correct	order,	since	IP	might	deliver
them	out	of	order.

Of	course,	you	could	program	applications	to	do	this,	but	it	would	make	little
sense,	because	these	functions	are	already	ones	that	TCP	is	charged	with
handling.	Instead,	the	TCP	designers	took	the	very	smart	approach	of
generalizing	TCP	so	that	it	could	accept	application	data	of	any	size	and
structure	without	requiring	the	data	to	be	in	discrete	pieces.	More	specifically,
TCP	treats	data	coming	from	an	application	as	a	stream—thus,	the	description	of



TCP	as	stream-oriented.	Each	application	sends	the	data	it	wishes	to	transmit	as
a	steady	stream	of	octets	(bytes).	The	application	doesn't	need	to	carve	the	data
into	blocks	or	worry	about	how	lengthy	streams	will	get	across	the	internetwork.
It	just	"pumps	bytes"	to	TCP.

TCP	Data	Packaging:	Segments
TCP	must	take	the	bytes	it	gets	from	an	application	and	send	them	using	a
network	layer	protocol,	which	is	IP	in	this	case.	IP	is	a	message-oriented
protocol;	it	is	not	stream-oriented.	Thus,	we	have	simply	"passed	the	buck"	to
TCP,	which	must	take	the	stream	from	the	application	and	divide	it	into	discrete
messages	for	IP.	These	messages	are	called	TCP	segments.

NOTE

Segment	is	one	of	the	most	confusing	data	structure	names	in	the	world	of	networking.	From	a	dictionary
definition	standpoint,	referring	to	a	piece	of	a	stream	as	a	segment	is	sensible,	but	most	people	working
with	networks	don't	think	of	a	message	as	being	a	segment.	In	the	industry,	the	term	also	refers	to	a
length	of	cable	or	a	part	of	a	local	area	network	(LAN),	among	other	things,	so	watch	out	for	that.

IP	treats	TCP	segments	like	all	other	discrete	messages	for	transmission.	IP
places	them	into	IP	datagrams	and	transmits	them	to	the	destination	device.	The
recipient	unpackages	the	segments	and	passes	them	to	TCP,	which	converts
them	back	to	a	byte	stream	in	order	to	send	them	to	the	application.	This	process
is	illustrated	in	Figure	46-1.

TIP

KEY	CONCEPT	TCP	is	designed	to	have	applications	send	data	to	it	as	a	stream	of	bytes,	rather	than
requiring	fixed-size	messages	to	be	used.	This	provides	maximum	flexibility	for	a	wide	variety	of	uses,
because	applications	don't	need	to	worry	about	data	packaging	and	can	send	files	or	messages	of	any
size.	TCP	takes	care	of	packaging	these	bytes	into	messages	called	segments.

The	TCP	layer	on	a	device	accumulates	data	that	it	receives	from	the	application
process	stream.	On	regular	intervals,	the	TCP	layer	forms	segments	that	it	will
transmit	using	IP.	Two	primary	factors	control	the	size	of	the	segment.	First,
there	is	an	overall	limit	to	the	size	of	a	segment,	chosen	to	prevent	unnecessary
fragmentation	at	the	IP	layer.	A	parameter	called	the	maximum	segment	size
(MSS)	governs	this	size	limit.	The	MSS	is	determined	during	connection



establishment.	Second,	TCP	is	designed	so	that	once	a	connection	is	set	up,	each
of	the	devices	tells	the	other	how	much	data	it	is	ready	to	accept	at	any	given
time.	If	the	data	is	lower	than	the	MSS	value,	the	device	must	send	a	smaller
segment.	This	is	part	of	the	sliding	window	system	described	a	little	later	in	this
chapter.

TCP	Data	Identification:	Sequence	Numbers
The	fact	that	TCP	treats	data	coming	from	an	application	as	a	stream	of	octets
has	a	couple	of	very	significant	implications	for	the	operation	of	the	protocol.
The	first	is	related	to	data	identification.	Since	TCP	is	reliable,	it	needs	to	keep
track	of	all	the	data	it	receives	from	an	application	so	it	can	make	sure	that	the
destination	receives	all	the	data.	Furthermore,	TCP	must	make	sure	that	the
destination	receives	the	data	in	the	order	that	the	application	sent	it,	and	the
destination	must	retransmit	any	lost	data.

If	a	device	conveyed	data	to	TCP	in	block-like	messages,	it	would	be	fairly
simple	to	keep	track	of	the	data	by	adding	an	identifier	to	each	message.	Because
TCP	is	stream-oriented,	however,	that	identification	must	be	done	for	each	byte
of	data!	This	may	seem	surprising,	but	it	is	actually	what	TCP	does	through	the
use	of	sequence	numbers.	Each	byte	of	data	is	assigned	a	sequence	number	that
is	used	to	keep	track	of	it	through	the	process	of	transmission,	reception,	and
acknowledgment	(though	in	practice,	blocks	of	many	bytes	are	managed	using
the	sequence	numbers	of	bytes	at	the	start	and	end	of	the	block).	These	sequence
numbers	are	used	to	ensure	that	the	sending	application	transmits	and
reassembles	the	segmented	data	into	the	original	stream	of	data.	The	sequence
numbers	are	required	to	implement	the	sliding	window	system,	which	enables
TCP	to	provide	reliability	and	data	flow	control.



Figure	46-1.	TCP	data	stream	processing	and	segment	packaging	TCP	is	different	from	most	protocols
because	it	does	not	require	applications	that	use	it	to	send	data	to	it	in	messages.	Once	a	TCP	connection
is	set	up,	an	application	protocol	can	send	TCP	a	steady	stream	of	bytes	that	does	not	need	to	conform	to
any	particular	structure.	TCP	packages	these	bytes	into	segments	that	are	sized	based	on	a	number	of
different	parameters.	These	segments	are	passed	to	IP,	where	they	are	encapsulated	into	IP	datagrams
and	transmitted.	The	receiving	device	reverses	the	process:	Segments	are	removed	from	IP	datagrams,
and	then	the	bytes	are	taken	from	the	segments	and	passed	up	to	the	appropriate	recipient	application

protocol	as	a	byte	stream.

TIP

KEY	CONCEPT	Since	TCP	works	with	individual	bytes	of	data	rather	than	discrete	messages,	it	must
use	an	identification	scheme	that	works	at	the	byte	level	to	implement	its	data	transmission	and	tracking
system.	This	is	accomplished	by	assigning	a	sequence	number	to	each	byte	that	TCP	processes.

The	Need	for	Application	Data	Delimiting
When	TCP	treats	incoming	data	as	a	stream,	the	data	the	application	using	TCP



receives	is	called	unstructured.	For	transmission,	a	stream	of	data	goes	into	TCP
on	the	sending	device,	and	on	reception,	a	stream	of	data	goes	back	to	the
application	on	the	receiving	device.	Even	though	TCP	breaks	the	stream	into
segments	for	transmission,	these	segments	are	TCP-level	details	that	remain
hidden	from	the	application.	When	a	device	wants	to	send	multiple	pieces	of
data,	TCP	provides	no	mechanism	for	indicating	where	the	dividing	line	is
between	the	pieces,	since	TCP	doesn't	examine	the	meaning	of	the	data.	The
application	must	provide	a	means	for	doing	this.

Consider,	for	example,	an	application	that	is	sending	database	records.	It	needs
to	transmit	record	579	from	the	Employees	database	table,	followed	by	record
581	and	record	611.	It	sends	these	records	to	TCP,	which	treats	them	all
collectively	as	a	stream	of	bytes.	TCP	will	package	these	bytes	into	segments,
but	in	a	way	that	the	application	cannot	predict.	It	is	possible	that	each	byte	will
end	up	in	a	different	segment,	but	more	likely	that	they	will	all	be	in	one
segment,	or	that	part	of	each	will	end	up	in	different	segments,	depending	on
their	length.	The	records	must	have	some	sort	of	explicit	markers	so	that	the
receiving	device	can	tell	where	one	record	ends	and	the	next	starts.

TIP

KEY	CONCEPT	Since	applications	send	data	to	TCP	as	a	stream	of	bytes	as	opposed	to	prepackaged
messages,	each	application	must	use	its	own	scheme	to	determine	where	one	application	data	element
ends	and	the	next	begins.



TCP	Sliding	Window	Acknowledgment	System
What	differentiates	TCP	from	simpler	transport	protocols	like	UDP	is	the	quality
of	the	manner	in	which	it	sends	data	between	devices.	Rather	than	just	sticking
data	in	a	message	and	saying,	"off	you	go,"	TCP	carefully	keeps	track	of	the	data
it	sends.	This	management	of	data	is	required	to	facilitate	the	following	two	key
requirements	of	the	protocol:

Reliability	Ensuring	that	data	that	is	sent	actually	arrives	at	its	destination,	and	if
it	doesn't	arrive,	detecting	this	and	resending	it.

Data	Flow	Control	Managing	the	rate	at	which	data	is	sent	so	that	it	does	not
overwhelm	the	device	that	is	receiving	it.

To	accomplish	these	tasks,	the	entire	operation	of	the	protocol	is	oriented	around
something	called	the	sliding	window	acknowledgment	system.	It	is	no
exaggeration	to	say	that	comprehending	how	sliding	windows	work	is	critical	to
understanding	just	about	everything	else	in	TCP.	It	is	also,	unfortunately,	a	bit
hard	to	follow	if	you	try	to	grasp	it	all	at	once.	I	wanted	to	make	sure	that	I
explained	the	mechanism	thoroughly	without	assuming	that	you	already
understood	it.	For	this	reason,	I	am	going	to	start	by	explaining	the	concepts
behind	sliding	windows,	particularly	how	the	technique	works	and	why	it	is	so
powerful.

The	Problem	with	Unreliable	Protocols:	Lack	of
Feedback
A	simple	"send	and	forget"	protocol	like	IP	is	unreliable	and	includes	no	flow
control	for	one	main	reason:	It	is	an	open-loop	system	in	which	the	transmitter
receives	no	feedback	from	the	recipient.	(I	am	ignoring	error	reports	using	ICMP
and	the	like	for	the	purpose	of	this	discussion.)	A	datagram	is	sent,	and	it	may	or
may	not	get	there,	but	the	transmitter	will	never	have	any	way	of	knowing
because	there	is	no	mechanism	for	feedback.	This	concept	is	illustrated	in
Figure	46-2.



Figure	46-2.	Operation	of	an	unreliable	protocol	In	a	system	such	as	the	one	that	IP	uses,	if	a	message
gets	to	its	destination,	that's	great;	otherwise,	nobody	will	have	a	clue.	Some	external	mechanism	is
needed	to	take	care	of	the	lost	message,	unless	the	protocol	doesn't	really	care	whether	a	few	bits	and

pieces	are	missing	from	its	message	stream.

Providing	Basic	Reliability	Using	Positive
Acknowledgment	with	Retransmission	(PAR)
Basic	reliability	in	a	protocol	running	over	an	unreliable	protocol	like	IP	can	be
implemented	by	closing	the	loop	so	the	recipient	provides	feedback	to	the
sender.	This	is	most	easily	done	with	a	simple	acknowledgment	system.	Device
A	sends	a	piece	of	data	to	Device	B,	which	receives	the	data	and	sends	back	an
acknowledgment	saying,	"Device	A,	I	received	your	message."	Device	A	then
knows	its	transmission	was	successful.

But	since	IP	is	unreliable,	that	message	may	in	fact	never	get	to	where	it	is
going.	Device	A	will	sit	and	wait	for	the	acknowledgment	and	never	receive	it.
Conversely,	it	is	also	possible	that	Device	B	gets	the	message	from	Device	A,
but	the	acknowledgment	itself	vanishes	somehow.	In	either	case,	we	don't	want
Device	A	to	sit	forever	waiting	for	an	acknowledgment	that	is	never	going	to
arrive.

To	prevent	this	from	happening,	Device	A	starts	a	timer	when	it	first	sends	the
message	to	Device	B,	which	allows	sufficient	time	for	the	message	to	get	to
Device	B	and	for	the	acknowledgment	to	travel	back,	plus	some	reasonable	time
to	allow	for	possible	delays.	If	the	timer	expires	before	the	acknowledgment	is
received,	Device	A	assumes	that	there	was	a	problem	and	retransmits	its	original
message.	Since	this	method	involves	positive	acknowledgments	("Yes,	I	got
your	message")	and	a	facility	for	retransmission	when	needed,	it	is	commonly



called	positive	acknowledgment	with	retransmission	(PAR),	as	shown	in
Figure	46-3.

Figure	46-3.	Basic	reliability:	positive	acknowledgment	with	retransmission	(PAR)	This	diagram	shows
one	of	the	most	common	and	simple	techniques	for	ensuring	reliability.	Each	time	Device	A	sends	a
message,	it	starts	a	timer.	Device	B	sends	an	acknowledgment	back	to	Device	A	when	it	receives	a

message,	so	that	Device	A	knows	that	it	successfully	transmitted	the	message.	If	a	message	is	lost,	the
timer	goes	off,	and	Device	A	retransmits	the	data.	Note	that	only	one	message	can	be	outstanding	at	any

time,	making	this	system	rather	slow.

TIP

KEY	CONCEPT	A	basic	technique	for	ensuring	reliability	in	communications	uses	a	rule	that	requires
a	device	to	send	back	an	acknowledgment	each	time	it	successfully	receives	a	transmission.	If	a	device
doesn't	acknowledge	the	transmission	after	a	period	of	time,	its	sender	retransmits	the	acknowledgment.
This	system	is	called	positive	acknowledgment	with	retransmission	(PAR).	One	drawback	with	this	basic
scheme	is	that	the	transmitter	cannot	send	a	second	message	until	after	the	first	device	has	acknowledged
the	first.

PAR	is	a	technique	that	is	used	widely	in	networking	and	communications	for
protocols	that	exchange	relatively	small	amounts	of	data,	or	protocols	that
exchange	data	infrequently.	The	basic	method	is	functional,	but	it	is	not	well



suited	to	a	protocol	like	TCP.	One	main	reason	is	that	it	is	inefficient.	Device	A
sends	a	message,	and	then	waits	for	the	acknowledgment.	Device	A	cannot	send
another	message	to	Device	B	until	it	hears	that	Device	B	received	its	original
message,	which	is	very	wasteful	and	would	make	the	protocol	extremely	slow.

Improving	PAR
The	first	improvement	we	can	make	to	the	PAR	system	is	to	provide	some
means	of	identification	to	the	messages	that	were	sent,	as	well	as	the
acknowledgments.	For	example,	we	could	put	a	message	ID	field	in	the	message
header.	The	device	sending	the	message	would	uniquely	identify	it,	and	the
recipient	would	use	this	identifier	in	the	acknowledgment.	For	example,	Device
A	might	send	a	piece	of	data	in	a	message	with	the	message	ID	1.	Device	B
would	receive	the	message	and	then	send	its	own	message	back	to	Device	A,
saying	"Device	A,	I	received	your	message	1."	The	advantage	of	this	system	is
that	Device	A	can	send	multiple	messages	at	once.	It	must	keep	track	of	each
one	that	it	sends,	and	whether	or	not	Device	B	sent	an	acknowledgment.	Each
device	also	requires	a	separate	timer,	but	that's	not	a	big	problem.

Of	course,	we	also	need	to	consider	this	exchange	from	the	standpoint	of	Device
B.	Before,	Device	B	had	to	deal	with	only	one	message	at	a	time	from	Device	A.
Now	it	may	have	several	show	up	all	at	once.	What	if	it	is	already	busy	with
transmis-sions	from	another	device	(or	ten)?	We	need	some	mechanism	that	lets
Device	B	say,	"I	am	only	willing	to	handle	the	following	number	of	messages
from	you	at	a	time."	We	could	do	that	by	having	the	acknowledgment	message
contain	a	field,	such	as	send	limit,	which	specifies	the	maximum	number	of
unacknowledged	messages	Device	A	was	allowed	to	have	in	transit	to	Device	B
at	one	time.

Device	A	would	use	this	send	limit	field	to	restrict	the	rate	at	which	it	sent
messages	to	Device	B.	Device	B	could	adjust	this	field	depending	on	its	current
load	and	other	factors	to	maximize	performance	in	its	discussions	with	Device
A.	This	enhanced	system	would	thus	provide	reliability,	efficiency,	and	basic
data	flow	control,	as	illustrated	in	Figure	46-4.

TIP

KEY	CONCEPT	The	basic	PAR	reliability	scheme	can	be	enhanced	by	identifying	each	message	to	be



sent,	so	multiple	messages	can	be	in	transit	at	once.	The	use	of	a	send	limit	allows	the	mechanism	to	also
provide	flow	control	capabilities,	by	allowing	each	device	to	control	the	rate	at	which	other	devices	send
data	to	it.

TCP's	Stream-Oriented	Sliding	Window
Acknowledgment	System
So	does	TCP	use	this	variation	on	PAR?	Of	course	not!	That	would	be	too
simple.	Conceptually,	the	TCP	sliding	window	system	is	very	similar	to	this
method,	which	is	why	it	is	important	that	you	understand	it.	However,	it	requires
some	adjustment.	The	main	reason	has	to	do	with	the	way	TCP	handles	data:	the
matter	of	stream	orientation	compared	to	message	orientation	discussed	earlier	in
this	chapter.	The	technique	I	have	outlined	involves	explicit	acknowledgments
and	(if	necessary)	retransmissions	for	messages.	Thus,	it	would	work	well	for	a
protocol	that	exchanged	reasonably	large	messages	on	a	fairly	infrequent	basis.

TCP,	on	the	other	hand,	deals	with	individual	bytes	of	data	as	a	stream.
Transmitting	each	byte	one	at	a	time	and	acknowledging	each	one	at	a	time
would	quite	obviously	be	absurd.	It	would	require	too	much	work,	and	even	with
overlapped	transmissions	(that	is,	not	waiting	for	an	acknowledgment	before
sending	the	next	piece	of	data),	the	result	would	be	horribly	slow.



Figure	46-4.	Enhanced	PAR	This	diagram	shows	two	enhancements	to	the	basic	PAR	scheme	from
Figure	46-3.	First,	each	message	now	has	an	identification	number;	each	can	be	acknowledged

individually,	so	more	than	one	message	can	be	in	transit	at	a	given	time.	Second,	Device	B	regularly
communicates	to	Device	A	a	send	limit	parameter,	which	restricts	the	number	of	messages	Device	A
can	have	outstanding	at	once.	Device	B	can	adjust	this	parameter	to	control	the	flow	of	data	from

Device	A.

This	slowness	is	why	TCP	does	not	send	bytes	individually	but	divides	them	into
segments.	All	of	the	bytes	in	a	segment	are	sent	together	and	received	together,
and	thus	acknowledged	together.	TCP	uses	a	variation	on	the	method	I	described
earlier,	in	which	the	sequence	numbers	I	discussed	earlier	identify	the	data	sent
and	acknowledged.	Instead	of	acknowledging	the	use	of	something	like	a
message	ID	field,	we	acknowledge	data	using	the	sequence	number	of	the	last
byte	of	data	in	the	segment.	Thus,	we	are	dealing	with	a	range	of	bytes	in	each
case,	and	the	range	represents	the	sequence	numbers	of	all	the	bytes	in	the
segment.

Conceptual	Division	of	TCP	Transmission	Stream	into
Categories
Imagine	a	newly	established	TCP	connection	between	Device	A	and	Device	B.



Device	A	has	a	long	stream	of	bytes	that	it	will	transmit,	but	Device	B	can't
accept	them	all	at	once,	so	it	limits	Device	A	to	sending	a	particular	number	of
bytes	at	once	in	segments,	until	the	bytes	in	the	segments	already	sent	have	been
acknowledged.	Then	Device	A	is	allowed	to	send	more	bytes.	Each	device	keeps
track	of	which	bytes	have	been	sent	and	which	have	not,	and	which	have	been
acknowledged.

At	any	point	in	time,	we	can	take	a	"snapshot"	of	the	process.	If	we	do,	we	can
conceptually	divide	the	bytes	that	the	sending	TCP	has	in	its	buffer	into	the
following	four	categories,	and	view	them	as	a	timeline	(see	Figure	46-5):

1.	 Bytes	Sent	and	Acknowledged	The	earliest	bytes	in	the	stream	will	have
been	sent	and	acknowledged.	These	bytes	are	basically	viewed	from	the
standpoint	of	the	device	sending	data.	In	the	example	in	Figure	46-5,	31
bytes	of	data	have	already	been	sent	and	acknowledged.	These	would	fall
into	category	1.

2.	 Bytes	Sent	but	Not	Yet	Acknowledged	These	are	the	bytes	that	the	device
has	sent	but	for	which	it	has	not	yet	received	an	acknowledgment.	The
sender	cannot	consider	these	handled	until	they	are	acknowledged.	In
Figure	46-5,	there	are	14	bytes	here,	in	category	2.

3.	 Bytes	Not	Yet	Sent	for	Which	Recipient	Is	Ready	These	are	bytes	that
the	device	has	not	sent,	but	which	the	recipient	has	room	for	based	on	its
most	recent	communication	to	the	sender	regarding	how	many	bytes	it	is
willing	to	handle	at	once.	The	sender	will	try	to	send	these	immediately
(subject	to	certain	algorithmic	restrictions	that	you'll	explore	later).	In
Figure	46-5,	there	are	6	bytes	in	category	3.

4.	 Bytes	Not	Yet	Sent	for	Which	Recipient	Is	Not	Ready	These	are	the
bytes	further	down	the	stream,	which	the	sender	is	not	yet	allowed	to	send
because	the	receiver	is	not	ready.	In	Figure	46-5,	there	are	44	bytes	in
category	4.



Figure	46-5.	Conceptual	division	of	TCP	transmission	stream	into	categories

NOTE

I	am	using	very	small	numbers	here	to	keep	the	example	simple	and	to	make	the	diagrams	a	bit	easier	to
construct!	TCP	does	not	normally	send	tiny	numbers	of	bytes	around	for	efficiency	reasons.

The	receiving	device	uses	a	similar	system	in	order	to	differentiate	between	data
received	and	acknowledged,	data	not	yet	received	but	ready	to	receive,	and	data
not	yet	received	and	not	yet	ready	to	be	received.	In	fact,	both	devices	maintain	a
separate	set	of	variables	to	keep	track	of	the	categories	into	which	bytes	fall	in
the	stream	they	are	sending,	as	well	as	the	stream	they	are	receiving.	This	is
explored	further	in	Chapter	48's	section	named	"TCP	Sliding	Window	Data
Transfer	and	Acknowledgment	Mechanics,"	which	describes	the	detailed	sliding
window	data	transfer	procedure.

TIP

KEY	CONCEPT	The	TCP	sliding	window	system	is	a	variation	on	the	enhanced	PAR	system,	with
changes	made	to	support	TCP's	stream	orientation.	Each	device	keeps	track	of	the	status	of	the	byte
stream	that	it	needs	to	transmit.	The	device	keeps	track	by	dividing	the	byte	streams	into	four	conceptual
categories:	bytes	sent	and	acknowledged,	bytes	sent	but	not	yet	acknowledged,	bytes	not	yet	sent	but	that
can	be	sent	immediately,	and	bytes	not	yet	sent	that	cannot	be	sent	until	the	recipient	signals	that	it	is
ready	for	them.

Sequence	Number	Assignment	and	Synchronization
The	sender	and	receiver	must	agree	on	the	sequence	numbers	that	they	will
assign	to	the	bytes	in	the	stream.	This	is	called	synchronization	and	is	done	when
the	TCP	connection	is	established.	For	simplicity,	let's	assume	that	the	first	byte
was	sent	with	sequence	number	1	(this	is	not	normally	the	case).	Thus,	in	the
example	shown	in	Figure	46-5,	the	byte	ranges	for	the	four	categories	are	as
follows:



1.	 The	bytes	sent	and	acknowledged	are	bytes	1	to	31.

2.	 The	bytes	sent	but	not	yet	acknowledged	are	bytes	32	to	45.

3.	 The	bytes	not	yet	sent	for	which	the	recipient	is	ready	are	bytes	46	to	51.

4.	 The	bytes	not	yet	sent	for	which	the	recipient	is	not	ready	are	bytes	52	to
95.

The	Send	Window	and	Usable	Window
The	key	to	the	operation	of	the	entire	process	is	the	number	of	bytes	that	the
recipient	is	allowing	the	transmitter	to	have	unacknowledged	at	one	time.	This	is
called	the	send	window,	or	often,	just	the	window.	The	window	is	what
determines	how	many	bytes	the	sender	is	allowed	to	transmit,	and	is	equal	to	the
sum	of	the	number	of	bytes	in	category	2	and	category	3.	Thus,	the	dividing	line
between	the	last	two	categories	(bytes	not	sent	that	the	recipient	is	ready	for	and
bytes	the	recipient	is	not	ready	for)	is	determined	by	adding	the	window	to	the
byte	number	of	the	first	unacknowledged	byte	in	the	stream.	In	the	example
shown	in	Figure	46-5,	the	first	unacknowledged	byte	is	32.	The	total	window
size	is	20.

The	term	usable	window	is	defined	as	the	amount	of	data	the	transmitter	is	still
allowed	to	send	given	the	amount	of	data	that	is	outstanding.	It	is	thus	exactly
equal	to	the	size	of	category	3.	You	may	also	commonly	hear	the	edges	of	the
window	mentioned.	The	left	edge	marks	the	first	byte	in	the	window	(byte	32).
The	right	edge	marks	the	last	byte	in	the	window	(byte	51).	See	Figure	46-6	for
an	illustration	of	these	concepts.

TIP

KEY	CONCEPT	The	send	window	is	the	key	to	the	entire	TCP	sliding	window	system.	It	represents
the	maximum	number	of	unacknowledged	bytes	that	a	device	is	allowed	to	have	outstanding	at	one	time.
The	usable	window	is	the	amount	of	the	send	window	that	the	sender	is	still	allowed	to	send	at	any	point
in	time;	it	is	equal	to	the	size	of	the	send	window	less	the	number	of	unacknowledged	bytes	already
transmitted.



Figure	46-6.	TCP	transmission	stream	categories	and	send	window	terminology	This	diagram	shows	the
same	categories	as	the	ones	in	Figure	46-5,	except	that	it	shows	the	send	window	as	well.	The	black	box

is	the	overall	send	window	(categories	2	and	3	combined);	the	light	gray	box	represents	the	bytes
already	sent	(category	2),	and	the	dark	gray	box	is	the	usable	window	(category	3).

Changes	to	TCP	Categories	and	Window	Sizes	After
Sending	Bytes	in	the	Usable	Window
Now	let's	suppose	that	in	the	example	shown	in	Figure	46-6	there	is	nothing
stopping	the	sender	from	immediately	transmitting	the	6	bytes	in	category	3	(the
usable	window).	When	the	sender	transmits	them,	the	6	bytes	will	shift	from
category	3	to	category	2.	The	byte	ranges	will	now	be	as	follows	(see	Figure	46-
7):

1.	 The	bytes	sent	and	acknowledged	are	bytes	1	to	31.

2.	 The	bytes	sent	but	not	yet	acknowledged	are	bytes	32	to	51.

3.	 The	bytes	not	yet	sent	for	which	the	recipient	is	ready	are	none.

4.	 The	bytes	not	yet	sent	for	which	the	recipient	is	not	ready	are	bytes	52	to
95.

Figure	46-7.	TCP	stream	categories	and	window	after	sending	usable	window	bytes	This	diagram	shows
the	result	of	the	device	sending	all	the	bytes	that	it	is	allowed	to	transmit	in	its	usable	window.	It	is	the
same	as	Figure	46-6,	except	that	all	the	bytes	in	category	3	have	moved	to	category	2.	The	usable



window	is	now	zero	and	will	remain	so	until	it	receives	an	acknowledgment	for	bytes	in	category	2.

Processing	Acknowledgments	and	Sliding	the	Send
Window
Some	time	later,	the	destination	device	sends	back	a	message	to	the	sender	and
provides	an	acknowledgment.	The	destination	device	will	not	specifically	list	out
the	bytes	that	it	has	acknowledged,	because	as	I	said	earlier,	listing	the	bytes
would	be	inefficient.	Instead,	the	destination	device	will	acknowledge	a	range	of
bytes	that	represents	the	longest	contiguous	sequence	of	bytes	it	has	received
since	the	ones	it	had	previously	acknowledged.

For	example,	let's	suppose	that	the	bytes	already	sent	but	not	yet	acknowledged
at	the	start	of	the	example	(bytes	32	to	45)	were	transmitted	in	four	different
segments.	These	segments	carried	bytes	32	to	34,	35	to	36,	37	to	41,	and	42	to
45,	respectively.	The	first,	second,	and	fourth	segments	arrived,	but	the	third	did
not.	The	receiver	will	send	back	an	acknowledgment	only	for	bytes	32	to	36	(32
to	34	and	35	to	36).	The	receiver	will	hold	bytes	42	to	45	but	won't	acknowledge
them,	because	this	would	imply	that	the	receiver	has	received	bytes	37	to	41,
which	have	not	shown	up	yet.	This	is	necessary	because	TCP	is	a	cumulative
acknowledgment	system	that	can	use	only	a	single	number	to	acknowledge	data.
That	number	is	the	number	of	the	last	contiguous	byte	in	the	stream	that	was
successfully	received.	Let's	also	say	that	the	destination	keeps	the	window	size
the	same	at	20	bytes.

NOTE

An	optional	feature	called	selective	acknowledgments	does	allow	noncontiguous	blocks	of	data	to	be
acknowledged.	This	is	explained	in	Chapter	49's	section	named	"TCP	Noncontiguous	Acknowledgment
Handling	and	Selective	Acknowledgment	(SACK)";	we'll	ignore	this	complication	for	now.

When	the	sending	device	receives	this	acknowledgment,	it	will	be	able	to
transfer	some	of	the	bytes	from	category	2	to	category	1,	because	they	have	now
been	acknowledged.	When	it	does	so,	something	interesting	will	happen.	Since	5
bytes	have	been	acknowledged,	and	the	window	size	didn't	change,	the	sender	is
allowed	to	send	5	more	bytes.	In	effect,	the	window	shifts	or	slides	over	to	the
right	in	the	timeline.	At	the	same	time	5	bytes	move	from	category	2	to	category



1,	5	bytes	move	from	category	4	to	category	3,	creating	a	new	usable	window	for
subsequent	transmission.	So,	after	the	groups	receive	the	acknowledgment,	they
will	look	like	what	you	see	in	Figure	46-8.	The	byte	ranges	will	be	as	follows:

1.	 The	bytes	sent	and	acknowledged	are	bytes	1	to	36.

2.	 The	bytes	sent	but	not	yet	acknowledged	are	bytes	37	to	51.

3.	 The	bytes	not	yet	sent	for	which	the	recipient	is	ready	are	bytes	52	to	56.

4.	 The	bytes	not	yet	sent	for	which	the	recipient	is	not	ready	are	bytes	57	to
95.

Figure	46-8.	Sliding	the	TCP	send	window	After	receiving	acknowledgment	for	bytes	32	to	36,	the
bytes	move	from	category	2	to	1	(shown	in	dark	shading).	The	send	window	shown	in	Figure	46-7
slides	right	by	5	bytes;	shifting	5	bytes	from	category	4	to	3,	and	opening	a	new	usable	window.

This	process	will	occur	each	time	an	acknowledgment	is	received,	thereby
causing	the	window	to	slide	across	the	entire	stream	in	order	to	be	transmitted.
And	thus,	ladies	and	gentlemen,	you	have	the	TCP	sliding	window
acknowledgment	system!

It	is	a	very	powerful	technique	that	allows	TCP	to	easily	acknowledge	an
arbitrary	number	of	bytes	using	a	single	acknowledgment	number.	It	provides
reliability	to	the	byte-oriented	protocol	without	spending	time	on	an	excessive
number	of	acknowledgments.	For	simplicity,	the	example	I've	used	here	leaves
the	window	size	constant,	but	in	reality,	it	can	be	adjusted	to	allow	a	recipient	to
control	the	rate	at	which	data	is	sent,	thereby	enabling	flow	control	and
congestion	handling.

TIP

KEY	CONCEPT	When	a	device	gets	an	acknowledgment	for	a	range	of	bytes,	it	knows	the	destination
has	successfully	received	them.	It	moves	them	from	the	"sent	but	unacknowledged"	to	the	"sent	and
acknowledged"	category.	This	causes	the	send	window	to	slide	to	the	right,	allowing	the	device	to	send



more	data.

Dealing	with	Missing	Acknowledgments
But	what	about	bytes	42	through	45	in	the	example	shown	in	Figure	46-8?	Until
segment	3	(containing	bytes	37	to	41)	shows	up,	the	receiving	device	will	not
send	an	acknowledgment	for	those	bytes,	and	it	won't	send	any	others	that	show
up	after	it.	The	sending	device	will	be	able	to	send	the	new	bytes	that	were	added
to	category	3,	namely,	bytes	52	to	56.	The	sending	device	will	then	stop,	and	the
window	will	be	stuck	on	bytes	37	to	41.

TIP

KEY	CONCEPT	TCP	acknowledgments	are	cumulative	and	tell	a	transmitter	that	the	receiving	device
successfully	received	all	the	bytes	up	to	the	sequence	number	indicated	in	the	acknowledgment.	Thus,	if
the	receiving	device	receives	bytes	out	of	order,	the	device	cannot	acknowledge	them	until	all	the
preceding	bytes	are	received.

Like	the	PAR	system,	TCP	includes	a	system	for	timing	transmissions	and
retransmitting.	Eventually,	the	TCP	device	will	resend	the	lost	segment.
Unfortunately,	one	drawback	of	TCP	is	that	since	it	does	not	separately
acknowledge	segments,	it	may	have	to	retransmit	other	segments	that	the
recipient	actually	received	(such	as	the	segment	with	bytes	42	to	45).	This	starts
to	get	very	complex,	as	I	discussed	in	the	topic	on	TCP	retransmissions	in
Chapter	49.

More	Information	on	TCP	Sliding	Windows
Despite	the	length	of	this	explanation,	the	preceding	is	just	a	summary
description	of	the	overall	operation	of	sliding	windows.	This	chapter	does	not
include	all	of	the	modifications	used	in	modern	TCP!	As	you	can	see,	the	sliding
window	mechanism	is	at	the	heart	of	the	operation	of	TCP	as	a	whole.	In	the
chapter	that	describes	segments	and	discusses	data	transfer,	you	will	see	in	more
detail	how	TCP	transmitters	decide	how	and	when	to	create	segments	for
transmission.	Chapter	49	provides	much	more	information	about	how	sliding
windows	enable	a	device	to	manage	the	flow	of	data	to	it	on	a	TCP	connection.
It	also	discusses	special	problems	that	can	arise	if	window	size	is	not	carefully
managed	and	how	you	can	avoid	problems	such	as	congestion	in	TCP



implementations	through	key	changes	to	the	basic	sliding	window	mechanism
described	in	this	section.



TCP	Ports,	Connections,	and	Connection
Identification
The	two	TCP/IP	transport	layer	protocols,	TCP	and	UDP,	play	the	same
architectural	role	in	the	protocol	suite,	but	do	it	in	very	different	ways.	In	fact,
one	of	the	few	functions	that	the	two	have	in	common	is	that	they	both	provide	a
method	of	transport	layer	addressing	and	multiplexing.	Through	the	use	of	ports,
both	protocols	allow	the	data	from	many	different	application	processes	to	be
aggregated	and	sent	through	the	IP	layer,	and	then	returned	up	the	stack	to	the
proper	application	process	on	the	destination	device.	I	explain	TCP	ports	in
detail	in	Chapter	43.

Despite	this	commonality,	TCP	and	UDP	diverge	somewhat	even	in	how	they
deal	with	processes.	UDP	is	a	connectionless	protocol,	which	means	that	devices
do	not	set	up	a	formal	connection	before	sending	data.	UDP	does	not	have	to	use
sliding	windows	or	keep	track	of	how	long	it	has	been	since	UDP	sent	a
transmission	and	so	forth.	When	the	UDP	layer	on	a	device	receives	data,	it	just
sends	it	to	the	process	that	the	destination	port	indicates,	and	that's	that.	UDP	can
seamlessly	handle	any	number	of	processes	that	are	sending	it	messages	because
UDP	handles	them	all	identically.

In	contrast,	since	TCP	is	connection-oriented,	it	has	many	more	responsibilities.
Each	TCP	software	layer	needs	to	be	able	to	support	connections	to	several	other
TCPs	simultaneously.	The	operation	of	each	connection	is	separate	from	of	each
other	connection,	and	the	TCP	software	must	manage	each	operation
independently.	TCP	must	be	sure	that	it	not	only	routes	data	to	the	right	process,
but	that	it	also	manages	transmitted	data	on	each	connection	without	any	overlap
or	confusion.

The	first	consequence	of	this	is	that	TCP	must	uniquely	identify	each
connection.	It	does	this	by	using	the	pair	of	socket	identifiers	that	correspond	to
the	two	endpoints	of	the	connection,	where	a	socket	is	simply	the	combination	of
the	IP	address	and	the	port	number	of	each	process.	This	means	a	socket	pair
contains	four	pieces	of	information:	source	address,	source	port,	destination
address,	and	destination	port.	Thus,	TCP	connections	are	sometimes	said	to	be
described	by	this	addressing	quadruple.



I	introduced	this	concept	in	Chapter	43,	where	I	gave	the	example	of	a	Hypertext
Transfer	Protocol	(HTTP)	request	that	a	client	sends	at	177.41.72.6	to	a	website
at	41.199.222.3.	The	server	for	that	website	will	use	well-known	port	number	80,
so	the	server's	socket	is	41.199.222.3:80.	If	the	server	assigns	a	client	ephemeral
port	number	3022	for	the	web	browser,	the	client	socket	is	177.41.72.6:3022.
The	overall	connection	between	these	devices	can	be	described	using	this	socket
pair:	(41.199.222.3:80,	177.41.72.6:3022).

This	identification	of	connections	using	both	client	and	server	sockets	is	what
provides	the	flexibility	in	allowing	multiple	connections	between	devices	that	we
probably	take	for	granted	on	the	Internet.	For	example,	busy	application	server
processes	(such	as	web	servers)	must	be	able	to	handle	connections	from	more
than	one	client;	otherwise,	the	Web	would	be	pretty	much	unusable.	Since	the
client	and	server's	socket	identify	the	connection,	this	is	no	problem.	At	the	same
time	that	the	web	server	maintains	the	connection,	it	can	easily	have	another
connection	to	say,	port	2199	at	IP	address	219.31.0.44.	The	connection	identifier
that	represents	this	as	follows:	(41.199.222.3:80,	219.31.0.44:2199).

In	fact,	you	can	have	multiple	connections	from	the	same	client	to	the	same
server.	Each	client	process	will	be	assigned	a	different	ephemeral	port	number,
so	even	if	they	all	try	to	access	the	same	server	process	(such	as	the	web	server
process	at	41.199.222.3:80),	they	will	all	have	a	different	client	socket	and
represent	unique	connections.	This	difference	is	what	lets	you	make	several
simultaneous	requests	to	the	same	website	from	your	computer.

Again,	TCP	keeps	track	of	each	of	these	connections	independently,	so	each
connection	is	unaware	of	the	others.	TCP	can	handle	hundreds	or	even	thousands
of	simultaneous	connections.	The	only	limit	is	the	capacity	of	the	computer
running	TCP,	and	the	bandwidth	of	the	physical	connections	to	it—the	more
connections	running	at	once,	the	more	each	one	has	to	share	limited	resources.

TIP

KEY	CONCEPT	Each	device	can	handle	simultaneous	TCP	connections	to	many	different	processes	on
one	or	more	devices.	The	socket	numbers	of	the	devices	in	the	connection,	called	the	connection's
endpoints,	identify	each	connection.	Each	endpoint	consists	of	the	device's	IP	address	and	port	number,
so	the	four-way	communication	between	client	IP	address	and	port	number,	and	server	IP	address	and
port	number	identifies	each	connection.



TCP	Common	Applications	and	Server	Port
Assignments
In	the	overview	of	TCP	in	Chapter	45,	you	saw	that	the	protocol	originally
included	the	functions	of	both	modern	TCP	and	IP.	TCP	was	split	into	TCP	and
IP	in	order	to	allow	applications	that	didn't	need	TCP's	complexity	to	bypass	it,
using	the	much	simpler	UDP	as	a	transport	layer	protocol	instead.	This	bypass
was	an	important	step	in	the	development	of	the	TCP/IP	protocol	suite,	since
there	are	several	important	protocols	for	which	UDP	is	ideally	suited,	and	even
some	for	which	TCP	is	more	of	a	nuisance	than	a	benefit.

Most	commonly,	however,	UDP	is	used	only	in	special	cases.	I	describe	the	two
types	of	applications	that	may	be	better	suited	to	UDP	than	TCP	in	Chapter	44:
applications	where	speed	is	more	important	than	reliability,	and	applications	that
send	only	short	messages	infrequently.	The	majority	of	TCP/IP	applications	do
not	fall	into	these	categories.	Thus,	even	though	the	layering	of	TCP	and	IP
means	that	most	protocols	aren't	required	to	use	TCP,	most	of	them	do	anyway.
The	majority	of	the	protocols	that	use	TCP	employ	all,	or	at	least	most,	of	the
features	that	it	provides.	The	establishment	of	a	persistent	connection	is
necessary	for	many	interactive	protocols,	such	as	Telnet,	as	well	as	for	ones	that
send	commands	and	status	replies,	like	HTTP.	Reliability	and	flow	control	are
essential	for	protocols	like	the	File	Transfer	Protocol	(FTP)	or	the	email
protocols,	which	send	large	files.

Table	46-1	shows	some	of	the	more	significant	application	protocols	that	run	on
TCP.	For	each	protocol,	I	have	shown	the	well-known	or	registered	port	number
that's	reserved	for	that	protocol's	server	process	(clients	use	ephemeral	ports,	not
the	port	numbers	in	the	table).	I	have	also	shown	the	special	keyword	shortcut
for	each	port	assignment	and	provided	brief	comments	on	why	the	protocol	is
well	matched	to	TCP.

Table	46-1.	Common	TCP	Applications	and	Server	Port	Assignments

Port
#

Keyword Protocol Comments

20 ftp- File	Transfer Used	to	send	large	files,	so	it	is	ideally	suited	for	TCP.



20
and
21

ftp-
data/ftp

File	Transfer
Protocol
(FTP,	data
and	control)

Used	to	send	large	files,	so	it	is	ideally	suited	for	TCP.

23 telnet Telnet
Protocol

Interactive	session-based	protocol.	Requires	the
connection-based	nature	of	TCP.

25 smtp Simple	Mail
Transfer
Protocol
(SMTP)

Uses	an	exchange	of	commands,	and	sends	possibly	large
files	between	devices.

53 domain Domain
Name	Server
(DNS)

An	example	of	a	protocol	that	uses	both	UDP	and	TCP.	For
simple	requests	and	replies,	DNS	uses	UDP.	For	larger
messages,	especially	zone	transfers,	DNS	uses	TCP.

70 gopher Gopher
Protocol

A	messaging	protocol	that	has	been	largely	replaced	by	the
WWW.

80 http Hypertext
Transfer
Protocol
(HTTP/World
Wide	Web)

The	classic	example	of	a	TCP-based	messaging	protocol.

110 pop3 Post	Office
Protocol
(POP	version
3)

Email	message	retrieval	protocols	that	use	TCP	to
exchange	commands	and	data.

119 nntp Network
News
Transfer
Protocol
(NNTP)

Used	for	transferring	NetNews	(Usenet)	messages,	which
can	be	lengthy.

139 netbios-
ssn

NetBIOS
Session
Service

A	session	protocol,	clearly	better	suited	to	TCP	than	UDP.

143 imap Internet
Message
Access
Protocol
(IMAP)

Another	email	message	retrieval	protocol.

179 bgp Border
Gateway

While	interior	routing	protocols	like	RIP	and	OSPF	use
either	UDP	or	IP	directly,	BGP	runs	over	TCP.	This	allows



Gateway
Protocol
(BGP)

either	UDP	or	IP	directly,	BGP	runs	over	TCP.	This	allows
BGP	to	assume	reliable	communication	even	as	it	sends
data	over	potentially	long	distances.

194 irc Internet
Relay	Chat
(IRC)

IRC	is	like	Telnet	in	that	it	is	an	interactive	protocol	that	is
strongly	based	on	the	notion	of	a	persistent	connection
between	a	client	and	server.

2049 nfs Network	File
System
(NFS)

NFS	was	originally	implemented	using	UDP	for
performance	reasons.	Given	that	it	is	responsible	for	large
transfers	of	files	and	given	UDP's	unreliability,	NFS	was
probably	not	the	best	idea,	so	developers	created	TCP
versions.	The	latest	version	of	NFS	uses	TCP	exclusively.

6000–
6063

TCP x11 Used	for	the	X	Window	graphical	system.	Multiple	ports
are	dedicated	to	allow	many	sessions.

A	couple	of	the	protocols	in	Table	46-1	use	both	TCP	and	UDP	in	order	to	get
the	best	of	both	worlds.	UDP	can	send	short,	simple	messages,	while	TCP	moves
larger	files.	Many	of	the	protocols	that	use	both	TCP	and	UDP	are	actually
utility/diagnostic	protocols	(such	as	Echo,	Discard,	and	the	Time	Protocol).
These	are	special	cases,	because	they	developers	designed	them	to	use	both	UDP
and	TCP	specifically	to	allow	their	use	for	diagnostics	on	both	protocols.

I	have	not	included	an	exhaustive	list	of	TCP	applications	in	Table	46-1.	See
Chapter	42	for	common	TCP/IP	applications	and	port	numbers,	and	also	a
reference	to	the	full	(massive)	list	of	well-known	and	registered	TCP	server
ports.



Chapter	47.	TCP	BASIC
OPERATION:	CONNECTION
ESTABLISHMENT,
MANAGEMENT,	AND
TERMINATION

While	I	have	described	the	Transmission	Control	Protocol	(TCP)	as	connection-
oriented,	this	term	isn't	just	any	old	characteristic	of	TCP.	The	overall	operation
of	the	entire	protocol	can	be	described	in	terms	of	how	TCP	software	prepares,
negotiates,	establishes,	manages,	and	terminates	connections.	TCP
implementations	certainly	do	more	than	handle	connections,	but	the	other	major
tasks	they	perform,	such	as	data	handling	and	providing	reliability	and	flow
control,	can	occur	only	over	a	stable	connection.	This	stability	makes
connections	the	logical	place	to	begin	exploring	the	details	of	how	TCP	works.

In	this	chapter,	I	describe	TCP	connections	from	start	to	finish.	I	begin	with	an
overview	of	TCP's	operation	by	providing	a	summary	of	the	finite	state	machine
that	formally	defines	the	stages	of	a	connection.	State	machines	can	be	a	bit
mind-boggling	when	you	read	about	them	in	standards,	but	a	simplified,
explained	version	provides	an	excellent	high-level	view	of	the	life	of	a
connection,	so	it	is	a	good	place	to	start.

From	there,	I	move	on	to	provide	details	about	TCP's	handling	of	connections.	I
describe	how	you	prepare	and	set	up	connections	and	transmission	control
blocks	(TCBs),	and	explain	the	difference	between	a	passive	and	an	active
socket	Open.	I	explain	the	three-way	handshake	that	you	can	use	to	create	a



connection	and	the	method	by	which	parameters	are	exchanged	and	sequence
numbers	synchronized.	I	talk	about	how	an	established	connection	is	managed,
including	the	method	by	which	TCP	handles	problem	conditions	and	resets	the
connection	when	necessary.	Finally,	I	describe	how	a	connection	can	be
terminated	when	it	is	no	longer	needed.

TIP

BACKGROUND	INFORMATION	The	following	detailed	sections	assume	that	you're	familiar	with
the	concepts	in	the	previous	chapter,	especially	the	notion	of	sequence	numbers.

TCP	Operational	Overview	and	the	TCP	Finite
State	Machine	(FSM)
It	is	essential	that	all	devices	that	implement	a	networking	protocol	do	so	in	a
consistent	manner.	Otherwise,	one	device	might	behave	in	a	manner	that	the
other	would	not	expect.	Naturally,	this	inconsistency	is	why	there	are	standards
that	describe	the	operation	of	each	protocol.	The	problem	with	a	protocol	like
TCP	is	that	it	performs	so	many	tasks	that	it	is	difficult	to	specify	the	exact
operation	of	all	aspects	of	the	protocol	succinctly.

One	way	that	computer	scientists	describe	how	a	complex	protocol	works	is
through	a	theoretical	tool	called	a	finite	state	machine	(FSM).	An	FSM	attempts
to	describe	a	protocol	or	algorithm	by	considering	it	like	a	virtual	machine	that
progresses	through	a	series	of	stages	of	operation	in	response	to	various
occurrences.

Basic	FSM	Concepts
You	need	to	understand	the	following	four	essential	concepts	to	comprehend	the
workings	of	an	FSM:

State	The	particular	circumstance	or	status	that	describes	the	protocol	software
on	a	machine	at	a	given	time.

Transition	The	act	of	moving	from	one	state	to	another.

Event	Something	that	causes	a	transition	to	occur	between	states.



Action	Something	a	device	does	in	response	to	an	event	before	it	transitions	to
another	state.

An	FSM	describes	the	protocol	by	explaining	all	the	different	states	the	protocol
can	be	in,	the	events	that	can	occur	in	each	state,	what	actions	are	taken	in
response	to	the	events,	and	what	transitions	happen	as	a	result.	The	protocol
usually	starts	in	a	particular	beginning	state	when	it	is	first	run.	It	then	follows	a
sequence	of	steps	that	get	it	into	a	regular	operating	state,	and	moves	to	other
states	in	response	to	particular	types	of	input	or	other	circumstances.	The	state
machine	is	called	finite	because	there	are	a	limited	number	of	states.

The	Simplified	TCP	FSM
In	the	case	of	TCP,	the	FSM	describes	the	life	stages	of	a	connection.	Each
connection	between	one	TCP	device	and	another	begins	in	a	null	state	where
there	is	no	connection	and	then	proceeds	through	a	series	of	states	until	a
connection	is	established.	The	connection	remains	in	that	state	until	something
occurs	to	cause	the	connection	to	be	closed	again,	at	which	point	it	proceeds
through	another	sequence	of	transitional	states	and	returns	to	the	closed	state.

TIP

KEY	CONCEPT	Many	computer	scientists	use	the	finite	state	machine	(FSM)	to	describe	the	operation
of	a	protocol	or	algorithm.	The	FSM	describes	the	different	actions	that	a	piece	of	software	takes	over
time	by	defining	a	finite	number	of	operating	states,	events	that	can	cause	transitions	between	states,	and
actions	taken	in	response	to	events.

The	full	description	of	the	states,	events,	and	transitions	in	a	TCP	connection	is
lengthy	and	complicated.	This	is	not	surprising,	because	those	three	elements
would	cover	much	of	the	entire	TCP	standard.	That	level	of	detail	would	be	a
good	cure	for	insomnia,	but	not	much	else.	However,	a	simplified	look	at	the
TCP	FSM	will	help	give	you	a	nice	overall	feel	for	how	TCP	establishes
connections	and	then	functions	when	a	connection	has	been	created.

Table	47-1	briefly	explains	each	of	the	TCP	states	in	a	TCP	connection,	the	main
events	that	occur	in	each	state,	and	what	actions	and	transitions	occur	as	a	result.
For	brevity,	three	abbreviations	are	used	for	the	three	types	of	messages	that
control	transitions	between	states,	which	correspond	to	the	TCP	header	flags	that



are	set	to	indicate	that	a	message	is	serving	that	function.	These	are	as	follows:

SYN	A	Synchronize	message;	initiates	and	establishes	a	connection.	It	is	so
named	since	one	of	its	functions	is	to	synchronize	sequence	numbers	between
devices.

FIN	A	Finish	message,	which	is	a	TCP	segment	with	the	FIN	bit	set;	it	indicates
that	a	device	wants	to	terminate	the	connection.

ACK	An	Acknowledgment	message;	indicates	receipt	of	a	message	such	as	a
SYN	or	a	FIN.

Again,	I	have	not	shown	every	possible	transition,	just	the	ones	normally
followed	in	the	life	of	a	connection.	Error	conditions	also	cause	transitions,	but
including	these	would	move	us	well	beyond	a	simplified	state	machine.	The
FSM,	including	how	state	transitions	occur,	is	illustrated	in	Figure	47-1.

It's	important	to	remember	that	this	state	machine	is	followed	for	each
connection.	This	means	that,	at	any	given	time,	TCP	may	be	in	one	state	for	one
connection	to	socket	X,	and	in	another	for	its	connection	to	socket	Y.	Also,	the
typical	movement	between	states	for	the	two	processes	in	a	particular	connection
is	not	symmetric,	because	the	roles	of	the	devices	are	not	symmetric.	For
example,	one	device	initiates	a	connection,	and	the	other	responds;	one	device
starts	termination,	and	the	other	replies.	There	is	also	an	alternate	path	taken	for
connection	establishment	and	termination	if	both	devices	initiate	simultaneously
(which	is	unusual,	but	can	happen).	This	is	shown	by	the	shading	in	Figure	47-1.

Table	47-1.	TCP	Finite	State	Machine	(FSM)	States,	Events,	and	Transitions

State State	Description Event	and	Transition

CLOSED The	default	state	that	each	connection
starts	in	before	the	process	of
establishing	it	begins.	The	state	is
called	"fictional"	in	the	standard
because	this	state	represents	the
situation	in	which	there	is	no
connection	between	devices.	It	either
hasn't	been	created	yet	or	has	just	been
destroyed	(if	that	makes	sense).

Passive	Open:	A	server	begins	the
process	of	connection	setup	by
doing	a	passive	open	on	a	TCP	port.
At	the	same	time,	it	sets	up	the	data
structure	(transmission	control
block,	or	TCB)	that	it	needs	in
order	to	manage	the	connection.	It
then	transitions	to	the	LISTEN
state.

	 	 Active	Open,	Send	SYN:	A	client



	 	 Active	Open,	Send	SYN:	A	client
begins	the	connection	setup	by
sending	a	SYN	message,	and	it	sets
up	a	TCB	for	this	connection.	It
then	transitions	to	the	SYN-SENT
state.

LISTEN A	device	(normally	a	server)	is	waiting
to	receive	a	SYN	message	from	a
client.	It	has	not	yet	sent	its	own	SYN
message.

Receive	Client	SYN,	Send
SYN+ACK:	The	server	device
receives	a	SYN	from	a	client.	It
sends	back	a	message	that	contains
its	own	SYN	and	acknowledges	the
one	it	received.	The	server	moves	to
the	SYN-RECEIVED	state.

SYN-SENT The	device	(normally	a	client)	has	sent
a	SYN	message	and	is	waiting	for	a
matching	SYN	from	the	other	device
(usually	a	server).

Receive	SYN,	Send	ACK:	If	the
device	that	has	sent	its	SYN
message	receives	a	SYN	from	the
other	device	but	not	an	ACK	for	its
own	SYN,	it	acknowledges	the
SYN	it	receives	and	then	transitions
to	SYN-RECEIVED	in	order	to
wait	for	the	acknowledgment	to	its
own	SYN.

	 	 Receive	SYN+ACK,	Send	ACK:	If
the	device	that	sent	the	SYN
receives	both	an	acknowledgment
to	its	SYN	and	a	SYN	from	the
other	device,	it	acknowledges	the
SYN	received	and	then	moves
straight	to	the	ESTABLISHED
state.

SYN-
RECEIVED

The	device	has	received	a	SYN
(connection	request)	from	its	partner
and	sent	its	own	SYN.	It	is	now
waiting	for	an	ACK	to	its	SYN	in
order	to	finish	the	connection	setup.

Receive	ACK:	When	the	device
receives	the	ACK	to	the	SYN	that	it
sent,	it	transitions	to	the
ESTABLISHED	state.

ESTABLISHED The	steady	state	of	an	open	TCP
connection.	Both	devices	can	exchange
data	freely	once	both	devices	in	the
connection	enter	this	state.	This	will
continue	until	they	close	the
connection.

Close,	Send	FIN:	A	device	can
close	the	connection	by	sending	a
message	with	the	FIN	bit	sent,	and
then	it	can	transition	to	the	FIN-
WAIT-1	state.

	 	 Receive	FIN:	A	device	may	receive
a	FIN	message	from	its	connection



a	FIN	message	from	its	connection
partner	asking	that	the	connection
be	closed.	It	will	acknowledge	this
message	and	transition	to	the
CLOSE-WAIT	state.

CLOSE-WAIT The	device	has	received	a	close	request
(FIN)	from	the	other	device.	It	must
now	wait	for	the	application	on	the
local	device	to	acknowledge	this
request	and	generate	a	matching
request.

Close,	Send	FIN:	The	application
using	TCP,	having	been	informed
that	the	other	process	wants	to	shut
down,	sends	a	close	request	to	the
TCP	layer	on	the	machine	on	which
it	is	running.	TCP	then	sends	a	FIN
to	the	remote	device	that	already
asked	to	terminate	the	connection.
This	device	now	transitions	to
LAST-ACK.

LAST-ACK A	device	that	has	already	received	a
close	request	and	acknowledged	has
sent	its	own	FIN	and	is	waiting	for	an
ACK	to	this	request.

Receive	ACK	for	FIN:	The	device
receives	an	acknowledgment	for	its
close	request.	We	have	now	sent
our	FIN	and	had	it	acknowledged,
and	received	the	other	device's	FIN
and	acknowledged	it,	so	we	go
straight	to	the	CLOSED	state.

FIN-WAIT-1 A	device	in	this	state	is	waiting	for	an
ACK	for	a	FIN	it	has	sent,	or	is
waiting	for	a	connection	termination
request	from	the	other	device.

Receive	ACK	for	FIN:	The	device
receives	an	acknowledgment	for	its
close	request.	It	transitions	to	the
FIN-WAIT-2	state.

	 	 Receive	FIN,	Send	ACK:	The
device	does	not	receive	an	ACK	for
its	own	FIN,	but	receives	a	FIN
from	the	other	device.	It
acknowledges	it	and	then	moves	to
the	CLOSING	state.

FIN-WAIT-2 A	device	in	this	state	has	received	an
ACK	for	its	request	to	terminate	the
connection	and	is	now	waiting	for	a
matching	FIN	from	the	other	device.

Receive	FIN,	Send	ACK:	The
device	receives	a	FIN	from	the
other	device.	It	acknowledges	it	and
then	moves	to	the	TIME-WAIT
state.

CLOSING The	device	has	received	a	FIN	from
the	other	device	and	has	sent	an	ACK
for	it,	but	has	not	yet	received	an	ACK
for	its	own	FIN	message.

Receive	ACK	for	FIN:	The	device
receives	an	acknowledgment	for	its
close	request.	It	transitions	to	the
TIME-WAIT	state.

TIME-WAIT The	device	has	now	received	a	FIN Timer	Expiration:	After	a



TIME-WAIT The	device	has	now	received	a	FIN
from	the	other	device	and
acknowledged	it,	and	sent	its	own	FIN
and	received	an	ACK	for	it.	We	are
finished,	except	for	waiting	to	ensure
the	ACK	is	received	and	preventing
potential	overlap	with	new
connections.	(See	the	"TCP
Connection	Termination"	section	later
in	this	chapter	for	more	details	on	this
state.)

Timer	Expiration:	After	a
designated	wait	period,	the	device
transitions	to	the	CLOSED	state.

Thus,	for	example,	at	the	start	of	connection	establishment,	the	two	devices	will
take	different	routes	to	get	to	the	ESTABLISHED	state.	One	device	(the	server
usually)	will	pass	through	the	LISTEN	state,	while	the	other	(the	client)	will	go
through	SYN-SENT	state.	Similarly,	one	device	will	initiate	connection
termination	and	take	the	path	through	the	FIN-WAIT-1	state	in	order	to	get	back
to	the	CLOSED	state;	the	other	will	go	through	the	CLOSE-WAIT	and	LAST-
ACK	states.	However,	if	both	try	to	open	at	once,	they	each	proceed	through
SYN-SENT	and	SYN-RECEIVED	states,	and	if	both	try	to	close	at	once,	they
go	through	FIN-WAIT-1,	CLOSING,	and	TIME-WAIT	states	roughly
simultaneously.

Although	FSM	may	seem	a	bit	intimidating	at	first,	if	you	spend	a	few	minutes
with	it,	you	can	get	a	good	handle	on	how	TCP	works.	The	FSM	will	be	of	great
use	in	making	sense	of	the	connection	establishment	and	termination	processes
discussed	later	in	this	chapter,	and	reading	those	sections	will	help	you	make
sense	of	the	FSM.

TIP

KEY	CONCEPT	The	TCP	finite	state	machine	(FSM)	describes	the	sequence	of	steps	that	both	devices
take	in	a	TCP	session	as	they	establish,	manage,	and	close	the	connection.	Each	device	may	take	a
different	path	through	the	states,	because	under	normal	circumstances,	the	operation	of	the	protocol	is
not	symmetric—one	device	initiates	connection	establishment	or	termination,	and	the	other	responds.



Figure	47-1.	The	TCP	finite	state	machine	(FSM)	This	diagram	illustrates	the	simplified	TCP	FSM.	The
shadings	are	not	an	official	part	of	the	definition	of	the	FSM;	I	have	added	them	to	show	more	clearly
the	sequences	the	two	devices	took	to	open	and	close	a	link.	For	establishment	and	termination,	there	is
a	regular	sequence,	in	which	the	initiating	and	responding	devices	go	through	different	states,	and	a

simultaneous	sequence,	in	which	each	uses	the	same	sequence.



TCP	Connection	Preparation
In	Chapter	43,	I	raised	an	important	point	about	TCP	operation,	particularly	that
it	must	be	capable	of	handling	many	connections	simultaneously.	For	this
reason,	we	must	uniquely	identify	each	connection	using	the	quadruple	of	the
socket	identifiers	(IP	address	and	port	number)	for	each	of	the	two	devices	on
the	connection.	The	process	of	setting	up,	managing,	and	terminating	a
connection	is	performed	independently	for	each	connection.

Storing	Connection	Data:	The	Transmission
Control	Block	(TCB)
Since	each	connection	is	distinct,	we	must	maintain	data	about	each	connection
separately.	TCP	uses	a	special	data	structure	for	this	purpose,	called	a
transmission	control	block	(TCB).	The	TCB	contains	all	the	important
information	about	the	connection,	such	as	the	two	socket	numbers	that	identify	it
and	pointers	to	buffers	that	hold	incoming	and	outgoing	data.	The	TCB	also
implements	the	sliding	window	mechanism.	It	holds	variables	that	keep	track	of
the	number	of	bytes	received	and	acknowledged,	bytes	received	and	not	yet
acknowledged,	current	window	size,	and	so	forth.	Each	device	maintains	its	own
TCB	for	the	connection.

Before	the	process	of	setting	up	a	TCP	connection	can	begin,	the	devices	on	each
end	must	perform	some	"prep	work."	One	of	the	tasks	required	in	order	to
prepare	for	the	connection	is	to	set	up	the	TCB	that	will	be	used	to	hold
information	about	it.	This	is	done	right	at	the	very	start	of	the	connection
establishment	process,	when	each	device	transitions	out	of	the	CLOSED	state.

Active	and	Passive	Opens
TCP/IP	is	based	on	the	client/server	model	of	operation,	and	TCP	connection
setup	is	based	on	the	existence	of	these	roles	as	well.	The	client	and	server	each
prepare	for	the	connection	by	performing	an	Open	operation.	However,	there	are
two	different	kinds	of	Open	operations:

Active	Open	A	client	process	using	TCP	takes	the	active	role	and	initiates	the
connection	by	sending	a	TCP	message	to	start	the	connection	(a	SYN	message).



Passive	Open	A	server	process	designed	to	use	TCP	takes	a	more	"laid-back"
approach.	It	performs	a	passive	Open	by	contacting	TCP	and	saying,	"I'm	here,
and	I'm	waiting	for	clients	that	may	wish	to	talk	to	me	to	send	me	a	message	on
the	following	port	number."	The	Open	is	called	passive	because,	aside	from
indicating	that	the	process	is	listening,	the	server	process	does	nothing.	A
passive	Open	can	specify	that	the	server	is	waiting	for	an	active	Open	from	a
specific	client,	though	not	all	TCP/IP	APIs	support	this	capability.	More
commonly,	a	server	process	is	willing	to	accept	connections	from	all	comers.
Such	a	passive	Open	is	said	to	be	unspecified.

TIP

KEY	CONCEPT	A	client	process	initiates	a	TCP	connection	by	performing	an	active	Open,	sending	a
SYN	message	to	a	server.	A	server	process	using	TCP	prepares	for	an	incoming	connection	request	by
performing	a	passive	Open.	For	each	TCP	session,	both	devices	create	a	data	structure,	called	a
transmission	control	block	(TCB),	that	is	used	to	hold	important	data	related	to	the	connection.

Preparation	for	Connection
Both	the	client	and	the	server	create	the	TCB	for	the	connection	at	the	time	that
they	perform	the	Open.	The	client	already	knows	the	IP	addresses	and	port
numbers	for	both	the	client	process	and	the	server	process	it	is	trying	to	reach,	so
it	can	use	these	to	uniquely	identify	the	connection	and	the	TCB	that	goes	with
it.

For	the	server,	the	concept	of	a	TCB	at	this	stage	of	the	game	is	a	bit	more
complex.	If	the	server	is	waiting	for	a	particular	client,	it	can	identify	the
connection	using	its	own	socket	and	the	socket	of	the	client	for	which	it	is
waiting.	Normally,	however,	the	server	doesn't	know	which	client	is	trying	to
reach	it.	In	fact,	more	than	one	client	could	contact	it	at	nearly	the	same	time.

In	this	case,	the	server	creates	a	TCB	with	an	unspecified	(zero)	client	socket
number	and	waits	to	receive	an	active	Open.	It	then	binds	the	socket	number	of
the	client	to	the	TCB	for	the	passive	Open	as	part	of	the	connection	process.	To
allow	the	server	to	handle	multiple	incoming	connections,	the	server	process
may	perform	several	unspecified	passive	Opens	simultaneously.

The	TCB	for	a	connection	is	maintained	throughout	the	connection	and
destroyed	when	the	connection	is	completely	terminated,	and	the	device	returns



destroyed	when	the	connection	is	completely	terminated,	and	the	device	returns
to	the	CLOSED	state.	TCP	does	include	a	procedure	that	handles	the	situation	in
which	both	devices	perform	an	active	Open	simultaneously,	as	I	discuss	the	next
section.



TCP	Connection	Establishment	Process:	The
Three-Way	Handshake
Before	TCP	can	be	employed	for	any	actually	useful	purpose—that	is,	sending
data—a	connection	must	be	set	up	between	the	two	devices	that	wish	to
communicate.	This	process,	usually	called	connection	establishment,	involves	an
exchange	of	messages	that	transitions	both	devices	from	their	initial	connection
state	(CLOSED)	to	the	normal	operating	state	(ESTABLISHED).

Connection	Establishment	Functions
The	connection	establishment	process	actually	accomplishes	the	following	tasks
as	it	creates	a	connection	suitable	for	data	exchange:

Contact	and	Communication	The	client	and	server	make	contact	with	each
other	and	establish	communication	by	sending	each	other	messages.	The	server
usually	doesn't	even	know	which	client	it	will	be	talking	to	before	this	point,	so
it	discovers	this	during	connection	establishment.

Sequence	Number	Synchronization	Each	device	lets	the	other	know	what
initial	sequence	number	it	wants	to	use	for	its	first	transmission.

Parameter	Exchange	The	two	devices	exchange	certain	parameters	that	control
the	operation	of	the	TCP	connection.

I'll	discuss	the	sequence	number	synchronization	and	parameter	exchange	tasks
in	the	"TCP	Connection	Establishment	Sequence	Number	Synchronization	and
Parameter	Exchange"	section	later	in	this	chapter.

Control	Messages	Used	for	Connection
Establishment:	SYN	and	ACK
TCP	uses	control	messages	to	manage	the	process	of	contact	and
communication.	There	aren't,	however,	any	special	TCP	control	message	types;
all	TCP	messages	use	the	same	segment	format.	A	set	of	control	flags	in	the	TCP
header	indicates	whether	a	segment	is	being	used	for	control	purposes	or	just	to
carry	data.	As	I	introduced	in	the	discussion	of	the	TCP	FSM	earlier	in	the
chapter,	two	control	message	types	are	used	in	connection	setup,	which	are



specified	by	setting	the	following	two	flags:

SYN	Indicates	that	the	segment	is	being	used	to	initialize	a	connection.	SYN
stands	for	synchronize,	in	reference	to	the	sequence	number	synchronization	task
in	the	connection	establishment	process.

ACK	Indicates	that	the	device	sending	the	segment	is	conveying	an
acknowledgment	for	a	message	it	has	received	(such	as	a	SYN).

There	are	also	other	control	bits	(FIN,	RST,	PSH,	and	URG)	that	aren't
important	to	connection	establishment,	so	I	will	discuss	them	in	other	topics.	In
common	TCP	parlance,	a	message	with	a	control	bit	set	is	often	named	for	that
bit.	For	example,	if	the	SYN	control	bit	is	set,	the	segment	is	often	called	a	SYN
message.	Similarly,	a	segment	with	the	ACK	bit	set	is	an	ACK	message,	or	even
just	an	ACK.

Normal	Connection	Establishment:	The	Three-
Way	Handshake
To	establish	a	connection,	each	device	must	send	a	SYN	message	and	receive	an
ACK	message	for	it	from	the	other	device.	Thus,	conceptually,	we	need	to	have
four	control	messages	pass	between	the	devices.	However,	it's	inefficient	to	send
a	SYN	and	an	ACK	in	separate	messages	when	one	could	communicate	both
simultaneously.	Thus,	in	the	normal	sequence	of	events	in	connection
establishment,	one	of	the	SYNs	and	one	of	the	ACKs	are	sent	together	by	setting
both	of	the	relevant	bits	(a	message	sometimes	called	a	SYN+ACK).	This	makes
a	total	of	three	messages,	and	for	this	reason	the	connection	procedure	is	called	a
three-way	handshake.

TIP

KEY	CONCEPT	The	normal	process	of	establishing	a	connection	between	a	TCP	client	and	server
involves	the	following	three	steps:	The	client	sends	a	SYN	message.	The	server	sends	a	message	that
combines	an	ACK	for	the	client's	SYN	and	contains	the	server's	SYN.	And	the	client	sends	an	ACK	for
the	server's	SYN.	This	is	called	the	TCP	three-way	handshake.

Table	47-2	describes	in	detail	how	the	three-way	handshake	works	(including	a
summary	of	the	preparation	discussed	in	the	previous	section).	It	is	adapted	from
the	table	describing	the	TCP	FSM	(Table	47-1),	but	shows	what	happens	for



both	the	server	and	the	client	over	time.	Each	row	shows	the	state	the	device
begins	in,	what	action	it	takes	in	that	state,	and	the	state	to	which	it	transitions.
The	transmit	and	receive	parts	of	each	of	the	three	steps	of	the	handshake
process	are	shown	as	well.	The	same	process	is	also	illustrated	in	47-2.

Table	47-2.	TCP	Three-Way	Handshake	Connection	Establishment
Procedure

Client Server

Start	State Action Move	to	State Start	State Action Move	to	State

CLOSED The	client
cannot	do
anything	until
the	server	has
performed	a
passive	Open
and	is	ready
to	accept	a
connection.

— CLOSED The	server
performs	a
passive	Open,
creating	a
TCB	for	the
connection
and	readying
itself	for	the
receipt	of	a
connection
request
(SYN)	from	a
client.

LISTEN

CLOSED Step	1
Transmit:	The
client
performs	an
active	Open,
creating	a
TCB)	for	the
connection
and	sending	a
SYN	message
to	the	server.

SYN-SENT LISTEN The	server
waits	for
contact	from
a	client.

—

SYN-SENT The	client
waits	to
receive	an
ACK	to	the
SYN	that	it
has	sent,	as
well	as	the
server's	SYN.

— LISTEN Step	1
Receive,	Step
2	Transmit:
The	server
receives	the
SYN	from	the
client.	It
sends	a	single

SYN-
RECEIVED



server's	SYN. sends	a	single
SYN+ACK
message	back
to	the	client
that	contains
an	ACK	for
the	client's
SYN,	as	well
as	the	server's
own	SYN.

SYN-SENT Step	2
Receive,	Step
3	Transmit:
The	client
receives	from
the	server	the
SYN+ACK
containing	the
ACK	to	the
client's	SYN,
and	the	SYN
from	the
server.	It
sends	the
server	an
ACK	for	the
server's	SYN.
The	client	is
now	finished
with	the
connection
establishment.

ESTABLISHED SYN-
RECEIVED

The	server
waits	for	an
ACK	to	the
SYN	it	sent
previously.

—

ESTABLISHED The	client	is
waiting	for
the	server	to
finish
connection
establishment
so	they	can
operate
normally.

	 SYN-
RECEIVED

Step	3
Receive:	The
server
receives	the
ACK	to	its
SYN	and	is
now	finished
with
connection
establishment.

ESTABLISHED

ESTABLISHED The	client	is
ready	for
normal	data

	 ESTABLISHED The	server	is
ready	for
normal	data



normal	data
transfer
operations.

normal	data
transfer
operations.

Figure	47-2.	TCP	three-way	handshake	connection	establishment	procedure	This	diagram	illustrates
how	a	client	and	server	establish	a	conventional	connection.	It	shows	how	the	three	messages	sent

during	the	process	and	how	each	device	transitions	from	the	CLOSED	state	through	intermediate	states
until	the	session	is	in	the	ESTABLISHED	state.

Simultaneous	Open	Connection	Establishment
TCP	is	also	set	up	to	handle	the	situation	in	which	both	devices	perform	an
active	Open	instead	of	one	doing	a	passive	Open.	This	may	occur	if	two	clients
are	trying	to	reach	each	other	instead	of	a	client	and	a	server.	It	is	uncommon,
however,	and	only	happens	under	certain	circumstances.	Simultaneous
connection	establishment	can	also	happen	only	if	one	of	the	devices	uses	a	well-
known	port	as	its	source	port.

In	the	case	of	simultaneous	open	connection	establishment,	the	steps	are
different	for	both	devices.	Each	client	will	perform	an	active	Open	and	will	then
proceed	through	both	the	SYN-SENT	and	SYN-RECEIVED	states	until	the
clients	acknowledge	each	other's	SYNs.	This	means	that	there	is	no	three-way
handshake;	instead,	there	is	something	like	two	simultaneous	two-way
handshakes.	Each	client	sends	a	SYN,	receives	the	other's	SYN,	acknowledges
the	SYN	with	an	ACK	it,	and	then	waits	for	its	own	ACK.

I	have	described	the	transaction	for	establishing	open	connections



simultaneously,	in	a	simplified	way,	in	Table	47-3	and	illustrated	it	in	Figure	47-
3.	To	limit	the	table	size,	I	have	shown	the	activities	performed	by	the	two
devices	occurring	simultaneously	(in	the	same	row).	In	reality,	the	actions	don't
need	to	occur	at	exactly	the	same	time	and	probably	won't.	All	that	must	happen
for	the	simultaneous	procedure	to	be	followed	is	that	each	device	receives	a	SYN
before	getting	an	ACK	for	its	own	SYN,	as	Figure	47-3	shows.

Table	47-3.	TCP	Simultaneous	Open	Connection	Establishment	Procedure

Client	A Client	B

Start
State

Action Move	to	State Start
State

Action Move	to	State

CLOSED Client	A	Step
1	Transmit:
Client	A
performs	an
active	Open,
creating	a
TCB	and
sending	a
SYN	to	the
server.

SYN-SENT CLOSED Client	B	Step
1	Transmit:
Client	B
performs	an
active	Open,
creating	a
TCB	and
sending	a
SYN	to	the
server.

SYN-SENT

SYN-SENT Client	B	Step
1	Receive	and
Step	2
Transmit:
Client	A
receives	Client
B's	SYN	and
sends	it	an
ACK.	It	is	still
waiting	for	an
ACK	to	its
own	SYN.

SYN-
RECEIVED

SYN-SENT Client	A	Step
1	Receive	and
Step	2
Transmit:
Client	B
receives
Client	A's
SYN	and
sends	it	an
ACK.	It	is
still	waiting
for	an	ACK
to	its	own
SYN.

SYN-
RECEIVED

SYN-
RECEIVED

Client	A	Step
2	Receive:
Client	A
receives	the
ACK	from

ESTABLISHED SYN-
RECEIVED

Client	B	Step
2	Receive:
Client	B
receives	the
ACK	from

ESTABLISHED



ACK	from
Client	B	for	its
SYN	and
finishes
connection
establishment.

ACK	from
Client	A	for
its	SYN	and
finishes
connection
establishment.

Figure	47-3.	TCP	simultaneous	open	connection	establishment	procedure	This	diagram	shows	what
happens	when	two	devices	try	to	open	a	connection	to	each	other	at	the	same	time.	In	this	case,	instead

of	a	three-way	handshake,	each	sends	a	SYN	and	receives	an	ACK.	They	each	follow	the	same
sequence	of	states,	which	differs	from	both	sequences	in	the	normal	three-way	handshake.

TIP

KEY	CONCEPT	If	one	device	setting	up	a	TCP	connection	sends	a	SYN	and	then	receives	a	SYN	from
the	another	device	before	it	acknowledges	its	SYN,	the	two	devices	perform	a	simultaneous	OPEN,
which	consists	of	the	exchange	of	two	independent	SYN	and	ACK	message	sets.	The	end	result	is	the
same	as	the	conventional	three-way	handshake,	but	the	process	of	getting	to	the	ESTABLISHED	state	is
different.



TCP	Connection	Establishment	Sequence
Number	Synchronization	and	Parameter
Exchange
The	TCP	three-way	handshake	describes	the	mechanism	of	message	exchange
that	allows	a	pair	of	TCP	devices	to	move	from	a	closed	state	to	one	that	is	a
ready-to-use,	established	connection.	Connection	establishment	is	about	more
than	just	passing	messages	between	devices	in	order	to	establish	communication.
The	TCP	layers	on	the	devices	must	also	exchange	information	about	the
sequence	numbers	each	device	wants	to	use	for	its	first	data	transmission.	The
layers	must	also	exchange	information	about	the	parameters	that	will	control
how	the	connection	operates.	The	sequence	numbers	exchange	is	usually	called
sequence	number	synchronization,	and	it	is	such	an	important	part	of	connection
establishment	that	the	messages	that	each	device	sends	to	start	the	connection	are
called	SYN	(synchronization)	messages.

You	may	recall	from	the	TCP	fundamentals	discussion	in	Chapter	46	that	TCP
refers	to	each	byte	of	data	individually	and	uses	sequence	numbers	to	keep	track
of	which	bytes	have	been	sent	and	received.	Since	each	byte	has	a	sequence
number,	we	can	acknowledge	each	byte,	or	more	efficiently,	use	a	single	number
to	acknowledge	a	range	of	bytes	received.

In	the	example	I	gave	in	Chapter	46,	I	assumed	that	each	device	would	start	a
connection	by	giving	the	first	byte	of	data	sent	between	them	sequence	number
1.	A	valid	question	is	why	wouldn't	we	always	just	start	off	each	TCP
connection	by	sending	the	first	byte	of	data	with	a	sequence	number	of	1?	The
sequence	numbers	are	arbitrary,	after	all,	and	this	is	the	simplest	method.	In	an
ideal	world,	this	would	probably	work,	but	we	don't	live	in	an	ideal	world.

The	problem	with	starting	off	each	connection	with	a	sequence	number	of	1	is
that	it	introduces	the	possibility	of	segments	from	different	connections	getting
mixed	up.	Suppose	we	established	a	TCP	connection	and	sent	a	segment
containing	bytes	1	through	30.	However,	a	problem	with	the	internetwork	caused
a	delay	with	this	segment,	and	eventually,	the	TCP	connection	itself	was
terminated.	We	then	started	up	a	new	connection	and	again	used	a	starting



sequence	number	of	1.	As	soon	as	this	new	connection	was	started,	however,	the
old	segment	with	bytes	labeled	1	to	30	showed	up.	The	other	device	would
erroneously	think	those	bytes	were	part	of	the	new	connection.

This	is	but	one	of	several	similar	problems	that	could	occur.	To	avoid	them,	each
TCP	device,	at	the	time	a	connection	is	initiated,	chooses	a	32-bit	initial
sequence	number	(ISN)	for	the	connection.	Each	device	has	its	own	ISN,	and
those	ISNs	normally	won't	be	the	same.

Initial	Sequence	Number	Selection
Traditionally,	each	device	chose	the	ISN	by	making	use	of	a	timed	counter,	like
a	clock	of	sorts,	that	was	incremented	every	4	microseconds.	TCP	initialized	the
counter	when	it	started	up,	and	then	the	counter's	value	increased	by	one	every	4
microseconds	until	it	reached	the	largest	32-bit	value	possible	(4,294,967,295),
at	which	point	it	wrapped	around	to	0	and	resumed	incrementing.	Any	time	a
new	connection	was	set	up,	the	ISN	was	taken	from	the	current	value	of	this
timer.	Since	it	takes	over	4	hours	to	count	from	0	to	4,294,967,295	at	4
microseconds	per	increment,	this	virtually	ensured	that	each	connection	would
not	conflict	with	any	previous	ones.

One	issue	with	this	method	is	that	it	made	ISNs	predictable.	A	malicious	person
could	write	code	to	analyze	ISNs	and	then	predict	the	ISN	of	a	subsequent	TCP
connection	based	on	the	ISNs	used	in	earlier	ones.	Malicious	hackers	have
exploited	this	security	risk	in	the	past	(such	as	in	the	case	of	the	famous	Mitnick
attack).	To	defeat	the	malicious	hackers,	implementations	now	use	a	random
number	in	their	ISN	selection	process.

TCP	Sequence	Number	Synchronization
Once	each	device	chooses	its	ISN,	it	sends	the	ISN	value	to	the	other	device	in
the	Sequence	Number	field	in	the	device's	initial	SYN	message.	The	device
receiving	the	SYN	responds	with	an	ACK	message	that	acknowledges	the	SYN
(which	may	also	contain	its	own	SYN,	as	in	step	2	of	the	three-way	handshake).
In	the	ACK	message,	the	Acknowledgment	Number	field	is	set	to	the	value	of
the	ISN	that	is	received	from	the	other	device	plus	one.	This	represents	the	next
sequence	number	the	device	expects	to	receive	from	its	peer;	the	ISN	actually



represents	the	sequence	number	of	the	last	byte	received	(fictitious	in	this	case,
since	the	connection	is	new	and	nothing	yet	has	been	received).

TIP

KEY	CONCEPT	As	part	of	the	process	of	connection	establishment,	each	of	the	two	devices	in	a	TCP
connection	informs	the	other	of	the	sequence	number	it	plans	to	use	for	its	first	data	transmission.	Each
device	informs	the	other	by	putting	the	preceding	sequence	number	in	the	Sequence	Number	field	of	its
SYN	message.	The	other	device	confirms	this	by	incrementing	that	value	and	putting	it	into	the
Acknowledgment	Number	field	of	its	ACK	message,	telling	the	other	device	that	it	is	the	sequence
number	it	is	expecting	for	the	first	data	transmission.	This	process	is	called	sequence	number
synchronization.

Here's	a	simplified	example	of	the	three-way	handshake	steps	(see	Figure	47-4).
I	chose	small	ISNs	for	readability,	but	remember	that	ISNs	can	be	any	32-bit
number.

1.	 Connection	Request	by	Client	The	client	chooses	an	ISN	for	its
transmissions	of	4,567.	It	sends	a	SYN	with	the	Sequence	Number	field	set
to	4,567.

2.	 Acknowledgment	and	Connection	Request	by	Server	The	server
chooses	an	ISN	for	its	transmissions	of	12,998.	It	receives	the	client's	SYN.
It	sends	a	SYN+ACK	with	an	Acknowledgment	Number	field	value	of
4,568	(one	more	than	the	client's	ISN).	This	message	has	a	Sequence
Number	field	value	of	12,998.

3.	 Acknowledgment	by	Client	The	client	sends	an	ACK	with	the
Acknowledgment	Number	field	set	to	12,999.

With	the	connection	now	established,	the	client	will	send	data	whose	first	byte
will	be	given	sequence	number	4,568.	The	server's	first	byte	of	data	will	be
numbered	12,999.



Figure	47-4.	TCP	sequence	number	synchronization	This	diagram	illustrates	the	same	three-way
handshake	connection	establishment	procedure	that	I	introduced	in	Figure	47-2,	except	this	time	I	have
shown	the	Sequence	Number	and	Acknowledgment	Number	fields	in	each	message,	so	that	you	can	see

how	each	of	the	two	devices	use	them	to	establish	initial	sequence	numbers	for	data	exchange.

TCP	Parameter	Exchange
In	addition	to	the	initial	sequence	numbers,	SYN	messages	also	are	designed	to
convey	important	parameters	about	how	the	connection	should	operate.	TCP
includes	a	flexible	scheme	for	carrying	these	parameters,	in	the	form	of	a
variable-length	Options	field	in	the	TCP	segment	format,	which	can	be	expanded
to	carry	multiple	parameters.	In	RFC	793,	only	a	single	parameter	is	defined	to
be	exchanged	during	connection	setup:	maximum	segment	size	(MSS).	I	explain
the	significance	of	this	parameter	in	the	TCP	data	transfer	discussion	in
Chapter	48.

Each	device	sends	the	other	the	MSS	that	it	wants	to	use	for	the	connection;	that
is,	if	the	device	wishes	to	use	a	nondefault	value.	When	receiving	the	SYN,	the
server	records	the	MSS	value	that	the	client	sent,	and	it	will	never	send	a
segment	larger	than	that	value	to	the	client.	The	client	does	the	same	for	the
server.	The	client	and	server	MSS	values	are	independent,	so	they	can	establish	a
connection	where	the	client	can	receive	larger	segments	than	the	server	or	vice
versa.

Later	RFCs	have	defined	additional	parameters	that	may	be	exchanged	during
connection	setup.	Some	of	these	include	the	following:



Window	Scale	Factor	Allows	a	pair	of	devices	to	specify	larger	window	sizes
than	would	normally	be	possible	given	the	16-bit	size	of	the	TCP	Window	field.

Selective	Acknowledgment	Permitted	Allows	a	pair	of	devices	to	use	the
optional	selective	acknowledgment	feature	to	allow	only	certain	lost	segments	to
be	retransmitted.

Alternate	Checksum	Method	Lets	devices	specify	an	alternative	method	of
performing	checksums	than	the	standard	TCP	checksum	mechanism.



TCP	Connection	Management	and	Problem
Handling
Once	both	of	the	devices	in	a	TCP	connection	have	completed	connection	setup
and	have	entered	the	ESTABLISHED	state,	the	TCP	software	is	in	its	normal
operating	mode.	The	TCP	software	will	package	bytes	of	data	into	segments	for
transmission	using	the	mechanisms	described	in	Chapter	48.	TCP	will	use	the
sliding	windows	scheme	to	control	segment	size	and	to	provide	flow	control,
congestion	handling,	and	retransmissions	as	needed.

Once	in	the	sliding	windows	mode,	both	devices	can	remain	there	indefinitely.
Some	TCP	connections	can	be	very	long-lived—in	fact,	some	users	maintain
certain	connections	like	Telnet	sessions	for	hours	or	even	days	at	a	time.	The
following	two	circumstances	can	cause	a	connection	to	move	out	of	the
ESTABLISHED	state:

Connection	Termination	Either	of	the	devices	decides	to	terminate	the
connection.	This	involves	a	specific	procedure	that	I	cover	in	the	"TCP
Connection	Termination"	section	later	in	this	chapter.

Connection	Disruption	A	problem	of	some	sort	occurs	and	interrupts	the
connection.

The	TCP	Reset	Function
In	order	for	it	to	live	up	to	its	job	of	being	a	reliable	and	robust	protocol,	TCP
includes	intelligence	that	allows	it	to	detect	and	respond	to	various	problems	that
can	occur	during	an	established	connection.	One	of	the	most	common	is	the	half-
open	connection.	This	situation	occurs	when,	due	to	some	sort	of	problem,	one
device	closes	or	aborts	the	connection	without	the	other	one	knowing	about	it.
This	means	one	device	is	in	the	ESTABLISHED	state,	while	the	other	may	be	in
the	CLOSED	state	(no	connection)	or	some	other	transient	state.	This	could
happen	if,	for	example,	one	device	had	a	software	crash	and	someone	restarted	it
in	the	middle	of	a	connection,	or	if	some	sort	of	glitch	caused	the	states	of	the
two	devices	to	become	unsynchronized.

To	handle	half-open	connections	and	other	problem	situations,	TCP	includes	a



special	reset	function.	A	reset	is	a	TCP	segment	that	TCP	sends	with	the	RST
flag	set	to	1	in	its	header.	Generally	speaking,	the	TCP	software	generates	a	reset
whenever	something	unexpected	happens.	The	following	are	some	of	the	most
common	cases	in	which	the	TCP	software	generates	a	reset:

Receipt	of	any	TCP	segment	from	any	device	with	which	the	device	receiving
the	segment	does	not	currently	have	a	connection	(other	than	a	SYN
requesting	a	new	connection)

Receipt	of	a	message	with	an	invalid	or	incorrect	Sequence	Number	or
Acknowledgment	Number	field,	indicating	that	the	message	may	belong	to	a
prior	connection	or	is	spurious	in	some	other	way

Receipt	of	a	SYN	message	on	a	port	where	there	is	no	process	listening	for
connections

Handling	Reset	Segments
When	a	device	receives	a	segment	with	the	RST	bit,	it	tells	the	other	device	to
reset	the	connection	so	that	the	device	can	reestablish	the	connection.	Like	all
segments,	the	reset	itself	must	be	checked	to	ensure	that	it	is	valid	(by	looking	at
the	value	of	its	Sequence	Number	field).	This	check	prevents	a	spurious	reset
from	shutting	down	a	connection.	Assuming	the	reset	is	valid,	the	handling	of
the	message	depends	on	the	state	of	the	device	that	receives	it,	as	follows:

If	the	device	is	in	the	LISTEN	state,	it	ignores	the	reset	and	remains	in	that
state.

If	the	device	is	in	the	SYN-RECEIVED	state	but	was	previously	in	the
LISTEN	state	(which	is	the	normal	course	of	events	for	a	server	setting	up	a
new	connection),	it	returns	to	the	LISTEN	state.

In	any	other	situation,	the	reset	causes	the	device	to	abort	the	connection	and
the	device	returns	to	the	CLOSED	state	for	that	connection.	The	device	will
advise	the	higher-layer	process	that	is	using	TCP	that	it	has	closed	the
connection.

TIP

KEY	CONCEPT	TCP	includes	a	special	connection	reset	feature	that	allows	devices	to	deal	with
problem	situations,	such	as	half-open	connections	or	the	receipt	of	unexpected	message	types.	To	use	the



feature,	the	device	detecting	the	problem	sends	a	TCP	segment	with	the	RST	(reset)	flag	set	to	1.	The
receiving	device	either	returns	to	the	LISTEN	state,	if	it	was	in	the	process	of	connection	establishment,
or	closes	the	connection	and	returns	to	the	CLOSED	state	pending	a	new	session	negotiation.

Idle	Connection	Management	and	Keepalive
Messages
One	final	connection	management	issue	in	TCP	is	how	to	handle	an	idle
connection;	that	is,	a	TCP	session	that	is	active	but	that	has	no	data	being
transmitted	by	either	device	for	a	prolonged	period	of	time.	The	TCP	standard
specifies	that	the	appropriate	action	to	take	in	this	situation	is	nothing.	The
reason	is	that,	strictly	speaking,	there	is	no	need	to	do	anything	to	maintain	an
idle	connection	in	TCP.	The	protocol	is	perfectly	happy	to	allow	both	devices	to
stop	transmitting	for	a	very	long	period	of	time.	Then	it	simply	allows	both
devices	to	resume	transmissions	of	data	and	acknowledgment	segments	when
each	one	has	data	to	send.

However,	in	the	same	way	that	people	become	antsy	when	they	are	on	a
telephone	call	and	don't	hear	anything	for	a	long	time,	some	TCP	implementors
were	concerned	that	an	idle	TCP	connection	might	mean	that	something	had
broken	the	connection.

Thus,	TCP	software	often	includes	an	unofficial	feature	that	allows	a	device	with
a	TCP	link	to	periodically	send	a	null	segment,	which	contains	no	data,	to	its
peer	on	the	connection.	If	the	connection	is	still	valid,	the	other	device	responds
with	a	segment	that	contains	an	acknowledgment;	if	it	is	not,	the	other	device
will	reply	with	a	connection	reset	segment	as	I	described	earlier.	These	segments
are	sometimes	called	TCP	keepalive	messages,	or	just	keepalives.	They	are
analogous	to	Border	Gateway	Protocol	(BGP)	Keepalive	messages	(described	in
Chapter	40).

The	use	of	these	messages	is	quite	controversial,	and	therefore,	not	universal.
Those	who	oppose	using	them	argue	that	they	are	not	really	necessary,	and	that
sending	them	represents	a	waste	of	internetwork	bandwidth	and	a	possible
additional	cost	on	metered	links	(those	that	charge	for	each	datagram	sent).	Their
key	point	is	that	if	the	connection	is	not	presently	being	used,	it	doesn't	matter	if
it	is	still	valid	or	not;	as	soon	as	the	connection	is	used	again,	if	it	has	broken,	in
the	meantime,	TCP	can	handle	that	using	the	reset	function	mentioned	earlier.



the	meantime,	TCP	can	handle	that	using	the	reset	function	mentioned	earlier.

Sending	a	keepalive	message	can,	in	theory,	break	a	good	TCP	session
unnecessarily.	This	may	happen	if	the	keepalive	is	sent	during	a	time	when	there
is	an	intermittent	failure	between	the	client	and	server.	The	failure	might
otherwise	have	corrected	itself	by	the	time	the	next	piece	of	real	data	must	be
sent.	In	addition,	some	TCP	implementations	may	not	properly	deal	with	the
receipt	of	these	segments.

Those	in	favor	of	using	keepalives	point	out	that	each	TCP	connection	consumes
a	certain	amount	of	resources,	and	this	can	be	an	issue,	especially	for	busy
servers.	If	many	clients	connect	to	such	a	server	and	don't	terminate	the	TCP
connection	properly,	the	server	may	sit	for	a	long	time	with	an	idle	connection,
using	system	memory	and	other	resources	that	it	could	apply	elsewhere.

Since	there	is	no	wide	acceptance	on	the	use	of	this	feature,	devices
implementing	it	include	a	way	to	disable	it	if	necessary.	Devices	are	also
programmed	so	that	they	will	not	terminate	a	connection	simply	because	they
did	not	receive	a	response	to	a	single	keepalive	message.	They	may	terminate	the
connection	if	they	do	not	receive	a	reply	after	several	such	messages	have	been
sent	over	a	period	of	time.



TCP	Connection	Termination
As	the	saying	goes,	all	good	things	must	come	to	an	end,	and	so	it	is	with	TCP
connections.	The	link	between	a	pair	of	devices	can	remain	open	for	a
considerable	period	of	time,	assuming	that	a	problem	doesn't	force	the	device	to
abort	the	connection.	Eventually,	however,	one	or	both	of	the	processes	in	the
connection	will	run	out	of	data	to	send	and	will	shut	down	the	TCP	session,	or
the	user	will	instruct	the	device	to	shut	down.

Requirements	and	Issues	In	Connection
Termination
Just	as	TCP	follows	an	ordered	sequence	of	operations	in	order	to	establish	a
connection,	it	also	includes	a	specific	procedure	for	terminating	a	connection.	As
with	connection	establishment,	each	of	the	devices	moves	from	one	state	to	the
next	in	order	to	terminate	the	connection.	This	process	is	more	complicated	than
you	might	imagine.	In	fact,	an	examination	of	the	TCP	FSM	shows	that	there	are
more	distinct	states	involved	in	shutting	down	a	connection	than	in	setting	one
up.

The	reason	that	connection	termination	is	complex	is	that	during	normal
operation,	both	devices	are	sending	and	receiving	data	simultaneously.	Usually,
connection	termination	begins	with	one	device	indicating	to	TCP	that	it	wants	to
close	the	connection.	The	matching	process	on	the	other	device	may	not	be
aware	that	its	peer	wants	to	end	the	connection	at	all.	Several	steps	are	required
to	ensure	that	both	devices	shut	down	the	connection	gracefully	and	that	no	data
is	lost	in	the	process.

Ultimately,	shutting	down	a	TCP	connection	requires	the	application	processes
on	both	ends	of	the	connection	to	recognize	that	"the	end	is	nigh"	for	the
connection	and	that	they	should	stop	sending	data.	For	this	reason,	connection
termination	is	implemented	so	that	each	device	terminates	its	end	of	the
connection	separately.	The	act	of	closing	the	connection	by	one	device	means
that	device	will	no	longer	send	data,	but	can	continue	to	receive	it	until	the	other
device	has	decided	to	stop	sending.	This	allows	all	data	that	is	pending	to	be	sent
by	both	sides	of	the	communication	to	be	flushed	before	the	connection	is	ended.



Normal	Connection	Termination
In	the	normal	case,	each	side	terminates	its	end	of	the	connection	by	sending	a
special	message	with	the	FIN	(finish)	bit	set.	The	FIN	message	serves	as	a
connection	termination	request	to	the	other	device,	while	also	possibly	carrying
data	like	a	regular	segment.	The	device	receiving	the	FIN	responds	with	an
acknowledgment	to	the	FIN	that	indicates	that	it	received	the	acknowledgment.
Neither	side	considers	the	connection	terminated	until	they	both	have	sent	a	FIN
and	received	an	ACK,	thereby	finishing	the	shutdown	procedure.

Thus,	termination	isn't	a	three-way	handshake	as	with	establishment.	It	is	a	pair
of	two-way	handshakes.	The	states	that	the	two	devices	in	the	connection	move
through	during	a	normal	connection	shutdown	are	different	because	the	device
initiating	the	shutdown	must	behave	differently	than	the	one	that	receives	the
termination	request.	In	particular,	the	TCP	on	the	device	receiving	the	initial
termination	request	must	inform	its	application	process	and	wait	for	a	signal	that
the	process	is	ready	to	proceed.	The	initiating	device	doesn't	need	to	do	this,
since	the	application	started	the	ball	rolling	in	the	first	place.

TIP

KEY	CONCEPT	A	TCP	connection	is	terminating	using	a	special	procedure	by	which	each	side
independently	closes	its	end	of	the	link.	The	connection	normally	begins	with	one	of	the	application
processes	signaling	to	its	TCP	layer	that	the	session	is	no	longer	needed.	That	device	sends	a	FIN
message	to	tell	the	other	device	that	it	wants	to	end	the	connection,	which	the	other	device
acknowledges.	When	the	responding	device	is	ready,	it	too	sends	a	FIN	that	the	other	device
acknowledges;	after	waiting	a	period	of	time	for	the	device	to	receive	the	ACK,	the	device	closes	the
session.

Table	47-4	describes	in	detail	how	the	connection	termination	process	works.
You	can	also	see	the	progression	of	states	and	messages	exchanged	in	Figure	47-
5.	The	table	is	adapted	from	Table	47-1,	which	describes	the	TCP	FSM,	but
shows	what	happens	for	both	the	server	and	the	client	over	time	during
connection	shutdown.	Either	device	can	initiate	connection	termination;	in	this
example,	I	am	assuming	the	client	does	it.	Each	row	shows	the	state	each	device
begins	in,	what	action	it	takes	in	that	state,	and	what	state	it	transitions	to.	I	have
also	shown	the	send	and	receive	stages	of	both	of	the	steps	for	each	of	the	client
and	server's	close	operations.



Table	47-4.	TCP	Connection	Termination	Procedure

Client Server

Start	State Action Transitions
to	State

Start	State Action Transitions
to	State

ESTABLISHED Client	Close
Step	1
Transmit:
The
application
using	TCP
signals	that
the
connection	is
no	longer
needed.	The
client	TCP
sends	a
segment	with
the	FIN	bit
set	to	request
that	the
connection
be	closed.

FIN-WAIT-1 ESTABLISHED At	this	stage
the	server	is
still	in
normal
operating
mode.

—

FIN-WAIT-1 The	client,
having	sent	a
FIN,	is
waiting	for	a
device	to
acknowledge
it	and	for	the
server	to	send
its	own	FIN.
In	this	state,
the	client	can
still	receive
data	from	the
server	but
will	no
longer	accept
data	from	its
local
application	to
be	sent	to	the

— ESTABLISHED Client	Close
Step	1
Receive	and
Step	2
Transmit:
The	server
receives	the
client's	FIN.
It	sends	an
ACK	to
acknowledge
the	FIN.	The
server	must
wait	for	the
application
using	it	to	be
told	that	the
other	end	is
closing,	so
the

CLOSE-
WAIT



be	sent	to	the
server.

the
application
here	can
finish	what	it
is	doing.

FIN-WAIT-1 Client	Close
Step	2
Receive:	The
client
receives	the
ACK	for	its
FIN.	It	must
now	wait	for
the	server	to
close.

FIN-WAIT-2 CLOSE-WAIT The	server
waits	for	the
application
process	on
its	end	to
signal	that	it
is	ready	to
close.

—

FIN-WAIT-2 The	client	is
waiting	for
the	server's
FIN.

— CLOSE-WAIT Server	Close
Step	1
Transmit:
The	server's
TCP
receives	a
notice	from
the	local
application
that	it	is
done.	The
server	sends
its	FIN	to
the	client.

LAST-ACK

FIN-WAIT-2 Server	Close
Step	1
Receive	and
Step	2
Transmit:
The	client
receives	the
server's	FIN
and	sends
back	an
ACK.

TIME-WAIT LAST-ACK The	server	is
waiting	for
an	ACK	for
the	FIN	that
it	sent.

—

TIME-WAIT The	client
waits	for	a
period	of
time	equal	to
double	the

— LAST-ACK Server	Close
Step	2
Receive:
The	server
receives	the

CLOSED



double	the
maximum
segment	life
(MSL)	time;
this	wait
ensures	that
the	ACK	it
sent	was
received.

receives	the
ACK	to	its
FIN	and
closes	the
connection.

TIME-WAIT The	timer
expires	after
double	the
MSL	time.

CLOSED CLOSED The
connection
is	closed	on
the	server's
end.

	

CLOSED The
connection	is
closed.

	 CLOSED The
connection
is	closed.

	

Figure	47-5.	TCP	connection	termination	procedure	This	diagram	shows	the	conventional	termination
procedure	for	a	TCP	session,	with	one	device	initiating	termination	and	the	other	responding.	In	this
case,	the	client	initiates;	it	sends	a	FIN,	which	the	server	acknowledges.	The	server	waits	for	the	server
process	to	be	ready	to	close	and	then	sends	its	FIN,	which	the	client	acknowledges.	The	client	waits	for
a	period	of	time	in	order	to	ensure	that	the	device	receives	its	ACK,	before	proceeding	to	the	CLOSED

state.



The	device	receiving	the	initial	FIN	may	have	to	wait	a	fairly	long	time	(in
networking	terms)	in	the	CLOSE-WAIT	state	for	the	application	it	is	serving	to
indicate	that	it	is	ready	to	shut	down.	TCP	cannot	make	any	assumptions	about
how	long	this	will	take.	During	this	period	of	time,	the	server	in	the	previous
example	may	continue	sending	data,	and	the	client	will	receive	it.	However,	the
client	will	not	send	data	to	the	server.

Eventually,	the	second	device	(the	server	in	the	example)	will	send	a	FIN	to
close	its	end	of	the	connection.	The	device	that	originally	initiated	the	close	(the
client)	will	send	an	ACK	for	this	FIN.	However,	the	client	cannot	immediately
go	to	the	CLOSED	state	right	after	sending	that	ACK	because	it	must	allow	time
for	the	ACK	to	travel	to	the	server.	Normally,	this	will	be	quick,	but	delays
might	slow	it	down	somewhat.

The	TIME-WAIT	State
The	TIME-WAIT	state	is	required	for	two	main	reasons:

To	provide	enough	time	to	ensure	that	the	other	device	receives	the	ACK,	and
to	retransmit	it	if	it	is	lost

To	provide	a	buffering	period	between	the	end	of	this	connection	and	any
subsequent	ones.	If	not	for	this	period,	it	is	possible	that	packets	from
different	connections	could	be	mixed,	thereby	creating	confusion.

The	standard	specifies	that	the	client	should	wait	double	a	particular	length	of
time,	called	the	maximum	segment	lifetime	(MSL),	before	closing	the
connection.	The	TCP	standard	defines	MSL	as	being	a	value	of	120	seconds	(2
minutes).	In	modern	networks,	this	is	an	eternity,	so	TCP	allows
implementations	to	choose	a	lower	value	if	it	believes	that	will	lead	to	better
operation.

Simultaneous	Connection	Termination
Just	as	it	is	possible	to	change	the	normal	connection	establishment	process	if
two	devices	decide	to	actively	open	a	connection	to	each	other,	it	is	also	possible
for	two	devices	to	try	to	terminate	a	connection	simultaneously.	This	term
simultaneously	does	not	mean	that	they	both	decide	to	shut	down	at	exactly	the
same	time—variances	in	network	delays	mean	nothing	can	be	simultaneous	on



an	internetwork	anyway.	It	simply	means	that,	in	the	previous	example,	the
client	decides	to	shut	down	and	sends	a	FIN,	but	the	server	sends	its	own	FIN
before	the	client's	FIN	shows	up	at	the	server.	In	that	case,	a	different	procedure
is	followed,	as	described	in	Table	47-5	and	illustrated	in	Figure	47-6.

Figure	47-6.	TCP	simultaneous	connection	termination	procedure	Under	certain	circumstances,	both
devices	may	decide	to	terminate	a	connection	simultaneously,	or	nearly	simultaneously.	In	this	case,

each	sends	a	FIN	and,	before	getting	an	ACK	for	it,	receives	the	other	device's	FIN.	Each	acknowledges
the	other's	FIN	and	waits	for	a	period	of	time	before	closing	the	connection.	Note	the	transition	through

the	CLOSING	state,	which	is	used	only	as	part	of	simultaneous	termination.

Table	47-5.	TCP	Simultaneous	Connection	Termination	Procedure

Client Server

Start	State Action Transitions
to	State

Start	State Action Transitions
to	State

ESTABLISHED Client	Close
Step	1
Transmit:	The
application
using	TCP
signals	that	the
connection	is
no	longer

FIN-WAIT-1 ESTABLISHED Server	Close
Step	1
Transmit:
Before	the
server	can
receive	the
FIN	that	the
client	sent,	the

FIN-WAIT-1



no	longer
needed.	The
TCP	on	the
client	sends
the	next
segment	with
the	FIN	bit	set,
indicating	a
request	to
close	the
connection.

client	sent,	the
application	on
the	server	also
signals	a	close.
The	server
also	sends	a
FIN.

FIN-WAIT-1 Server	Close
Step	1	Receive
and	Step	2
Transmit:	The
client	has	sent
a	FIN	and	is
waiting	for	it
to	be
acknowledged.
Instead,	it
receives	the
FIN	that	the
server	sends.	It
acknowledges
the	server's
close	request
with	an	ACK
and	continues
to	wait	for	its
own	ACK.

CLOSING FIN-WAIT-1 Client	Close
Step	1	Receive
and	Step	2
Transmit:	The
server	has	sent
a	FIN	and	is
waiting	for	it
to	be
acknowledged.
Instead,	it
receives	the
FIN	that	the
client	sends.	It
acknowledges
the	client's
close	request
with	an	ACK
and	continues
to	wait	for	its
own	ACK.

CLOSING

CLOSING Client	Close
Step	2
Receive:	The
client	receives
the	ACK	for
its	FIN.

TIME-WAIT CLOSING Server	Close
Step	2
Receive:	The
server	receives
the	ACK	for
its	FIN.

TIME-WAIT

TIME-WAIT The	client
waits	for	a
period	of	time
equal	to
double	the
MSL	time.
This	gives
enough	time	to
ensure	that	the

— TIME-WAIT The	server
waits	for	a
period	of	time
equal	to
double	the
MSL	time.
This	gives
enough	time	to
ensure	the

—



ensure	that	the
ACK	it	sent	to
the	server	was
received.

ensure	the
ACK	it	sent	to
the	client	was
received.

TIME-WAIT The	timer
expires	after
double	the
MSL	time.

CLOSED TIME-WAIT The	timer
expires	after
double	the
MSL	time.

CLOSED

CLOSED The
connection	is
closed.

— CLOSED The
connection	is
closed.

—

As	you	can	see,	the	process	is	much	more	symmetric	in	this	case,	with	both
devices	transitioning	through	the	same	states.	In	either	case	the	end	result	is	the
same,	with	the	connection	in	the	CLOSED	state—meaning	no	connection.	Each
TCP	will	make	sure	all	outstanding	data	is	sent	to	the	application,	sometimes
referred	to	as	an	implied	push	(see	the	description	of	the	push	function	in
Chapter	48	for	an	explanation	of	this	term).	The	TCBs	established	for	the
connection	in	both	devices	are	destroyed	when	the	connection	is	closed	down.

TIP

KEY	CONCEPT	Just	as	two	devices	can	simultaneously	open	a	TCP	session,	they	can	terminate	it
simultaneously	as	well.	In	this	case,	a	different	state	sequence	is	followed,	with	each	device	responding
to	the	other's	FIN	with	an	ACK,	then	waiting	for	receipt	of	its	own	ACK,	and	pausing	for	a	period	of
time	to	ensure	that	the	other	device	received	its	ACK	before	ending	the	connection.



Chapter	48.	TCP	MESSAGE
FORMATTING	AND	DATA
TRANSFER

The	previous	chapter	described	how	two	devices	using	the	Transmission	Control
Protocol	(TCP)	establish	a	TCP	connection,	as	well	as	how	that	connection	is
managed	and	eventually	terminated.	While	connections	are	a	key	part	of	how
TCP	works,	they	are	really	just	a	means	to	the	ultimate	end	of	the	protocol:
sending	data.	By	employing	the	TCP	sliding	window	mechanism,	a	special
segment	format,	and	several	features,	TCP	devices	are	able	to	package	and	send
data	over	the	connection,	enabling	applications	to	communicate.

This	chapter	describes	the	actual	mechanism	by	which	TCP	messages	are
formatted	and	data	is	transferred	between	devices.	I	begin	with	a	look	at	the
important	TCP	segment	format,	which	describes	the	fields	in	each	TCP	message
and	how	they	are	used.	Next,	I	provide	a	description	of	the	method	used	to
calculate	the	checksum	in	TCP	(as	well	as	UDP)	messages,	and	explain	the
reason	why	a	special	pseudo	header	is	used.	Then	I	discuss	the	maximum
segment	size	(MSS)	parameter	and	its	significance.	Following	that,	I	talk	about
exactly	how	the	sliding	window	mechanism	is	used	to	transfer	and	acknowledge
data.	I	conclude	with	a	description	of	two	special	data	transfer	features:	the	push
feature,	for	immediate	data	transfer,	and	the	urgent	feature	for	priority	data
transfer.

BACKGROUND	INFORMATION	This	chapter	assumes	that	you	are	already
familiar	with	TCP	concepts	such	as	sequence	numbers,	segments,	and	the	basics
of	the	TCP	sliding	window	mechanism.	If	you	are	not,	read	Chapter	46	before
proceeding	with	this	one.



TCP	Message	(Segment)	Format
In	the	TCP	overview	in	Chapter	45,	I	described	one	of	the	most	interesting	jobs
that	TCP	performs:	It	allows	an	application	to	send	data	as	an	unstructured
sequence	of	bytes,	transparently	packaging	that	data	in	distinct	messages	as
required	by	the	underlying	protocol	that	TCP	uses	(normally	IP,	of	course).	TCP
messages	are	called	segments,	the	name	referring	to	the	fact	that	each	is	a
portion	of	the	overall	data	stream	passing	between	the	devices.

TCP	segments	are	very	much	jack-of-all-trade	messages—they	are	flexible	and
serve	a	variety	of	purposes.	A	single	field	format	is	used	for	all	segments,	with	a
number	of	header	fields	that	implement	the	many	functions	and	features	for
which	TCP	is	responsible.	One	of	the	most	notable	characteristics	of	TCP
segments	is	that	they	are	designed	to	carry	both	control	information	and	data
simultaneously.	This	reduces	the	number	of	segments	sent,	since	a	segment	can
perform	more	than	one	function.

For	example,	there	is	no	need	to	send	separate	acknowledgments	in	TCP,
because	each	TCP	message	includes	a	field	for	an	acknowledgment	byte
number.	Similarly,	one	can	request	that	a	connection	be	closed	while	sending
data	in	the	same	message.	The	nature	of	each	TCP	segment	is	indicated	through
the	use	of	several	special	control	bits.	More	than	one	bit	can	be	sent	to	allow	a
segment	to	perform	multiple	functions,	such	as	when	a	bit	is	used	to	specify	an
initial	sequence	number	(ISN)	and	acknowledge	receipt	of	another	such	segment
at	the	same	time.

The	price	we	pay	for	this	flexibility	is	that	the	TCP	header	is	large:	20	bytes	for
regular	segments	and	more	for	those	carrying	options.	This	is	one	of	the	reasons
why	some	protocols	prefer	to	use	the	User	Datagram	Protocol	(UDP)	if	they
don't	need	TCP's	features.	The	TCP	header	fields	are	used	for	the	following
general	purposes:

Process	Addressing	The	processes	on	the	source	and	destination	devices	are
identified	using	port	numbers.

Implementing	the	Sliding	Window	System	Sequence	Number,
Acknowledgment	Number,	and	Window	Size	fields	implement	the	TCP	sliding
window	system	(discussed	in	the	"TCP	Sliding	Window	Data	Transfer	and



Acknowledgment	Mechanics"	section	later	in	this	chapter).

Setting	Control	Bits	and	Fields	These	are	special	bits	that	implement	various
control	functions	and	fields	that	carry	pointers	and	other	data	needed	for	them.

Carrying	Data	The	Data	field	carries	the	actual	bytes	of	data	being	sent
between	devices.

Performing	Miscellaneous	Functions	These	include	a	checksum	for	data
protection	and	options	for	connection	setup.

The	format	for	TCP	messages	(segments)	is	described	fully	in	Tables	Table	48-1
through	Table	48-3	and	illustrated	in	Figure	48-1.

Table	48-1.	TCP	Segment	Format

Field	Name Size
(Bytes)

Description

Source	Port 2 This	is	the	16-bit	port	number	of	the	process	that	originated	the
TCP	segment	on	the	source	device.	This	will	normally	be	an
ephemeral	(client)	port	number	for	a	request	sent	by	a	client	to	a
server,	or	a	well-known/registered	(server)	port	number	for	a
reply	from	a	server	to	a	client.

Destination	Port 2 This	is	the	16-bit	port	number	of	the	process	that	is	the	ultimate
intended	recipient	of	the	message	on	the	destination	device.	This
will	usually	be	a	well-known/registered	(server)	port	number	for	a
client	request,	or	an	ephemeral	(client)	port	number	for	a	server
reply.

Sequence
Number

4 For	normal	transmissions,	this	is	the	sequence	number	of	the	first
byte	of	data	in	this	segment.	In	a	connection	request	(SYN)
message,	this	carries	the	ISN	of	the	source	TCP.	The	first	byte	of
data	will	be	given	the	next	sequence	number	after	the	contents	of
this	field,	as	described	in	Chapter	47.

Acknowledgment
Number

4 When	the	ACK	bit	is	set,	this	segment	is	serving	as	an
acknowledgment	(in	addition	to	other	possible	duties),	and	this
field	contains	the	sequence	number	the	source	is	next	expecting
the	destination	to	send.	See	the	"TCP	Sliding	Window	Data
Transfer	and	Acknowledgment	Mechanics"	section	later	in	this
chapter	for	details.

Data	Offset 1/2	(4
bits)

This	specifies	the	number	of	32-bit	words	of	data	in	the	TCP
header.	In	other	words,	this	value	times	four	equals	the	number	of



bits) header.	In	other	words,	this	value	times	four	equals	the	number	of
bytes	in	the	header,	which	must	always	be	a	multiple	of	four.	It	is
called	a	data	offset	since	it	indicates	by	how	many	32-bit	words
the	start	of	the	data	is	offset	from	the	beginning	of	the	TCP
segment.

Reserved 3/4	(6
bits)

This	field	is	6	bits	reserved	for	future	use;	sent	as	zero.

Control	Bits 3/4	(6
bits)

TCP	does	not	use	a	separate	format	for	control	messages.	Instead,
certain	bits	are	set	to	indicate	the	communication	of	control
information.	The	6	bits	are	described	in	Table	48-2.

Window 2 This	indicates	the	number	of	octets	of	data	the	sender	of	this
segment	is	willing	to	accept	from	the	receiver	at	one	time.	This
normally	corresponds	to	the	current	size	of	the	buffer	allocated	to
accept	data	for	this	connection.	In	other	words,	this	field	is	the
current	receive	window	size	for	the	device	sending	this	segment,
which	is	also	the	send	window	for	the	recipient	of	the	segment.
See	the	"TCP	Sliding	Window	Data	Transfer	and
Acknowledgment	Mechanics"	section	later	in	this	chapter	for
details.

Checksum 2 This	is	a	16-bit	checksum	for	data	integrity	protection,	computed
over	the	entire	TCP	datagram,	plus	a	special	pseudo	header	of
fields.	It	is	used	to	protect	the	entire	TCP	segment	against	errors
in	transmission	as	well	as	errors	in	delivery.	Optional	alternate
checksum	methods	are	also	supported.

Urgent	Pointer 2 This	is	used	in	conjunction	with	the	URG	control	bit	for	priority
data	transfer	(see	Table	48-2).	This	field	contains	the	sequence
number	of	the	last	byte	of	urgent	data.	See	the	"TCP	Priority	Data
Transfer:	Urgent	Function"	section	later	in	this	chapter	for	details.

Options Variable TCP	includes	a	generic	mechanism	for	including	one	or	more	sets
of	optional	data	in	a	TCP	segment.	Each	of	the	options	can	be
either	one	byte	in	length	or	variable	in	length.	The	first	byte	is	the
Option-Kind	subfield,	and	its	value	specifies	the	type	of	option,
which	in	turn	indicates	whether	the	option	is	just	a	single	byte	or
multiple	bytes.	Options	that	are	many	bytes	consist	of	three	fields,
which	are	described	in	Table	48-3.

Padding Variable If	the	Options	field	is	not	a	multiple	of	32	bits	in	length,	enough
zeros	are	added	to	pad	the	header	so	it	is	a	multiple	of	32	bits.

Data Variable This	is	the	bytes	of	data	being	sent	in	the	segment.



Table	48-2.	TCP	Segment	Control	Bits

Subfield
Name

Size
(Bytes)

Description

URG 1/8	(1
bit)

Urgent	bit:	When	set	to	1,	indicates	that	the	priority	data	transfer	feature
has	been	invoked	for	this	segment,	and	that	the	Urgent	Pointer	field	is
valid.

ACK 1/8	(1
bit)

Acknowledgment	bit:	When	set	to	1,	indicates	that	this	segment	is
carrying	an	acknowledgment,	and	the	value	of	the	Acknowledgment
Number	field	is	valid	and	carrying	the	next	sequence	expected	from	the
destination	of	this	segment.

PSH 1/8	(1
bit)

Push	bit:	The	sender	of	this	segment	is	using	the	TCP	push	feature,
requesting	that	the	data	in	this	segment	be	immediately	pushed	to	the
application	on	the	receiving	device.

RST 1/8	(1
bit)

Reset	bit:	The	sender	has	encountered	a	problem	and	wants	to	reset	the
connection.

SYN 1/8	(1
bit)

Synchronize	bit:	This	segment	is	a	request	to	synchronize	sequence
numbers	and	establish	a	connection;	the	Sequence	Number	field	(see
Table	48-1)	contains	the	ISN	of	the	sender	of	the	segment.

FIN 1/8	(1
bit)

Finish	bit:	The	sender	of	the	segment	is	requesting	that	the	connection	be
closed.



Figure	48-1.	TCP	segment	format

Table	48-3.	TCP	Segment	Option	Subfields

Subfield
Name

Size
(Bytes)

Description

Option-
Kind

1 This	specifies	the	option	type.

Option-
Length

1 This	is	the	length	of	the	entire	option	in	bytes,	including	the	Option-Kind
and	Option-Length	fields.

Option-
Data

Variable This	field	contains	the	option	data	itself.	In	at	least	one	oddball	case,	this
field	is	omitted	(making	Option-Length	equal	to	2).

Table	48-4	shows	the	main	options	currently	defined	for	TCP

Table	48-4.	Some	TCP	Options

Option-
Kind

Option-
Length

Option-Data Description



Kind Length

0 — — End	of	Option	List:	A	single-byte	option	that	marks	the
end	of	all	options	included	in	this	segment.	This	needs	to
be	included	only	when	the	end	of	the	options	doesn't
coincide	with	the	end	of	the	TCP	header.

1 — — No-Operation:	A	"spacer"	that	can	be	included	between
options	to	align	a	subsequent	option	on	a	32-bit	boundary
if	needed.

2 4 Maximum
Segment	Size
Value

Maximum	Segment	Size:	Conveys	the	size	of	the	largest
segment	the	sender	of	the	segment	wishes	to	receive.
Used	only	in	connection	request	(SYN)	messages.

3 3 Window	Size
Shift	Bits

Window	Scale:	Implements	the	optional	window	scale
feature,	which	allows	devices	to	specify	much	larger
window	sizes	than	would	be	possible	with	the	normal
Window	field.	The	value	in	Option-Data	specifies	the
power	of	2	that	the	Window	field	should	be	multiplied	by
to	get	the	true	window	size	the	sender	of	the	option	is
using.	For	example,	if	the	value	of	Option-Data	is	3,	this
means	values	in	the	Window	field	should	be	multiplied
by	8,	assuming	both	devices	agree	to	use	this	feature.
This	allows	very	large	windows	to	be	advertised	when
needed	on	high-performance	links.	See	the	"TCP	Sliding
Window	Data	Transfer	and	Acknowledgment
Mechanics"	section	later	in	this	chapter	for	details.

4 2 — Selective	Acknowledgment	Permitted:	Specifies	that	this
device	supports	the	selective	acknowledgment	(SACK)
feature.	This	was	implemented	as	a	2-byte	option	with	no
Option-Data	field,	instead	of	a	single-byte	option	like
End	of	Option	List	or	No-Operation.	This	was	necessary
because	it	was	defined	after	the	original	TCP
specification,	so	an	explicit	option	length	needed	to	be
indicated	for	backward	compatibility.

5 Variable Blocks	of	Data
Selectively
Acknowledged

Selective	Acknowledgment:	Allows	devices	supporting
the	optional	selective	acknowledgment	feature	to	specify
noncontiguous	blocks	of	data	that	have	been	received	so
they	are	not	retransmitted	if	intervening	segments	do	not
show	up	and	need	to	be	retransmitted.

14 3 Alternate
Checksum
Algorithm

Alternate	Checksum	Request:	Lets	a	device	request	that	a
checksum-generation	algorithm	other	than	the	standard
TCP	algorithm	be	used	for	this	connection.	Both	devices
must	agree	to	the	algorithm	for	it	to	be	used.



15 Variable Alternate
Checksum

Alternate	Checksum:	If	the	checksum	value	needed	to
implement	an	alternate	checksum	is	too	large	to	fit	in	the
standard	16-bit	Checksum	field,	it	is	placed	in	this	option.

The	table	does	not	include	every	TCP	option;	it	just	shows	the	basic	ones
defined	in	RFC	793	and	a	few	others	that	are	interesting	and	correspond	to
features	described	elsewhere	in	this	book.	Note	that	most	options	are	sent	only	in
connection	request	(SYN)	segments.	This	includes	the	Maximum	Segment	Size,
Window	Scale,	Selective	Acknowledgment	Permitted,	and	Alternate	Checksum
Request	options.	In	contrast,	the	Selective	Acknowledgment	and	Alternate
Checksum	options	appear	in	regular	data	segments	when	they	are	used.



TCP	Checksum	Calculation	and	the	TCP	Pseudo
Header
TCP	is	designed	to	provide	reliable	data	transfer	between	a	pair	of	devices	on	an
IP	internetwork.	Much	of	the	effort	required	to	ensure	reliable	delivery	of	data
segments	is	focused	on	the	problem	of	ensuring	that	data	is	not	lost	in	transit.
But	there's	another	important	critical	impediment	to	the	safe	transmission	of
data:	the	risk	of	errors	being	introduced	into	a	TCP	segment	during	its	travel
across	the	internetwork.

Detecting	Transmission	Errors	Using
Checksums
If	the	data	gets	where	it	needs	to	go	but	is	corrupted,	and	we	do	not	detect	the
corruption,	this	is	in	some	ways	worse	than	it	never	showing	up	at	all.	To
provide	basic	protection	against	errors	in	transmission,	TCP	includes	a	16-bit
Checksum	field	in	its	header.	The	idea	behind	a	checksum	is	very
straightforward:	Take	a	string	of	data	bytes	and	add	them	all	together,	then	send
this	sum	with	the	data	stream	and	have	the	receiver	check	the	sum.	In	TCP,	the
device	sending	the	segment	uses	a	special	algorithm	to	calculate	this	checksum.
The	recipient	then	employs	the	same	algorithm	to	check	the	data	it	received	and
ensure	that	there	were	no	errors.

The	checksum	calculation	used	by	TCP	is	a	bit	different	than	a	regular	checksum
algorithm.	A	conventional	checksum	is	performed	over	all	the	bytes	that	the
checksum	is	intended	to	protect,	and	it	can	detect	most	bit	errors	in	any	of	those
fields.	The	designers	of	TCP	wanted	this	bit-error	protection,	but	they	also
wanted	protection	against	other	types	of	problems.	To	this	end,	a	change	was
made	in	how	the	TCP	checksum	is	computed.	This	special	TCP	checksum
algorithm	was	eventually	also	adopted	for	use	by	UDP;	see	Chapter	44.

Increasing	the	Scope	of	Detected	Errors:	The
TCP	Pseudo	Header
Instead	of	computing	the	checksum	over	only	the	actual	data	fields	of	the	TCP



segment,	a	12-byte	TCP	pseudo	header	is	created	prior	to	checksum	calculation.
This	header	contains	important	information	taken	from	fields	in	both	the	TCP
header	and	the	Internet	Protocol	(IP)	datagram	into	which	the	TCP	segment	will
be	encapsulated	(see	Chapter	21	for	a	description	of	the	IP	datagram	format).
The	TCP	pseudo	header	has	the	format	described	in	Table	48-5	and	illustrated	in
Figure	48-2.

Table	48-5.	TCP	Pseudo	Header	for	Checksum	Calculations

Field
Name

Size
(Bytes)

Description

Source
Address

4 This	is	the	32-bit	IP	address	of	the	originator	of	the	datagram,	taken
from	the	IP	header.

Destination
Address

4 This	is	the	32-bit	IP	address	of	the	intended	recipient	of	the	datagram,
also	from	the	IP	header.

Reserved 1 This	consists	of	8	bits	of	zeros.

Protocol 1 This	is	the	Protocol	field	from	the	IP	header.	This	indicates	the	higher-
layer	protocol	that	is	carried	in	the	IP	datagram.	Of	course,	we	already
know	that	this	protocol	is	TCP.	So,	this	field	will	normally	have	the
value	6.

TCP
Length

2 This	is	the	length	of	the	TCP	segment,	including	both	header	and	data.
Note	that	this	is	not	a	specific	field	in	the	TCP	header;	it	is	computed.

Figure	48-2.	TCP	pseudo	header	for	checksum	calculation

Once	this	96-bit	header	has	been	formed,	it	is	placed	in	a	buffer,	followed	by	the
TCP	segment	itself.	Then	the	checksum	is	computed	over	the	entire	set	of	data
(pseudo	header	plus	TCP	segment).	The	value	of	the	checksum	is	placed	in	the
Checksum	field	of	the	TCP	header,	and	the	pseudo	header	is	discarded;	it	is	not
an	actual	part	of	the	TCP	segment	and	is	not	transmitted.	This	process	is



illustrated	in	Figure	48-3.

NOTE

The	Checksum	field	is	itself	part	of	the	TCP	header	and	thus	one	of	the	fields	over	which	the	checksum
is	calculated,	creating	a	"chicken-and-egg"	situation	of	sorts.	This	field	is	assumed	to	be	all	zeros	during
calculation	of	the	checksum.

When	the	TCP	segment	arrives	at	its	destination,	the	receiving	TCP	software
performs	the	same	calculation.	It	forms	the	pseudo	header,	prepends	it	to	the
actual	TCP	segment,	and	then	performs	the	checksum	(setting	the	Checksum
field	to	zero	for	the	calculation	as	before).	If	there	is	a	mismatch	between	its
calculation	and	the	value	the	source	device	put	in	the	Checksum	field,	this
indicates	that	an	error	of	some	sort	occurred,	and	the	segment	is	normally
discarded.

Figure	48-3.	TCP	header	checksum	calculation	To	calculate	the	TCP	segment	header's	Checksum	field,
the	TCP	pseudo	header	is	first	constructed	and	placed,	logically,	before	the	TCP	segment.	The

checksum	is	then	calculated	over	both	the	pseudo	header	and	the	TCP	segment.	The	pseudo	header	is
then	discarded.

Advantages	of	the	Pseudo	Header	Method
So,	why	bother	with	this	pseudo	header?	The	source	and	destination	devices	both
compute	the	checksum	using	the	fields	in	this	pseudo	header.	This	means	that	if,
for	any	reason,	the	two	devices	don't	use	the	same	values	for	the	pseudo	header,
the	checksum	will	fail.	When	we	consider	what's	in	the	header,	we	find	that	this
means	the	checksum	now	protects	against	not	just	errors	in	the	TCP	segment
fields,	but	also	against	the	following	problems:

Incorrect	Segment	Delivery	If	there	is	a	mismatch	in	the	Destination	Address
between	what	the	source	specified	and	what	the	destination	that	received	the



segment	used,	the	checksum	will	fail.	The	same	will	happen	if	the	Source
Address	does	not	match.

Incorrect	Protocol	If	a	datagram	is	routed	to	TCP	that	actually	belongs	to	a
different	protocol	for	whatever	reason,	this	can	be	immediately	detected.

Incorrect	Segment	Length	If	part	of	the	TCP	segment	has	been	omitted	by
accident,	the	lengths	the	source	and	destination	used	won't	match,	and	the
checksum	will	fail.

What's	clever	about	the	pseudo	header	is	that	by	using	it	for	the	checksum
calculation,	we	can	provide	this	protection	without	actually	needing	to	send	the
fields	in	the	pseudo	header	itself.	This	eliminates	duplicating	the	IP	fields	used
in	the	pseudo	header	within	the	TCP	header,	which	would	be	redundant	and
wasteful	of	bandwidth.	The	drawback	of	the	pseudo	header	method	is	that	it
makes	checksum	calculation	take	more	time	and	effort	(though	this	is	not	much
of	an	issue	today).

TIP

KEY	CONCEPT	TCP	checksums	are	computed	over	not	just	the	TCP	segment,	but	also	over	a	TCP
pseudo	header	that	contains	the	length	of	the	TCP	segment	as	well	as	the	IP	Source	Address,	Destination
Address,	and	Protocol	fields.	Since	these	fields	are	part	of	the	checksum,	if	the	segment	is	received	by
the	wrong	device	or	has	the	incorrect	Protocol	field	or	segment	length,	it	will	be	rejected.	The	technique
is	clever	because	the	checksum	can	provide	this	protection,	even	though	the	pseudo	header	itself	is	not
actually	transmitted.

In	the	context	of	today's	modern,	high-speed,	highly	reliable	networks,	the	use	of
the	pseudo	header	sometimes	seems	archaic.	How	likely	is	it	that	a	datagram	will
be	delivered	to	the	wrong	address?	Not	very.	At	the	time	TCP	was	created,
however,	there	was	significant	concern	that	there	might	not	be	proper	end-to-end
checking	of	the	delivery	of	datagrams	at	the	IP	level.	Including	IP	information	in
the	TCP	checksum	was	seen	as	a	useful	additional	level	of	protection.

NOTE

There	is	one	interesting	implication	of	the	TCP	pseudo	header:	It	violates	the	architectural	layering
principles	that	the	designers	of	TCP	sought	to	respect	in	splitting	up	TCP	and	IP.	For	the	checksum,	TCP
must	know	IP	information	that	technically	it	shouldn't	know.	TCP	checksum	calculation	requires,	for
example,	that	the	protocol	number	from	the	IP	header	be	given	to	the	TCP	layer	on	the	receiving	device
from	the	IP	datagram	that	carried	the	segment.	The	TCP	pseudo	header	is	a	good	example	of	a	case



where	strict	layering	was	eschewed	in	favor	of	practicality.

TCP	also	supports	an	optional	method	of	having	two	devices	agree	on	an
alternative	checksum	algorithm.	This	must	be	negotiated	during	connection
establishment.



TCP	Maximum	Segment	Size	(MSS)
TCP	segments	are	the	messages	that	carry	data	between	TCP	devices.	The	Data
field	is	where	the	actual	data	being	transmitted	is	carried,	and	since	the	length	of
the	Data	field	in	TCP	is	variable,	this	raises	an	interesting	question:	How	much
data	should	we	put	into	each	segment?	TCP	accepts	data	as	a	constant	stream
from	the	applications	that	use	it,	which	means	that	it	must	decide	how	many
bytes	to	put	into	each	message	that	it	sends.

A	primary	determinant	of	how	much	data	to	send	in	a	segment	is	the	current
status	of	the	sliding	window	mechanism	on	the	part	of	the	receiver.	When
Device	A	receives	a	TCP	segment	from	Device	B,	it	examines	the	value	of	the
Window	field	to	know	the	limit	on	how	much	data	Device	B	is	allowing	Device
A	to	send	in	its	next	segment.	(This	process	is	described	in	the	"TCP	Sliding
Window	Data	Transfer	and	Acknowledgment	Mechanics"	section	later	in	this
chapter.)	There	are	also	important	issues	in	the	selection	and	adjustment	of
window	size	that	impact	the	operation	of	the	TCP	system	as	a	whole,	which	are
discussed	in	Chapter	46.

In	addition	to	the	dictates	of	the	current	window	size,	each	TCP	device	also	has
associated	with	it	a	ceiling	on	TCP	size—a	segment	size	that	will	never	be
exceeded,	regardless	of	how	large	the	current	window	is.	This	is	called	the
maximum	segment	size	(MSS).	When	deciding	how	much	data	to	put	into	a
segment,	each	device	in	the	TCP	connection	will	choose	the	amount	based	on
the	current	window	size,	in	conjunction	with	the	various	algorithms	described	in
Chapter	46,	but	it	will	never	be	so	large	that	the	amount	of	data	exceeds	the	MSS
of	the	device	to	which	it	is	sending.

NOTE

The	name	maximum	segment	size	is	misleading.	The	value	actually	refers	to	the	maximum	amount	of
data	that	a	segment	can	hold.	It	does	not	include	the	TCP	headers.	So	if	the	MSS	is	100,	the	actual
maximum	segment	size	could	be	120	(for	a	regular	TCP	header)	or	larger	(if	the	segment	includes	TCP
options).

MSS	Selection



The	selection	of	the	MSS	is	based	on	the	need	to	balance	various	competing
performance	and	implementation	issues	in	the	transmission	of	data	on	TCP/IP
networks.	The	main	TCP	standard,	RFC	793,	doesn't	say	much	about	MSS,	so
there	was	potential	for	confusion	about	how	the	parameter	should	be	used.	RFC
879	was	published	a	couple	of	years	after	the	TCP	standard	to	clarify	this
parameter	and	the	issues	surrounding	it.

Some	issues	with	the	MSS	are	fairly	mundane;	for	example,	certain	devices	are
limited	in	the	amount	of	space	they	have	for	buffers	to	hold	TCP	segments,	and
therefore	may	wish	to	limit	segment	size	to	a	relatively	small	value.	In	general,
though,	the	MSS	must	be	chosen	by	balancing	two	competing	performance
issues:

Overhead	Management	The	TCP	header	takes	up	20	bytes	of	data	(or	more	if
options	are	used);	the	IP	header	also	uses	20	or	more	bytes.	This	means	that
between	them,	a	minimum	of	40	bytes	is	needed	for	headers,	and	all	of	that	is
nondata	overhead.	If	we	set	the	MSS	too	low,	this	results	in	very	inefficient	use
of	bandwidth.	For	example,	if	we	set	it	to	40	bytes,	a	maximum	of	50	percent	of
each	segment	could	actually	be	data;	the	rest	would	just	be	headers.	Many
segment	datagrams	would	be	even	worse	in	terms	of	efficiency.

IP	Fragmentation	TCP	segments	will	be	packaged	into	IP	datagrams.	As	you
saw	in	Chapter	22,	datagrams	have	their	own	size	limit	issues:	the	matter	of	the
maximum	transmission	unit	(MTU)	of	an	underlying	network.	If	a	TCP	segment
is	too	large,	it	will	lead	to	an	IP	datagram	that	is	too	large	to	be	sent	without
fragmentation.	Fragmentation	reduces	efficiency	and	increases	the	chances	of
part	of	a	TCP	segment	being	lost,	resulting	in	the	entire	segment	needing	to	be
retransmitted.

TCP	Default	MSS
The	solution	to	the	two	competing	issues	of	overhead	management	and	IP
fragmentation	was	to	establish	a	default	MSS	for	TCP	that	was	as	large	as
possible,	while	avoiding	fragmentation	for	most	transmitted	segments.	This	was
computed	by	starting	with	the	minimum	MTU	for	IP	networks	of	576	bytes.	All
networks	are	required	to	be	able	to	handle	an	IP	datagram	of	this	size	without
fragmenting.	From	this	number,	we	subtract	20	bytes	for	the	TCP	header	and	20



bytes	for	the	IP	header,	leaving	536	bytes.	This	is	the	standard	MSS	for	TCP.

TIP

KEY	CONCEPTTCP	is	designed	to	restrict	the	size	of	the	segments	it	sends	to	a	certain	maximum
limit,	to	reduce	the	likelihood	that	segments	will	need	to	be	fragmented	for	transmission	at	the	IP	level.
The	TCP	maximum	segment	size	(MSS)	specifies	the	maximum	number	of	bytes	in	the	TCP	segment's
Data	field,	regardless	of	any	other	factors	that	influence	segment	size.	The	default	MSS	for	TCP	is	536
bytes,	which	is	calculated	by	starting	with	the	minimum	IP	MTU	of	576	bytes	and	subtracting	20	bytes
each	for	the	IP	and	TCP	headers.

The	selection	of	this	MSS	value	was	a	compromise	of	sorts.	It	means	that	most
TCP	segments	will	be	sent	unfragmented	across	an	IP	internetwork.	However,	if
any	TCP	or	IP	options	are	used,	the	minimum	MTU	of	576	bytes	will	be
exceeded,	and	fragmentation	will	occur.	Still,	it	makes	more	sense	to	allow	some
segments	to	be	fragmented,	rather	than	use	a	much	smaller	MSS	to	ensure	that
none	are	ever	fragmented.	If	we	chose,	say,	an	MSS	of	400	bytes,	we	would
probably	never	have	fragmentation,	but	we	would	lower	the	data/header	ratio
from	536:40	(93	percent	data)	to	400:40	(91	percent	data)	for	all	segments.

Nondefault	MSS	Value	Specification
Naturally,	there	will	be	cases	where	the	default	MSS	is	not	ideal.	TCP	provides	a
means	for	a	device	to	specify	that	the	MSS	it	wants	to	use	is	either	smaller	or
larger	than	the	default	value	of	536	bytes.	A	device	can	inform	the	other	device
of	the	MSS	it	wants	to	use	through	parameter	exchange	during	the	connection
establishment	process.	A	device	that	chooses	to	do	so	includes	in	its	SYN
message	the	TCP	option	called,	appropriately,	Maximum	Segment	Size.	The
other	device	receives	this	option	and	records	the	MSS	for	the	connection.	Each
device	can	specify	the	MSS	it	wants	for	the	segments	it	receives	independently.

NOTE

The	exchange	of	MSS	values	during	setup	is	sometimes	called	MSS	negotiation.	This	is	actually	a
misleading	term,	because	it	implies	that	the	two	devices	must	agree	on	a	common	MSS	value,	which	is
not	the	case.	The	MSS	value	used	by	each	may	be	different,	and	there	is	no	negotiation	at	all.

Devices	may	wish	to	use	a	larger	MSS	if	they	know	that	the	MTUs	of	the
networks	the	segments	will	pass	over	are	larger	than	the	IP	minimum	of	576



bytes.	This	is	most	commonly	the	case	when	large	amounts	of	data	are	sent	on	a
local	network.	The	process	of	MTU	path	discovery,	as	described	in	Chapter	22,
is	used	to	determine	the	appropriate	MSS.	Devices	might	use	a	smaller	MSS	if
they	know	that	TCP	segments	use	a	particular	optional	feature	that	would
consistently	increase	the	size	of	the	IP	header,	such	as	when	the	segments
employ	IPsec	for	security	(see	Chapter	29).

TIP

KEY	CONCEPT	Devices	can	indicate	that	they	wish	to	use	a	different	MSS	value	from	the	default	by
including	a	Maximum	Segment	Size	option	in	the	SYN	message	they	use	to	establish	a	connection.	Each
device	in	the	connection	may	use	a	different	MSS	value.



TCP	Sliding	Window	Data	Transfer	and
Acknowledgment	Mechanics
The	TCP	connection	establishment	process	is	employed	by	a	pair	of	devices	to
create	a	TCP	connection	between	them.	Once	all	the	setup	is	done—transmission
control	blocks	(TCBs)	have	been	set	up,	parameters	have	been	exchanged,	and
so	forth—the	devices	are	ready	to	get	down	to	the	business	of	transferring	data.

The	sending	of	data	between	TCP	devices	on	a	connection	is	accomplished	using
the	sliding	window	system	we	explored	in	Chapter	46.	Here,	we	will	take	a	more
detailed	look	at	exactly	how	sliding	windows	are	implemented	to	allow	data	to
be	sent	and	received.	For	ease	of	explanation,	we'll	assume	that	our	connection	is
between	a	client	and	a	server—this	is	easier	than	the	whole	"Device	A/Device
B"	business.

Sliding	Window	Transmit	and	Receive
Categories
Each	of	the	two	devices	on	a	connection	must	keep	track	of	the	data	it	is	sending,
as	well	as	the	data	it	is	receiving	from	the	other	device.	This	is	done	by
conceptually	dividing	the	bytes	into	categories.	For	data	being	transmitted,	there
are	four	transmit	categories:

Transmit	Category	1	Bytes	sent	and	acknowledged

Transmit	Category	2	Bytes	sent	but	not	yet	acknowledged

Transmit	Category	3	Bytes	not	yet	sent	for	which	recipient	is	ready

Transmit	Category	4	Bytes	not	yet	sent	for	which	recipient	is	not	ready

For	data	being	received,	there	is	no	need	to	separate	into	"received	and
acknowledged"	and	"received	and	unacknowledged,"	the	way	the	transmitter
separates	its	first	two	categories	into	"sent	and	acknowledged"	and	"sent	but	not
yet	acknowledged."	The	reason	is	that	the	transmitter	must	wait	for
acknowledgment	of	each	transmission,	but	the	receiver	doesn't	need
acknowledgment	that	it	received	something.	Thus,	one	receive	category
corresponds	to	Transmit	Categories	1	and	2,	while	the	other	two	correspond	to



Transmit	Category	3	and	Transmit	Category	4,	respectively,	for	a	total	of	three
receive	categories.	To	help	make	more	clear	how	the	categories	relate,	I	number
them	as	follows:

Receive	Category	1+2	Bytes	received	and	acknowledged.	This	is	the	receiver's
complement	to	Transmit	Categories	1	and	2.

Receive	Category	3	Bytes	not	yet	received	for	which	recipient	is	ready.	This	is
the	receiver's	complement	to	Transmit	Category	3.

Receive	Category	4	Bytes	not	yet	received	for	which	recipient	is	not	ready.	This
is	the	receiver's	complement	to	Transmit	Category	4.

Send	(SND)	and	Receive	(RCV)	Pointers
Both	the	client	and	server	must	keep	track	of	both	streams	being	sent	over	the
connection.	This	is	done	using	a	set	of	special	variables	called	pointers,	which
carve	the	byte	stream	into	the	categories	described	in	the	previous	section.

The	four	transmit	categories	are	divided	using	three	send	(SND)	pointers.	Two
of	the	pointers	are	absolute	(refer	to	a	specific	sequence	number),	and	one	is	an
offset	that	is	added	to	one	of	the	absolute	pointers,	as	follows:

Send	Unacknowledged	(SND.UNA)	The	sequence	number	of	the	first	byte	of
data	that	has	been	sent	but	not	yet	acknowledged.	This	marks	the	first	byte	of
Transmit	Category	2;	all	previous	sequence	numbers	refer	to	bytes	in	Transmit
Category	1.

Send	Next	(SND.NXT)	The	sequence	number	of	the	next	byte	of	data	to	be	sent
to	the	other	device	(the	server,	in	this	case).	This	marks	the	first	byte	of	Transmit
Category	3.

Send	Window	(SND.WND)	The	size	of	the	send	window.	Recall	that	the
window	specifies	the	total	number	of	bytes	that	any	device	may	have
outstanding	(unacknowledged)	at	any	one	time.	Thus,	adding	the	sequence
number	of	the	first	unacknowledged	byte	(SND.UNA)	and	the	send	window
(SND.WND)	marks	the	first	byte	of	Transmit	Category	4.

Another	way	of	looking	at	these	pointers	is	how	they	indicate	the	number	of
bytes	a	transmitting	device	can	send	at	any	point	in	time—that	is,	the	number	of
bytes	in	Transmit	Category	3.	The	start	of	Transmit	Category	3	is	marked	by



SND.NXT.	The	end	is	marked	by	the	first	byte	of	Transmit	Category	4,	given	by
SND.UNA+SND.WND.	Thus,	the	number	of	bytes	in	Transmit	Category	3	is
given	by	the	following	formula:

SND.UNA	+	SND.WND	-	SND.NXT

This	is	called	the	usable	window,	since	it	indicates	how	many	bytes	the
transmitter	can	use	at	any	point	in	time.	When	data	is	acknowledged,	this	causes
bytes	to	move	from	Transmit	Category	2	to	Transmit	Category	1,	by	increasing
the	value	of	SND.UNA.	Assuming	that	the	send	window	size	doesn't	change,
this	causes	the	window	to	slide	to	the	right,	permitting	more	data	to	be	sent.
Figure	48-4	illustrates	the	SND	pointers.

TIP

KEY	CONCEPT	The	TCP	sliding	windows	scheme	uses	three	pointers	that	keep	track	of	which	bytes
are	in	each	of	the	four	transmit	categories.	SND.UNA	points	to	the	first	unacknowledged	byte	and
indicates	the	start	of	Transmit	Category	2;	SND.NXT	points	to	the	next	byte	of	data	to	be	sent	and	marks
the	start	of	Transmit	Category	3.	SND.WND	contains	the	size	of	the	send	window;	it	is	added	to
SND.NXT	to	mark	the	start	of	Transmit	Category	4.	Adding	SND.WND	to	SND.UNA	and	then
subtracting	SND.NXT	yields	the	current	size	of	the	usable	transmit	window.

Figure	48-4.	TCP	transmission	categories,	send	window,	and	pointers	This	diagram	is	the	same	as
Figure	46-6	(in	Chapter	46),	but	shows	the	TCP	send	pointers.	SND.UNA	points	to	the	start	of	Transmit
Category	2,	SND.NXT	points	to	the	start	of	Transmit	Category	3,	and	SND.WND	is	the	size	of	the	send
window.	The	size	of	the	usable	window	(the	hatched	rectangle)	can	be	calculated	as	shown	from	those

three	pointers.

The	three	receive	categories	are	divided	using	two	pointers:



Receive	Next	(RCV.NXT)	The	sequence	number	of	the	next	byte	of	data	that	is
expected	from	the	other	device.	This	marks	the	first	byte	in	Receive	Category	3.
All	previous	sequence	numbers	refer	to	bytes	already	received	and
acknowledged,	in	Receive	Categories	1	and	2.

Receive	Window	(RCV.WND)	The	size	of	the	receive	window	advertised	to
the	other	device.	This	refers	to	the	number	of	bytes	the	device	is	willing	to
accept	at	one	time	from	its	peer,	which	is	usually	the	size	of	the	buffer	allocated
for	receiving	data	for	this	connection.	When	added	to	the	RCV.NXT	pointer,	this
pointer	marks	the	first	byte	of	Receive	Category	4.

The	receive	categories	and	pointers	are	illustrated	in	Figure	48-5.

The	SND	and	RCV	pointers	are	complementary,	just	as	the	categories	are,	with
each	device	managing	both	the	sending	of	its	data	and	receiving	of	data	from	its
peer.	Assuming	we	have	a	client	and	a	server,	the	relationship	between	these
pointers	is	as	follows:

Client	The	SND	pointers	keep	track	of	the	client's	outgoing	data	stream;	the
RCV	pointers	refer	to	the	data	coming	in	from	the	server.	The	client's	SND
categories	correspond	to	the	server's	RCV	categories.

Server	The	SND	pointers	keep	track	of	the	server's	outgoing	data	stream;	the
RCV	pointers	refer	to	the	data	being	received	from	the	client.	The	server's	SND
categories	correspond	to	the	client's	RCV	categories.

Figure	48-5.	TCP	receive	categories	and	pointers	This	diagram	is	the	complement	of	Figure	48-4,
showing	how	the	categories	are	set	up	for	the	receiving	device.	Categories	1	and	2	have	been	combined

since	there	is	no	differentiation	between	"received	and	unacknowledged"	and	"received	and



acknowledged."	This	example	shows	the	state	of	the	receiving	device	prior	to	receipt	of	the	14	bytes
that	in	Figure	48-4	have	already	been	sent.

TIP

KEY	CONCEPT	A	set	of	receive	(RCV)	pointers	is	maintained	by	each	device.	These	receive	pointers
are	the	complement	of	the	send	(SND)	pointers.	A	device's	send	pointers	keep	track	of	its	outgoing	data,
and	its	receive	pointers	keep	track	of	the	incoming	data.	The	two	receive	pointers	are	RCV.NXT,	which
indicates	the	number	of	the	next	byte	of	data	expected	from	the	other	device,	and	RCV.WND,	which	is
the	size	of	the	receive	window	for	that	device.	The	RCV.WND	of	one	device	equals	the	SND.WND	of
the	other	device	on	the	connection.

Since	the	SND	and	RCV	values	are	complementary,	the	send	window	of	one
device	is	the	receive	window	of	the	other,	and	vice	versa.	Note,	however,	that
the	values	of	the	pointers	do	not	always	match	exactly	on	the	two	devices,
because	at	any	given	time,	some	bytes	may	be	in	transit	between	the	two.
Figure	48-5,	for	example,	shows	the	receive	pointers	of	the	recipient	prior	to
receiving	bytes	32	to	45,	which	are	shown	in	transit	in	Figure	48-4.

TCP	Segment	Fields	Used	to	Exchange	Pointer
Information
Both	SND	and	RCV	pointers	are	maintained	in	the	TCB	for	the	connection	held
by	each	device.	As	data	is	exchanged,	the	pointers	are	updated,	and	information
about	the	state	of	the	send	and	receive	streams	is	exchanged	using	control	fields
in	the	TCP	segment	format.	The	following	are	the	three	most	important	TCP
segment	fields	used	to	exchange	pointer	information:

Sequence	Number	Identifies	the	sequence	number	of	the	first	byte	of	data	in	the
segment	being	transmitted.	This	will	normally	be	equal	to	the	value	of	the
SND.UNA	pointer	at	the	time	that	data	is	sent.

Acknowledgment	Number	Acknowledges	the	receipt	of	data	by	specifying	the
sequence	number	that	the	sender	of	the	segment	expects	in	the	segment
recipient's	next	transmission.	This	field	will	normally	be	equal	to	the	RCV.NXT
pointer	of	the	device	that	sends	it.

Window	The	size	of	the	receive	window	of	the	device	sending	the	segment	(and
thus,	the	send	window	of	the	device	receiving	the	segment).



The	Acknowledgment	Number	field	is	critical	because	a	device	uses	this	field	to
tell	its	peer	which	segments	it	has	received.	The	system	is	cumulative.	The
Acknowledgment	Number	field	says,	"I	have	received	all	data	bytes	with
sequence	numbers	less	than	this	value."	This	means	if	a	client	receives	many
segments	of	data	from	a	server	in	rapid	succession,	it	can	acknowledge	all	of
them	using	a	single	number,	as	long	as	they	are	contiguous.	If	they	are	not
contiguous,	then	things	get	more	complicated;	see	"TCP	Noncontiguous
Acknowledgment	Handling	and	Selective	Acknowledgment	(SACK)"	in
Chapter	49.

TIP

KEY	CONCEPT	Three	essential	fields	in	the	TCP	segment	format	are	used	to	implement	the	sliding
windows	system.	The	Sequence	Number	field	indicates	the	number	of	the	first	byte	of	data	being
transmitted.	The	Acknowledgment	Number	is	used	to	acknowledge	data	received	by	the	device	sending
this	segment.	The	Window	field	tells	the	recipient	of	the	segment	the	size	to	which	it	should	set	its	send
window.

An	Example	of	TCP	Sliding	Window	Mechanics
To	see	how	all	of	this	works,	let's	consider	an	example	of	a	client	and	server
using	a	mythical	file-retrieval	protocol.	This	protocol	specifies	that	the	client
sends	a	request	and	receives	an	immediate	response	from	the	server.	The	server
then	sends	the	file	requested	when	it	is	ready.

The	two	devices	will	first	establish	a	connection	and	synchronize	sequence
numbers.	For	simplicity,	let's	say	the	client	uses	an	ISN	of	0,	and	the	server	uses
an	ISN	of	240.	The	server	will	send	the	client	an	ACK	with	an	Acknowledgment
Number	of	1,	indicating	it	is	the	sequence	number	it	expects	to	receive	next.
Let's	say	the	server's	receive	window	size	is	set	to	350,	so	this	is	the	client's	send
window	size.	The	client	will	send	its	ACK	with	an	Acknowledgment	Number	of
241.	Let's	say	its	receive	window	size	is	200	(and	the	server's	client	window	size
is	thus	200).	Let's	assume	that	both	devices	maintain	the	same	window	size
throughout	the	transaction.	This	won't	normally	happen,	especially	if	the	devices
are	busy,	but	the	example	is	complicated	enough.	Let's	also	say	the	MSS	is	536
bytes	in	both	directions.	This	means	that	the	MSS	won't	affect	the	size	of	actual
segments	in	this	example	(since	the	MSS	is	larger	than	the	send	window	sizes
for	both	devices).



for	both	devices).

We'll	follow	a	sample	transaction	to	show	how	the	send	and	receive	pointers	are
created	and	changed	as	messages	are	exchanged	between	client	and	server.
Table	48-6	describes	the	process	in	detail,	showing	for	each	step	what	the	send
and	receive	pointers	are	for	both	devices.	It	is	rather	large,	so	beware.	The
transaction	is	also	graphically	illustrated	in	Figures	Figure	48-6	and	Figure	48-7.
Both	illustrate	the	same	exchange	of	messages,	using	the	step	numbers	of
Table	48-6,	but	from	the	perspective	of	one	of	the	devices.	Figure	48-6	shows
the	server's	send	pointers	and	client's	receive	pointers.	Figure	48-7	shows	the
client's	send	pointers	and	server's	receive	pointers.	(I	would	have	put	them	all	in
one	diagram,	but	they	wouldn't	fit!)

Table	48-6.	TCP	Transaction	Example	with	Send	and	Receive	Pointers

	 	 	 	 	 	 	 	 	

Process
Step

SND.UNA SND.NXT SND.WND RCV.NXT RCV.WND Process
Step

SND.UNA SND.NXT

	 	 	 	 	 	 	 	 	

(setup) 1 1 360 241 200 (setup) 241 241

	 	 	 	 	 	 	 	 	

1.	Send
Request

1 141 360 241 200 (wait) 241 241

	 	 	 	 	 	 	 	 	



(wait) 1 141 360 241 200 2.
Receive
Request,
Send
Ack	&
Reply

241 321

	 	 	 	 	 	 	 	 	

3.
Receive
Ack	&

141 141 360 321 200 4.	Send
Part	1	of
File

241 441



Ack	&
Reply,
Send
Ack

File

	 	 	 	 	 	 	 	 	

5.
Receive
Part	1	of
File,
Send
Ack

141 141 360 441 200 6.
Receive
Ack	for
Reply

321 441

	 	 	 	 	 	 	 	 	



(wait) 141 141 360 441 200 7.
Receive
Ack	for
Part	1	of
File

441 441

	 	 	 	 	 	 	 	 	

(still
waiting?)

141 141 360 441 200 8.	Send
Part	2	of
File

441 601

	 	 	 	 	 	 	 	 	



9.
Receive
Part	2	of
File,
Send
Ack

141 141 360 601 200 (wait) 441 601

	 	 	 	 	 	 	 	 	

(done) 141 141 360 601 200 10.
Receive
Ack	for
Part	2	of
File

601 601

	 	 	 	 	 	 	 	 	



Figure	48-6.	TCP	transaction	example	showing	the	server's	send	pointers	The	transaction	of	Table	48-6
from	the	perspective	of	the	server.	See	Figure	48-7	for	the	client's	pointers.



Figure	48-7.	TCP	transaction	example	showing	client's	send	pointers	The	transaction	of	Table	48-6	from
the	perspective	of	the	client.	See	Figure	48-6	for	the	server's	pointers.

Real-World	Complications	of	the	Sliding	Window
Mechanism
I'm	sure	the	process	outlined	in	the	previous	section	seems	rather	complicated,
but	in	fact,	the	example	is	highly	simplified,	to	show	you	how	the	basic	data
transfer	mechanism	works	without	too	much	going	on.	Scary,	isn't	it?	A	real-
world	connection	would	include	several	complications:

Overlapping	Transmissions	I	intentionally	showed	only	one	request	from	the



client	and	the	response	from	the	server.	In	reality,	the	client	and	server	could	be
pumping	many	requests	and	responses	at	each	other	in	rapid-fire	succession.	The
client	would	be	acknowledging	segments	received	from	the	server	with	segments
that	themselves	contained	new	requests,	and	so	on.

Acknowledgment	of	Multiple	Segments	I	also	didn't	show	a	case	where	two
segments	are	received	by	a	device	and	acknowledged	with	a	single
acknowledgment,	although	this	can	certainly	happen.	Suppose	that,	in	the
example,	the	two	parts	of	the	280-byte	file	were	sent	at	once	and	received	by	the
client	at	the	same	time.	The	client	would	acknowledge	both	by	sending	a	single
segment	with	an	Acknowledgment	Number	of	601.	Remember	that	this	field	is	a
cumulative	acknowledgment	of	all	segments	containing	data	through	the	number
preceding	it,	so	this	would	acknowledge	all	data	up	to	byte	600.

Fluctuating	Window	Sizes	for	Flow	Control	The	window	sizes	in	the	example
remained	constant,	but	in	a	real	connection,	this	will	not	always	be	the	case.	A
very	busy	server	may	not	be	able	to	process	and	remove	data	from	its	buffer	as
fast	as	it	acknowledges	it.	It	may	need	to	shrink	its	receive	window	to	reduce	the
amount	of	data	the	client	sends	it,	and	then	increase	the	window	when	more
space	becomes	available.	This	is	how	TCP	implements	flow	control,	as	you	will
see	in	the	next	chapter.

Lost	Transmissions	In	a	real	connection,	some	transmitted	segments	will	be	lost
and	need	to	be	retransmitted.	This	is	handled	by	TCP's	retransmission	scheme
(described	in	Chapter	49).

Avoiding	Small	Window	Problems	I	hinted	in	the	description	of	the	example
that	we	don't	necessarily	always	want	to	send	data	as	fast	as	we	can,	to	avoid
sending	a	very	small	segment.	The	reason	is	that	this	can	lead	to	performance
degradation,	including	a	phenomenon	called	silly	window	syndrome.	This	will
also	be	explored	in	the	next	chapter,	where	we	will	see	how	handling	it	requires
that	we	change	the	simple	sliding	windows	scheme	we	examined	so	far.

Congestion	Handling	and	Avoidance	The	basic	sliding	window	mechanism
has	been	changed	over	the	years	to	avoid	having	TCP	connections	cause
internetwork	congestion	and	to	have	them	handle	congestion	when	it	is	detected.
Congestion	issues	are	discussed,	as	you	may	have	guessed,	in	the	next	chapter.



TCP	Immediate	Data	Transfer:	Push	Function
The	fact	that	TCP	takes	incoming	data	from	a	process	as	an	unstructured	stream
of	bytes	gives	it	great	flexibility	in	meeting	the	needs	of	most	applications.	There
is	no	need	for	an	application	to	create	blocks	or	messages;	it	just	sends	the	data
to	TCP	when	it	is	ready	for	transmission.	For	its	part,	TCP	has	no	knowledge	or
interest	in	the	meaning	of	the	bytes	of	data	in	this	stream.	They	are	just	bytes,
and	TCP	sends	them	without	any	real	concern	for	their	structure	or	purpose.

This	has	a	couple	of	interesting	effects	on	how	applications	work.	One	is	that
TCP	does	not	provide	any	natural	indication	of	the	dividing	point	between	pieces
of	data,	such	as	database	records	or	files.	The	application	must	take	care	of	this.
Another	result	of	TCP's	byte	orientation	is	that	TCP	cannot	decide	when	to	form
a	segment	and	send	bytes	between	devices	based	on	the	contents	of	the	data.
TCP	will	generally	accumulate	data	sent	to	it	by	an	application	process	in	a
buffer.	It	chooses	when	and	how	to	send	data	based	solely	on	the	sliding	window
system	discussed	in	the	previous	section,	in	combination	with	logic	that	helps	to
ensure	efficient	operation	of	the	protocol.

This	means	that	while	an	application	can	control	the	rate	and	timing	with	which
it	sends	data	to	TCP,	it	cannot	inherently	control	the	timing	with	which	TCP
itself	sends	the	data	over	the	internetwork.	Now,	if	we	are	sending	a	large	file,
for	example,	this	isn't	a	big	problem.	As	long	as	we	keep	sending	data,	TCP	will
keep	forwarding	it	over	the	internetwork.	It's	generally	fine	in	such	a	case	to	let
TCP	fill	its	internal	transmit	buffer	with	data	and	form	a	segment	to	be	sent
when	TCP	feels	it	is	appropriate.

However,	there	are	situations	where	letting	TCP	accumulate	data	before
transmitting	it	can	cause	serious	application	problems.	The	classic	example	of
this	is	an	interactive	application	such	as	the	Telnet	protocol	(see	Chapter	87).
When	you	are	using	such	a	program,	you	want	each	keystroke	to	be	sent
immediately	to	the	other	application;	you	don't	want	TCP	to	accumulate
hundreds	of	keystrokes	and	then	send	them	all	at	once.	The	latter	may	be	more
efficient,	but	it	makes	the	application	unusable,	which	is	really	putting	the	cart
before	the	horse.

Even	with	a	more	mundane	protocol	that	transfers	files,	there	are	many	situations



in	which	we	need	to	say,	"Send	the	data	now."	For	example,	many	protocols
begin	with	a	client	sending	a	request	to	a	server—like	the	hypothetical	one	in	the
preceding	example	or	a	request	for	a	web	page	sent	by	a	web	browser.	In	that
case,	we	want	the	client's	request	sent	immediately;	we	don't	want	to	wait	until
enough	requests	have	been	accumulated	by	TCP	to	fill	an	optimal-sized
segment.

Naturally,	the	designers	of	TCP	realized	that	we	needed	a	way	to	handle	these
situations.	When	an	application	has	data	that	it	needs	to	have	sent	across	the
internetwork	immediately,	it	sends	the	data	to	TCP,	and	then	uses	the	TCP	push
function.	This	tells	the	sending	TCP	to	immediately	"push"	all	the	data	it	has	to
the	recipient's	TCP	as	soon	as	it	is	able	to	do	so,	without	waiting	for	more	data.

When	this	function	is	invoked,	TCP	will	create	a	segment	(or	segments)	that
contains	all	the	data	it	has	outstanding	and	then	transmit	it	with	the	PSH	control
bit	set	to	1.	The	destination	device's	TCP	software,	seeing	this	bit	sent,	will
know	that	it	should	not	just	take	the	data	in	the	segment	it	received	and	buffer	it,
but	rather	push	it	through	directly	to	the	application.

TIP

KEY	CONCEPT	TCP	includes	a	special	push	function	to	handle	cases	where	data	given	to	TCP	needs
to	be	sent	immediately.	An	application	can	send	data	to	its	TCP	software	and	indicate	that	it	should	be
pushed.	The	segment	will	be	sent	right	away	rather	than	being	buffered.	The	pushed	segment's	PSH
control	bit	will	be	set	to	1	to	tell	the	receiving	TCP	that	it	should	immediately	pass	the	data	up	to	the
receiving	application.

It's	important	to	realize	that	the	push	function	only	forces	immediate	delivery	of
data.	It	does	not	change	the	fact	that	TCP	provides	no	boundaries	between	data
elements.	It	may	seem	that	an	application	could	send	one	record	of	data	and	then
push	it	to	the	recipient,	then	send	the	second	record	and	push	that,	and	so	on.
However,	the	application	cannot	assume	that	because	it	sets	the	PSH	bit	for	each
piece	of	data	it	gives	to	TCP,	each	piece	of	data	will	be	in	a	single	segment.	It	is
possible	that	the	first	push	may	contain	data	given	to	TCP	earlier	that	wasn't	yet
transmitted,	and	it's	also	possible	that	two	records	pushed	in	this	manner	may
end	up	in	the	same	segment	anyway.



TCP	Priority	Data	Transfer:	Urgent	Function
As	noted	earlier,	the	fact	that	TCP	treats	data	to	be	transmitted	as	just	an
unstructured	stream	of	bytes	has	some	important	implications	on	how	it	used.
One	aspect	of	this	characteristic	is	that	since	TCP	doesn't	understand	the	content
of	the	data	it	sends,	it	normally	treats	all	the	data	bytes	in	a	stream	as	equals.	The
data	is	sent	to	TCP	in	a	particular	sequence,	and	it	is	transmitted	in	that	same
order.	This	makes	TCP,	in	this	regard,	like	those	annoying	voice	mail	systems
that	tell	you	not	to	hang	up	because	they	will	answer	calls	in	the	order	received.

Of	course,	while	waiting	on	hold	is	irritating,	this	first-in,	first-out	behavior	is
usually	how	we	want	TCP	to	operate.	If	we	are	transmitting	a	message	or	a	file,
we	want	to	be	able	to	give	TCP	the	bytes	that	compose	that	file	and	have	TCP
transmit	that	data	in	the	order	we	gave	it.	However,	just	as	special	circumstances
can	require	the	use	of	the	push	function	described	in	the	previous	section,	there
are	cases	where	we	may	not	want	to	always	send	all	data	in	the	exact	sequence	it
was	given	to	TCP.

The	most	common	example	of	this	is	when	it	is	necessary	to	interrupt	an
application's	data	transfer.	Suppose	we	have	an	application	that	sends	large	files
in	both	directions	between	two	devices.	The	user	of	the	application	realizes	that
the	wrong	file	is	being	transferred.	When	she	tells	the	application	to	stop	the	file
being	sent,	she	wants	this	to	be	communicated	to	the	other	end	of	the	TCP
connection	immediately.	She	doesn't	want	the	abort	command	to	just	be	placed
at	the	end	of	the	line	after	the	file	she	is	trying	to	send!

TCP	provides	a	means	for	a	process	to	prioritize	the	sending	of	data	in	the	form
of	its	urgent	function.	To	use	it,	the	process	that	needs	to	send	urgent	data
enables	the	function	and	sends	the	urgent	data	to	its	TCP	layer.	TCP	then	creates
a	special	TCP	segment	that	has	the	URG	control	bit	set	to	1.	It	also	sets	the
Urgent	Pointer	field	to	an	offset	value	that	points	to	the	last	byte	of	urgent	data
in	the	segment.	So,	for	example,	if	the	segment	contained	400	bytes	of	urgent
data	followed	by	200	bytes	of	regular	data,	the	URG	bit	would	be	set,	and	the
Urgent	Pointer	field	would	have	a	value	of	400.

Upon	receipt	of	a	segment	with	the	URG	flag	set	to	1,	the	receiving	device	looks
at	the	Urgent	Pointer	and	from	its	value	determines	which	data	in	the	segment	is
urgent.	It	then	forwards	the	urgent	data	to	the	process	with	an	indication	that	the



urgent.	It	then	forwards	the	urgent	data	to	the	process	with	an	indication	that	the
data	is	marked	as	urgent	by	the	sender.	The	rest	of	the	data	in	the	segment	is
processed	normally.

TIP

KEY	CONCEPT	To	deal	with	situations	where	a	certain	part	of	a	data	stream	needs	to	be	sent	with	a
higher	priority	than	the	rest,	TCP	incorporates	an	urgent	function.	When	critical	data	needs	to	be	sent,
the	application	signals	this	to	its	TCP	layer,	which	transmits	it	with	the	URG	bit	set	in	the	TCP	segment,
bypassing	any	lower-priority	data	that	may	have	already	been	queued	for	transmission.

Since	we	typically	want	to	send	urgent	data,	well,	urgently,	it	makes	sense	that
when	such	data	is	given	to	TCP,	the	push	function	is	usually	also	invoked.	This
ensures	that	the	urgent	data	is	sent	as	soon	as	possible	by	the	transmitting	TCP
and	also	forwarded	up	the	protocol	stack	right	away	by	the	receiving	TCP.
Again,	we	need	to	remember	that	this	does	not	guarantee	the	contents	of	the
urgent	segment.	Using	the	push	function	may	mean	the	segment	contains	only
urgent	data	with	no	regular	data	following,	but	again,	an	application	cannot
assume	that	this	will	always	be	the	case.



Chapter	49.	TCP	RELIABILITY
AND	FLOW	CONTROL
FEATURES

The	main	task	of	the	Transmission	Control	Protocol	(TCP)	is	simple:	packaging
and	sending	data.	Of	course,	almost	every	protocol	packages	and	sends	data!
What	distinguishes	TCP	from	these	protocols	is	the	sliding	window	mechanism
we	explored	in	the	previous	chapter,	which	controls	the	flow	of	data	between
devices.	This	system	not	only	manages	the	basic	data	transfer	process,	but	it	also
ensures	that	data	is	sent	reliably	and	manages	the	flow	of	data	between	devices
to	transfer	data	efficiently,	without	either	device	sending	data	faster	than	the
other	can	receive	it.

To	enable	TCP	to	provide	the	features	and	quality	of	data	transfer	that
applications	require,	the	protocol	needed	to	be	enhanced	beyond	the	simplified
data	transfer	mechanism	we	saw	in	preceding	chapters.	The	developers	needed
to	give	extra	"smarts"	to	the	protocol	to	handle	potential	problems	and	make
changes	to	the	basic	way	that	devices	send	data,	to	avoid	inefficiencies	that
might	otherwise	have	resulted.

In	this	chapter,	I	describe	how	TCP	ensures	that	devices	on	a	TCP	connection
communicate	in	a	reliable	and	efficient	manner.	I	begin	with	an	explanation	of
the	basic	method	by	which	TCP	detects	lost	segments	and	retransmits	them.	I
discuss	some	of	the	issues	associated	with	TCP's	acknowledgment	scheme	and
an	optional	feature	for	improving	its	efficiency.	I	then	describe	the	system	by
which	TCP	adjusts	how	long	it	will	wait	before	deciding	that	a	segment	is	lost.	I
discuss	how	the	window	size	can	be	adjusted	to	implement	flow	control	and
some	of	the	issues	involved	in	window	size	management.	This	includes	a	look	at



the	infamous	"silly	window	syndrome"	problem	and	special	heuristics	for
addressing	issues	related	to	small	window	size	that	modify	the	basic	sliding
windows	scheme.	I	conclude	with	a	discussion	of	TCP's	mechanisms	for
handling	and	avoiding	congestion.

TIP

BACKGROUND	INFORMATION	This	section	assumes	that	you	are	already	familiar	with	TCP
sequence	numbers	and	segments,	and	the	basics	of	the	TCP	sliding	window	mechanism.	It	also	assumes
you	have	already	read	the	section	on	TCP	message	formatting	and	data	transfer.	If	not,	you	may	want	to
review	at	least	the	section	about	TCP	data	transfer	mechanics	in	Chapter	48.	Several	of	the	sections	in
this	chapter	extend	that	simplified	discussion	of	TCP	data	transfer	to	show	what	happens	in	nonideal
conditions.

TCP	Segment	Retransmission	Timers	and	the
Retransmission	Queue
TCP's	basic	data	transfer	and	acknowledgment	mechanism	uses	a	set	of	variables
maintained	by	each	device	to	implement	the	sliding	window	system.	These
pointers	keep	track	of	the	bytes	of	data	sent	and	received	by	each	device,	as	well
as	differentiating	between	acknowledged	and	unacknowledged	transmissions.	In
the	preceding	chapter,	I	described	this	mechanism	and	gave	a	simplified	example
showing	how	a	client	and	server	use	it	for	basic	data	transfer.

One	of	the	reasons	why	that	example	is	simplified	is	that	every	segment	that	was
transmitted	by	the	server	was	received	by	the	client	and	vice	versa.	It	would	be
nice	if	we	could	always	count	on	this	happening,	but	as	we	know,	in	an	Internet
environment,	this	is	not	realistic.	Due	to	any	number	of	conditions—such	as
hardware	failure,	corruption	of	an	Internet	Protocol	(IP)	datagram,	or	router
congestion—a	TCP	segment	may	be	sent	but	never	received.	To	qualify	as	a
reliable	transport	protocol,	TCP	must	be	able	detect	lost	segments	and	retransmit
them.

Managing	Retransmissions	Using	the
Retransmission	Queue
The	method	for	detecting	lost	segments	and	retransmitting	them	is	conceptually
simple.	Each	time	we	send	a	segment,	we	start	a	retransmission	timer.	This	timer



starts	at	a	predetermined	value	and	counts	down	over	time.	If	the	timer	expires
before	an	acknowledgment	is	received	for	the	segment,	we	retransmit	the
segment.

TCP	uses	this	basic	technique,	but	implements	it	in	a	slightly	different	way.	The
reason	for	this	is	the	need	to	efficiently	deal	with	many	segments	that	may	be
unacknowledged	at	once,	to	ensure	that	they	are	each	retransmitted	at	the
appropriate	time	if	needed.	The	TCP	system	works	according	to	the	following
specific	sequence.

Placement	on	Retransmission	Queue,	Timer	Start	As	soon	as	a	segment
containing	data	is	transmitted,	a	copy	of	the	segment	is	placed	in	a	data	structure
called	the	retransmission	queue.	A	retransmission	timer	is	started	for	the
segment	when	it	is	placed	on	the	queue.	Thus,	at	some	point,	every	segment	is
placed	in	this	queue.	The	queue	is	kept	sorted	by	the	time	remaining	in	the
retransmission	timer,	so	the	TCP	software	can	keep	track	of	which	timers	have
the	least	time	remaining	before	they	expire.

Acknowledgment	Processing	If	an	acknowledgment	is	received	for	a	segment
before	its	timer	expires,	the	segment	is	removed	from	the	retransmission	queue.

Retransmission	Timeout	If	an	acknowledgment	is	not	received	before	the	timer
for	a	segment	expires,	a	retransmission	timeout	occurs,	and	the	segment	is
automatically	retransmitted.

Of	course,	we	have	no	more	guarantee	that	a	retransmitted	segment	will	be
received	than	we	had	for	the	original	segment.	For	this	reason,	after
retransmitting	a	segment,	it	remains	in	the	retransmission	queue.	The
retransmission	timer	is	reset,	and	the	countdown	begins	again.	If	an
acknowledgment	is	not	received	for	the	retransmission,	the	segment	will	be
retransmitted	again	and	the	process	repeated.

Certain	conditions	may	cause	even	repeated	retransmissions	of	a	segment	to	fail.
We	don't	want	TCP	to	just	keep	retransmitting	forever,	so	TCP	will	retransmit	a
lost	segment	only	a	certain	number	of	times	before	concluding	that	there	is	a
problem	and	terminating	the	connection.

TIP



KEY	CONCEPT	To	provide	basic	reliability	for	sent	data,	each	device's	TCP	implementation	uses	a
retransmission	queue.	Each	sent	segment	is	placed	in	the	queue	and	a	retransmission	timer	started	for	it.
When	an	acknowledgment	is	received	for	the	data	in	the	segment,	it	is	removed	from	the	retransmission
queue.	If	the	timer	goes	off	before	an	acknowledgment	is	received,	the	segment	is	retransmitted	and	the
timer	restarted.

Recognizing	When	a	Segment	Is	Fully
Acknowledged
But	how	do	we	know	when	a	segment	has	been	fully	acknowledged?
Retransmissions	are	handled	on	a	segment	basis,	but	TCP	acknowledgments,	as
we	have	seen,	are	done	on	a	cumulative	basis	using	sequence	numbers.	Each
time	a	segment	is	sent	by	Device	A	to	Device	B,	Device	B	looks	at	the	value	of
the	Acknowledgment	Number	field	in	the	segment.	All	bytes	with	sequence
numbers	lower	than	the	value	of	this	field	have	been	received	by	Device	A.
Thus,	a	segment	sent	by	Device	B	to	Device	A	is	considered	acknowledged
when	all	of	the	bytes	that	were	sent	in	the	segment	have	a	lower	sequence
number	than	the	latest	Acknowledgment	Number	sent	by	Device	B	to	Device	A.
This	is	determined	by	calculating	the	last	sequence	number	of	the	segment	using
its	first	byte	number	(in	the	Sequence	Number	field)	and	length	of	the	segment's
Data	field.

TIP

KEY	CONCEPT	TCP	uses	a	cumulative	acknowledgment	system.	The	Acknowledgment	Number	field
in	a	segment	received	by	a	device	indicates	that	all	bytes	of	data	with	sequence	numbers	less	than	that
value	have	been	successfully	received	by	the	other	device.	A	segment	is	considered	acknowledged	when
all	of	its	bytes	have	been	acknowledged;	in	other	words,	when	an	Acknowledgment	Number	containing
a	value	larger	than	the	sequence	number	of	its	last	byte	is	received.

Let's	use	the	example	illustrated	in	Figure	49-1	to	clarify	how	acknowledgments
and	retransmissions	work	in	TCP.	Suppose	the	server	in	a	connection	sends	out
four	contiguous	segments	(numbered	starting	with	1	for	clarity):

Segment	1	Sequence	Number	field	is	1	and	segment	length	is	80.	So	the	last
sequence	number	in	Segment	1	is	80.

Segment	2	Sequence	Number	field	is	81	and	segment	length	is	120.	The	last
sequence	number	in	Segment	2	is	200.



Segment	3	Sequence	Number	field	is	201	and	segment	length	is	160.	The	last
sequence	number	in	Segment	3	is	360.

Segment	4	Sequence	Number	field	is	361	and	segment	length	is	140.	The	last
sequence	number	in	Segment	4	is	500.

Again,	these	segments	can	be	sent	one	after	the	other,	without	needing	to	wait
for	each	preceding	transmission	to	be	acknowledged.	This	is	a	major	benefit	of
TCP's	sliding	window	mechanism.

Now	let's	say	the	client	receives	the	first	two	transmissions.	It	will	send	back	an
acknowledgment	with	an	Acknowledgment	Number	field	value	of	201.	This	tells
the	server	that	the	first	two	segments	have	been	successfully	received	by	the
client;	they	will	be	removed	from	the	retransmission	queue	(and	the	server's	send
window	will	slide	200	bytes	to	the	right).	Segment	3	will	remain	on	the
retransmission	queue	until	a	segment	with	an	Acknowledgment	Number	field
value	of	361	or	higher	is	received;	Segment	4	requires	an	acknowledgment	value
of	501	or	greater.

Now,	let's	further	suppose	in	this	example	that	Segment	3	gets	lost	in	transit,	but
Segment	4	is	received.	The	client	will	store	Segment	4	in	its	receive	buffer,	but
will	not	be	able	to	acknowledge	it,	because	of	TCP's	cumulative
acknowledgment	system—acknowledging	Segment	4	would	imply	receipt	of
Segment	3	as	well,	which	never	showed	up.	So,	the	client	will	need	to	wait	for
Segment	3.	Eventually,	the	retransmission	timer	that	the	server	started	for
Segment	3	will	expire.	The	server	will	then	retransmit	Segment	3.	It	will	be
received	by	the	client,	which	will	then	be	able	to	acknowledge	both	Segments	3
and	4	to	the	server.

There's	another	important	issue	here,	however:	How	exactly	should	the	server
handle	Segment	4?	While	the	client	is	waiting	for	the	missing	Segment	3,	the
server	is	receiving	no	feedback,	so	it	doesn't	know	that	Segment	3	is	lost,	and	it
also	doesn't	know	what	happened	to	Segment	4	(or	any	subsequent
transmissions).	It	is	possible	that	the	client	has	already	received	Segment	4	but
just	couldn't	acknowledge	it.	Then	again,	maybe	Segment	4	got	lost	as	well.
Some	implementations	may	choose	to	resend	only	Segment	3,	while	some	may
choose	to	resend	both	Segments	3	and	4.	This	is	an	important	issue	that	we	will
discuss	next.



Figure	49-1.	TCP	transaction	example	with	retransmission	This	diagram	illustrates	a	simple	transaction
and	shows	the	server's	send	pointers	and	client's	receive	pointers.	The	server	sends	three	segments	to	the
client	in	rapid	succession,	setting	a	retransmission	timer	for	each.	Parts	1	and	2	are	received,	and	the
client	sends	an	acknowledgment	for	them.	Upon	receipt	of	this	ACK,	Parts	1	and	2	are	taken	off	the
retransmission	queue.	However,	Part	3	is	lost	in	transit.	When	Part	4	is	received,	the	client	cannot

acknowledge	it;	this	would	imply	receipt	of	the	missing	Part	3.	Eventually,	the	retransmission	timer	for
Part	3	expires	and	it	is	retransmitted,	at	which	time	both	Part	3	and	Part	4	are	acknowledged.

A	final	issue	is	what	value	we	should	use	for	the	retransmission	timer	when	we
put	a	segment	on	the	retransmission	queue.	If	it	is	set	too	low,	excessive
retransmissions	occur;	if	set	too	high,	performance	is	reduced	due	to	extraneous
delays	in	resending	lost	segments.	In	fact,	TCP	cannot	use	a	single	number	for
this	value.	It	must	determine	the	value	dynamically	using	a	process	called
adaptive	retransmission,	which	we	will	examine	later	in	the	chapter.



TCP	Noncontiguous	Acknowledgment	Handling
and	Selective	Acknowledgment	(SACK)
Computer	science	people	sometimes	use	the	term	elegant	to	describe	a	simple
but	effective	solution	to	a	problem	or	need.	I	think	the	term	applies	fairly	well	to
the	cumulative	acknowledgment	method	that	is	part	of	the	TCP	sliding	window
system.	With	a	single	number,	returned	in	the	Acknowledgment	Number	field	of
a	TCP	segment,	the	device	sending	the	segment	can	acknowledge	not	just	a
single	segment	it	has	received	from	its	connection	peer,	but	possibly	several	of
them.	We	saw	how	this	works	in	the	discussion	of	the	fundamentals	of	sliding
windows	in	Chapter	46,	and	again	in	the	previous	discussion	of	retransmissions.

Even	the	most	elegant	technique	has	certain	weaknesses,	however.	In	the	case	of
the	TCP	acknowledgment	system,	it	is	the	inability	to	effectively	deal	with	the
receipt	of	noncontiguous	TCP	segments.	The	Acknowledgment	Number
specifies	that	all	sequence	numbers	lower	than	its	value	have	been	received	by
the	device	sending	that	number.	If	we	receive	bytes	with	sequence	numbers	in
two	noncontiguous	ranges,	there	is	no	way	to	specify	this	with	a	single	number.

This	can	lead	to	potentially	serious	performance	problems,	especially	on
internetworks	that	operate	at	high	speed	or	over	inherently	unreliable	physical
networks.	To	see	what	the	problem	is,	let's	go	back	to	the	example	illustrated	in
Figure	49-1.	There,	the	server	sent	four	segments	and	received	back	an
acknowledgment	with	an	Acknowledgment	Number	value	of	201.	Segment	1
and	Segment	2	were	thus	considered	acknowledged.	They	would	be	removed
from	the	retransmission	queue,	and	this	would	also	allow	the	server's	send
window	to	slide	80+120	bytes	to	the	right,	allowing	200	more	bytes	of	data	to	be
sent.

However,	let's	again	imagine	that	Segment	3,	starting	with	sequence	number
201,	is	somehow	lost	in	transit.	Since	the	client	never	receives	this	segment,	it
can	never	send	back	an	acknowledgment	with	an	Acknowledgment	Number
higher	than	201.	This	causes	the	sliding	window	system	to	get	stuck.	The	server
can	continue	to	send	additional	segments	until	it	fills	up	the	client's	receive
window,	but	until	the	client	sends	another	acknowledgment,	the	server's	send
window	will	not	slide.



The	other	problem	we	saw	is	that	if	Segment	3	gets	lost,	the	client	has	no	way	to
tell	the	server	that	it	has	received	any	subsequent	segments.	It's	entirely	possible
that	the	client	has	received	the	server's	Segment	4	and	later	segments,	until	the
window	filled	up.	But	the	client	can't	send	an	acknowledgment	with	a	value	of
501	to	indicate	receipt	of	Segment	4,	because	this	implies	receipt	of	Segment	3
as	well.

NOTE

In	some	cases,	the	client	may	still	send	an	acknowledgment	upon	receipt	of	Segment	4,	but	containing
only	a	repeated	acknowledgment	of	the	bytes	up	to	the	end	of	Segment	2.	See	the	coverage	of	congestion
avoidance	later	in	this	chapter	for	an	explanation.

And	here	we	see	the	drawback	of	the	single-number,	cumulative
acknowledgment	system	of	TCP.	We	could	imagine	a	worst-case	scenario,	in
which	the	server	is	told	it	has	a	window	of	10,000	bytes,	and	sends	20	segments
of	500	bytes	each.	The	first	segment	is	lost,	and	the	other	19	are	received.	But
since	it	is	the	first	segment	that	never	showed	up,	none	of	the	other	19	segments
can	be	acknowledged!
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KEY	CONCEPT	TCP's	acknowledgment	system	is	cumulative.	This	means	that	if	a	segment	is	lost	in
transit,	no	subsequent	segments	can	be	acknowledged	until	the	missing	one	is	retransmitted	and
successfully	received.

Policies	for	Dealing	with	Outstanding
Unacknowledged	Segments
How	do	we	handle	retransmissions	when	there	are	subsequent	segments
outstanding	beyond	the	lost	segment?	In	our	example,	when	the	server
experiences	a	retransmission	timeout	on	Segment	3,	it	must	decide	what	to	do
about	Segment	4,	when	it	simply	doesn't	know	whether	or	not	the	client	received
it.	In	our	worst-case	scenario,	we	have	19	segments	that	may	or	may	not	have
shown	up	at	the	client	after	the	first	one	that	was	lost.

We	have	two	possible	ways	to	handle	this	situation:

Retransmit	Only	Timed-Out	Segments	This	is	the	more	conservative,	or	if	you



prefer,	optimistic	approach.	We	retransmit	only	the	segment	that	timed	out,
hoping	that	the	other	segments	beyond	it	were	successfully	received.	This
method	is	best	if	the	segments	after	the	timed-out	segment	actually	showed	up.	It
doesn't	work	so	well	if	they	did	not.	In	the	latter	case,	each	segment	would	need
to	time	out	individually	and	be	retransmitted.	Imagine	that	in	our	worst-case
scenario,	all	twenty	500-byte	segments	were	lost.	We	would	need	to	wait	for
Segment	1	to	time	out	and	be	retransmitted.	This	retransmission	would	be
acknowledged	(we	hope),	but	then	we	would	get	stuck	waiting	for	Segment	2	to
time	out	and	be	resent.	We	would	need	to	do	this	many	times.

Retransmit	All	Outstanding	Segments	This	is	the	more	aggressive,	or
pessimistic,	method.	Whenever	a	segment	times	out,	we	resend	not	only	that
segment,	but	all	other	segments	that	are	still	unacknowledged.	This	method
ensures	that	any	time	there	is	a	holdup	with	acknowledgments,	we	refresh	all
outstanding	segments	to	give	the	other	device	an	extra	chance	at	receiving	them,
in	case	they,	too,	were	lost.	In	the	case	where	all	20	segments	were	lost,	this
saves	substantial	amounts	of	time	over	the	alternative,	optimistic	approach.	The
problem	here	is	that	these	retransmissions	may	not	be	necessary.	If	the	first	of	20
segments	was	lost	and	the	other	19	were	actually	received,	we	would	be
resending	9500	bytes	of	data	(plus	headers)	for	no	reason.

Since	TCP	doesn't	know	whether	these	other	segments	showed	up,	it	cannot
know	which	method	is	better.	It	must	simply	make	an	executive	decision	to	use
one	approach	or	the	other	and	hope	for	the	best.	In	the	example	shown	in
Figure	49-1,	I	demonstrated	the	conservative,	optimistic	approach:	Only	the	lost
segment	of	the	file	was	retransmitted.	Figure	49-2	illustrates	the	alternative
aggressive,	pessimistic	approach	to	retransmission.



Figure	49-2.	TCP	aggressive	retransmission	example	This	example	is	the	same	as	that	shown	in
Figure	49-1,	except	that	here	the	server	is	taking	an	"aggressive"	approach	to	retransmitting	lost

segments.	When	Segment	3	times	out,	both	Segments	3	and	4	are	retransmitted,	and	their	retransmission
timers	restarted.	(In	this	case,	Segment	4	already	arrived,	so	this	extra	transmission	was	not	useful.)

TIP

KEY	CONCEPT	There	are	two	approaches	to	handling	retransmission	in	TCP.	In	the	more
conservative	approach,	only	the	segments	whose	timers	expire	are	retransmitted.	This	saves	bandwidth,
but	it	may	cause	performance	degradation	if	many	segments	in	a	row	are	lost.	The	alternative	is	that
when	a	segment's	retransmission	timer	expires,	both	it	and	all	subsequent	unacknowledged	segments	are
retransmitted.	This	provides	better	performance	if	many	segments	are	lost,	but	it	may	waste	bandwidth
on	unnecessary	retransmissions.

This	lack	of	knowledge	about	noncontiguous	segments	is	the	core	of	the



problem.	The	solution	is	to	extend	the	basic	TCP	sliding	window	algorithm	with
an	optional	feature	that	allows	a	device	to	acknowledge	noncontiguous	segments
individually.	This	feature,	introduced	in	RFC	1072	and	refined	in	RFC	2018,	is
called	TCP	selective	acknowledgment,	abbreviated	SACK.

A	Better	Solution:	Selective	Acknowledgment
(SACK)
To	use	SACK,	the	two	devices	on	the	connection	must	both	support	the	feature,
and	must	enable	it	by	negotiating	the	Selective	Acknowledge	Permitted	(SACK-
Permitted)	option	in	the	SYN	segment	they	use	to	establish	the	connection.
Assuming	this	is	done,	either	device	is	then	permitted	to	include	in	a	regular
TCP	segment	a	Selective	Acknowledgment	(SACK)	option.	This	option	contains
a	list	of	sequence	number	ranges	of	segments	of	data	that	have	been	received	but
have	not	been	acknowledged,	since	they	are	noncontiguous.

Each	device	modifies	its	retransmission	queue	so	that	each	segment	includes	a
flag	that	is	set	to	1	if	the	segment	has	been	selectively	acknowledged—the
SACK	bit.	The	device	then	uses	a	modified	version	of	the	aggressive	method
illustrated	in	Figure	49-2,	where	upon	retransmission	of	a	segment,	all	later
segments	are	also	retransmitted	unless	their	SACK	bits	are	set	to	1.

TIP

KEY	CONCEPT	The	optional	TCP	selective	acknowledgment	feature	provides	a	more	elegant	way	of
handling	subsequent	segments	when	a	retransmission	timer	expires.	When	a	device	receives	a
noncontiguous	segment,	it	includes	a	special	Selective	Acknowledgment	(SACK)	option	in	its	regular
acknowledgment	that	identifies	noncontiguous	segments	that	have	already	been	received,	even	if	they
are	not	yet	acknowledged.	This	saves	the	original	sender	from	needing	to	retransmit	them.

For	example,	in	our	four-segment	case,	if	the	client	receives	Segment	4	but	not
Segment	3,	when	it	sends	back	a	segment	with	an	Acknowledgment	Number
field	value	of	201	(for	Segments	1	and	2),	it	can	include	a	SACK	option	that
specifies,	"I	have	received	bytes	361	through	500,	but	they	are	not	yet
acknowledged."	This	can	also	be	done	in	a	second	acknowledgment	segment	if
Segment	4	arrives	well	after	Segments	1	and	2.	The	server	recognizes	this	as	the
range	of	bytes	for	Segment	4,	and	turns	on	the	SACK	bit	for	Segment	4.	When



Segment	3	is	retransmitted,	the	server	sees	that	the	SACK	bit	for	Segment	4	is
on	and	does	not	retransmit	it.	This	is	illustrated	in	Figure	49-3.

After	Segment	3	is	retransmitted,	the	SACK	bit	for	Segment	4	is	cleared.	This	is
done	for	robustness,	to	handle	cases	where,	for	whatever	reason,	the	client
changes	its	mind	about	having	received	Segment	4.	The	client	should	send	an
acknowledgment	with	an	Acknowledgment	Number	of	501	or	higher,	officially
indicating	receipt	of	Segments	3	and	4.	If	this	does	not	happen,	the	server	must
receive	another	selective	acknowledgment	for	Segment	4	to	turn	its	SACK	bit
back	on.	Otherwise,	it	will	be	automatically	resent	when	its	timer	expires	or
when	Segment	3	is	retransmitted.

Figure	49-3.	TCP	retransmission	with	selective	acknowledgment	(SACK)	This	is	the	example	from
Figures	Figure	49-1	and	Figure	49-2,	changed	to	use	the	optional	selective	acknowledge	feature.	After



receiving	Parts	1,	2,	and	4	of	the	file,	the	client	sends	an	acknowledgment	for	1	and	2	that	includes	a
SACK	for	Part	4.	This	tells	the	server	not	to	resend	Part	4	when	Part	3's	timer	expires.



TCP	Adaptive	Retransmission	and
Retransmission	Timer	Calculations
Whenever	a	TCP	segment	is	transmitted,	a	copy	of	it	is	also	placed	on	the
retransmission	queue.	When	the	segment	is	placed	on	the	queue,	a
retransmission	timer	is	started	for	the	segment,	which	starts	from	a	particular
value	and	counts	down	to	zero.	This	timer	controls	how	long	a	segment	can
remain	unacknowledged	before	the	sender	gives	up,	concludes	that	the	segment
is	lost,	and	sends	it	again.

The	length	of	time	we	use	for	retransmission	timer	is	thus	very	important.	If	it	is
set	too	low,	we	might	start	retransmitting	a	segment	that	was	actually	received,
because	we	didn't	wait	long	enough	for	the	acknowledgment	of	that	segment	to
arrive.	Conversely,	if	we	set	the	timer	too	long,	we	waste	time	waiting	for	an
acknowledgment	that	will	never	arrive,	reducing	overall	performance.

Ideally,	we	would	like	to	set	the	retransmission	timer	to	a	value	just	slightly
larger	than	the	round-trip	time	(RTT)	between	the	two	TCP	devices;	that	is,	the
typical	time	it	takes	to	send	a	segment	from	a	client	to	a	server	and	the	server	to
send	an	acknowledgment	back	to	the	client	(or	the	other	way	around,	of	course).
The	problem	is	that	there	is	no	such	typical	RTT.	There	are	two	main	reasons	for
this:

Differences	in	Connection	Distance	Suppose	you	are	at	work	in	the	United
States,	and	during	your	lunch	hour,	you	transfer	a	large	file	between	your
workstation	and	a	local	server	connection	using	100	Mbps	Fast	Ethernet.	At	the
same	time,	you	are	downloading	a	picture	of	your	nephew	from	your	sister's
personal	website,	which	is	connected	to	the	Internet	using	an	analog	modem	to
an	ISP	in	a	small	town	near	Lima,	Peru.	Would	you	want	both	of	these	TCP
connections	to	use	the	same	retransmission	timer	value?	I	certainly	hope	not!

Transient	Delays	and	Variability	The	amount	of	time	it	takes	to	send	data
between	any	two	devices	will	vary	over	time	due	to	various	happenings	on	the
internetwork:	fluctuations	in	traffic,	router	loads,	and	so	on.	To	see	an	example
of	this	for	yourself,	try	typing	ping www.tcpipguide.com	from	the	command
line	of	an	Internet-connected	PC,	and	you'll	see	how	the	reported	times	can	vary.



It	is	for	these	reasons	that	TCP	does	not	attempt	to	use	a	static,	single	number	for
its	retransmission	timers.	Instead,	TCP	uses	a	dynamic,	or
adaptiveretransmission	scheme.

Adaptive	Retransmission	Based	on	RTT
Calculations
TCP	attempts	to	determine	the	approximate	RTT	between	the	devices	and
adjusts	it	over	time	to	compensate	for	increases	or	decreases	in	the	average
delay.	The	practical	issues	of	how	this	is	done	are	important,	but	they	are	not
covered	in	much	detail	in	the	main	TCP	standard.	However,	RFC	2988,
"Computing	TCP's	Retransmission	Timer,"	discusses	the	issue	extensively.

RTTs	can	bounce	up	and	down,	so	we	want	to	aim	for	an	average	RTT	value	for
the	connection.	This	average	should	respond	to	consistent	movement	up	or	down
in	the	RTT,	without	overreacting	to	a	few	very	slow	or	fast	acknowledgments.
To	allow	this	to	happen,	the	RTT	calculation	uses	a	smoothing	formula:

New	RTT	=	(α	*	Old	RTT)	+	(	(1-α)	*	Newest	RTT	Measurement)

where	α	(alpha)	is	a	smoothing	factor	between	0	and	1.	Higher	values	of	α
(closer	to	1)	provide	better	smoothing	and	avoiding	sudden	changes	as	a	result	of
one	very	fast	or	very	slow	RTT	measurement.	Conversely,	this	also	slows	down
how	quickly	TCP	reacts	to	more	sustained	changes	in	RTT.	Lower	values	of
alpha	(closer	to	0)	make	the	RTT	change	more	quickly	in	reaction	to	changes	in
measured	RTT,	but	can	cause	overreaction	when	RTTs	fluctuate	wildly.

Acknowledgment	Ambiguity
Measuring	the	RTT	between	two	devices	is	simple	in	concept:	Note	the	time	that
a	segment	is	sent,	note	the	time	that	an	acknowledgment	is	received,	and	subtract
the	two.	The	measurement	is	more	tricky	in	actual	implementation,	however.

One	of	the	main	potential	"gotchas"	occurs	when	a	segment	is	assumed	lost	and
is	retransmitted.	The	retransmitted	segment	carries	nothing	that	distinguishes	it
from	the	original.	When	an	acknowledgment	is	received	for	this	segment,	it's
unclear	whether	this	corresponds	to	the	retransmission	or	the	original	segment.
Even	though	we	decided	the	segment	was	lost	and	retransmitted	it,	it's	possible



the	segment	eventually	got	there,	after	taking	a	long	time,	or	that	the	segment	got
their	quickly	but	the	acknowledgment	took	a	long	time!

This	is	called	acknowledgment	ambiguity,	and	it	is	not	trivial	to	resolve.	We
can't	just	decide	to	assume	that	an	acknowledgment	always	goes	with	the	oldest
copy	of	the	segment	sent,	because	this	makes	the	RTT	appear	too	high.	We	also
don't	want	to	just	assume	an	acknowledgment	always	goes	with	the	latest
sending	of	the	segment,	as	that	may	artificially	lower	the	average	RTT.

Refinements	to	RTT	Calculation	and	Karn's
Algorithm
TCP's	solution	is	based	on	the	use	of	a	technique	called	Karn's	algorithm,	after
its	inventor,	Phil	Karn.	The	main	change	this	algorithm	makes	is	the	separation
of	the	calculation	of	average	RTT	from	the	calculation	of	the	value	to	use	for
timers	on	retransmitted	segments.

The	first	change	made	under	Karn's	algorithm	is	to	not	use	measured	RTT	for
any	segments	that	are	retransmitted	in	the	calculation	of	the	overall	average	RTT
for	the	connection.	This	completely	eliminates	the	problem	of	acknowledgment
ambiguity.

However,	this	by	itself,	would	not	allow	increased	delays	due	to	retransmissions
to	affect	the	average	RTT.	For	this,	we	need	the	second	change:	incorporation	of
a	timer	backoff	scheme	for	retransmitted	segments.	We	start	by	setting	the
retransmission	timer	for	each	newly	transmitted	segment	based	on	the	current
average	RTT.	When	a	segment	is	retransmitted,	the	timer	is	not	reset	to	the	same
value	it	was	set	for	the	initial	transmission.	It	is	"backed	off,"	or	increased,	using
a	multiplier	(typically	2)	to	give	the	retransmission	more	time	to	be	received.
The	timer	continues	to	be	increased	until	a	retransmission	is	successful,	up	to	a
certain	maximum	value.	This	prevents	retransmissions	from	being	sent	too
quickly	and	further	adding	to	network	congestion.

Once	the	retransmission	succeeds,	the	RTT	is	kept	at	the	longer	(backed-off)
value	until	a	valid	RTT	can	be	measured	on	a	segment	that	is	sent	and
acknowledged	without	retransmission.	This	permits	a	device	to	respond	with
longer	timers	to	occasional	circumstances	that	cause	delays	to	persist	for	a
period	of	time	on	a	connection,	while	eventually	having	the	RTT	settle	back	to	a



long-term	average	when	normal	conditions	resume.

TIP

KEY	CONCEPT	TCP	uses	an	adaptive	retransmission	scheme	that	automatically	adjusts	the	amount	of
time	to	which	retransmission	timers	are	set,	based	on	the	average	amount	of	time	it	takes	to	send
segments	between	devices.	This	helps	avoid	retransmitting	potentially	lost	segments	too	quickly	or	too
slowly.



TCP	Window	Size	Adjustment	and	Flow	Control
We	have	seen	the	importance	of	the	concept	of	window	size	to	TCP's	sliding
window	mechanism.	In	a	connection	between	a	client	and	a	server,	the	client
tells	the	server	the	number	of	bytes	it	is	willing	to	receive	at	one	time	from	the
server;	this	is	the	client's	receive	window,	which	becomes	the	server's	send
window.	Likewise,	the	server	tells	the	client	how	many	bytes	of	data	it	is	willing
to	take	from	the	client	at	one	time;	this	is	the	server's	receive	window	and	the
client's	send	window.

The	use	of	these	windows	is	demonstrated	in	Chapter	48,	where	we	discussed
TCP's	basic	data	transfer	and	acknowledgment	mechanism.	However,	just	as	the
example	in	that	chapter	was	simplified	because	I	didn't	show	what	happens	with
lost	segments,	there's	another	way	that	it	doesn't	reflect	the	real-world	conditions
of	an	actual	Internet:	the	send	and	receive	window	sizes	never	changed	during
the	course	of	communication.

To	understand	why	the	window	size	may	fluctuate,	we	need	to	understand	what
it	represents.	The	simplest	way	of	considering	the	window	size	is	that	it	indicates
the	size	of	the	device's	receive	buffer	for	the	particular	connection.	That	is,
window	size	represents	how	much	data	a	device	can	handle	from	its	peer	at	one
time	before	it	is	passed	to	the	application	process.	Let's	consider	the	example	in
Chapter	48.	I	said	that	the	server's	window	size	was	360.	This	means	the	server
is	willing	to	take	no	more	than	360	bytes	at	a	time	from	the	client.

When	the	server	receives	data	from	the	client,	it	places	it	into	this	buffer.	The
server	must	then	do	two	distinct	things	with	this	data:

Acknowledgment	The	server	must	send	an	acknowledgment	back	to	the	client
to	indicate	that	the	data	was	received.

Transfer	The	server	must	process	the	data,	transferring	it	to	the	destination
application	process.

It	is	critically	important	that	we	differentiate	between	these	two	activities.
Unfortunately,	the	TCP	standards	don't	do	a	great	job	in	this	regard,	which
makes	them	very	difficult	to	understand.	The	key	point	is	that	in	the	basic	sliding
window	system,	data	is	acknowledged	when	received,	but	not	necessarily



immediately	transferred	out	of	the	buffer.	This	means	that	is	possible	for	the
buffer	to	fill	up	with	received	data	faster	than	the	receiving	TCP	can	empty	it.
When	this	occurs,	the	receiving	device	may	need	to	adjust	the	window	size	to
prevent	the	buffer	from	being	overloaded.

Since	the	window	size	can	be	used	in	this	manner	to	manage	the	rate	at	which
data	flows	between	the	devices	at	the	ends	of	the	connection,	it	is	the	method	by
which	TCP	implements	flow	control,	one	of	the	classic	jobs	of	the	transport
layer.	Flow	control	is	vitally	important	to	TCP,	as	it	is	the	method	by	which
devices	communicate	their	status	to	each	other.	By	reducing	or	increasing
window	size,	the	server	and	client	each	ensure	that	the	other	device	sends	data
just	as	fast	as	the	recipient	can	deal	with	it.

Reducing	Send	Window	Size	to	Reduce	the	Rate
Data	Is	Sent
To	understand	window	size	adjustment,	let's	go	back	to	our	earlier	example	in
Chapter	48,	but	with	a	few	changes.	First,	to	keep	things	simple,	let's	just	look	at
the	transmissions	made	from	the	client	to	the	server,	not	the	server's	replies
(other	than	acknowledgments)—this	is	illustrated	in	Figure	48-7.	As	before,	the
client	sends	140	bytes	to	the	server.	After	sending	the	140	bytes,	the	client	has
220	bytes	remaining	in	its	usable	window:	360	bytes	in	the	send	window	less	the
140	bytes	it	just	sent.

Sometime	later,	the	server	receives	the	140	bytes	and	puts	them	in	the	buffer.
Now,	in	an	ideal	world,	the	140	bytes	go	into	the	buffer,	and	they	are
acknowledged	and	immediately	removed	from	the	buffer.	Another	way	of
thinking	of	this	is	that	the	buffer	is	of	infinite	size	and	can	hold	as	much	as	the
client	can	send.	The	buffer's	free	space	remains	360	bytes	in	size,	so	the	same
window	size	can	be	advertised	back	to	the	client.	This	was	the	simplification	in
the	previous	example.

As	long	as	the	server	can	process	the	data	as	fast	as	it	comes	in,	it	will	keep	the
window	size	at	360	bytes.	The	client,	upon	receipt	of	the	acknowledgment	of
140	bytes	and	the	same	window	size	it	had	before,	slides	the	full	360-byte
window	140	bytes	to	the	right.	Since	there	are	now	0	unacknowledged	bytes,	the
client	can	now	once	again	send	360	bytes	of	data.	These	correspond	to	the	220
bytes	that	were	formerly	in	the	usable	window,	plus	140	new	bytes	for	the	ones



bytes	that	were	formerly	in	the	usable	window,	plus	140	new	bytes	for	the	ones
that	were	just	acknowledged.

In	the	real	world,	however,	that	server	might	be	dealing	with	dozens,	hundreds,
or	even	thousands	of	TCP	connections.	TCP	might	not	be	able	to	process	the
data	immediately.	Alternatively,	it	is	possible	the	application	itself	might	not	be
ready	for	the	140	bytes	for	whatever	reason.	In	either	case,	the	server's	TCP	may
not	be	able	to	immediately	remove	all	140	bytes	from	the	buffer.	If	so,	upon
sending	an	acknowledgment	back	to	the	client,	the	server	will	want	to	change	the
window	size	that	it	advertises	to	the	client,	to	reflect	the	fact	that	the	buffer	is
partially	filled.

Suppose	that	we	receive	140	bytes,	but	are	able	to	send	only	40	bytes	to	the
application,	leaving	100	bytes	in	the	buffer.	When	we	send	back	the
acknowledgment	for	the	140	bytes,	the	server	can	reduce	its	send	window	by
100	bytes,	to	260	bytes.	When	the	client	receives	this	segment	from	the	server,	it
will	see	the	acknowledgment	of	the	140	bytes	sent	and	slide	its	window	140
bytes	to	the	right.	However,	as	it	slides	this	window,	it	reduces	its	size	to	only
260	bytes.	We	can	consider	this	as	sliding	the	left	edge	of	the	window	140	bytes,
but	the	right	edge	only	40	bytes.	The	new,	smaller	window	ensures	that	the
server	receives	a	maximum	of	260	bytes	from	the	client,	which	will	fit	in	the	260
bytes	remaining	in	its	receive	buffer.	This	is	illustrated	in	the	first	exchange	of
messages	(steps	1	through	3)	at	the	top	of	Figure	49-4.



Figure	49-4.	TCP	window	size	adjustments	and	flow	control	This	diagram	shows	three	message	cycles,
each	of	which	results	in	the	server	reducing	its	receive	window.	In	the	first	cycle,	the	server	reduces	it
from	360	to	260	bytes,	so	the	client's	usable	window	can	increase	by	only	40	bytes	when	it	gets	the
server's	acknowledgment.	In	the	second	and	third	cycles,	the	server	reduces	the	window	size	by	the
amount	of	data	it	receives,	which	temporarily	freezes	the	client's	send	window	size,	halting	it	from

sending	new	data.

Reducing	Send	Window	Size	to	Stop	the
Sending	of	New	Data
What	if	the	server	is	so	bogged	down	that	it	cannot	process	any	of	the	bytes
received?	Let's	suppose	that	the	next	transmission	from	the	client	is	180	bytes	in
size,	but	the	server	is	so	busy	it	cannot	remove	any	of	them.



In	this	case,	the	server	could	buffer	the	180	bytes	and,	in	the	acknowledgment	it
sends	for	those	bytes,	reduce	the	window	size	by	the	same	amount:	from	260	to
80	bytes.	When	the	client	received	the	acknowledgment	for	180	bytes,	it	would
see	the	window	size	had	reduced	by	180	bytes	as	well.	It	would	slide	its	window
by	the	same	amount	as	the	window	size	was	reduced!	This	is	effectively	like	the
server	saying,	"I	acknowledge	receipt	of	180	bytes,	but	I	am	not	allowing	you	to
send	any	new	bytes	to	replace	them."	Another	way	of	looking	at	this	is	that	the
left	edge	of	the	window	slides	180	bytes,	while	the	right	edge	remains	fixed.
And	as	long	as	the	right	edge	of	the	window	doesn't	move,	the	client	cannot	send
any	more	data	than	it	could	before	receipt	of	the	acknowledgment.	This	is	the
middle	exchange	(steps	4	to	6)	in	Figure	49-4.

Closing	the	Send	Window
This	process	of	window	adjustment	can	continue,	and,	of	course,	can	be	done	by
both	devices,	even	though	we	are	considering	only	the	client-sends-to-server	side
of	the	equation	here.	If	the	server	continues	to	receive	data	from	the	client	faster
than	it	can	pump	it	out	to	the	application,	it	will	continue	to	reduce	the	size	of	its
receive	window.

To	continue	our	example,	suppose	that	after	the	send	window	is	reduced	to	80
bytes,	the	client	sends	a	third	request,	this	one	80	bytes	in	length,	but	the	server
is	still	busy.	The	server	then	reduces	its	window	all	the	way	down	to	0,	which	is
called	closing	the	window.	This	tells	the	client	the	server	is	very	overloaded,	and
it	should	stop	routine	sending	of	data	entirely,	as	shown	in	the	bottom	third	of
Figure	49-4.	Later	on,	when	the	server	is	less	loaded	down,	it	can	increase	the
window	size	for	this	connection	again,	permitting	more	data	to	be	transferred.

TIP

KEY	CONCEPT	The	TCP	sliding	window	system	is	used	not	just	for	ensuring	reliability	through
acknowledgments	and	retransmissions,	but	it	is	also	the	basis	for	TCP's	flow	control	mechanism.	By
increasing	or	reducing	the	size	of	its	receive	window,	a	device	can	raise	or	lower	the	rate	at	which	its
connection	partner	sends	it	data.	In	the	case	where	a	device	becomes	extremely	busy,	it	can	even	reduce
the	receive	window	to	zero.	This	will	close	the	window	and	halt	any	further	transmissions	of	data	until
the	window	is	reopened.

While	conceptually	simple,	flow	control	using	window	size	adjustment	can	be
very	tricky.	If	we	aren't	careful	about	how	we	make	changes	to	window	size,	we



very	tricky.	If	we	aren't	careful	about	how	we	make	changes	to	window	size,	we
can	introduce	serious	problems	in	the	operation	of	TCP.	There	are	also	special
situations	that	can	occur,	especially	in	cases	where	the	window	size	is	made
small	in	response	to	a	device	becoming	busy.	The	next	two	sections	explore
window	management	issues	and	changes	that	need	to	be	made	to	the	basic
sliding	window	system	to	address	them.



TCP	Window	Management	Issues
Each	of	the	two	devices	on	a	TCP	connection	can	adjust	the	window	size	it
advertises	to	the	other,	to	control	the	flow	of	data	over	the	connection.	Reducing
the	size	of	the	window	forces	the	other	device	to	send	less	data;	increasing	the
window	size	lets	more	data	flow.	In	theory,	we	should	be	able	to	just	let	the	TCP
software	on	each	of	the	devices	change	the	window	size	as	needed	to	match	the
speed	at	which	data	both	enters	the	buffer	and	is	removed	from	it	to	be	sent	to
the	receiving	application.

Unfortunately,	certain	changes	in	window	size	can	lead	to	undesirable
consequences.	These	can	occur	both	when	the	size	of	the	window	is	reduced	and
when	it	is	increased.	For	this	reason,	there	are	a	few	issues	related	to	window
size	management	that	we	need	to	consider.	As	in	previous	sections,	we'll	use	for
illustration	a	modification	of	the	same	client/server	example	introduced	in
Chapter	48.

Problems	Associated	with	Shrinking	the	TCP
Window
One	window	size	management	matter	is	related	to	just	how	quickly	a	device
reduces	the	size	of	its	receive	window	when	it	gets	busy.	Let's	say	the	server
starts	with	a	360-byte	receive	window,	as	in	the	aforementioned	example,	and
receives	140	bytes	of	data	that	it	acknowledges	but	cannot	remove	from	the
buffer	immediately.	The	server	can	respond	by	reducing	the	size	of	the	window
it	advertises	back	to	the	client.	In	the	case	where	no	bytes	can	be	removed	from
the	buffer	at	all,	the	window	size	is	reduced	by	the	same	140	bytes	that	were
added	to	the	buffer.	This	freezes	the	right	edge	of	the	client's	send	window,	so	it
cannot	send	any	additional	data	when	it	gets	an	acknowledgment.

What	if	the	server	were	so	overloaded	that	we	actually	needed	to	reduce	the	size
of	the	buffer	itself?	Say	memory	was	short	and	the	operating	system	said,	"I
know	you	have	360	bytes	allocated	for	the	receive	buffer	for	this	connection,	but
I	need	to	free	up	memory,	so	now	you	only	have	240."	The	server	still	cannot
immediately	process	the	140	bytes	it	received,	so	it	would	need	to	drop	the
window	size	it	sent	back	to	the	client	all	the	way	from	360	bytes	down	to	100



bytes	(240	in	the	total	buffer	less	the	140	already	received).

In	effect,	doing	this	actually	moves	the	right	edge	of	the	client's	send	window
back	to	the	left.	It	says,	"Not	only	can't	you	send	more	data	when	you	receive
this	acknowledgment,	but	you	now	can	send	lesswhen	you	do	send	data."	In	TCP
parlance,	this	is	called	shrinking	the	window.

There's	a	very	serious	problem	with	doing	this,	however:	While	the	original	140
bytes	were	in	transit	from	the	client	to	the	server,	the	client	still	thought	it	had
360	bytes	of	total	window,	of	which	220	bytes	were	usable	(360	less	140).	The
client	may	well	have	already	sent	some	of	those	220	bytes	of	data	to	the	server
before	it	got	the	notification	that	the	server	had	shrunk	the	window!	If	so,	and
the	server	reduced	its	buffer	to	240	bytes	with	140	used,	when	those	220	bytes
showed	up	at	the	server,	only	100	would	fit,	and	any	additional	ones	would	need
to	be	discarded.	This	would	force	the	client	to	need	to	retransmit	that	data,	which
is	inefficient.	Figure	49-5	illustrates	graphically	how	this	situation	would	play
out.

Figure	49-5.	The	problem	with	shrinking	the	TCP	window	In	this	modification	of	the	example	of
Figure	49-4,	the	client	begins	with	a	usable	window	size	of	360	bytes.	It	sends	a	140-byte	segment	and
then	a	short	time	thereafter	sends	one	of	180	bytes.	The	server	is	busy,	however,	and	when	it	receives



the	first	transmission,	it	decides	to	reduce	its	buffer	to	240	bytes.	It	holds	the	140	bytes	just	received	and
reduces	its	receive	window	all	the	way	down	to	100	bytes.	When	the	client's	180-byte	segment	arrives,
there	is	room	for	only	100	of	the	180	bytes	in	the	server's	buffer.	When	the	client	gets	the	new	window

size	advertisement	of	100,	it	will	have	a	problem,	because	it	already	has	180	bytes	sent	but	not
acknowledged.

Reducing	Buffer	Size	Without	Shrinking	the
Window
To	prevent	the	problems	associated	with	shrinking	windows	from	occurring,
TCP	adds	a	simple	rule	to	the	basic	sliding	window	mechanism:	A	device	is	not
allowed	to	shrink	the	window.

Note	that	there	is	a	potential	terminology	ambiguity	here.	The	words	shrinking
and	reducing	are	sometimes	used	synonymously	in	colloquial	discussions.	As
we've	seen,	there's	nothing	wrong	with	reducing	the	size	of	the	window.	The
problem	of	shrinking	the	window	refers	only	to	the	case	where	we	reduce	the
window	size	so	much	that	we	contradict	a	prior	window	advertisement	by	taking
back	permission	to	send	a	certain	number	of	bytes.

Another	way	of	looking	at	this	is	that	shrinking	occurs	whenever	the	server
sends	back	a	window	size	advertisement	smaller	than	what	the	client	considers
its	usable	window	size	to	be	at	that	time.	In	this	case,	the	server	shrunk	the
window,	because	at	the	time	it	was	acknowledging	the	140	bytes,	it	sent	back	a
window	size	of	100,	which	is	less	than	the	220-byte	usable	window	the	client
had	then.

Of	course,	there	may	be	cases	where	we	do	need	to	reduce	a	buffer,	so	how
should	this	be	handled?	Instead	of	shrinking	the	window,	the	server	must	be
more	patient.	In	the	example	in	the	previous	section,	where	the	buffer	needs	to
be	reduced	to	240	bytes,	the	server	must	send	back	a	window	size	of	220,
freezing	the	right	edge	of	the	client's	send	window.	The	client	can	still	fill	the
360-byte	buffer,	but	it	cannot	send	more	than	that.	As	soon	as	120	bytes	are
removed	from	the	server's	receive	buffer,	the	buffer	can	then	be	reduced	in	size
to	240	bytes	with	no	data	loss.	Then	the	server	can	resume	normal	operation,
increasing	the	window	size	as	bytes	are	taken	from	the	receive	buffer.

TIP



KEY	CONCEPT	A	phenomenon	called	shrinking	the	window	occurs	when	a	device	reduces	its	receive
window	so	much	that	its	partner	device's	usable	transmit	window	shrinks	in	size	(meaning	that	the	right
edge	of	its	send	window	moves	to	the	left).	Since	this	can	result	in	data	already	in	transit	needing	to	be
discarded,	devices	must	instead	reduce	their	receive	window	size	more	gradually.

Handling	a	Closed	Window	and	Sending	Probe
Segments
Another	special	window	management	problem	is	how	to	deal	with	the	case
where	a	device	must	reduce	the	send	window	size	all	the	way	down	to	zero.	As
noted	earlier,	this	is	called	closing	the	receive	window.	Since	the	server's	receive
window	is	the	client's	send	window,	reducing	its	size	to	zero	means	the	client
cannot	send	any	more	data.	This	situation	continues	until	the	client	receives	from
the	server	a	new	acknowledgment	with	a	nonzero	Window	field,	which	reopens
the	window.	Then	the	client	is	able	to	send	again.

The	problem	with	this	situation	is	that	the	client	must	depend	on	receipt	of	the
"window	opening"	segment	from	the	server.	Like	all	TCP	segments,	this
segment	is	carried	over	IP,	which	is	unreliable.	Remember	that	TCP	is	reliable
only	because	it	acknowledges	sent	data	and	retransmits	lost	data	if	necessary,	but
it	can	never	guarantee	that	any	particular	segment	gets	to	its	destination.	This
means	that	when	the	server	tries	to	reopen	the	window	with	an	acknowledgment
segment	containing	a	larger	Window	field,	it's	possible	that	the	client	will	never
get	the	message.	The	client	might	conclude	that	a	problem	had	occurred	and
terminate	the	connection.

To	prevent	this	from	happening,	the	client	can	regularly	send	special	probe
segments	to	the	server.	The	purpose	of	these	probes	is	to	prompt	the	server	to
send	back	a	segment	containing	the	current	window	size.	The	probe	segment	can
contain	either	zero	or	one	byte	of	data,	even	when	the	window	is	closed.	The
probes	will	continue	to	be	sent	periodically	until	the	window	reopens,	with	the
particular	implementation	determining	the	rate	at	which	the	probes	are
generated.

TIP

KEY	CONCEPT	A	device	that	reduces	its	receive	window	to	zero	is	said	to	have	closed	the	window.
The	other	device's	send	window	is	thus	closed;	it	may	not	send	regular	data	segments.	It	may,	however,



send	probe	segments	to	check	the	status	of	the	window,	thus	making	sure	it	does	not	miss	notification
when	the	window	reopens.

When	the	server	decides	to	reopen	the	closed	window,	there	is	another	potential
pitfall:	opening	the	window	to	too	small	a	value.	In	general,	when	the	receive
window	is	too	small,	this	leads	to	the	generation	of	many	small	segments,	greatly
reducing	the	overall	efficiency	of	TCP.	The	next	section	explores	this	well-
known	problem	and	how	it	is	resolved	through	changes	to	the	basic	sliding
window	mechanism.



TCP	Silly	Window	Syndrome
In	the	description	of	TCP's	maximum	segment	size	(MSS)	parameter	in
Chapter	48,	I	explained	the	trade-off	in	determining	the	optimal	size	of	TCP
segments.	If	segments	are	too	large,	we	risk	having	them	become	fragmented	at
the	IP	level.	If	they're	too	small,	we	get	greatly	reduced	performance,	because
we	are	sending	a	small	amount	of	data	in	a	segment	with	at	least	40	bytes	of
header	overhead.	We	also	use	up	valuable	processing	time	that	is	required	to
handle	each	of	these	small	segments.

The	MSS	parameter	ensures	that	we	don't	send	segments	that	are	too	large;	TCP
is	not	allowed	to	create	a	segment	larger	than	the	MSS.	Unfortunately,	the	basic
sliding	windows	mechanism	doesn't	provide	any	minimum	size	of	segment	that
can	be	transmitted.	In	fact,	not	only	is	it	possible	for	a	device	to	send	very	small,
inefficient	segments,	the	simplest	implementation	of	flow	control	using
unrestricted	window	size	adjustments	ensures	that	under	conditions	of	heavy
load,	window	size	will	become	small,	leading	to	significant	performance
reduction!

How	Silly	Window	Syndrome	Occurs
To	see	how	the	silly	window	syndrome	(SWS)	can	happen,	let's	consider	an
example	that	is	a	variation	on	the	one	we've	been	using	so	far	in	this	section.
We'll	assume	the	MSS	is	360	bytes	and	a	client/server	pair	where	the	server's
initial	receive	window	is	set	to	this	same	value,	360.	This	means	the	client	can
send	a	full-sized	segment	to	the	server.	As	long	as	the	server	can	keep	removing
the	data	from	the	buffer	as	fast	as	the	client	sends	it,	we	should	have	no	problem.
(In	reality,	the	buffer	size	would	normally	be	larger	than	the	MSS.)

Now,	imagine	that	instead,	the	server	is	bogged	down	for	whatever	reason	while
the	client	needs	to	send	it	a	great	deal	of	data.	For	simplicity,	let's	say	that	the
server	is	able	to	remove	only	1	byte	of	data	from	the	buffer	for	every	3	bytes	it
receives.	Let's	say	it	also	removes	40	additional	bytes	from	the	buffer	during	the
time	it	takes	for	the	next	client's	segment	to	arrive.	Here's	what	will	happen:

1.	 The	client's	send	window	is	360	bytes,	and	it	has	a	lot	of	data	to	send.	It
immediately	sends	a	360-byte	segment	to	the	server.	This	uses	up	its	entire



send	window.

2.	 When	the	server	gets	this	segment,	it	acknowledges	it.	However,	it	can
remove	only	120	bytes,	so	the	server	reduces	the	window	size	from	360	to
120	bytes.	It	sends	this	in	the	Window	field	of	the	acknowledgment.

3.	 The	client	receives	an	acknowledgment	of	360	bytes	and	sees	that	the
window	size	has	been	reduced	to	120.	It	wants	to	send	its	data	as	soon	as
possible,	so	it	sends	off	a	120-byte	segment.

4.	 The	server	has	removed	40	more	bytes	from	the	buffer	by	the	time	the	120-
byte	segment	arrives.	The	buffer	thus	contains	200	bytes	(240	from	the	first
segment,	less	the	40	removed).	The	server	is	able	to	immediately	process
one-third	of	those	120	bytes,	or	40	bytes.	This	means	80	bytes	are	added	to
the	200	that	already	remain	in	the	buffer,	so	280	bytes	are	used	up.	The
server	must	reduce	the	window	size	to	80	bytes.

5.	 The	client	will	see	this	reduced	window	size	and	send	an	80-byte	segment.

6.	 The	server	started	with	280	bytes	and	removed	40,	so	240	bytes	remain.	It
receives	80	bytes	from	the	client	and	removes	one-third,	so	53	are	added	to
the	buffer,	which	becomes	293	bytes.	It	reduces	the	window	size	to	67
bytes	(360	minus	293).

This	process,	which	is	illustrated	in	Figure	49-6,	will	continue	for	many	rounds,
with	the	window	size	getting	smaller	and	smaller,	especially	if	the	server	gets
even	more	overloaded.	Its	rate	of	clearing	the	buffer	may	decrease	even	more,
and	the	window	may	close	entirely.

Let's	suppose	this	happens.	Now,	eventually,	the	server	will	remove	some	of	the
data	from	this	buffer.	Let's	say	it	removes	40	bytes	by	the	time	the	first	closed-
window	probe	from	the	client	arrives.	The	server	then	reopens	the	window	to	a
size	of	40	bytes.	The	client	is	still	desperate	to	send	data	as	fast	as	possible,	so	it
generates	a	40-byte	segment.	And	so	it	goes,	with	likely	all	the	remaining	data
passing	from	the	client	to	the	server	in	tiny	segments,	until	either	the	client	runs
out	of	data	or	the	server	clears	the	buffer	more	quickly.

Now	imagine	the	worst-case	scenario.	This	time,	it	is	the	application	process	on
the	server	that	is	overloaded.	It	is	drawing	data	from	the	buffer	one	byte	at	a
time.	Every	time	it	removes	a	byte	from	the	server's	buffer,	the	server's	TCP
opens	the	window	with	a	window	size	of	exactly	1	and	puts	this	in	the	Window



opens	the	window	with	a	window	size	of	exactly	1	and	puts	this	in	the	Window
field	in	an	acknowledgment	to	the	client.	The	client	then	sends	a	segment	with
exactly	one	byte,	refilling	the	buffer	until	the	application	draws	off	the	next	byte.

None	of	this	represents	a	failure	per	se	of	the	sliding	window	mechanism.	It	is
working	properly	to	keep	the	server's	receive	buffer	filled	and	to	manage	the
flow	of	data.	The	problem	is	that	the	sliding	window	mechanism	is	concerned
only	with	managing	the	buffer.	It	doesn't	take	into	account	the	inefficiency	of	the
small	segments	that	result	when	the	window	size	is	micromanaged	in	this	way.
In	essence,	by	sending	small	window	size	advertisements,	we	are	winning	the
battle	but	losing	the	war.

Early	TCP/IP	researchers	who	discovered	this	phenomenon	called	it	silly
window	syndrome	(SWS),	a	play	on	the	phrase	sliding	window	system,	which
expresses	their	opinion	on	how	it	behaves	when	it	gets	into	this	state.

Figure	49-6.	TCP	silly	window	syndrome	(SWS)	This	diagram	shows	one	example	of	how	the
phenomenon	known	as	TCP	silly	window	syndrome	can	arise.	The	client	is	trying	to	send	data	as	fast	as
possible	to	the	server,	which	is	very	busy	and	cannot	clear	its	buffers	promptly.	Each	time	the	client

sends	data,	the	server	reduces	its	receive	window.	The	size	of	the	messages	the	client	sends	shrinks	until
it	is	sending	only	very	small,	inefficient	segments.	Note	that	in	this	diagram,	I	have	shown	the	server's
buffer	fixed	in	position,	rather	than	sliding	to	the	right,	as	in	the	other	diagrams	in	this	chapter.	This



way,	you	can	see	the	receive	window	decreasing	in	size	more	easily.

The	examples	discussed	show	how	SWS	can	be	caused	by	the	advertisement	of
small	window	sizes	by	a	receiving	device.	It	is	also	possible	for	SWS	to	happen
if	the	sending	device	isn't	careful	about	how	it	generates	segments	for
transmission,	regardless	of	the	state	of	the	receiver's	buffers.	For	example,
suppose	the	client	TCP	in	the	example	shown	in	Figure	49-6	was	receiving	data
from	the	sending	application	in	blocks	of	10	bytes	at	a	time.	However,	the
sending	TCP	was	so	impatient	to	get	the	data	to	the	client	that	it	took	each	10-
byte	block	and	immediately	packaged	it	into	a	segment,	even	though	the	next	10-
byte	block	was	coming	shortly	thereafter.	This	would	result	in	a	needless	swarm
of	inefficient	10-byte	segments.

TIP

KEY	CONCEPT	The	basic	TCP	sliding	window	system	sets	no	minimum	size	on	transmitted	segments.
Under	certain	circumstances,	this	can	result	in	a	situation	where	many	small,	inefficient	segments	are
sent,	rather	than	a	smaller	number	of	large	ones.	Affectionately	termed	silly	window	syndrome	(SWS),
this	phenomenon	can	occur	either	as	a	result	of	a	recipient	advertising	window	sizes	that	are	too	small	or
a	transmitter	being	too	aggressive	in	immediately	sending	out	very	small	amounts	of	data.

Silly	Window	Syndrome	Avoidance	Algorithms
Since	SWS	is	caused	by	the	basic	sliding	window	system	not	paying	attention	to
the	result	of	decisions	that	create	small	segments,	dealing	with	SWS	is
conceptually	simple:	Change	the	system	so	that	we	avoid	small	window	size
advertisements,	and	at	the	same	time,	also	avoid	sending	small	segments.	Since
both	the	sender	and	recipient	of	data	contribute	to	SWS,	changes	are	made	to	the
behavior	of	both	to	avoid	SWS.	These	changes	are	collectively	termed	SWS
avoidance	algorithms.

Receiver	SWS	Avoidance
Let's	start	with	SWS	avoidance	by	the	receiver.	As	we	saw	in	the	previous
example,	the	receiver	contributed	to	SWS	by	reducing	the	size	of	its	receive
window	to	smaller	and	smaller	values.	This	caused	the	right	edge	of	the	sender's
send	window	to	move	by	ever-smaller	increments,	leading	to	smaller	and	smaller
segments.	To	avoid	SWS,	we	simply	make	the	rule	that	the	receiver	may	not



update	its	advertised	receive	window	in	such	a	way	that	this	leaves	too	little
usable	window	space	on	the	part	of	the	sender.	In	other	words,	we	restrict	the
receiver	from	moving	the	right	edge	of	the	window	by	too	small	an	amount.	The
usual	minimum	that	the	edge	may	be	moved	is	either	the	value	of	the	MSS
parameter	or	one-half	the	buffer	size,	whichever	is	less.

Let's	see	how	we	might	use	this	in	the	example	shown	in	Figure	49-6.	When	the
server	receives	the	initial	360-byte	segment	from	the	client	and	can	process	only
120	bytes,	it	does	not	reduce	the	window	size	to	120.	It	reduces	it	all	the	way	to
zero,	closing	the	window.	It	sends	this	back	to	the	client,	which	will	then	stop
and	not	send	a	small	segment.	Once	the	server	has	removed	60	more	bytes	from
the	buffer,	it	will	now	have	180	bytes	free,	half	the	size	of	the	buffer.	It	now
opens	the	window	up	to	180	bytes	in	size	and	sends	the	new	window	size	to	the
client.

It	will	continue	to	advertise	only	either	0	bytes	or	180	or	more	bytes,	not	smaller
values	in	between.	This	seems	to	slow	down	the	operation	of	TCP,	but	it	really
doesn't.	Because	the	server	is	overloaded,	the	limiting	factor	in	overall
performance	of	the	connection	is	the	rate	at	which	the	server	can	clear	the	buffer.
We	are	just	exchanging	many	small	segments	for	a	few	larger	ones.

Sender	SWS	Avoidance	and	Nagle's	Algorithm
SWS	avoidance	by	the	sender	is	accomplished	generally	by	imposing	"restraint"
on	the	part	of	the	transmitting	TCP.	Instead	of	trying	to	immediately	send	data	as
soon	as	we	can,	we	wait	to	send	it	until	we	have	a	segment	of	a	reasonable	size.
The	specific	method	for	doing	this	is	called	Nagle's	algorithm,	named	for	its
inventor,	John	Smith.	(Just	kidding,	it	was	John	Nagle.)	Simplified,	this
algorithm	works	as	follows:

As	long	as	there	is	no	unacknowledged	data	outstanding	on	the	connection,	as
soon	as	the	application	wants,	data	can	be	immediately	sent.	For	example,	in
the	case	of	an	interactive	application	like	Telnet,	a	single	keystroke	can	be
pushed	in	a	segment.

While	there	is	unacknowledged	data,	all	subsequent	data	to	be	sent	is	held	in
the	transmit	buffer	and	not	transmitted	until	either	all	the	unacknowledged
data	is	acknowledged	or	we	have	accumulated	enough	data	to	send	a	full-



sized	(MSS-sized)	segment.	This	applies	even	if	a	push	is	requested	by	the
user.

This	might	seem	strange,	especially	the	part	about	buffering	data	despite	a	push
request!	You	might	think	this	would	cause	applications	like	Telnet	to	break.	In
fact,	Nagle's	algorithm	is	a	very	clever	method	that	suits	the	needs	of	both	low-
data-rate	interactive	applications	like	Telnet	and	high-bandwidth	file-transfer
applications.

If	you	are	using	something	like	Telnet	where	the	data	is	arriving	very	slowly
(humans	are	very	slow	compared	to	computers),	the	initial	data	(first	keystroke)
can	be	pushed	right	away.	The	next	keystroke	must	wait	for	an	acknowledgment,
but	this	will	probably	come	reasonably	soon	relative	to	how	long	it	takes	to	hit
the	next	key.	In	contrast,	more	conventional	applications	that	generate	data	in
large	amounts	will	automatically	have	the	data	accumulated	into	larger	segments
for	efficiency.

Nagle's	algorithm	is	actually	far	more	complex	than	this	description,	but	this
section	is	already	getting	too	long.	RFC	896	discusses	it	in	(much)	more	detail.

TIP

KEY	CONCEPT	Modern	TCP	implementations	incorporate	a	set	of	SWS	avoidance	algorithms.	When
receiving,	devices	are	programmed	not	to	advertise	very	small	windows,	waiting	instead	until	there	is
enough	room	in	the	buffer	for	one	of	a	reasonable	size.	Transmitters	use	Nagle's	algorithm	to	ensure	that
small	segments	are	not	generated	when	there	are	unacknowledged	bytes	outstanding.



TCP	Congestion	Handling	and	Congestion
Avoidance	Algorithms
By	changing	the	window	size	that	a	device	advertises	to	a	peer	on	a	TCP
connection,	the	device	can	increase	or	decrease	the	rate	at	which	its	peer	sends	it
data.	This	is	how	the	TCP	sliding	window	system	implements	flow	control
between	the	two	connected	devices.	We've	seen	how	this	works	in	this	chapter,
including	the	changes	required	to	the	basic	mechanism	to	ensure	performance
remains	high	by	reducing	the	number	of	small	segments	sent.

Flow	control	is	a	very	important	part	of	regulating	the	transmission	of	data
between	devices,	but	it	is	limited	in	the	following	respect:	It	considers	only	what
is	going	on	within	each	of	the	devices	on	the	connection,	and	not	what	is
happening	in	devices	between	them.	In	fact,	this	"self-centeredness"	is
symptomatic	of	architectural	layering.	Since	we	are	dealing	with	how	TCP
works	between	a	typical	server	and	client	at	layer	4,	we	don't	worry	about	how
data	gets	between	them;	that's	the	job	of	IP	at	layer	3.

Congestion	Considerations
In	practice,	what	is	going	on	at	layer	3	can	be	quite	important.	Considered	from
an	abstract	point	of	view,	our	server	and	client	may	be	connected	directly	using
TCP,	but	all	the	segments	we	transmit	are	carried	across	an	internetwork	of
networks	and	routers	between	them.	These	networks	and	routers	are	also
carrying	data	from	many	other	connections	and	higher-layer	protocols.	If	the
internetwork	becomes	very	busy,	the	speed	at	which	segments	are	carried
between	the	endpoints	of	our	connection	will	be	reduced,	and	they	could	even	be
dropped.	This	is	called	congestion.

Again,	at	the	TCP	level,	there	is	no	way	to	directly	comprehend	what	is	causing
congestion	or	why.	It	is	perceived	simply	as	inefficiencies	in	moving	data	from
one	device	to	another,	through	the	need	for	some	segments	to	be	retransmitted.
However,	even	though	TCP	is	mostly	oblivious	to	what	is	happening	on	the
internetwork,	it	must	be	smart	enough	to	understand	how	to	deal	with	congestion
and	not	exacerbate	it.



Recall	that	each	segment	that	is	transmitted	is	placed	in	the	retransmission	queue
with	a	retransmission	timer.	Now,	suppose	congestion	dramatically	increased	on
the	internetwork,	and	there	were	no	mechanisms	in	place	to	handle	congestion.
Segments	would	be	delayed	or	dropped,	which	would	cause	them	to	time	out	and
be	retransmitted.	This	would	increase	the	amount	of	traffic	on	the	internetwork
between	our	client	and	server.	Furthermore,	there	might	be	thousands	of	other
TCP	connections	behaving	similarly.	Each	would	keep	retransmitting	more	and
more	segments,	increasing	congestion	further,	leading	to	a	vicious	circle.
Performance	of	the	entire	internetwork	would	decrease	dramatically,	resulting	in
a	condition	called	congestion	collapse.

The	message	is	clear:	TCP	cannot	just	ignore	what	is	happening	on	the
internetwork	between	its	connection	endpoints.	To	this	end,	TCP	includes
several	specific	algorithms	that	are	designed	to	respond	to	congestion	or	avoid	it
in	the	first	place.	Many	of	these	techniques	can	be	considered,	in	a	way,	to	be
methods	by	which	a	TCP	connection	is	made	less	selfish;	that	is,	it	tries	to	take
into	account	the	existence	of	other	users	of	the	internetwork	over	which	it
operates.	While	no	single	connection	by	itself	can	solve	congestion	of	an	entire
internetwork,	having	all	devices	implement	these	measures	collectively	reduces
congestion	due	to	TCP.

The	first	issue	is	that	we	need	to	know	when	congestion	is	taking	place.	By
definition,	congestion	means	intermediate	devices—routers—are	overloaded.
Routers	respond	to	overloading	by	dropping	datagrams.	When	these	datagrams
contain	TCP	segments,	the	segments	don't	reach	their	destination,	and	they	are
therefore	left	unacknowledged	and	will	eventually	expire	and	be	retransmitted.
This	means	that	when	a	device	sends	TCP	segments	and	does	not	receive
acknowledgments	for	them,	it	can	be	assumed	that,	in	most	cases,	they	have
been	dropped	by	intermediate	devices	due	to	congestion.	By	detecting	the	rate	at
which	segments	are	sent	and	not	acknowledged,	a	TCP	device	can	infer	the	level
of	congestion	on	the	network	between	itself	and	its	TCP	connection	peer.

TCP	Congestion-Handling	Mechanisms
After	getting	information	about	congestion,	we	must	then	decide	what	to	do	with
that	information.	The	main	TCP	standard,	RFC	793,	includes	very	little



information	about	TCP	congestion-handling	issues.	That	is	because	early
versions	of	TCP	based	solely	on	this	standard	didn't	include	congestion-handling
measures.	Problems	with	these	early	implementations	led	to	the	discovery	that
congestion	was	an	important	issue.	The	measures	used	in	modern	devices	were
developed	over	the	years,	and	eventually	documented	in	RFC	2001,	"TCP	Slow
Start,	Congestion	Avoidance,	Fast	Retransmit,	and	Fast	Recovery	Algorithms."

TIP

KEY	CONCEPT	TCP	flow	control	is	an	essential	part	of	regulating	the	traffic	flow	between	TCP
devices,	but	takes	into	account	only	how	busy	the	two	TCP	endpoints	are.	It	is	also	important	to	take	into
account	the	possibility	of	congestion	of	the	networks	over	which	any	TCP	session	is	established,	which
can	lead	to	inefficiency	through	dropped	segments.	To	deal	with	congestion	and	avoid	contributing	to	it
unnecessarily,	modern	TCP	implementations	include	a	set	of	Congestion	Avoidance	algorithms	that	alter
the	normal	operation	of	the	sliding	window	system	to	ensure	more	efficient	overall	operation.

RFC	2001	refers	to	four	algorithms:	Slow	Start,	Congestion	Avoidance,	Fast
Retransmit,	and	Fast	Recovery.	In	practice,	these	features	are	all	related	to	each
other.	Slow	Start	and	Congestion	Avoidance	are	distinct	algorithms	but	are
implemented	using	a	single	mechanism,	involving	the	definition	of	a	congestion
window	that	limits	the	size	of	transmissions	and	whose	size	is	increased	or
decreased	depending	on	congestion	levels.	Fast	Retransmit	and	Fast	Recovery
are	implemented	as	changes	to	the	mechanism	that	implements	Slow	Start	and
Congestion	Avoidance.

The	following	sections	provide	simplified	summaries	of	how	these	algorithms
work.	My	goal	is	simply	to	help	you	get	a	feel	for	how	congestion	is	handled	in
TCP	in	general	terms.

NOTE

Congestion	handling	is	a	rather	complex	process.	If	you	want	to	learn	more,	RFC	2001	contains	the
technical	details,	showing	how	each	of	the	algorithms	is	implemented	in	each	device.

Slow	Start
In	the	original	implementation	of	TCP,	as	soon	as	a	connection	was	established
between	two	devices,	they	could	each	go	"hog	wild,"	sending	segments	as	fast	as
they	liked	as	long	as	there	was	room	in	the	other	device's	receive	window.	In	a
busy	internetwork,	the	sudden	appearance	of	a	large	amount	of	new	traffic	could



busy	internetwork,	the	sudden	appearance	of	a	large	amount	of	new	traffic	could
exacerbate	any	existing	congestion.	To	alleviate	this,	modern	TCP	devices	are
restrained	in	the	rate	at	which	they	initially	send	segments.

Each	sender	is	at	first	restricted	to	sending	only	an	amount	of	data	equal	to	one
full-sized	segment—that	is,	equal	to	the	MSS	value	for	the	connection.	Each
time	an	acknowledgment	is	received,	the	amount	of	data	the	device	can	send	is
increased	by	the	size	of	another	full-sized	segment.	Thus,	the	device	starts	slow
in	terms	of	how	much	data	it	can	send,	with	the	amount	it	sends	increasing	until
either	the	full	window	size	is	reached	or	congestion	is	detected	on	the	link.	In	the
latter	case,	the	Congestion	Avoidance	feature,	described	next,	is	used.

Congestion	Avoidance
When	potential	congestion	is	detected	on	a	TCP	link,	a	device	responds	by
throttling	back	the	rate	at	which	it	sends	segments.	A	special	algorithm	is	used
that	allows	the	device	to	drop	the	rate	at	which	segments	are	sent	quickly	when
congestion	occurs.	The	device	then	uses	the	Slow	Start	algorithm	to	gradually
increase	the	transmission	rate	back	up	again	to	try	to	maximize	throughput
without	congestion	occurring	again.

Fast	Retransmit
We've	already	seen	in	our	look	at	TCP	segment	retransmission	that	when
segments	are	received	by	a	device	out	of	order	(noncontiguously),	the	recipient
will	acknowledge	only	the	ones	received	contiguously.	The	Acknowledgment
Number	field	will	specify	the	sequence	number	of	the	byte	it	expects	to	receive
next.	So,	in	the	example	given	in	that	section,	Segments	1	and	2	were
acknowledged,	while	Segment	4	was	not	because	Segment	3	was	not	received.

It	is	possible	for	a	TCP	device	to	respond	with	an	acknowledgment	when	it
receives	an	out-of-order	segment,	simply	reiterating	that	it	is	stuck	waiting	for	a
particular	byte	number.	So,	when	the	client	in	that	example	receives	Segment	4
and	not	Segment	3,	it	could	send	back	an	acknowledgment	saying,	"I	am
expecting	the	first	byte	of	Segment	3	next."

Now,	suppose	this	happens	over	and	over.	The	server,	not	realizing	that	Segment
3	was	lost,	sends	Segments	5,	6,	and	so	on.	Each	time	a	segment	is	received,	the
client	sends	back	an	acknowledgment	specifying	the	first	byte	number	of
Segment	3.	Eventually,	the	server	can	reasonably	conclude	that	Segment	3	is



Segment	3.	Eventually,	the	server	can	reasonably	conclude	that	Segment	3	is
lost,	even	if	its	retransmission	timer	has	not	expired.

The	Fast	Retransmit	feature	dictates	that	if	three	or	more	of	these
acknowledgments	are	received,	all	saying,	"I	want	the	segment	starting	with	byte
N,"	then	it's	probable	that	the	segment	starting	with	byte	N	has	been	lost,	usually
because	it	was	dropped	due	to	congestion.	In	this	case,	the	device	will
immediately	retransmit	the	missing	segment,	without	going	through	the	normal
retransmission	queue	process.	This	improves	performance	by	eliminating	delays
that	would	suspend	effective	data	flow	on	the	link.

Fast	Recovery
When	Fast	Retransmit	is	used	to	resend	a	lost	segment,	the	device	using	it
performs	Congestion	Avoidance,	but	does	not	use	Slow	Start	to	increase	the
transmission	rate	back	up	again.	The	rationale	for	this	is	that	since	multiple
ACKs	were	received	by	the	sender,	all	indicating	receipt	of	out-of-order
segments,	this	indicates	that	several	segments	have	already	been	removed	from
the	flow	of	segments	between	the	two	devices.	For	efficiency	reasons,	then,	the
transmission	rate	can	be	increased	more	quickly	than	when	congestion	occurs	in
other	ways.	This	improves	performance	compared	to	using	the	regular
Congestion	Avoidance	algorithm	after	Fast	Retransmit.



Part	III-1.	NAME	SYSTEMS	AND	TCP/IP	NAME
REGISTRATION	AND	NAME	RESOLUTION
TCP/IP	APPLICATION	LAYER	PROTOCOLS

The	OSI	Reference	Model	is	used	to	describe	the	architecture	of	networking
protocols	and	technologies	and	to	show	how	they	relate	to	one	another.	In	the
chapter	describing	OSI	Reference	Model	concepts	(Chapter	5),	I	mentioned	that
its	seven	layers	could	be	organized	into	two	layer	groupings:	the	lower	layers	(1
through	4)	and	the	upper	layers	(5	through	7).	While	there	are	certainly	other
ways	to	divide	the	layers,	this	split	best	reflects	the	different	roles	that	the	layers
play	in	a	network.

The	lower	layers	are	concerned	primarily	with	the	mechanics	of	formatting,
encoding,	and	sending	data	over	a	network.	These	layers	involve	software
elements,	but	they	are	often	closely	associated	with	networking	hardware
devices.	In	contrast,	the	upper	layers	are	concerned	mainly	with	user	interaction
and	the	implementation	of	software	applications,	protocols,	and	services	that	let
us	actually	use	the	network.	These	elements	generally	don't	need	to	worry	about
details,	relying	on	the	lower	layers	to	ensure	that	data	gets	to	where	it	needs	to
go	reliably.

In	this	section,	I	describe	the	details	of	the	many	protocols	and	applications	that
occupy	the	upper	layers	in	TCP/IP.	The	organization	of	this	section	is	quite
different	from	the	previous	section's	organization.	Since	the	TCP/IP	protocol
suite	uses	an	architecture	that	lumps	all	the	higher	layers	together,	even
attempting	to	differentiate	between	these	layers	is	not	worthwhile.	For	these
reasons,	this	section	is	divided	by	functions,	rather	than	by	layers.	It	contains	ten
parts:	four	that	discuss	application	layer	protocols	that	support	the	operation	of
TCP/IP,	and	six	that	discuss	actual	application	protocols.

The	first	part	discusses	naming	systems,	especially	the	TCP/IP	Domain	Name
System	(DNS).	The	second	part	overviews	file	and	resource	sharing	protocols,
with	a	focus	on	the	Network	File	System	(NFS).	The	third	part	covers	TCP/IP
host	configuration	and	the	host	configuration	protocols:	the	Boot	Protocol
(BOOTP)	and	the	Dynamic	Host	Configuration	Protocol	(DHCP).	The	fourth
part	describes	the	TCP/IP	network	management	framework,	including	the



part	describes	the	TCP/IP	network	management	framework,	including	the
Simple	Network	Management	Protocol	(SNMP)	and	Remote	Network
Monitoring	(RMON).

The	fifth	part	introduces	TCP/IP	applications	with	a	look	at	application	layer
addressing	and	an	overview	of	file	and	message	transfer	applications.	The	sixth
part	covers	the	general	file	transfer	protocols:	the	File	Transfer	Protocol	(FTP)
and	the	Trivial	File	Transfer	Protocol	(TFTP).	The	seventh	part	explains	the
many	related	protocols	that	together	form	TCP/IP's	electronic	mail	application.
The	eighth	part	covers	the	Web	and	the	important	Hypertext	Transfer	Protocol
(HTTP).	The	ninth	part	describes	Usenet	(network	news)	and	Gopher.	Finally,
the	tenth	part	discusses	interactive	and	administrative	protocols.

Chapter	50

Chapter	51

Chapter	52

Chapter	53

Chapter	54

Chapter	55

Chapter	56

Chapter	57

Humans	and	computers	first	started	dealing	with	each	other	several	decades	ago.
The	relationship	between	man	(and	woman!)	and	machine	has	been	a	pretty
good	one	overall,	and	this	is	reflected	in	the	fact	that	while	computers	were	once
just	the	province	of	techies,	they	are	now	mainstream.	However,	there	are	areas
where	humans	and	computers	simply	don't	see	eye	to	eye.	One	of	these	is	in	the
way	that	we	deal	with	information.

Computers	work	best	with	numbers,	while	most	people	prefer	not	to	work	with
numbers.	This	fundamental	difference	represented	a	problem	for	the	designers	of
networking	technology.	It	made	sense	from	a	technical	standpoint	to	design
addressing	schemes	for	networks	and	internetworks	using	simple	numeric
identifiers,	for	simplicity	and	efficiency.	Unfortunately,	identifying	computers
using	numeric	addresses	is	cumbersome	for	people	and	becomes	more	so	as	the
number	of	devices	on	a	network	increases.	To	solve	this	problem,	the	techies



went	to	work	and	came	up	with	name	systems	for	networks.	These	mechanisms
allow	computers	to	continue	to	use	simple,	efficient	numeric	addresses,	while
letting	humans	specify	names	to	identify	network	devices.

This	part	includes	eight	chapters	that	explain	both	the	theory	and	practice	behind
networking	name	systems.	The	first	chapter	describes	the	motivation	for	name
systems	and	the	important	concepts	and	techniques	behind	how	they	work.	The
second	chapter	provides	an	introduction	to	name	systems	on	TCP/IP	and	a	brief
description	of	the	simple	host	table	name	system.

The	remaining	chapters	describe	the	very	important	Domain	Name	System
(DNS).	The	third	chapter	provides	an	overview	of	DNS,	including	a	description
of	its	characteristics	and	components.	The	fourth	chapter	discusses	the	DNS
name	space	and	architecture,	and	the	fifth	chapter	covers	the	DNS	name
registration	process,	including	hierarchical	authorities	and	administration.	The
sixth	chapter	describes	DNS	name	servers	and	how	they	represent,	manage,	and
provide	data	when	resolution	is	invoked.	The	seventh	chapter	describes	DNS
clients,	called	resolvers,	how	they	initiate	resolution,	and	the	steps	involved	in
the	resolution	process.	Finally,	the	eighth	chapter	ties	together	the	information
about	name	servers	and	resolvers	by	providing	a	look	at	message	exchange
between	these	units,	and	describing	the	formats	of	messages,	resource	records,
and	DNS	master	files.	This	chapter	includes	a	brief	look	at	the	changes	made	to
DNS	to	support	the	new	version	6	of	the	Internet	Protocol	(IPv6)	and	its	much
longer	addresses.

Note	that	even	though	the	abbreviation	DNS	usually	stands	for	Domain	Name
System,	you	will	also	sometimes	see	the	S	stand	for	other	words,	especially
Service	or	Server.	Also,	some	documents	refer	to	this	name	system	as	the	DNS.
Most	people	just	say	DNS,	without	the	definite	article,	and	that's	the	convention
I	follow	here	as	well.

A	set	of	related	TCP/IP	utilities	called	nslookup,	host,	and	dig	can	be	used	by	an
administrator	to	query	DNS	name	servers	for	information.	They	are	useful	for	a
variety	of	purposes,	including	manually	determining	the	IP	address	of	a	host,
checking	for	specific	resource	records	maintained	for	a	DNS	name,	and
verifying	the	name	resolution	function.	You	can	find	more	information	about
these	utilities	in	Part	III-10.



Chapter	50.	NAME	SYSTEM
ISSUES,	CONCEPTS,	AND
TECHNIQUES

Name	systems	can	be	considered	as	the	diplomats	of	the	networking	protocol
stack.	Just	as	a	political	diplomat	is	skilled	at	speaking	multiple	languages	and
ensuring	good	communications	between	those	who	may	view	the	world	in
different	ways,	name	systems	bridge	the	gulf	between	the	numeric	addresses	that
computers	like	to	use	and	the	simpler	names	that	humans	prefer.

Before	looking	at	specific	name	systems,	it	makes	sense	to	discuss	them
generally.	This	will	help	you	to	understand	the	reasons	why	these	systems	are
important	and	the	concepts	that	underlie	all	name	systems,	regardless	of	their
specific	implementation.

I	begin	this	chapter	with	an	overview	of	name	systems	and	a	discussion	of	why
they	were	created.	I	then	discuss	the	three	main	functions	of	a	name	system:	the
name	space,	name	registration,	and	name	resolution.	I	then	expand	on	this
functional	overview,	illustrating	how	name	spaces	and	architectures	work,	the
issues	behind	name	registration	and	administration,	and	finally,	name	resolution
techniques	and	the	practical	issues	in	the	resolution	process.

This	chapter	provides	an	introduction	to	name	systems	and	doesn't	discuss
specific	name	systems.	I	like	to	use	examples	to	explain	concepts	and,	for	this
purpose,	do	make	reference	to	the	TCP/IP	Domain	Name	System	(DNS)	at
times.	However,	you	do	not	need	to	be	familiar	with	DNS	to	follow	this	chapter.

Name	System	Overview
One	of	several	important	differences	between	humans	and	computers	is	how	we



One	of	several	important	differences	between	humans	and	computers	is	how	we
prefer	to	deal	with	information.	Computers	work	with	numbers,	while	very	few
humans	like	to	do	so.	This	distinction	becomes	particularly	important	when	we
look	at	how	identifiers,	or	addresses,	are	assigned	to	network	devices.

Symbolic	Names	for	Addressing
To	a	computer,	there	is	no	problem	with	simply	giving	a	number	to	each	device
on	the	network	and	using	those	numbers	to	move	information	around.	Your
computer	would	be	perfectly	happy	if	you	assigned	a	number	like
341,481,178,295	to	it	and	all	the	other	machines	on	your	network,	and	then
issued	commands	such	as,	"Send	this	file	to	machine	56,712,489,901."	However,
most	humans	don't	want	to	use	a	network	in	this	manner.	These	long,	cryptic
numbers	don't	mean	anything	to	them.	They	want	to	tell	their	machine,	"Send
this	file	to	Joe's	computer,"	or	"Print	this	on	the	color	laser	in	the	Sales
department,"	or	"Check	the	latest	headlines	on	CNN's	website."

This	difference	led	to	the	development	of	name	systems.	These	technologies
allow	computers	on	a	network	to	be	given	both	a	conventional	numeric	address
and	a	more	user-friendly,	human-readable	name,	composed	of	letters,	numbers,
and	other	special	symbols.	Sometimes	called	a	symbolic	name,	this	can	be	used
as	an	alternative	form	of	addressing	for	devices.	The	name	system	takes	care	of
the	functions	necessary	to	manage	this	system,	including	ensuring	that	names	are
unique,	translating	from	names	to	numbers,	and	managing	the	list	of	names	and
numbers.

A	Paradox:	Name	Systems	Are	Both	Essential
and	Unnecessary
What's	interesting	about	name	systems	is	that	they	are	extremely	important	to
networks,	but	at	the	same	time,	they	often	aren't	strictly	necessary	for	a	network
to	operate.	This	seeming	paradox	is	due	again	to	the	difference	between	humans
and	computers.	Computers	need	only	the	numeric	addressing	scheme,	not	the
names	assigned	to	them.	So,	without	name	systems,	the	computers	and	the
network	can	still	work,	but	it	will	be	much	harder	for	people	to	use	them!

An	example	of	this	can	most	readily	be	seen	when	a	problem	disables	the
operation	of	a	part	of	DNS	used	to	provide	naming	services	on	the	Internet.



Technically,	DNS	isn't	needed	to	use	most	parts	of	the	Internet,	because	all
communications	use	IP	addresses.	This	means	that	even	though	you	might
normally	access	CNN's	website	at	www.cnn.com,	you	could	instead	just	use	the
IP	address	64.236.16.20.

The	problem	is	that	prior	to	reading	this,	you	probably	had	no	idea	what	the	IP
address	of	CNN's	website	is,	and	that's	true	of	almost	everyone	else	who	uses	the
site	as	well.	Also,	you	might	want	to	check	not	just	CNN's	website,	but	perhaps
1,	2,	or	20	other	news	sites.	It	would	be	difficult	to	remember	the	numbers	for
even	a	small	percentage	of	the	thousands	of	different	websites	on	the	Internet,	so
each	time	you	wanted	to	access	a	resource,	you	would	need	to	manually	look	up
its	address,	as	shown	in	Figure	50-1.

Figure	50-1.	Internetwork	access	without	a	name	system	When	there	is	no	name	system,	a	user	must
know	the	address	of	any	device	he	or	she	wishes	to	access	on	the	internetwork.	Since	most	of	us	have
limited	memories	for	numbers,	this	means	each	access	must	be	preceded	by	an	inefficient,	tedious,

manual	address	lookup.

In	contrast,	it's	much	easier	to	remember	the	names	of	resources.	With	a	name
system,	you	just	enter	the	name	of	a	device,	and	the	name	system	converts	it	to

http://www.cnn.com


an	address,	as	shown	in	Figure	50-2.	This	is	why	name	systems	are	so	important,
even	if	they	aren't	needed	by	the	networking	technologies	themselves.	In	fact,
the	reliance	on	name	systems	like	DNS	is	so	significant	that	many	people	don't
even	realize	they	can	enter	IP	addresses	into	their	web	browsers!

Figure	50-2.	Internetwork	access	with	a	name	system

When	an	internetwork	is	equipped	with	a	name	system,	the	user	no	longer	needs
to	know	the	address	of	a	device	to	access	it.	He	or	she	enters	the	name,	and	the
name	system	converts	it	into	an	address	automatically,	like	a	computerized
Rolodex,	as	shown	here.	The	name	system	then	passes	the	address	to	the	client
software,	which	uses	that	address	to	access	the	requested	resource	as	if	the	user
had	entered	it	directly.

Factors	That	Determine	the	Necessity	of	a	Name
System
More	generally,	the	importance	of	a	name	system	depends	greatly	on	the
characteristics	of	the	network	where	it	is	used.	The	following	are	the	three	main



characteristics	of	the	network	where	it	is	used.	The	following	are	the	three	main
issues	in	determining	the	need	for	a	name	system:

Network	Size	With	a	really	small	network	and	only	a	handful	of	computers,
having	human	users	remember	the	numeric	addresses	for	these	machines	is	at
least	feasible,	if	not	ideal.	For	example,	a	small	home	network	with	two	or	three
machines	doesn't	really	need	a	name	system,	in	theory.	If	you	have	thousands	or
millions	of	devices,	however,	the	name	system	becomes	essential.

Address	Size	and	Complexity	The	more	complex	the	numeric	addressing
scheme,	or	the	larger	the	numbers	used,	the	more	difficult	it	is	for	humans	to
remember	the	numbers.	This	makes	having	a	name	system	all	the	more	essential
for	the	users	of	those	addresses.

User	Base	Size	and	Skill	In	the	early	days	of	networks,	a	small	number	of
highly	skilled	and	well-trained	engineers	used	them,	and	these	people	sometimes
just	memorized	the	numbers	of	the	machines	they	worked	with	every	day.	In
modern	networks	with	thousands	or	millions	of	regular	users,	expecting	the
average	person	to	remember	device	numbers	is	not	reasonable.

TIP

KEY	CONCEPT	Networking	name	systems	are	important	because	they	allow	devices	to	be	assigned
efficient	numeric	addresses,	while	still	enabling	humans	to	access	them	using	names	that	are	easier	to
remember.	Name	systems	become	more	important	as	you	increase	the	size	of	the	network,	the	address,
or	the	user	base.	They	are	also	more	essential	when	the	user	base	is	limited	in	skill	or	experience.

Looking	at	these	issues,	we	can	see	that	the	trends	in	today's	networks	are	all	in
the	direction	of	increasing	the	importance	of	name	systems.	Our	networks,	both
private	and	public,	are	growing	larger,	and	we	have	more	people	using	them,
including	more	people	without	a	technical	background.	We	are	also	increasingly
moving	from	small	addresses	to	larger	ones.	The	best	example	of	this	is	the
upcoming	change	to	IP.	While	DNS	is	important	for	the	32-bit	addresses	used	in
IPv4,	it's	even	more	important	for	dealing	with	the	enormous	128-bit	addresses
of	IPv6	(see	Part	II-4).

Basic	Name	System	Functions:	Name	Space,
Name	Registration,	and	Name	Resolution



While	the	difference	between	numeric	addresses	and	symbolic	names	is	very
significant	to	the	users	of	network	devices,	it's	important	to	remember	that	both
numbers	and	names	really	serve	the	same	basic	purpose:	device	identification.
Even	when	we	use	a	name	system	to	make	devices	easier	to	access,	the
computers	themselves	will	still	normally	need	to	use	the	underlying	numeric
identifier.	In	essence,	every	device	will	end	up	with	(at	least)	two	identifiers:	a
number	and	a	name.

The	fact	that	devices	end	up	with	multiple	identifiers	is	what	allows	both	people
and	their	machines	to	use	the	method	of	identification	they	prefer.	However,	it
means	that	there	must	be	ways	of	managing	the	assignment	of	names	to	devices
and	converting	between	them.	A	name	system	involves	more	than	just	slapping
names	on	computers.	It	must	be	a	complete	system	that	allows	names	to	be	used
by	the	humans	while	numbers	continue	to	be	used	by	the	devices.

At	the	highest	level,	a	name	system	must	handle	three	basic	functions:

Name	Space	Definition	The	name	system	defines	a	name	space	for	the
networking	system	on	which	it	runs.	The	name	space,	also	sometimes	called	a
name	architecture,	describes	the	rules	for	how	names	are	structured	and	used.	It
also	defines	how	the	name	of	one	device	is	related	to	the	names	of	other	devices
in	the	system	and	how	to	ensure	that	there	are	no	invalid	names	that	would	cause
problems	with	the	system	as	a	whole.

Name	Registration	To	implement	the	name	system,	a	name	must	be	assigned	to
each	device	on	the	network.	Like	any	addressing	system,	a	name	system	cannot
work	properly	unless	every	name	on	the	system	is	unique.	We	need	some	way	of
managing	how	the	names	are	assigned	so	the	result	is	sensible.	The	process	of
linking	specific	names	to	particular	devices	is	usually	called	name	registration.

Name	Resolution	Even	though	humans	like	symbolic	names,	computers	usually
have	little	use	for	them.	It	is	necessary	to	define	a	mechanism	by	which	a
device's	symbolic	name	can	be	translated	into	its	numeric	address.	This	process
is	usually	called	name	resolution.

The	name	space	is	more	of	a	descriptive	function,	which	defines	how	names
work	in	the	system.	Name	registration	and	resolution	are	more	active	functions,
with	each	name	system	including	one	or	more	specific	procedures	for	how	these



jobs	are	carried	out.	Name	registration	and	resolution	are	in	some	ways
complements	of	each	other,	so	certain	registration	techniques	are	most	often
associated	with	particular	resolution	methods.	In	turn,	the	types	of	registration
and	resolution	methods	that	are	possible	depend	on	the	name	space,	and	in
particular,	its	architecture.	These	relationships	are	shown	in	simplified	form	in
Figure	50-3.

Figure	50-3.	Name	system	functions

This	diagram	shows	the	relationships	between	the	three	main	functions	of	a
name	system.	The	name	space	defines	the	structure	of	the	name	system	and	the
rules	for	creating	names.	The	name	space	is	used	as	the	basis	for	the	name
registration	method,	which	defines	the	mappings	between	names	and	addresses.
When	a	user	wants	to	access	a	device	by	name,	a	name	resolution	method	is	used
to	consult	the	name	space,	determine	what	address	is	associated	with	a	name,
and	then	convert	the	name	to	an	address.	The	processes	of	registration	and
resolution	can	be	either	quite	plain	or	fairly	complicated,	depending	on	the	type
of	name	system	used.	Simple	name	systems	are	largely	manual	in	operation,
easy	to	understand,	and	best	used	in	smaller	networks.	Larger,	more	complex
networks	and	internetworks	require	more	sophisticated	methods	of	registration
and	resolution,	which	involve	less	administrator	intervention	and	scale	better	as
new	machines	are	added	to	the	network.

Although	name	registration	and	name	resolution	work	as	functions	at	the	highest



level,	they	are	probably	better	thought	of	as	sets	of	functions.	Name	registration
is	necessarily	tied	to	issues	such	as	name	system	administration	and
management,	and	understanding	resolution	requires	that	we	look	at	a	number	of
important	implementation	issues	in	the	areas	of	efficiency	and	reliability.	The
rest	of	this	chapter	expands	on	this	overview	by	considering	each	of	these	three
functions	in	more	detail.

TIP

KEY	CONCEPT	A	name	system	consists	of	three	theoretical	high-level	functions:	the	name	space,
which	describes	how	names	are	created	and	organized;	the	name	registration	technique,	which	is	used	to
set	up	relationships	between	names	and	addresses;	and	the	name	resolution	method,	which	is	responsible
for	translating	names	to	addresses.



Name	Spaces	and	Name	Architectures
The	main	idea	of	a	name	system	is	to	provide	a	way	to	identify	devices	using
symbolic	names.	Like	any	identification	mechanism,	before	it	can	be	used,	we
must	define	the	way	that	identification	will	be	performed.	Numeric	addressing
schemes	(like	IP	addresses)	have	rules	for	how	addresses	are	created	and	assign
addresses	to	each	device	from	their	address	space.	In	a	similar	way,	devices	in	a
name	system	are	given	names	from	the	system's	name	space.

Name	Space	Functions
Of	the	three	main	components	of	a	name	system,	the	name	space	is	the	most
abstract.	It	is	also	the	most	fundamental	part	of	the	system,	since	it	actually
describes	how	the	names	are	created.	There	are	several	aspects	to	what	the	name
space	defines	in	a	name	system:

Name	Size	and	Maximum	Number	of	Names	The	name	space	specifies	the
number	of	characters	(symbols)	that	compose	names.	It	also	defines	the
maximum	number	of	names	that	can	appear	in	the	system.

Name	Rules	and	Syntax	The	name	space	specifies	which	characters	and
symbols	are	allowed	in	a	name.	This	is	used	to	allow	legal	names	to	be	chosen
for	all	devices,	while	avoiding	illegal	names.

Name	Architecture	and	Semantics	Each	name	space	uses	a	specific
architecture	or	structure,	which	describes	how	names	are	constructed	and
interpreted.

The	concepts	of	name	size	and	name	syntax	are	relatively	straightforward.	The
name	architecture	is	probably	the	most	important	differentiating	characteristic	of
name	systems.	For	this	reason,	name	spaces	are	sometimes	even	called	name
architectures.	The	architecture	of	the	name	space	determines	whether	names	are
assigned	and	used	as	a	simple	unstructured	set	of	symbols	or	have	a	more
complex	internal	structure.	In	the	latter	case,	the	name	space	also	must	define
how	elements	of	a	particular	name	are	related	to	each	other.

Theoretically,	many	different	name	architectures	are	possible.	In	practice,	most
fall	into	one	of	two	categories:	flat	and	hierarchical.



Flat	Name	Architecture	(Flat	Name	Space)
In	a	flat	name	architecture,	names	are	assigned	as	a	sequence	of	symbols	that	are
interpreted	as	a	single,	whole	label	without	any	internal	structure.	There	is	no
clear	relationship	between	any	name	and	any	other	name.

An	example	of	this	sort	of	architecture	would	be	a	name	system	where
computers	are	given	unstructured	names	like	Engineering	Workstation	1	or
Joanne's	PC,	as	shown	in	the	example	in	Figure	50-4.

Figure	50-4.	Flat	name	architecture	(flat	name	space)	This	diagram	shows	an	example	of	a	flat	name
architecture.	There	is	no	structure	that	organizes	the	names	or	dictates	how	they	must	be	constructed.

Logically,	each	device	is	a	peer	of	each	of	the	others.

Hierarchical	Name	Architecture	(Structured
Name	Space)
In	a	hierarchical	name	architecture,	or	structured	name	space,	the	names	are	a
sequence	of	symbols,	but	these	symbols	are	assigned	using	a	specific	and	clear
structure.	Each	name	consists	of	discrete	elements	that	are	related	to	each	other,
usually	by	using	hierarchical	parent/child	semantics.	There	are	many	naming
architectures	in	various	contexts	that	use	this	type	of	hierarchical	structure.	For
example,	consider	how	a	large	company	might	set	up	an	organization	chart	and
name	the	executives	and	officers	in	the	organization.	One	hypothetical	example
of	a	hierarchical	name	architecture	is	illustrated	in	Figure	50-5.

The	best-known	real-world	example	of	a	hierarchical	name	space	is	the	name
space	of	DNS	(see	Chapter	53),	which	uses	text	labels	separated	by	periods	(or
dots)	to	form	an	internal	structure.	All	the	names	in	the	system	are	organized	into
a	structure,	and	a	particular	device's	place	in	the	structure	can	be	determined	by
looking	at	its	name.	For	example,	www.tcpipguide.com	refers	to	the	World	Wide
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Web	server	for	The	TCP/IP	Guide,	which	is	named	under	the	umbrella	of
commercial	(.com)	companies.

Figure	50-5.	Hierarchical	name	architecture	(structured	name	space)

This	diagram	contains	the	same	devices	as	Figure	50-4,	but	they	have	been
arranged	using	a	hierarchical,	structured	name	architecture.	In	this	case,	the
organization	has	chosen	to	structure	its	device	names	first	by	facility	location,
and	then	by	department.	Each	name	starts	with	something	like	USA-Service-	or
EU-Mfg-.	This	has	immediate	benefits	by	providing	local	control	over	device
naming	without	risk	of	conflicts.	If	someone	named	John	were	hired	into	the
USA	sales	force,	his	machine	could	be	named	USA-Sales-John,	without
conflicting	with	the	machine	owned	by	John	of	the	European	sales	force	(EU-
Sales-John).	The	structure	also	makes	it	easier	to	know	immediately	where	a
device	can	be	found	within	the	organization.

Comparing	Name	Architectures
As	you	will	see	in	the	next	two	sections	in	this	chapter,	the	architecture	of	the
name	space	is	intimately	related	to	how	names	are	registered	and	managed,	and
ultimately,	how	they	are	resolved.	A	flat	name	space	requires	a	central	authority
of	some	sort	to	assign	names	to	all	devices	in	the	system	to	ensure	uniqueness.	A
hierarchical	name	architecture	is	ideally	suited	to	a	more	distributed	registration
scheme	that	allows	many	authorities	to	share	in	the	registration	and



scheme	that	allows	many	authorities	to	share	in	the	registration	and
administrative	process.

All	of	this	means	that	the	advantages	and	disadvantages	of	each	of	these
architectures	are	not	a	great	mystery.	Flat	name	spaces	have	the	advantage	of
simplicity	and	the	ability	to	create	short	and	easily	remembered	names,	as	shown
in	Figure	50-4.	However,	they	do	not	scale	well	to	name	systems	containing
hundreds	or	thousands	of	machines,	due	to	the	difficulties	in	ensuring	each	name
is	unique.	For	example,	what	happens	if	there	are	four	people	named	John	who
all	try	to	name	their	computers	John's	PC?	Another	issue	is	the	overhead	needed
to	centrally	manage	these	names.

In	contrast,	hierarchical	name	spaces	are	more	sophisticated	and	flexible,
because	they	allow	names	to	be	assigned	using	a	logical	structure.	We	can	name
our	machines	using	a	hierarchy	that	reflects	our	organization's	structure,	for
example,	and	give	authority	to	different	parts	of	the	organization	to	manage	parts
of	the	name	space.	As	long	as	each	department	is	named	uniquely	and	that
unique	department	name	is	part	of	each	machine	name,	we	don't	need	to	worry
about	each	assigned	name	being	unique	across	the	entire	organization;	it	just
needs	to	be	unique	within	the	department.	Thus,	we	can	have	four	different
machines	named	with	their	department	name	and	John,	as	Figure	50-5
demonstrates.	The	price	of	this	flexibility	is	the	need	for	longer	names	and	more
complexity	in	name	registration	and	resolution.

TIP

KEY	CONCEPT	The	two	most	common	types	of	name	architecture	are	the	flat	name	space	and	the
hierarchical	name	space.	Names	in	a	flat	name	space	are	all	peers	with	no	relationship.	In	a	hierarchical
architecture,	a	multiple-level	structure	is	used	to	organize	names	in	a	specific	way.	The	flat	system	is
simpler	and	satisfactory	for	small	networks.	The	hierarchical	name	space	is	more	flexible	and	powerful,
and	better	suited	to	larger	networks	and	internetworks.



Name	Registration	Methods,	Administration,	and
Authorities
It	seems	obvious	that	for	our	name	system	to	be	implemented,	we	need	some
method	of	assigning	names	to	each	of	the	devices	that	will	use	the	system.	Just
as	a	name	system	has	a	name	space	that	is	comparable	to	an	addressing	system's
address	space,	it	also	must	implement	a	set	of	rules	and	procedures	for	assigning
names,	comparable	to	how	an	addressing	system	assigns	addresses.	This	is	called
name	registration.

Name	Registration	Functions
In	general,	name	registration	encompasses	the	following	four	concepts	and	tasks:

Name	Assignment	and	Guarantee	of	Uniqueness	The	core	task	of	the	name
registration	process	is	assigning	names	to	devices.	Like	all	identification
schemes,	a	key	requirement	of	name	registration	is	ensuring	that	each	name	is
unique.	Duplicated	names	cause	ambiguity	and	make	consistent	name	resolution
impossible.

Central	Registration	Authority	Designation	Ensuring	uniqueness	of	names
requires	that	there	be	someone	in	charge	of	the	name	assignment	process.	This
central	registration	authority	may	be	a	single	individual	that	maintains	a	file
containing	names,	or	it	may	be	an	organization	that	is	responsible	for	the	overall
name	registration	process.	The	authority	is	also	charged	with	resolving	problems
and	conflicts	that	may	arise	in	registrations.

Registration	Authority	Delegation	In	smaller	name	systems,	the	central
registration	authority	may	be	responsible	for	the	actual	registration	process	for
all	devices.	In	larger,	hierarchical	name	systems,	having	this	process	centralized
is	impractical.	Instead,	the	central	registration	authority	will	divide	the	name
space	and	delegate	authority	for	registering	names	in	different	parts	of	it	to
subordinate	organizations.	This	requires	a	delegation	policy	to	be	developed	and
implemented.

Hierarchical	Structure	Definition	When	a	hierarchical	name	space	is	used,	the
central	authority	is	responsible	for	defining	how	the	structure	will	look.	This,	in



turn,	dictates	how	names	can	be	registered	in	different	parts	of	the	hierarchy,	and
of	course,	also	impacts	how	authority	is	delegated.

The	complexity	of	the	name	registration	process	depends	to	a	great	extent	on	the
size	and	complexity	of	the	name	system	as	a	whole,	and,	in	particular,	on	the
architecture	of	the	name	space.	In	a	simple	name	system	using	a	flat	name	space,
registration	is	usually	accomplished	using	a	single	authority.	There	is	no
structure	and	usually	no	delegation	of	authority,	so	there	isn't	much	to
registration.	For	hierarchical	name	systems,	name	registration	is	tied	tightly	to
the	hierarchy	used	for	names.

Hierarchical	Name	Registration
The	central	authority	defines	the	structure	of	the	hierarchy	and	decides	how	the
hierarchy	is	to	be	partitioned	into	subsets	that	can	be	independently	administered
by	other	authorities.	Those	authorities	may,	in	turn,	delegate	subsets	of	their
name	spaces	as	well,	creating	a	flexible	and	extensible	system.

This	ability	to	delegate	authority	for	name	registration	is	one	of	the	most
powerful	benefits	of	a	hierarchical	name	space.	For	example,	in	DNS,	a	central
authority	is	responsible	for	name	registration	as	a	whole.	This	central	authority	is
in	charge	of	deciding	which	top-level	domains—such	as	.com,	.edu,	.info,	and
.uk—are	allowed	to	exist.	Authority	for	managing	each	of	these	subsets	of	the
worldwide	hierarchy	is	then	delegated	to	other	organizations.	These
organizations	continue	the	process	of	dividing	the	hierarchy	as	they	see	fit.
Eventually,	each	organization	is	able	to	decide	how	it	will	name	its	own	internal
systems	independently;	for	example,	IBM	can	register	names	in	any	way	it	sees
fit	within	the	ibm.com	name.

Name	Registration	Methods
There	are	several	common	methods	by	which	the	actual	process	of	registration	is
carried	out.	These	include	table	name	registration,	broadcast	name	registration,
and	database	registration.	Each	of	these	has	its	strengths	and	weaknesses,	and
again,	some	are	better	suited	to	flat	name	spaces	and	some	to	hierarchical	ones.

Table	Name	Registration
Using	table	name	registration,	name	assignments	are	maintained	in	a	table	by	an



Using	table	name	registration,	name	assignments	are	maintained	in	a	table	by	an
administrator.	When	names	need	to	be	added,	deleted,	or	changed,	the	table	is
edited.

This	technique	is	usually	associated	with	small,	flat	name	space	name	systems.	It
has	the	same	benefits	and	drawbacks	as	flat	architecture	in	general:	It	is	simple
and	easy	to	implement,	but	doesn't	scale	well	to	larger	systems.	With	a	dozen
machines,	having	someone	edit	name	registration	tables	is	practical;	with
thousands	of	machines,	it	is	not.	It	is	also	not	conducive	to	a	hierarchical	system
where	there	are	multiple	authorities,	because	the	table	needs	to	be	kept	in	one
place.

In	larger	internetworks,	tables	may	be	used	as	an	adjunct	to	one	of	the	other,
more	sophisticated,	registration	techniques.

Broadcast	Name	Registration
Broadcast	name	registration	is	a	trial-and-error	technique.	A	device	that	wants	to
use	a	particular	name	sends	out	a	message	to	all	other	devices	on	the	network,
asking	if	anyone	else	is	already	using	it.	If	so,	it	chooses	a	different	name.	If	not,
the	name	is	considered	registered	and	can	then	be	used.

This	technique	is	more	sophisticated	than	using	tables,	but	it	is	still	limited	to	use
in	relatively	small	systems.	It	is	not	practical	to	attempt	to	broadcast	to
thousands	of	systems,	and	this	method	could	not	be	used	over	the	Internet,	since
there	is	no	way	to	broadcast	to	every	device	on	an	internetwork.

Database	Registration
With	database	registration,	a	database	of	name	assignments	is	maintained.	To
register	a	name,	a	request	must	be	made	to	have	the	name	assignment	added	to
the	database.	If	the	authority	for	the	name	system	is	entirely	centralized,	the
database	will	be	centralized	and	maintained	by	that	authority.	If	authority	for
parts	of	the	hierarchy	is	delegated,	then	a	distributed	database	is	used	for
registration,	with	each	authority	maintaining	the	part	of	the	database	describing
its	section	of	the	hierarchy.

This	is	the	most	sophisticated	technique	and	one	normally	associated	with
hierarchical	name	systems	like	DNS.	It	has	several	benefits,	including	flexibility,
reliability,	and	distribution	of	maintenance	effort.	Its	main	drawback	is



reliability,	and	distribution	of	maintenance	effort.	Its	main	drawback	is
complexity.

TIP

KEY	CONCEPT	Name	registration	is	the	process	by	which	names	are	linked	to	addresses	in	a	name
system.	It	encompasses	activities	such	as	central	registry	authority	designation	and	delegation,	and	name
space	structure	management.	The	most	common	methods	of	name	registration,	in	order	of	both
increasing	capability	and	complexity,	are	manual	table	maintenance,	broadcast	registration,	and	database
registration.



Name	Resolution	Techniques	and	Elements
As	we	discussed	earlier	in	this	chapter,	using	a	name	system	creates	two	parallel
identification	systems	for	computers:	the	numbers	used	by	machines	and	the
names	used	by	people.	The	job	of	the	name	system	is	to	integrate	these	two
schemes.	Name	registration	allows	humans	to	specify	which	machines	use	which
names.	This	is	only	half	the	process,	however;	we	also	need	a	way	for	machines
to	take	a	name	given	to	them	by	a	human	and	translate	it	into	the	numeric
address	it	can	actually	use	for	communication.	This	is	called	name	resolution.

Name	resolution,	also	sometimes	called	name	translation,	mapping,	or	binding,
is	the	most	well-known	aspect	of	name	systems,	because	it	is	where	most	of	the
"heavy	lifting"	of	a	name	system	occurs.	The	name	space	is	generally	set	up
once,	and	name	registration	occurs	infrequently—only	when	names	must	be
created	or	changed.	In	contrast,	every	user	of	a	name	system	instructs	the
machines	he	or	she	uses	to	perform	name	resolution,	hundreds	or	even	thousands
of	times	a	day.

Name	Resolution	Methods
Several	different	techniques	can	be	used	for	name	resolution.	How	this	function
is	implemented	depends	a	great	deal	on	the	other	two	name	system	functions:
name	space	and	name	registration.	As	you	might	imagine,	a	simple	name	system
with	a	simple	name	registration	method	will	most	often	use	a	simple	resolution
method	as	well.	Complex	hierarchical	systems	with	distributed	databases	require
more	sophistication	in	how	names	are	resolved.	There	are	three	common	name
resolution	methods:	table	name	resolution,	broadcast	name	resolution,	and
client/server	name	resolution.

Table-Based	Name	Resolution
The	table	used	for	table-based	name	registration	is	consulted	by	a	device	when
resolution	needs	to	be	performed.	The	table	tells	the	device	how	to	transform	the
name	of	the	machine	it	needs	to	contact	into	an	address.

This	technique	obviously	corresponds	to	table	name	registration.	It	is	the
simplest	and	least	capable	of	the	three	methods.	Table	name	resolution	is
suitable	for	stand-alone	use	only	in	very	small	name	systems,	but	it	can	be	a



suitable	for	stand-alone	use	only	in	very	small	name	systems,	but	it	can	be	a
supplement	to	other	methods	as	well.

Broadcast	Name	Resolution
When	a	device	needs	to	resolve	a	name,	it	broadcasts	a	query	that	says
something	to	this	effect:	"I	need	to	send	to	the	device	named	X.	Who	is	that?"
The	device	whose	name	is	X	responds,	"I'm	X,	and	my	numeric	address	is	N."

This	is	the	complement	of	broadcast	name	registration.	It,	too,	can	be	used	only
in	simple	systems	where	every	device	can	hear	a	broadcast.	The	use	of
broadcasts	also	makes	it	wasteful	of	network	bandwidth.

Client/Server	Name	Resolution
With	client/server	name	resolution,	servers	are	programmed	with	software	that
allows	them	to	respond	to	name	resolution	requests	sent	by	clients.	These	servers
take	the	name	in	the	request,	look	up	the	associated	numeric	identifier	in	a
database,	and	send	it	back	in	a	response.

This	technique	is	generally	used	in	conjunction	with	database	name	registration.
It	is	the	most	complex	name	resolution	method,	but	it	is	also	the	most	efficient
and	the	only	one	that	can	really	work	properly	on	a	large,	distributed	hierarchical
name	system.

Client/Server	Name	Resolution	Functional
Elements
Client/server	name	resolution	is	the	method	used	for	most	large,	modern	name
systems.	The	client/server	method	of	request/reply	resolution	is	similar	to	how
many	other	protocols	function.	One	thing	that	is	unique	about	name	resolution,
however,	is	that	name	resolution	isn't	often	invoked	directly	by	the	client.	It's
rare,	for	example,	for	a	human	user	to	say,	"Please	resolve	the	following	name."
We	also	certainly	wouldn't	want	users	to	need	to	manually	resolve	a	name	to	an
address	each	time	they	wished	to	contact	a	device,	as	this	would	be	cumbersome.

Instead,	the	system	is	automated	by	having	software	accept	machine	names	input
by	users.	The	software	resolves	the	name	by	passing	it	to	a	name	resolver
software	component.	The	resolver	acts	as	the	client	in	the	name	resolution



process.	It	contacts	a	name	server,	which	responds	to	the	request.	The	name
resolver	and	name	server	constitute	the	two	main	functional	elements	in	name
resolution.

TIP

KEY	CONCEPT	Name	resolution	is	arguably	the	most	important	of	the	main	functional	elements	of	a
name	system,	because	it	is	the	part	of	the	system	that	actually	converts	names	into	addresses.	The	two
main	components	of	name	resolution	are	name	resolvers,	which	act	as	clients	in	the	resolution	process,
and	name	servers.	The	three	main	name	resolution	methods—table-based,	broadcast,	and	client/server—
correspond	closely	to	the	table,	broadcast,	and	database	methods	of	name	registration.

In	a	distributed	database	for	a	hierarchical	name	system,	multiple	requests	may
be	required,	since	name	servers	will	contain	only	information	for	certain
machines	and	not	others.	Resolvers	follow	a	special	procedure	to	travel	the
hierarchy	until	they	find	the	server	that	has	the	information	they	want.	Again,
DNS's	name	resolution	is	the	best	example	of	this	method.



Efficiency,	Reliability,	and	Other	Name
Resolution	Considerations
As	described	in	the	previous	section,	the	primary	function	of	name	resolution	is
allowing	humans	to	identify	devices	using	names,	then	converting	these	names
into	numbers	so	that	computers	can	use	the	numbers	instead.	This	basic	task	is
conceptually	quite	simple,	but	it	can	become	quite	complex	in	implementation.
The	reason	for	this	is	the	key	characteristic	that	makes	name	resolution	so
different	from	the	other	tasks	performed	by	a	name	system:	the	frequency	with
which	it	is	done.

Name	registration	is	seldom	done,	but	name	resolution	is	done	very	often.	If	you
consider	a	large	internetwork	with	thousands	of	users	running	various
applications,	millions	of	names	must	be	resolved	every	day.	Now,	consider
something	like	the	Internet,	which	must	process	billions	of	client/server	requests
and	replies	daily!	Ensuring	that	such	systems	work	requires	that	we	do	more	than
just	implement	a	resolution	process;	we	must	add	facilities	to	ensure	that
resolution	is	done	as	effectively	as	possible.

Efficiency	Considerations
The	first	major	concern	with	name	resolution	is	efficiency.	Name	resolution	uses
up	system	resources,	especially	with	resolution	techniques	that	require	requests
and	replies	to	be	sent.	This	means	we	want	to	minimize	the	number	of	times
resolution	is	performed,	if	at	all	possible.	Now,	consider	that	many	people	will
frequently	access	the	same	machines	over	and	over	again.	For	example,	if	you	go
to	a	website	called	www.thisisasite.com	for	the	first	time,	your	system	will	need
to	resolve	that	name.	After	the	home	page	for	that	site	loads,	if	you	click	a	link	to
another	page	on	that	site,	the	page	will	also	be	found	at	that	same	name:
www.thisisasite.com.	So,	it	would	be	wasteful	to	need	to	resolve	that	name	a
second	time.

To	avoid	this,	name	systems	almost	always	include	some	sort	of	caching
capability,	which	allows	devices	to	remember	recent	name	resolutions	and	retain
the	mapping	from	name	to	address	for	a	period	of	time.	Whenever	a	name	needs
to	be	resolved,	the	cache	is	first	checked	before	going	through	the	formal	process

http://www.thisisasite.com
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of	resolution.	The	use	of	caching	eliminates	the	vast	majority	of	actual	name
resolution	requests	that	would	otherwise	be	required.

The	drawbacks	of	caching	are	that	it	requires	some	system	resources	of	its	own
and	that	it	adds	complexity	to	the	system.	One	issue	is	deciding	how	long	to
retain	data	in	the	cache.	If	we	keep	it	too	short	a	time,	we	generate	extra
unnecessary	resolution	requests.	If	we	keep	it	too	long,	we	risk	having	the
mapping	become	stale	if	the	name	assignment	for	the	machine	changes.	These
are	issues	that	a	sophisticated	name	system	must	handle.	A	typical	solution	is	to
allow	each	name	registration	to	specify	how	long	information	about	that	name-
to-address	link	may	be	cached.

Reliability	Considerations
The	next	main	concern	after	efficiency	is	name	resolution	reliability.	As	I	said
earlier	in	this	chapter,	having	a	name	system	isn't	strictly	necessary	for	the
computers,	but	it's	very	important	for	the	users,	especially	on	a	large	network
like	the	Internet.

While	having	a	single	central	place	that	maintains	all	information	about	a	name
system	may	make	administration	simpler,	it	creates	a	dangerous	single	point	of
failure.	If	anything	happens	to	the	device	storing	the	information,	the	entire
name	system	fails.	Modern	name	systems	employ	redundancies	to	prevent
having	the	entire	system	rely	on	any	particular	device	for	resolution.	A	typical
approach	in	a	client/server	system	is	to	have	multiple	servers	in	different
locations	(or	attached	to	different	networks)	that	can	respond	to	name	resolution
requests.

TIP

KEY	CONCEPT	Since	name	resolution	is	the	part	of	a	name	system	that	is	used	most	often,	it	is	here
that	we	must	pay	careful	attention	to	implementation	issues.	The	two	most	important	ones	are	efficiency
and	reliability.	Efficiency	is	essential	due	to	the	many	thousands	or	millions	of	resolutions	performed
every	day	on	a	large	system.	Reliability	is	a	consideration	because	users	of	the	name	system	quickly
come	to	rely	on	it,	so	we	must	make	sure	it	is	robust.

Other	Considerations
An	optional	feature	in	some	name	resolution	systems	is	load	balancing.	When



properly	implemented,	load	balancing	allows	a	single	name	to	map	to	more	than
one	underlying	address.	This	allows	requests	sent	to	a	particular	virtual	device	to
actually	be	directed	to	a	number	of	different	actual	physical	devices,	spreading
the	load	over	multiple	machines.	A	common	use	of	this	feature	is	for	very
popular	websites	that	are	visited	often.

Finally,	while	name	resolution	is	obviously	designed	to	allow	names	to	be
mapped	to	addresses,	there	are	cases	where	we	may	wish	to	go	in	the	other
direction:	given	a	numeric	address,	find	the	name	that	goes	with	it.	This	process,
called	reverse	resolution,	is	analogous	to	having	a	phone	number	and	trying	to
find	the	name	of	the	person	or	company	to	which	it	belongs.	Just	as	we	can't
easily	find	the	name	matching	a	phone	number	using	a	conventional	phone	book
(we	would	need	to	scan	every	page	looking	for	the	number),	reverse	resolution
requires	special	support	on	the	part	of	the	name	system.	This	is	especially	true	if
the	name	system	data	is	distributed	over	many	servers.



Chapter	51.	TCP/IP	NAME
SYSTEMS	OVERVIEW	AND	THE
HOST	TABLE	NAME	SYSTEM

TCP/IP	has	become	sufficiently	popular	that	many	people—even	those	who
aren't	geeks—are	fairly	comfortable	working	with	its	numeric	identifiers	(IP
addresses).	Even	so,	it's	a	lot	easier	to	work	with	names	than	numbers,	and	it's
certainly	easier	to	remember	names.	We	can	consider	also	that	name	systems
become	more	important	when	used	on	larger	networks,	and	TCP/IP	is	used	to
implement	the	Internet,	the	world's	largest	internetwork.	Having	a	good	name
system	is	vital	to	the	operation	of	the	Internet,	and	thus,	has	become	an
important	element	of	TCP/IP	as	a	whole.

In	this	chapter,	I	begin	the	discussion	of	TCP/IP's	name	systems	with	a	look	at
the	history	of	the	use	of	host	names	in	TCP/IP	and	the	early	development	of	its
name	systems.	I	then	provide	a	description	of	the	simple	host	table	name	system,
the	first	one	used	in	the	protocol	suite.	I	discuss	why	host	tables	were	replaced
by	the	Domain	Name	System	(DNS)	and	how,	even	today,	they	can	be	used	to
complement	DNS	functions.

TIP

BACKGROUND	INFORMATION	This	chapter	assumes	that	you	are	already	familiar	with	the	general
concepts	and	issues	of	name	systems	explained	in	the	preceding	chapter.

A	Brief	History	of	TCP/IP	Host	Names	and	Name
Systems



In	the	previous	chapter,	I	described	an	interesting	paradox:	Even	though	name
systems	aren't	strictly	necessary	for	the	functioning	of	a	networking	system,	they
make	using	a	network	so	much	easier	for	people	that	they	are	considered	an
essential	part	of	most	networks.	No	better	evidence	of	this	can	be	found	than	in
the	history	of	name	system	development	in	TCP/IP.

Developing	the	First	Name	System:	ARPAnet
Host	Name	Lists
The	history	of	name	systems	in	the	TCP/IP	protocol	suite	actually	goes	back
well	before	the	Transmission	Control	Protocol	(TCP)	and	Internet	Protocol	(IP)
were	themselves	even	created.	In	the	late	1960s	and	early	1970s,	when	the
predecessor	of	the	Internet,	called	the	ARPAnet,	was	being	developed,	it	used
older	networking	protocols	that	served	the	same	function	that	TCP	and	IP	do
today.

The	ARPAnet	was	very	small	by	today's	standards,	containing	at	first	only	a	few
machines,	referred	to	as	hosts,	just	as	TCP/IP	machines	often	are	called	today.
The	addressing	scheme	was	also	very	simple,	consisting	of	just	the	combination
of	a	computer	number	and	a	port	number	for	each	host.	With	only	a	handful	of
machine	names,	it	was	easy	to	memorize	addresses,	but	as	the	ARPAnet	grew	to
several	dozen	machines,	this	scheme	became	untenable.

As	early	as	1971,	it	was	apparent	to	the	engineers	designing	the	ARPAnet	that
symbolic	names	were	much	easier	for	everyone	to	work	with	than	numeric
addresses.	They	began	to	assign	simple	host	names	to	each	of	the	devices	on	the
network.	Each	site	managed	its	own	host	table,	which	listed	the	mappings	of
names	to	addresses.

Naturally,	the	ARPAnet	engineers	immediately	recognized	the	dangers	of	having
each	site	maintain	a	list	of	possibly	inconsistent	host	names.	Since	the
internetwork	was	just	a	small	"club"	at	this	point,	they	used	the	Request	for
Comment	(RFC)	process	itself	to	document	standard	host-name-to-address
mappings.	RFC	226,	"Standardization	of	Host	Mnemonics,"	is	the	first	RFC	I
could	find	showing	how	host	names	were	assigned.	It	was	published	on
September	20,	1971.

This	initial	name	system	was	about	as	manual	as	a	system	could	be.	As	additions



and	changes	were	made	to	the	network,	the	list	of	host	names	was	updated	in	a
new	RFC,	leading	to	a	series	of	RFCs	being	published	in	the	1970s.	Each	host
administrator	still	maintained	his	or	her	own	host	table,	which	was	updated	when
a	new	RFC	was	published.	During	this	time,	the	structure	of	host	names	was	still
under	discussion,	and	changes	were	made	to	just	about	every	aspect	of	the	name
system	as	new	ideas	were	explored	and	refined.

Storing	Host	Names	in	a	Host	Table	File
This	early	name	system	worked	fine	while	the	ARPAnet	was	very	small,	but	it
presented	many	problems	as	the	internetwork	grew.	One	problem	was	that	it	was
extremely	slow	in	responding	to	network	modifications,	because	additions	and
changes	would	be	entered	into	device	tables	only	after	a	new	list	was	published.
Also,	even	with	the	centralized	list,	there	were	still	potential	consistency	issues,
because	a	site	manager	might	forget	to	update	a	file	or	make	a	typographical
error.

The	first	improvement	was	to	make	the	list	of	host	name	assignments	a	standard
"master"	text	file,	which	was	centrally	managed	and	could	be	downloaded	using
network	protocols	like	the	File	Transfer	Protocol	(FTP).	The	file	was	maintained
at	the	Network	Information	Center	(NIC)	at	Stanford	University.	The	process	for
defining	and	using	this	file	was	described	in	RFCs	606	and	608,	both	entitled
"Host	Names	On-Line,"	published	in	December	1973	and	January	1974,
respectively.	These	documents	also	formally	specified	the	syntax	for	the	TCP/IP
host	table	name	system,	described	later	in	this	chapter.

The	use	of	a	centrally	managed	host	table	continued	through	the	1970s.	When
TCP/IP	was	developed,	the	system	was	maintained,	and	the	mappings	were
made	between	host	names	and	32-bit	IP	addresses.	RFC	810,	"DoD	Internet	Host
Table	Specification,"	shows	how	host	tables	were	defined	for	use	with	IP
addresses.	It	was	published	in	March	1982.

Outgrowing	the	Host	Table	Name	System	and
Moving	to	DNS
The	continuing	growth	of	the	ARPAnet/Internet	made	it	apparent	that	the	simple
host	table	name	system	would	eventually	become	unmanageable.	With	at	first



dozens,	and	then	hundreds	and	thousands	of	new	hosts	connecting	to	the
internetwork,	a	single	text	file	maintained	in	a	central	location	just	wasn't	up	to
the	task.

The	idea	of	moving	to	a	hierarchical	name	system	based	on	the	concept	of
domains	was	first	introduced	in	September	1981	in	RFC	799,	"Internet	Name
Domains."	Considerable	discussion	and	development	of	this	concept	occurred	in
the	early	1980s.	By	1983,	a	plan	was	put	in	place	to	migrate	from	the	flat	host
table	name	system	to	the	new	Domain	Name	System	(DNS).	The	detailed	history
of	the	development	of	this	name	system	is	continued	in	the	overview	of	DNS	in
Chapter	52.



The	TCP/IP	Host	Table	Name	System
The	pioneers	of	the	modern	Internet	made	the	first	name	system	for	the	TCP/IP
suite	when	they	created	simple	files	containing	the	names	and	addresses	of	the
machines	in	the	early	ARPAnet,	as	explained	in	the	preceding	section.	This
system	was	so	simple	that	it	originally	wasn't	even	formally	specified	as	a	name
system	per	se.	Since	the	files	contained	names	for	network	hosts,	the	process	for
relating	names	to	addresses	was	simply	called	the	host	name	mechanism.	Later,
these	files	were	called	host	tables,	and	for	this	reason,	this	technology	is
commonly	called	the	TCP/IP	host	table	name	system.

As	a	system,	it	is	extremely	simple,	since	it	consists	of	nothing	more	than	a	text
file	maintained	on	each	machine	on	the	network.	This	file	is	normally	called
/etc/hosts	on	a	UNIX	system	and	HOSTS	on	a	Windows	system	(usually
residing	in	the	main	Windows	directory).	The	file	usually	begins	with	some
comment	lines	and	then	lists	pairs	of	IP	addresses	and	host	names.	A	very
simplified	example	(using	the	modern	table	structure,	which	is	slightly	different
from	the	original	host	table	format)	is	shown	in	Example	51-1.

# Host Database
# This file should contain the addresses and aliases
# for local hosts that share this file.
#
# Each line should take the form:
# <address>              <host name>
#
127.0.0.1                localhost
209.68.14.80             www.pcguide.com
216.92.177.143           www.desktopscenes.com
198.175.98.64            ftp.intel.comHost Table Name Space

Example	51-1.	Example	TCP/IP	host	table

The	name	space	and	architecture	for	the	host	table	name	system	is	theoretically
flat,	with	each	name	being	able	to	take	any	form,	without	any	real	structure.
Despite	this,	for	consistency,	certain	rules	were	eventually	put	in	place	regarding
how	names	should	be	created,	as	discussed	in	Chapter	53.	As	you	will	learn	later
in	this	chapter,	it's	also	possible	to	use	host	tables	to	support	the	implementation
of	a	hierarchical	name	space,	which	would	mean	that	the	names	would	need	to
be	created	using	that	name	space's	structural	rules.



Host	Table	Name	Resolution
Name	resolution	in	the	host	table	name	system	is	very	simple.	Each	device	reads
the	host	table	into	memory	when	it	starts	up.	Users	of	the	system	can	refer	to	the
names	in	that	host	table	by	using	names,	instead	of	a	numeric	IP	addresses,	in
their	invocation	of	various	applications.	When	the	software	detects	a	name	has
been	used	in	this	manner,	it	refers	the	name	to	the	internal	resolver	routine	in	the
device,	which	looks	up	the	name	in	the	host	table	in	memory	and	returns	its
address.	There	is	no	need	for	any	transmissions	or	servers	to	be	contacted;
resolution	is	entirely	local.

Host	Table	Name	Registration
Now,	here	is	the	part	where	I	am	supposed	to	say	that	name	registration	in	the
host	table	name	system	is	simple	as	well,	right?	Well,	yes	and	no.	From	a	purely
technical	standpoint,	it	certainly	is	simple.	A	name	is	registered	on	a	particular
device	when	the	name	and	corresponding	IP	address	are	entered	into	the	device's
host	table,	and	that's	it.

However,	name	registration	is	much	more	complicated	from	an	administrative
standpoint,	and	this	is	where	we	find	the	major	weakness	of	using	host	tables.
Each	network	device	maintains	its	own	host	table	independent	of	the	others,
usually	stored	as	a	file	on	its	local	hard	disk.	This	is	in	contrast	to	database
registration	systems	(see	Chapter	50),	where	the	data	is	centrally	stored	and
managed.	This	approach	to	name	registration	leads	to	two	very	important
concerns:

Consistency	Since	every	device	has	its	own	host	table,	how	do	we	ensure	that
information	is	consistent	throughout	all	the	tables	on	the	different	devices?

Modifications	How	do	we	ensure	that	information	about	new	device	mappings
and	changes	to	existing	ones	are	propagated	to	all	devices?

As	explained	earlier	in	this	chapter,	the	original	mechanism	for	name	registration
was	simply	hand-editing,	with	administrators	consulting	updated	published	lists
of	device	names.	This	was	a	very	inefficient	method	that	was	prone	to	error	and
slow	to	acknowledge	changes	to	the	network.	The	revised	system	used	a
centrally	managed	master	file	that	was	downloaded	by	all	sites	on	a	regular
basis.	Name	registration	in	this	method	required	that	the	name/address	mapping



basis.	Name	registration	in	this	method	required	that	the	name/address	mapping
be	submitted	to	the	authority	managing	the	central	file,	the	NIC.

Weaknesses	of	the	Host	Table	Name	System
The	use	of	a	centralized	master	file	for	name	registration	certainly	worked	better
than	using	the	equivalent	of	interoffice	memos	to	publish	host	name	lists,	but	it
was	practical	only	in	the	early	days	of	TCP/IP.	As	the	internetwork	grew,	more
weaknesses	of	the	host	table	system	became	apparent:

Central	Administration	Overload	The	changes	to	the	central	file	became	more
frequent,	increasing	the	administrative	load	on	the	individual	managing	the
master	file,	to	the	point	where	changes	were	being	made	many	times	per	day.	As
the	Internet	continued	to	grow,	it	would	eventually	have	become	impossible	for
human	beings	to	enter	the	changes	as	fast	as	they	were	being	submitted.

Growth	in	the	Master	File	Size	Every	host	needed	a	line	in	the	master	file.
When	the	Internet	grew	to	be	thousands	and	eventually	millions	of	devices,	the
file	size	would	have	become	excessive.

Excessive	Bandwidth	Use	Since	the	master	file	was	changing	so	often,	this	also
meant	that	all	the	devices	on	the	network	needed	to	keep	downloading	this
master	file	repeatedly	to	stay	current.	At	the	same	time,	the	file	was	also	growing
in	size.	Frequent	downloads	of	a	big	file	meant	large	amounts	of	network
bandwidth	were	being	consumed	on	something	that	was,	in	essence,	an	overhead
activity.

Flat	Name	Space	Problems	The	lack	of	a	hierarchical	name	space	led	to
conflicts	when	users	chose	identical	names	for	their	devices,	and	this	further
increased	the	workload	on	the	central	administrator.	These	issues	were
ameliorated	in	part	by	using	naming	conventions,	such	as	using	a	prefix	with	a
location	before	each	individual	machine	name	(like	the	example	we	saw	in
Chapter	50),	but	this	was	not	an	ideal	solution.

All	of	these	are	reasons	why	the	designers	of	the	Internet	eventually	moved	away
from	using	host	tables	for	the	entire	Internet	to	the	more	capable	DNS.

TIP

KEY	CONCEPT	The	host	table	name	system	was	the	original	mechanism	used	for	implementing



names	on	the	early	Internet.	It	consists	simply	of	a	set	of	tables	containing	mappings	between	names	and
addresses	maintained	on	each	machine	in	the	internetwork.	When	a	name	needs	to	be	resolved,	the	table
is	consulted	to	determine	the	appropriate	address.	This	system	is	extremely	simple,	but	not	very	capable
and	not	well	suited	to	a	large	global	Internet,	which	is	why	it	was	eventually	abandoned	in	favor	of	DNS.

Use	of	the	Host	Table	Name	System	in	Modern
Networking
Although	the	host	table	name	system	has	critical	weaknesses,	it	has	not	gone
away	entirely.	There	are	two	circumstances	in	which	this	technique	is	still	of
value,	as	explained	in	this	section.

Small	"Island"	Networks
If	you	are	setting	up	a	small	local	area	network	(LAN)	using	TCP/IP,	and	you
don't	need	the	names	of	your	devices	to	be	accessible	by	those	outside	your
network,	then	guess	what:	You	have	the	equivalent,	of	sorts,	of	the	early
Internet.	In	that	case,	the	host	table	system	is	as	applicable	to	you	as	it	was	to	the
Internet	in	the	1970s.	You	can	simply	set	up	host	tables	on	each	device	and
manage	them	manually.

As	long	as	the	LAN	is	small	enough	that	editing	these	files	periodically	is	not	a
hassle,	this	is	actually	a	fast	and	effective	name	system,	because	no	exchange	of
messages	is	needed	for	resolution.	You	can	even	maintain	a	master	file	on	one
machine	and	copy	it	to	the	others	when	changes	are	required	using	a	script,	to
save	time.

Local	Name	Mappings	to	Supplement	DNS
Even	though	modern	systems	use	DNS	for	most	name	resolution,	they	also
usually	still	support	the	use	of	host	table	files.	You	can	manually	enter	common
name	mappings	into	this	file,	even	for	devices	that	are	on	the	global	Internet.
Your	system	can	then	be	set	up	to	consult	this	list	before	making	use	of	its
assigned	DNS	server.

The	use	of	the	HOSTS	file	in	conjunction	with	DNS	allows	you	to	manually
specify	mappings	for	commonly	accessed	sites,	which	may	provide	a	slight
performance	improvement	since	there	is	no	need	to	access	a	server.	Since	the
HOSTS	file	doesn't	enforce	any	particular	structure	to	names,	it	is	naturally	quite



possible	to	put	DNS-style	hierarchical	names	into	the	file,	as	I	showed	in
Example	51-1.	The	file	is	loaded	into	memory	and	used	to	override	the	normal
DNS	process	for	names	listed	in	it.

Of	course,	you	then	subject	yourself	to	all	the	potential	maintenance	headaches
of	manually	edited	files.	You	must	update	these	files	as	host	names	or	addresses
are	changed	in	the	DNS	system.	For	this	reason,	this	second	use	of	the	HOSTS
file	for	Internet	sites	served	by	DNS	is	less	popular	than	the	use	of	the	file	for
local	machines.

TIP

KEY	CONCEPT	Even	though	the	host	table	name	system	is	not	the	primary	mechanism	used	for
TCP/IP	naming,	it	is	still	used	in	two	circumstances.	The	first	is	to	implement	a	basic	name	system	in	a
small	local	TCP/IP	internetwork.	The	second	is	as	an	adjunct	to	DNS,	where	it	allows	manual	mappings
to	be	created	that	override	the	DNS	process	when	needed.



Chapter	52.	DOMAIN	NAME
SYSTEM	(DNS)	OVERVIEW,
FUNCTIONS,	AND
CHARACTERISTICS

The	creation	of	host	tables	to	map	computer	names	to	addresses	greatly
improved	the	usability	of	the	early	Internet	and	the	TCP/IP	protocol	suite	that
implemented	it.	Unfortunately,	while	the	host	table	name	system	worked	well
when	the	internetwork	was	small,	it	did	not	scale	particularly	well	as	the	Internet
started	to	grow	in	size	and	complexity.	The	name	system	had	to	stay,	but	the	use
of	host	tables	had	to	be	dispensed	with	in	favor	of	a	newer,	more	capable	system.

Over	the	period	of	several	years,	many	engineers	worked	to	create	a	system	that
would	meet	not	just	the	needs	of	TCP/IP	internetworks	of	the	time,	but	also
those	of	the	future.	The	new	name	system	was	based	on	a	hierarchical	division	of
the	network	into	groups	and	subgroups,	with	names	reflecting	this	structure.	It
was	designed	to	store	data	in	a	distributed	fashion	to	facilitate	decentralized
control	and	efficient	operation,	and	included	flexible	and	extensible	mechanisms
for	name	registration	and	resolution.	This	new	name	system	for	TCP/IP	was
called	the	Domain	Name	System	(DNS).

We'll	begin	our	look	at	DNS	in	this	introductory	chapter.	I	start	by	providing	an
overview	of	DNS's	development,	history,	and	standards,	continuing	the	history
begun	in	the	overall	look	at	TCP/IP	name	systems.	I	discuss	the	design	goals	and
objectives	of	the	creators	of	DNS,	to	help	you	understand	better	what	its
designers	were	trying	to	do.	I	then	talk	about	the	main	components	of	DNS	and
the	functions	it	performs,	relating	these	to	the	basic	functions	explained	in	the



overview	section	on	name	systems.

DNS	Overview,	History,	and	Standards
The	aversion	that	most	people	have	to	trying	to	remember	numeric	identifiers	led
to	the	very	quick	adoption	of	a	name	system	for	devices	on	the	predecessors	of
what	we	now	call	the	Internet.	In	the	1960s	and	early	1970s,	names	were	given
to	machines,	and	these	names	were	maintained	in	host	tables.	The	TCP/IP	host
table	name	system	(described	in	Chapter	51)	worked	well	for	a	number	of	years,
with	a	centrally	maintained	master	list	used	by	device	administrators	to	ensure	a
consistent	view	of	the	network.

Unfortunately,	such	a	system	works	well	only	when	the	number	of	devices	is
small.	As	the	budding	Internet	grew,	numerous	weaknesses	became	apparent	in
the	host	table	method,	as	I	detailed	in	Chapter	51.	Furthermore,	the	problems
with	the	system	weren't	something	that	could	be	easily	patched	with	small
changes;	the	problems	were	structural,	part	of	the	basic	idea	of	host	tables	as	a
whole.	A	completely	new	approach	was	needed	for	how	names	would	be	used
on	the	Internet.

Early	DNS	Development	and	the	Move	to
Hierarchical	Domains
The	most	important	paradigm	shift	made	by	the	TCP/IP	engineers	was	the
decision	to	change	the	name	system	from	one	that	used	a	single,	centralized	list
of	names	to	a	more	decentralized	system.	The	idea	was	to	create	a	structured
topology	where	names	were	organized	into	domains.	This	idea	was	first
introduced	in	RFC	799,	"Internet	Name	Domains,"	published	in	September
1981.

RFC	799	actually	describes	more	the	mechanics	of	delivering	electronic	mail
messages	between	domains	than	the	domains	themselves.	Interestingly,	the
standard	assumes	a	flat	structure	of	domains	in	its	discussion,	while	mentioning
the	possibility	of	creating	a	hierarchical	structure	instead.	It	was	the	decision	to
go	to	such	a	hierarchical	name	space	for	domains	that	led	to	the	creation	of	DNS
in	the	form	in	which	we	know	it	today.

Many	RFC	documents	describing	the	development	of	different	aspects	of	DNS



Many	RFC	documents	describing	the	development	of	different	aspects	of	DNS
were	published	in	the	early	1980s.	The	first	real	milestone	in	DNS's	history	was
probably	the	publishing,	in	November	1983,	of	three	initial	documents
discussing	DNS	concepts:

RFC	881,	"Domain	Names	Plan	and	Schedule,"	discusses	the	issues	involved
in	implementing	the	new	DNS	and	how	to	migrate	from	the	older	host	table
system.

RFC	882,	"Domain	Names:	Concepts	and	Facilities,"	describes	the	concepts
and	functional	elements	of	DNS	in	fairly	extensive	detail.	It	includes	a
discussion	of	the	name	space,	resource	records,	and	how	name	servers	and
resolvers	work.

RFC	883,	"Domain	Names:	Implementation	Specification,"	provides	the
nitty-gritty	details	on	DNS	messaging	and	operation.

Standardization	of	DNS	and	Initial	Defining
Standards
The	three	"Domain	Names"	RFC	documents	published	in	November	1983	were
discussed	frequently	over	the	months	that	followed,	and	the	basic	DNS
mechanism	was	revised	many	times.	Several	subsequent	RFCs	were	published,
updating	the	DNS	transition	plan	and	schedule.	Finally,	in	November	1987,
agreement	on	the	operation	of	the	system	was	finalized,	and	four	new	RFCs
were	published	that	formalized	the	DNS	system	for	the	first	time:

RFC	1032,	"Domain	Administrators	Guide,"	specifies	administrative
procedures	and	policies	for	those	running	a	domain.

RFC	1033,	"Domain	Administrators	Operations	Guide,"	provides	technical
details	on	how	to	operate	a	DNS	server,	including	how	to	maintain	portions
of	the	DNS	distributed	database	of	names.

RFC	1034,	"Domain	Names	-	Concepts	and	Facilities,"	replaces	RFC	882,
providing	an	introduction	and	conceptual	description	of	DNS.

RFC	1035,	"Domain	Names	-	Implementation	and	Specification,"	is	an
update	to	RFC	883,	specifying	how	DNS	works	in	detail,	including	resource
record	definitions,	message	types,	master	file	format,	and	resolver	and	name



server	implementation	details.

These	last	two	documents,	RFCs	1034	and	1035,	are	considered	the	definitive
original	specification	for	the	operation	of	DNS.	While	they	are	now	many	years
old,	they	still	provide	the	essential	description	of	how	DNS	works.

As	the	Internet	has	grown	to	include	thousands	and	then	millions	of	sites,	the
importance	of	DNS	has	grown	as	well.	Today,	most	people	use	DNS	almost
every	time	they	use	TCP/IP	to	access	the	Internet.	It	has	gone	from	an	alternative
form	of	addressing	for	applications	to	one	that	is	preferred	by	most	users.	It	is
also	an	important	building	block	of	the	more	complete	application	layer
addressing	scheme	developed	for	TCP/IP:	Uniform	Resource	Identifiers	(URIs)
(described	in	Chapter	70).

The	hierarchical	nature	of	the	DNS	name	space	has	allowed	the	Internet	to	grow
by	making	the	assignment	and	mapping	of	names	manageable.	The	authority
structure	(which	defines	who	is	in	charge	of	parts	of	the	name	space)	is	also
hierarchical,	giving	local	administrators	control	over	the	names	of	devices	they
manage,	while	ensuring	name	consistency	across	the	hierarchy	as	a	whole.	The
distribution	of	data	using	many	name	servers	and	a	standardized	resolution
technique	following	a	standard	message	protocol	provides	efficiency	and
reliability.	These	concepts	will	become	clearer	as	we	explore	DNS	more
completely	in	later	sections	of	this	chapter.

DNS	Evolution	and	Important	Additional
Standards
TCP/IP	and	the	Internet	have	both	changed	a	lot	since	1987,	of	course,	and	DNS
has	also	had	to	change.	Many	RFCs	have	been	written	since	the	base	documents
were	published	in	the	late	1980s,	most	of	which	further	clarify	the	operation	of
DNS,	expand	on	its	capabilities,	or	define	new	features	for	it.	You	can	find	all	of
these	by	searching	for	"domain"	or	"DNS"	in	a	list	of	RFCs.	There	are	dozens	of
these.	The	following	are	a	few	of	the	more	interesting	ones:

RFC	1183,	"New	DNS	RR	Definitions,"	defines	several	new	experimental
resource	record	types.	Other	subsequent	RFCs	have	also	defined	new
resource	records.



RFC	1794,	"DNS	Support	for	Load	Balancing,"	discusses	load	balancing	for
greater	performance	in	DNS	servers.

RFC	1995,	"Incremental	Zone	Transfer	in	DNS,"	specifies	a	new	feature	that
allows	only	part	of	a	zone	to	be	transferred	to	a	secondary	name	server	for
efficiency.

RFC	1996,	"A	Mechanism	for	Prompt	Notification	of	Zone	Changes	(DNS
NOTIFY),"	adds	a	new	message	type	to	DNS	to	allow	primary	(authoritative)
DNS	servers	to	tell	secondary	servers	that	information	has	changed	in	the
main	database.

RFC	2136,	"Dynamic	Updates	in	the	Domain	Name	System	(DNS
UPDATE),"	describes	a	technique	for	dynamically	making	resource	record
changes	in	the	DNS	database	(also	called	Dynamic	DNS).

RFC	2181,	"Clarifications	to	the	DNS	Specification,"	discusses	several	issues
with	the	main	DNS	standards	as	defined	in	RFCs	1034	and	1035	and	how	to
address	them.

RFC	2308,	"Negative	Caching	of	DNS	Queries	(DNS	NCACHE),"	specifies
the	operation	of	negative	caching,	a	feature	that	allows	a	server	to	maintain
information	about	names	that	do	not	exist	more	efficiently.

DNS	Adaptation	for	Internet	Protocol	Version	6
Version	6	of	the	Internet	Protocol	(IPv6,	covered	in	Part	II-4)	was	developed
starting	in	the	mid-1990s	and	brought	with	it	the	need	to	make	changes	and
enhancements	to	the	operation	of	DNS.	(Even	though	DNS	operates	at	the	higher
layers,	it	deals	intimately	with	addresses,	and	addresses	have	changed	in	IPv6,	as
discussed	in	Chapter	25.)	The	modifications	required	to	allow	DNS	to	support
IPv6	were	first	defined	in	RFC	1886,	"IPv6	DNS	Extensions,"	which	was	part	of
a	group	of	RFCs	that	laid	out	the	fundamentals	of	IPv6.	Several	subsequent
standards	have	been	published	since	that	time;	these	are	discussed	in	the	section
on	IPv6	DNS	near	the	end	of	Chapter	57.

The	rest	of	this	chapter	provides	a	more	complete	overview	of	DNS	and	its
development,	by	discussing	the	design	goals	of	its	creators	and	the	protocol's	key
characteristics.



DNS	Design	Goals,	Objectives,	and
Assumptions
As	we	just	saw,	the	elapsed	time	from	the	first	RFC	discussing	TCP/IP	domain
names	to	the	publishing	of	the	official	standards	describing	the	operation	of	DNS
was	more	than	six	years.	This	is	a	very	long	time	for	the	development	of	a
system,	but	it	isn't	surprising.	A	lot	of	thought	had	to	go	into	the	creation	of
DNS,	to	be	certain	that	it	would	meet	all	of	the	many	demands	that	would	be
placed	on	it.

The	first	problem	was	that	the	creators	of	DNS	needed	to	worry	about	both	how
to	define	the	new	system	and	how	to	migrate	from	the	old	one.	Considerable
time	was	spent	figuring	out	how	all	the	existing	hosts	would	be	moved	over	to
the	new	DNS	name	space	and	how	the	new	protocols	for	exchanging	DNS
information	would	be	implemented	on	them.

The	creators	of	DNS	knew	they	were	making	the	new	system	because	the	old
one	didn't	scale	very	well.	They	also	knew	that	if	migration	was	a	difficult
problem	with	the	small	number	of	hosts	in	existence	at	that	time,	it	would	be
much	more	difficult	if	they	needed	to	go	to	another	new	system	in	the	future.
This	made	the	key	challenge	in	DNS	to	create	a	system	that	would	meet	the
needs	of	the	Internet	not	just	the	day	it	was	introduced,	or	the	following	year,	but
even	ten	years	or	more	down	the	road.

DNS	Design	Goals	and	Objectives
Back	in	the	1980s,	no	one	had	any	idea	how	the	Internet	would	grow	as	it	has	in
the	last	decade.	That	DNS	still	works	as	well	as	it	does	is	a	testament	to	the	skill
of	its	designers.	Much	of	this	success	is	due	to	the	early	groundwork	put	into	the
design	of	the	system.	DNS	engineers	documented	some	of	what	they	considered
to	be	the	main	design	goals	in	creating	it,	which	can	help	us	understand	not	just
what	DNS	does,	but	also	why.	These	design	goals	and	objectives	are	as	follows:

Creation	of	a	Global,	Scalable,	Consistent	Name	Space	The	name	space
needed	to	be	capable	of	spanning	a	large,	global	internetwork	containing
millions	of	machines.	It	was	necessary	that	it	provide	a	consistent	and



predictable	method	for	naming	devices	and	resources,	so	they	could	be	easily
found.	It	was	also,	obviously,	essential	that	name	duplication	be	avoided,	even
when	conflicts	could	potentially	be	between	devices	on	different	continents.

Local	Control	over	Local	Resources	Administrators	of	networks	and	small
internetworks	on	the	Internet	as	a	whole	needed	to	be	able	to	have	control	over
the	naming	of	their	own	devices.	It	would	not	be	acceptable	to	need	to	go
through	a	central	authority	for	naming	every	single	object,	nor	would	it	be
acceptable	for	every	administrator	to	need	to	know	the	names	of	everyone	else's
networks	and	machines.

Distributed	Design	to	Avoid	Bottlenecks	The	designers	of	DNS	knew	that	they
would	need	to	abandon	the	idea	of	a	centralized	database	in	favor	of	a	distributed
approach	to	data	storage,	to	avoid	the	bottlenecks	that	would	result	in	using	DNS
with	many	devices.

Application	Universality	The	system	needed	to	be	general	enough	that	it	would
support	a	wide	variety	of	applications.	For	example,	it	needed	to	support	host
identification,	mail	delivery,	and	other	functions.

Multiple	Underlying	Protocol	Support	DNS	needed	to	be	inherently	able	to
support	different	underlying	protocols.	Many	people	don't	realize,	for	example,
that	DNS	can	support	not	just	IP	addresses,	but	other	types	of	addresses,	simply
because	IP	is	so	dominant	in	networking	today.

Hardware	Universality	Both	large	and	small	computers	needed	to	be	able	to
use	the	system.

Keep	these	objectives	in	mind	as	you	learn	more	about	DNS,	and	they	will	help
you	understand	better	why	certain	design	attributes	were	chosen.	For	example,	if
we	consider	the	first	two	objectives	listed,	they	seem	almost	contradictory:	How
can	we	have	a	global	name	space	with	unique	names	if	individual	administrators
were	able	to	assign	local	names?	As	you	will	see,	this	is	where	the	power	of	the
DNS	hierarchical	name	space	shines	through.

DNS	Design	Assumptions
The	design	goals	tell	us	what	DNS's	creators	wanted	to	make	sure	the	new
system	addressed.	In	addition,	the	engineers	that	worked	on	the	protocol's
implementation	details	needed	to	make	decisions	based	on	certain	assumptions



implementation	details	needed	to	make	decisions	based	on	certain	assumptions
of	how	it	would	be	used:

Rapidly	Growing	Database	Size	By	the	mid-1980s,	it	was	obvious	that	the
DNS	database	of	names	would	start	out	rather	small	but	would	grow	quickly.
The	system	needed	to	be	capable	of	handling	this	rapid	growth.

Variable	Data	Modification	Rate	Most	of	the	data	in	the	name	database	would
change	only	infrequently,	but	some	data	would	change	more	often	than	that.	This
meant	flexibility	would	be	required	in	how	data	changes	were	handled	and	how
information	about	those	changes	was	communicated.

Delegatable	Organizational	Responsibility	Responsibility	for	portions	of	the
name	database	would	be	delegated	primarily	on	the	basis	of	organizational
boundaries.	Many	organizations	would	also	run	their	own	hardware	and	software
to	implement	portions	of	the	overall	system.

Relative	Importance	of	Name	Information	Access	It	was	assumed	that	the
most	important	thing	about	DNS	was	providing	reliable	name	resolution,	so	the
system	was	created	so	that	it	was	always	possible	for	a	user	to	access	a	name	and
determine	its	address.	A	key	decision	in	creating	the	system	was	deciding	that
even	if	the	information	were	slightly	out	of	date,	it	was	better	than	no
information	at	all.	If	a	name	server	were	unable	to	provide	the	latest	data	to	fill	a
request,	it	would	return	the	best	information	it	had	available.

Handling	of	Requests	for	Missing	Information	Since	the	name	data	was	to	be
distributed,	a	particular	name	server	might	not	have	the	information	requested	by
a	user.	In	this	case,	the	name	server	should	not	just	say,	"I	don't	know."	It	should
provide	a	referral	to	a	more	likely	source	of	the	information	or	take	care	of
finding	the	data	by	issuing	its	own	requests.	This	led	to	the	creation	of	the
several	DNS	name	resolution	techniques:	local,	iterative,	and	recursive.

Use	of	Caching	for	Performance	From	the	start,	it	was	assumed	that	DNS
would	make	extensive	use	of	caching	to	avoid	unnecessary	queries	to	servers
containing	parts	of	the	distributed	name	database.

Arguably,	a	lot	more	assumptions	were	made	in	creating	this	system,	as	is	the
case	in	the	development	of	every	system.	For	example,	DNS	needed	to	make
assumptions	about	how	exactly	data	would	be	stored,	the	transport	mechanism
for	sending	messages,	the	role	of	administrators,	and	so	on.	You'll	learn	more
about	these	as	we	go	through	our	look	at	the	system.



about	these	as	we	go	through	our	look	at	the	system.



DNS	Components	and	General	Functions
To	meet	the	many	objectives	set	for	it	by	its	designers,	DNS	requires	a	great	deal
of	functionality.	It	is	a	true	name	system	with	the	emphasis	on	system,	and	as
such,	is	considerably	more	complex	than	the	host	table	name	system	used	earlier
in	TCP/IP.	In	Chapter	50,	I	divided	the	many	tasks	of	a	full-featured	name
system	into	three	categories.	DNS	includes	functions	in	all	of	these	categories,
and	so	using	these	categories	is	a	good	way	to	take	a	high-level	look	at	the	way
DNS	works	(see	Figure	52-1).

Figure	52-1.	DNS	functions	DNS	consists	of	three	main	functional	categories:	name	space,	name
registration,	and	name	servers/resolution.	Each	of	these	consists	of	a	number	of	specific	tasks	and

responsibilites.

DNS	Name	Space
DNS	uses	a	hierarchical	name	space	consisting	of	a	single,	complex,	multiple-
level	structure	into	which	all	names	in	the	system	fit.	The	name	space	is
organized	starting	from	a	single	root	into	which	containers	(called	domains)	are
placed.	Each	can	contain	either	individual	device	names	or	more	specific
subcontainers.	The	overall	structure	is	somewhat	analogous	to	how	a	directory
system	on	a	computer	organizes	files	from	general	to	specific,	using	an	arbitrary
structure	that	can	be	optimized	to	various	needs.	A	specific	syntax	is	used	to
define	valid	names,	and	special	terminology	is	used	to	describe	parts	of	the
structure	and	identify	domain	names,	from	the	root	down	to	the	device	level.



Name	Registration	(Including	Administration
and	Authorities)
DNS	name	registration	is	used	to	enter	individual	names	into	the	DNS
distributed	database.	DNS	uses	a	hierarchical	arrangement	of	authorities	that
complements	the	hierarchical	name	space.	A	centralized	authority	determines	the
overall	shape	and	structure	of	the	name	space	and	handles	registration	of	names
at	the	highest	level.	Authority	is	then	delegated	to	different	organizations	to
manage	various	parts	of	the	name	space.	A	set	of	universal	policies	controls	the
registration	process	and	deals	with	problems	and	conflicts.

Name	Resolution
DNS	uses	a	powerful,	distributed,	client/server	name	resolution	mechanism.	This
is	probably	the	area	where	the	most	attention	needed	to	be	put	into	the	design	of
DNS,	to	ensure	that	it	could	scale	to	handle	millions	and	eventually	billions	of
name	resolution	requests	each	day.

The	name	resolution	process	is	implemented	using	two	basic	software	elements
that	play	the	role	of	server	and	client:	name	servers	and	name	resolvers.

DNS	name	servers	are	special	programs	running	on	hardware	servers	that	are	the
heart	of	DNS.	Servers	are	maintained	by	organizations	that	have	administrative
control	over	part	of	the	DNS	name	space.	They	contain	resource	records	that
describe	names,	addresses,	and	other	characteristics	of	those	portions	of	the
name	space.	As	such,	the	servers	themselves	are	arranged	into	a	hierarchy
analogous	to	that	of	the	name	space,	although	not	identical	in	structure.

The	main	job	of	name	servers	is	to	receive	requests	for	name	resolution	and
respond	with	either	the	data	requested	from	the	database	or	with	the	name	of
another	name	server	that	will	lead	to	the	requested	information.	Name	servers
are	also	responsible	for	data	caching	and	other	administrative	tasks	to	ensure
efficient	operation	of	the	system	as	a	whole.

Name	resolvers	are	the	usual	clients	in	the	name	resolution	process.	When	a	user
makes	reference	to	a	name	in	a	networking	application,	the	name	is	passed	to	the
resolver,	which	issues	a	request	to	a	name	server.	Depending	on	the
configuration,	more	than	one	request	may	be	needed,	and	several	different
resolution	processes	may	be	combined	to	find	the	needed	information.	Resolvers



resolution	processes	may	be	combined	to	find	the	needed	information.	Resolvers
also	may	employ	caching	or	implement	other	features.

NOTE

The	division	between	resolvers	and	servers	is	based	on	roles.	As	you'll	see	when	we	look	at	name
resolution,	name	servers	may	also	function	as	clients	in	certain	exchanges	of	data.	See	Chapter	56	for	an
explanation	of	this	apparent	paradox.

If	this	seems	a	lot	like	the	classic	description	of	a	name	system	that	I	gave	in
Chapter	50,	that's	not	a	coincidence.	DNS	is	considered	the	name	system	against
which	most	others	are	usually	compared.	If	you	understand	these	high-level
descriptions,	then	you	already	know	the	basics	of	how	DNS	works.	The	next
three	chapters	delve	into	each	of	these	three	functional	areas	in	more	detail	and
will	help	you	really	learn	how	DNS	does	its	thing.

TIP

KEY	CONCEPT	As	a	complete	name	system,	DNS	provides	numerous	capabilities	that	implement
each	of	the	three	basic	name	system	functions.	The	DNS	name	space	is	hierarchical	and	is	organized
using	a	multilevel	structure	with	particular	naming	rules.	The	DNS	name	registration	system	is	based	on
the	idea	of	a	hierarchy	of	domains	and	registration	authorities	responsible	for	them.	DNS	name
resolution	is	similarly	hierarchical,	and	it	is	designed	around	interaction	between	name	resolver	and
name	server	software	components	that	consult	databases	of	DNS	resource	records	and	communicate
using	a	special	messaging	protocol	to	answer	client	queries.



Chapter	53.	DNS	NAME	SPACE,
ARCHITECTURE,	AND
TERMINOLOGY

The	name	space	is	the	most	fundamental	part	of	any	name	system,	since	it	is
what	defines	the	ways	that	the	names	themselves	are	created.	The	name	space
tells	us	what	form	names	may	take	and	provides	the	rules	for	how	they	are
created.	Most	important,	it	specifies	the	architecture	of	the	names—the	internal
structure	of	names	themselves.	This,	in	turn,	has	a	critical	influence	on	how
name	registration	and	resolution	work,	making	an	examination	of	name	space
and	architecture	issues	the	obvious	place	to	start	in	learning	the	details	of	the
Domain	Name	System	(DNS).

In	this	chapter,	I	describe	the	concepts	behind	the	DNS	name	space	and	its
structure.	I	begin	with	an	overview	of	the	DNS	name	space	and	description	of
the	hierarchical	architecture	it	uses.	I	then	explain	the	terminology	often	used	to
refer	to	parts	of	the	name	space.	Next,	I	provide	a	formal	description	of	DNS
labels	and	the	official	and	unofficial	rules	for	creating	domain	names.	I	conclude
with	a	description	of	domain	name	specifications,	and	I	explain	the	concept	of
qualification	and	how	fully	qualified	and	partially	qualified	names	differ.

DNS	Domains	and	the	DNS	Hierarchical	Name
Architecture
The	most	important	element	of	a	name	system's	name	space	is	its	name
architecture,	which	describes	how	names	are	constructed	and	interpreted.	The
architecture	of	DNS	is,	unsurprisingly,	based	on	the	concept	of	an	abstraction
called	a	domain.	This	is	obviously	a	good	place	to	start	in	explaining	how	DNS



works.

The	Essential	Concept	in	the	DNS	Name	Space:
Domains
Dictionary	definitions	of	the	word	domain	generally	convey	the	notion	of	a
sphere	of	influence	or	an	area	of	control	or	rulership.	An	essential	concept	is	that
in	various	contexts,	control	or	authority	can	be	exerted	at	many	different	levels.
One	sphere	of	influence	may	contain	smaller	ones,	which	can,	in	turn,	contain
still	smaller	ones.	This	means	that	such	domains	are	naturally	arranged	in	a
hierarchy.

As	an	example,	consider	geopolitical	domains.	We	have	no	centralized	"world
government"	on	earth,	but	we	do	have	the	United	Nations,	which	deals	with
worldwide	issues.	At	the	next	level	down,	we	have	individual	countries.	Some	of
these	countries	have	divisions	such	as	states	and	provinces.	Still	lower	levels
have	counties,	municipalities,	neighborhoods,	and	individual	residences	or
businesses.	The	"domains"	are	inherently	hierarchical	in	organization.

DNS	uses	the	word	domain	in	a	manner	very	similar	to	this,	and	it	employs	a
hierarchical	structure	that	works	in	much	the	same	way	as	the	geopolitical
example.	In	DNS,	a	domain	is	defined	as	either	a	single	object	or	a	set	of	objects
that	have	been	collected	together	based	on	some	type	of	commonality.	Usually,
in	DNS,	that	commonality	is	that	they	are	all	administered	by	the	same
organization	or	authority,	which	makes	the	name	hierarchy	tightly	linked	to	the
notion	of	the	DNS	hierarchical	authority	structure	(see	Chapter	54).

NOTE

The	term	domain	is	also	used	in	other	contexts	in	the	world	of	networking.	The	most	notable	example	of
this	is	in	Microsoft	networking,	where	domain	is	also	used	to	represent	the	notion	of	a	collection	of
objects	under	common	authority.	However,	the	two	types	of	domains	are	completely	different	and	not
related	beyond	this	conceptual	level.

The	DNS	Hierarchical	Tree	Structure	of	Names
We	could	construct	a	tree	diagram	with	the	United	Nations	on	top,	with	lines
pointing	to	each	of	the	countries	in	the	world.	Then,	within	the	United	States,	we



could	draw	lines	to	each	of	the	states.	Within	each	state,	we	could	draw	lines	to
each	county,	and	so	on.	The	result	would	be	something	that	looks	like	an	upside-
down	tree,	as	illustrated	in	Figure	53-1.	This	is	called	a	tree	structure.

Tree	structures	are	common	in	computing	and	networking.	For	example,	trees
are	a	type	of	topology	used	to	connect	networks	into	a	local	area	network.

For	understanding	DNS,	the	best	example	of	a	tree	structure	is	the	directory	tree
used	to	store	files	on	a	computer's	hard	disk.	The	root	directory	is	at	the	top	of
the	structure	and	may	contain	named	files	and/or	named	directories.	Each
directory	can	itself	contain	individual	files	or	subdirectories,	which	can,	in	turn,
contain	their	own	subdirectories,	and	so	on.	The	domain	name	structure	in	DNS
is	conceptually	arranged	in	the	same	way,	but	instead	of	dealing	with	files,	DNS
deals	with	named	objects,	usually	devices	like	Internet	Protocol	(IP)	hosts.

Figure	53-1.	Example	of	a	global	hierarchical	domain	architecture	This	diagram	shows	an	example	of
hierarchical	architecture,	based	on	political	divisions.	The	United	Nations	is	an	umbrella	organization
representing	(to	one	extent	or	another)	all	of	the	world's	nations.	It	is	the	root	of	the	tree;	underneath	it
we	find	individual	nations.	Each	nation	then	is	further	subdivided	in	a	manner	it	chooses.	For	example,
Canada	has	provinces	and	territories,	and	the	United	States	has	individual	states.	These	can	be	further

subdivided	in	any	number	of	ways.

The	highest	level	is	still	the	root	of	the	tree.	It	contains	a	number	of	domains,
each	of	which	can	contain	individual	objects	(names)	and/or	lower-level
domains.	Lower-level	domains	can,	in	turn,	have	still	lower-level	domains,
allowing	the	tree	as	a	whole	to	take	on	an	arbitrary	structure.

Like	a	directory	structure,	the	DNS	hierarchical	name	architecture	allows	names
to	be	organized	from	most	general	to	most	specific.	It	also	has	complete
flexibility,	allowing	us	to	arrange	the	structure	in	any	way	that	we	want.	For
example,	we	could	make	a	name	system	that	is	structured	exactly	paralleling	the



geopolitical	organization	chart	shown	in	Figure	53-1.	We	could	have	the	root	of
the	name	structure	represent	the	United	Nations	and	create	a	domain	for	each
country.	Then,	for	those	countries	that	have	states,	we	could	create	state	domains
within	those	country	domains.	Smaller	countries	not	needing	those	domains
could	have	city	domains	directly	under	the	country	domain.	The	hierarchy	is
flexible,	because	at	each	level,	it	can	be	given	a	suitable	substructure.

TIP

KEY	CONCEPT	The	DNS	name	space	is	arranged	into	a	hierarchy	of	domains	shaped	like	an	inverted
tree.	It	is	structurally	similar	to	the	directory	structure	of	a	file	system,	with	a	root	that	contains	domains,
each	of	which	can	contain	subdomains	and	so	forth.

It's	important	to	remember	that	every	stand-alone	internetwork	can	have	its	own
name	space	and	unique	hierarchical	structure.	Many	times,	people	conflate	the
idea	of	a	DNS	name	space	with	the	DNS	name	space.	The	latter	refers	to	the
DNS	hierarchy	used	for	the	global	Internet,	and	it's	obvious	that	this	deserves	a
great	deal	of	attention.	But	it	is	just	one	possible	arrangement,	although	an
important	one,	of	an	infinite	number	of	possible	structures.

NOTE

Chapter	54	provides	more	specific	information	about	the	Internet's	DNS	hierarchy.	As	you'll	see,
geopolitical	structures	are,	in	fact,	used	to	assign	names	to	some	of	the	Internet's	computers,	but	other
parts	of	the	hierarchy	are	different.



DNS	Structural	Elements	and	Terminology
Now	that	we've	reviewed	the	fundamentals	of	the	DNS	name	space,	let's	look	at
its	structure	in	more	detail.	At	the	same	time,	I'll	define	the	many	different	terms
used	to	refer	to	parts	of	the	DNS	domain	name	hierarchy.

DNS	Tree-Related	Terminology
As	I	explained	in	the	previous	section,	the	DNS	name	structure	is	shaped
somewhat	like	a	tree.	The	comparison	between	structured	elements	and	trees	is	a
common	one	in	networking.	The	main	difference	between	technology	and
biology	is	that	DNS	trees	grow	from	the	top	down,	instead	of	reaching	for	the
sky.	The	analogy	to	a	tree	naturally	leads	to	the	use	of	several	tree-related	terms
in	describing	the	DNS	name	structure,	some	of	which	are	illustrated	in
Figure	53-2:

Root	This	is	the	conceptual	top	of	the	DNS	name	structure.	The	root	domain	in
DNS	contains	the	entire	structure.	By	definition,	it	has	no	name;	it	is	null.

Branch	A	branch	is	any	contiguous	portion	of	DNS	hierarchy.	It	consists	of	a
domain	and	all	the	domains	and	objects	within	it.	All	branches	connect	together
to	the	root,	just	as	in	a	real	tree.	(Yes,	it	would	be	better	if	the	root	were	called
the	trunk,	but	computer	science	majors	apparently	don't	take	botany	electives.)

Leaf	This	is	an	end	object	in	the	structure;	that	is,	a	domain	that	doesn't	have
anything	underneath	it.	The	analogy	to	a	leaf	being	at	the	end	of	a	sequence	of
branches	is	apt.

There	is	no	specific	term	to	refer	to	a	domain	that	is	not	a	leaf.	These	are
sometimes	called	interior	nodes,	meaning	that	they	are	in	the	middle	of	the
structure.	A	node	is	the	generic	computing	term	for	an	object	in	a	topology	or
structure.	So,	in	DNS,	every	node	is	a	domain,	and	it	may	be	an	interior	node
that	contains	additional	domains	and/or	objects	or	a	leaf	that	is	a	specific,	named
device.	The	term	domain	is	thus	somewhat	ambiguous,	as	it	can	refer	to	either	a
collection	of	objects	that	represents	a	branch	of	the	tree	or	to	a	specific	leaf.

DNS	Domain-Related	Terminology



There	are	also	several	domain-like	terms	that	are	often	used	to	refer	to	domains
at	different	levels	of	the	hierarchy.	These	terms	are	also	shown	in	Figure	53-2:

Root	Domain	This	is	the	root	of	the	tree.

Top-Level	Domains	(TLDs)	These	are	the	highest-level	domains	directly	under
the	root	of	the	tree.	They	are	also	sometimes	called	first-level	domains.

Second-Level	Domains	Shockingly	enough,	these	are	the	domains	located
directly	below	the	top-level	domains.

Subdomains	In	some	contexts,	this	term	refers	only	to	domains	that	are	located
directly	below	the	second-level	domains.

Figure	53-2.	DNS	tree-related	and	domain-related	terminology	The	top	of	the	DNS	name	space	is	the
root	of	the	tree,	and	it	has	no	name.	Under	the	root	comes	any	number	of	top-level	domains	(TLDs).
Within	each	of	these	can	be	placed	second-level	domains,	then	within	those	subdomains,	and	so	forth.
Some	of	the	tree	terminology	used	in	DNS	is	also	shown	here.	The	portion	of	the	tree	with	the	light
shading	is	one	branch;	the	darker	area	highlights	a	smaller	subbranch	within	that	branch.	The	darkest

nodes	within	that	area	are	the	leaves	of	that	smaller	branch	of	the	tree.

TIP

KEY	CONCEPT	The	top	of	the	DNS	name	space	is	the	root.	Under	the	root	come	top-level	domains,
and	within	these	are	second-level	domains	and	then	subdomains.	In	theory,	any	number	of	levels	of
subdomains	can	be	created.	A	branch	is	any	contiguous	portion	of	the	DNS	tree.	A	leaf	is	a	domain	with
nothing	underneath	it	in	the	structure,	and	it	usually	represents	a	single	device.



The	term	subdomain	can	also	be	used	generically,	like	the	word	domain	itself.	In
that	case,	it	refers	simply	to	the	relationship	between	two	domains,	with	a
subdomain	being	under	another	domain	in	the	structure.	This	means,	for
example,	that	top-level	domains	can	be	said	to	be	subdomains	of	the	root;	every
second-level	domain	is	a	subdomain	of	a	top-level	domain,	and	so	on.	But	again,
sometimes	subdomain	means	specifically	a	third-level	or	lower	domain.

DNS	Family-Related	Terminology
Another	set	of	terminology	related	to	DNS	compares	the	tree	structure	not	to	a
living	tree,	but	to	another	analogy:	a	family	tree.	These	terms	are	most	often
used	to	describe	how	a	particular	domain	relates	to	the	other	domains	or
subdomains	around	it,	so	they	are	relative	terms.	The	following	family-related
terms	are	common	(see	Figure	53-3).

Parent	Domain	This	is	the	domain	that	is	above	this	one	in	the	hierarchy.	For
example,	the	root	domain	is	the	parent	of	all	top-level	domains.

Child	This	is	a	domain	at	the	next	level	down	from	this	one	in	the	hierarchy.
Thus,	the	top-level	domains	are	children	of	the	root.

Sibling	This	is	a	peer	at	the	same	level	as	this	one	in	the	hierarchy,	with	the
same	parent.	Thus,	all	top-level	domains	are	siblings	with	the	root	as	a	parent;	all
second-level	domains	within	a	particular	top-level	domain	are	siblings,	and	so
on.



Figure	53-3.	DNS	name	space	"family	tree"	This	diagram	is	similar	to	Figure	53-2,	but	the	nodes	are
labeled	to	show	the	family-oriented	terminology	sometimes	used	in	DNS.	In	this	case,	the	names	are
relative	to	the	interior	node	shown	in	the	darker	shade.	The	domain	immediately	above	it	is	its	parent
node.	Other	nodes	on	the	same	level	are	siblings,	and	subdomains	within	it	are	children	of	that	node.

TIP

KEY	CONCEPT	The	domain	above	a	given	domain	in	the	DNS	name	space	is	called	its	parent	domain.
Domains	at	the	same	level	within	the	same	parent	are	siblings.	Subdomains	are	called	children	of	that
domain.

Like	a	real	tree,	the	DNS	name	structure	must	be	a	true	tree	in	its	structure.
Every	domain	can	have	only	one	parent	(except	the	root),	just	as	every	branch	of
a	tree	connects	to	only	one	limb	(except	the	root/trunk).	Also,	no	loops	can
appear	in	the	structure;	you	cannot	have	a	domain	whose	child	is	also	its	parent,
for	example.

TIP

KEY	CONCEPT	A	DNS	name	space	must	be	arranged	as	a	true	topological	tree.	This	means	each
domain	can	have	only	one	parent,	and	no	loops	are	permitted	in	the	structure.

Keep	in	mind	that	even	though	the	name	hierarchy	represents	an	arrangement	of
named	devices,	it	is	only	a	logical	structure.	There	is	no	necessary
correspondence	to	the	physical	location	of	devices.	A	domain	with	10	children
may	represent	11	devices	in	11	different	countries.	We'll	explore	this	more	when
we	look	at	DNS	authority	structures	in	the	next	chapter.



DNS	Labels,	Names,	and	Syntax	Rules
We've	seen	how	the	DNS	name	space	hierarchy	allows	us	to	arrange	domains
into	a	virtual	tree	that	reflects	the	characteristics	of	how	the	devices	themselves
are	organized.	While	using	a	hierarchical	name	space	is	inherently	more
complex	than	a	flat	name	space,	it	yields	a	powerful	result:	the	ability	to	specify
names	that	can	be	locally	managed	while	remaining	globally	unique.	At	the	same
time,	the	complexity	of	the	tree	yields	the	benefit	of	relatively	simple	name
construction	using	domain	identifiers.

DNS	Labels	and	Label	Syntax	Rules
Naming	in	DNS	begins	with	giving	each	domain,	or	node,	in	the	DNS	name
space	a	text	label.	The	label	identifies	the	domain	within	the	structure	and	must
follow	several	syntax	rules:

Length	Each	label	can	theoretically	be	from	0	to	63	characters	in	length.	In
practice,	a	length	of	1	to	about	20	characters	is	most	common,	with	a	special
exception	for	the	label	assigned	to	the	root	of	the	tree	(which	is	0	characters	in
length,	as	explained	in	the	next	section).

Symbols	Letters	and	numbers	are	allowed,	as	well	as	the	dash	character	(-).	No
other	punctuation	is	permitted.	For	example,	an	underscore	(_)	cannot	be	used	in
a	label.

Case	Labels	are	not	case-sensitive.	For	example,	Jabberwocky	and	jabberwocky
are	equivalent	domain	name	labels.

Every	label	must	be	unique	within	its	parent	domain.	So,	for	example,	if	we	have
a	top-level	domain	called	Rocks,	we	can	have	only	one	subdomain	within	Rocks
called	Crystal.	Due	to	the	case-insensitivity	of	labels,	we	cannot	have	both
CRYSTAL	and	Crystal	within	Rocks,	because	they	are	considered	the	same.

It	is	this	concept	of	local	uniqueness	within	a	parent	domain	that	ensures	the
uniqueness	of	names	as	a	whole,	while	allowing	local	control	over	naming.
Whoever	is	in	charge	of	the	Rocks	domain	can	assign	names	to	as	many
individual	objects	or	subdomains	as	he	likes,	as	long	as	those	names	are	unique
within	the	domain.	Someone	else,	say,	the	maintainer	of	the	Glass	domain,	can



also	create	a	subdomain	called	Crystal	within	Glass.	There	will	not	be	a	conflict,
because	the	Glass	and	Rocks	domains	are	separate.	Of	course,	since	all	top-level
domains	have	the	same	parent	(the	root),	all	top-level	domains	must	be	unique.

TIP

KEY	CONCEPT	Each	node	in	the	DNS	name	space	is	identified	by	a	label.	Each	label	must	be	unique
within	a	parent	domain,	but	it	does	not	need	to	be	unique	across	domains.	This	enables	each	domain	to
have	local	control	over	the	names	of	subdomains,	without	causing	any	conflicts	in	the	full	domain	names
created	on	a	global	level.

Domain	Name	Construction
Each	individual	domain	within	the	domain	name	structure	can	be	uniquely
identified	using	the	sequence	of	labels	that	starts	from	the	root	of	the	tree	and
progresses	down	to	that	domain.	The	labels	at	each	level	in	the	hierarchy	are
listed	in	sequence,	starting	with	the	highest	level,	from	right	to	left,	separated	by
dots.	The	result	is	the	formal	definition	of	a	domain	name.

The	root	of	the	name	space	is	given	a	zero-length,	null	name	by	default;	that	is,
the	label	for	the	root	exists,	but	it's	empty.	This	is	done	because	the	root
technically	is	part	of	every	domain	name,	so	it	must	be	included	in	every	domain
name.	If	it	were	something	long	like	Root,	we	would	need	to	include	that	at	the
end	of	every	domain	name.	This	would	simply	make	every	name	longer,	while
not	really	adding	any	useful	information—we	already	know	every	domain	name
is	under	the	root.

Consider	the	example	of	a	top-level	domain	called	Rocks,	within	which	is	a
second-level	domain	Crystal.	The	domain	name	of	Rocks	is	Rocks.,	with	the	dot
separating	Rocks	and	the	empty	label	(the	null	root).	In	practice,	the	trailing	dot
is	often	omitted,	so	the	domain	name	of	the	top-level	domain	Rocks	can	be
considered	as	just	Rocks.	The	subdomain	Crystal	within	Rocks	has	the	domain
name	Crystal.Rocks.	If	we	had	a	device	named	Salt	within	the	Crystal.Rocks
domain,	it	would	be	called	Salt.Crystal.Rocks.	This	is	fairly	straightforward,	as
you	can	see	in	Figure	53-4.



Figure	53-4.	DNS	labels	and	domain	name	construction	Each	node	in	the	DNS	name	space	has	a	label
(except	the	root,	whose	label	is	null).	The	domain	name	for	a	node	is	constructed	simply	by	placing	in
order	the	sequence	of	labels	from	the	top	of	the	tree	down	to	the	individual	domain,	going	from	right	to

left,	separating	each	label	with	a	dot	(period).

We	can	use	these	names	to	easily	identify	subdomains	of	a	particular	domain.
For	example,	if	we	start	with	Salt.Crystal.Rocks,	it's	obvious	that	Crystal.Rocks
is	its	parent	domain.	It's	also	clear	that	both	Crystal.Rocks	and
Salt.Crystal.Rocks	are	subdomains	of	Rocks;	one	is	a	single	level	down	from
Rocks,	and	the	other	is	two	levels	down.

Note	that	there	is	a	maximum	limit	of	255	characters	for	a	complete	domain
name,	for	implementation	purposes.	In	practice,	most	domain	names	are	much
shorter	than	this	limit,	as	it	would	violate	the	whole	purpose	of	domain	names	if
we	let	them	get	so	long	that	no	one	could	remember	them.

TIP

KEY	CONCEPT	A	domain	name	is	a	string	of	text	that	uniquely	identifies	a	particular	node	in	the
name	space.	The	domain	name	for	a	node	is	constructed	by	concatenating	in	right-to-left	order	all	the
labels	in	the	branch	of	the	DNS	tree,	starting	from	the	top	of	the	tree	down	to	the	particular	node,
separating	each	by	a	dot	(period).

Finally,	note	that	in	many	protocols,	it	is	possible	to	specify	a	particular	resource
within	a	domain	name	by	providing	a	directory	structure	after	a	name.	This	is
done	using	the	standard	TCP/IP	URL	syntax,	where	a	path	is	indicated	using
slashes	to	separate	subdirectories.	For	example,	a	specific	file	at



Salt.Crystal.Rocks	might	be	located	at	Salt.Crystal.Rocks/chem/composition.
While	DNS	names	are	case-insensitive,	the	labels	in	a	path	are	case-sensitive.
So,	this	example	would	be	different	from	Salt.Crystal.Rocks/chem/Composition.
See	the	discussion	of	URL	syntax	in	Chapter	70	for	more	details.



Absolute	(Fully	Qualified)	and	Relative	(Partially
Qualified)	Domain	Name	Specifications
As	explained	in	the	previous	section,	we	can	specify	the	domain	name	of	any
node	in	the	DNS	name	hierarchy	by	simply	starting	at	the	root	node	and
following	the	sequence	of	subdomains	down	to	the	node	in	question,	listing	each
level's	labels	separated	by	a	dot.	When	we	do	this,	we	get	a	single	name	that
uniquely	identifies	a	particular	device.	In	practice,	domain	names	can	be
specified	by	their	fully	qualified	names	or	their	partially	qualified	names.

Fully	Qualified	Domain	Names
Technically,	if	a	top-level	domain	A	contains	a	subdomain	B	that	contains
subdomain	C,	the	full	domain	name	for	C	is	C.B.A..	This	is	called	the	fully
qualified	domain	name	(FQDN)	for	the	node.	Here,	the	word	qualified	is
synonymous	with	specified.	The	domain	name	C.B.A.	is	fully	qualified	because
it	gives	the	full	location	of	the	specific	domain	that	bears	its	name	within	the
whole	DNS	name	space.

FQDNs	are	also	sometimes	called	absolute	domain	names.	This	term	reflects	the
fact	that	you	can	refer	unambiguously	to	the	name	of	any	device	using	its	FQDN
from	any	other	portion	of	the	name	space.	Using	the	FQDN	always	instructs	the
person	or	software	interpreting	the	name	to	start	at	the	root,	and	then	follow	the
sequence	of	domain	labels	from	right	to	left,	going	top	to	bottom	within	the	tree.

Partially	Qualified	Domain	Names
There	are	also	some	situations	in	which	you	may	refer	to	a	device	using	an
incomplete	name	specification.	This	is	called	a	partially	qualified	domain	name
(PQDN),	which	means	that	the	name	only	partially	specifies	the	location	of	the
device.	By	definition,	a	PQDN	is	ambiguous,	because	it	doesn't	give	the	full	path
to	the	domain.	Thus,	you	can	use	a	PQDN	only	within	the	context	of	a	particular
parent	domain,	whose	absolute	domain	name	is	known.

We	can	find	the	FQDN	of	a	partially	specified	domain	name	by	appending	the
partial	name	to	the	absolute	name	of	the	parent	domain.	For	example,	if	we	have
the	PQDN	Z	within	the	context	of	the	FQDN	Y.X.,	we	know	the	FQDN	for	Z	is
Z.Y.X.



Z.Y.X.

Why	bother	with	this?	The	answer	is	convenience.	An	administrator	for	a
domain	can	use	PQDNs	as	a	shorthand	to	refer	to	devices	or	subdomains	without
needing	to	repeat	the	entire	full	name.	For	example,	suppose	you	are	in	charge	of
the	computer	science	department	at	the	University	of	Widgetopia.	The	domain
name	for	the	department	as	a	whole	is	cs.widgetopia.edu.,	and	the	individual
hosts	you	manage	are	named	after	fruit.	In	the	DNS	files	you	maintain,	you
could	refer	to	each	device	by	its	FQDN	every	time;	for	example,
apple.cs.widgetopia.edu.,	banana.cs.widgetopia.edu.,	and	so	on.	But	it's	easier	to
tell	the	software,	"If	you	see	a	name	that	is	not	fully	qualified,	assume	it	is	in	the
cs.widgetopia.edu	domain."	Then	you	can	just	call	the	machines	apple,	banana,
and	so	on.	Whenever	the	DNS	software	sees	a	PQDN	such	as	kiwi,	it	will	treat	it
as	kiwi.cs.widgetopia.edu.

TIP

KEY	CONCEPT	A	fully	qualified	domain	name	(FQDN)	is	a	complete	domain	name	that	uniquely
identifies	a	node	in	the	DNS	name	space	by	giving	the	full	path	of	labels	from	the	root	of	the	tree	down
to	that	node.	It	defines	the	absolute	location	of	a	domain.	In	contrast,	a	partially	qualified	domain	name
(PQDN)	specifies	only	a	portion	of	a	domain	name.	It	is	a	relative	name	that	has	meaning	only	within	a
particular	context.	The	partial	name	must	be	interpreted	within	that	context	to	fully	identify	the	node.

I	mentioned	earlier	in	this	chapter	that	the	trailing	dot	for	the	null	root	domain	is
usually	omitted.	This	is	true	in	common	parlance	and	when	users	specify	a
domain	name	in	an	application.	You	don't	use	the	trailing	dot	in	your	web
browser,	for	instance.	However,	the	dot	is	used	to	clearly	distinguish	a	FQDN
from	a	PQDN	within	DNS	master	files.	This	allows	us	to	use	both	FQDNs	and
PQDNs	together.	In	our	example,	apple	would	refer	to	apple.cs.widgetopia.edu.,
but	apple.com.	would	refer	to	the	FQDN	for	Apple	Computer,	Inc.	You	must	be
careful	about	watching	the	dots	here,	because	apple.com	(without	a	trailing
period)	would	be	a	PQDN	and	would	refer	to	apple.com.cs.widgetopia.edu.,	not
the	domain	of	Apple	Computer.



Chapter	54.	DNS	NAME
REGISTRATION,	PUBLIC
ADMINISTRATION,	ZONES,	AND
AUTHORITIES

The	previous	chapter	explained	how	the	Domain	Name	System	(DNS)	name
space	consists	of	a	hierarchy	of	domains	and	subdomains.	From	the	root,	we
have	a	number	of	top-level	domains,	then	second-level	domains	below	them,	and
still	lower-level	domains	below	that.	The	obvious	questions	then	become:	How
do	we	determine	the	shape	and	structure	of	the	name	space,	and	who	will
manage	it?	More	specifically,	who	will	control	the	root	of	the	tree	and	decide
what	the	top-level	domains	will	be	called?	How	will	we	then	subdivide	control
over	the	rest	of	the	name	space?	How	do	we	ensure	there	are	no	conflicts	in
choosing	the	names	of	sibling	subdomains	within	a	domain?

DNS	can	be	used	on	private	networks	controlled	by	a	single	organization,	and	if
so,	that	organization	is	obviously	in	charge	of	the	name	space.	We'll	discuss
private	naming,	but	in	reality,	it's	just	not	that	interesting.	The	vast	majority	of
DNS	use	occurs	on	the	public	Internet.	Here,	we	have	a	much	greater	challenge,
because	we	need	to	construct	a	name	space	that	spans	the	globe	and	covers
millions	of	machines	managed	by	different	organizations.	For	this,	we	need	a
very	capable	name	registration	process	and	administration	methods	to	support	it.

In	this	chapter,	I	will	describe	the	process	of	name	registration	and	how
authorities	are	managed	within	DNS,	focusing	on	the	public	Internet.	I	begin
with	a	description	of	the	DNS	hierarchical	authority	structure	and	how	it	relates
to	the	hierarchical	name	space,	and	a	discussion	of	the	concepts	behind	the	DNS



distributed	name	database.	I	describe	the	Internet's	organizational	and
geopolitical	top-level	domains,	and	how	they	are	administered	by	various
authorities.	I	then	discuss	how	authority	is	delegated	to	the	second-level	and
lower-level	domains,	and	how	public	registration	of	domain	names	works,
including	how	public	registration	issues	and	problems	are	resolved.	I	explain
how	the	DNS	name	space	is	partitioned	into	administrative	zones	of	authority,
and	then	I	conclude	with	a	brief	discussion	of	private	DNS	name	registration.

TIP

RELATED	INFORMATION	Most	TCP/IP	implementations	include	a	special	utility	called	whois	that
can	be	used	to	interrogate	the	DNS	distributed	name	database	to	obtain	registration	information	about
domains.	This	application	can	be	very	useful	for	troubleshooting.	For	details,	see	the	section	discussing
whois	in	Chapter	88.

DNS	Hierarchical	Authority	Structure	and	the
Distributed	Name	Database
In	the	previous	chapter,	I	explained	that	the	central	concept	of	naming	in	DNS	is
based	on	domains.	Each	domain	can	be	considered	akin	to	a	sphere	of	influence
or	control.	A	domain	"spreads	its	wings"	over	all	the	objects	and	subdomains
that	it	contains.	Due	to	this	concept	of	influence,	when	we	consider	any	DNS
name	space,	we	see	that	it	is	hierarchical	because	it	reflects	a	hierarchy	of
organizations	that	control	domains	and	the	nodes	within	them.	This	means	that
there	is	a	hierarchical	authority	structure	that	complements	the	hierarchical	name
structure	in	DNS.

The	primary	reason	why	the	name	space	hierarchy	leads	to	an	authority
hierarchy	is	the	requirement	that	sibling	subdomains	be	unique	within	a	domain.
As	soon	as	we	have	a	need	for	uniqueness,	we	must	have	some	sort	of	authority
or	process	that	ensures	that	each	subdomain	or	object	picks	a	different	name
within	that	domain.	This	is	what	name	registration	is	all	about.

This	concept	of	a	hierarchical	authority	structure	is	a	bit	abstract,	but	it's	easier	to
understand	if	we	examine	a	sample	DNS	name	space	and	discuss	the	issues
involved	in	assigning	names	within	it.	Naturally,	we	want	to	start	at	the	top	of
the	name	hierarchy,	with	the	root	domain,	null.



The	DNS	Root	Domain	Central	Authority
To	start	off	the	name	space,	we	must	create	top-level	domains	(TLDs)	within	the
root.	Now,	each	of	these	must	be	unique,	so	one	authority	must	manage	the
creation	of	all	TLDs.	This	means	that	the	authority	that	controls	the	root	domain
controls	the	entire	name	space.

In	the	case	of	the	Internet,	this	central	authority	is	ultimately	responsible	for
every	name	in	DNS.	The	central	DNS	authority	for	the	Internet,	which	controls
the	creation	of	TLDs,	was	initially	called	the	Network	Information	Center.	It	was
later	the	Internet	Assigned	Numbers	Authority	(IANA),	which	is	also
responsible	for	protocol	numbers,	IP	addresses,	and	more.	These	functions	are
now	shared	by	IANA	and	the	Internet	Corporation	for	Assigned	Names	and
Numbers	(ICANN).	We'll	discuss	the	specific	TLDs	of	the	Internet	in	the	next
few	chapters;	IANA,	ICANN,	and	related	organizations	are	discussed	in	the
section	on	Internet	registration	authorities	in	Chapter	3.

TLD	Authorities
At	the	next	level	down	in	the	authority	hierarchy,	we	create	second-level
domains	within	each	of	the	TLDs.	Each	TLD	must	itself	be	managed	using	a
coordinating	authority,	however,	this	is	not	necessarily	the	organization	that	runs
the	root	(IANA).	IANA	delegates	authority	for	some	of	the	TLDs	to	other
organizations.

IANA	may	delegate	control	for	each	TLD	to	a	different	authority	at	this	level	of
the	hierarchy.	In	fact,	there	can	be	completely	different	rules	for	managing	the
creation	of	second-level	domains	in	one	TLD	than	there	are	in	another.	And	in
some	TLDs,	there	are	multiple	authorities	that	work	together	on	name
registration.

Lower-Level	Authority	Delegation
This	process	of	authority	delegation	continues	as	we	move	down	the	name	space
hierarchy.	At	each	level,	the	name	space	becomes	more	specific.

If	we	use	an	organizational	hierarchy,	like	the	.COM	TLD,	we	generally	delegate
authority	for	each	second-level	domain	to	the	organization	whose	name	it
represents.	So,	for	example,	IBM.COM	is	managed	by	IBM.	Since	IBM	is	huge,



represents.	So,	for	example,	IBM.COM	is	managed	by	IBM.	Since	IBM	is	huge,
it	may	itself	subdivide	the	authority	structure	further,	but	smaller	organizations
probably	won't.

Authority	Hierarchy's	Relationship	to	the	Name
Hierarchy
The	authority	hierarchy	is	complementary	to	the	name	hierarchy;	they	are	not
exactly	the	same.	It	is	not	necessary	that	there	be	a	different	authority	for	every
level	of	the	hierarchy.	In	many	cases,	a	single	authority	may	manage	a	section	of
the	name	space	that	spans	more	than	one	level	of	the	structure.	For	example,
IANA	manages	the	Internet	root	domain	(null)	and	also	the	.INT	TLD,	but	other
TLDs	are	managed	by	other	organizations.	The	name	hierarchy	is	divided	into
zones	of	authority	that	reflect	the	hierarchy	of	authorities	that	manage	parts	of
the	name	space.

Also,	authority	over	a	domain	doesn't	necessarily	imply	physical	control.	A
domain	can	contain	subdomains	that	are	managed	by	organizations	on	different
continents,	and	a	single	subdomain	can	contain	named	devices	that	are	on
different	continents	as	well.

The	DNS	Distributed	Name	Database
Of	course,	with	authority	comes	responsibility,	and	the	main	responsibility	an
authority	has	for	a	domain	is	registering	names	within	the	domain.	When	a	name
is	registered,	a	set	of	data	is	created	for	it,	which	can	then	be	used	by
internetwork	devices	to	resolve	the	name	into	an	address	or	perform	other
functions.

The	set	of	all	the	data	describing	all	DNS	domains	constitutes	the	DNS	name
database.	Just	as	registration	authority	is	distributed	and	hierarchical,	this
database	is	distributed	and	hierarchical.	In	other	words,	there	is	no	single	place
where	all	DNS	name	information	is	stored.	Instead,	DNS	servers	carry	resource
records	(see	Chapter	57)	that	describe	the	domains	for	which	they	have
authority.	As	you'll	see,	the	fact	that	this	database	is	distributed	has	major
implications	on	how	name	resolution	is	carried	out.

TIP



KEY	CONCEPT	The	name	space	of	the	public	Internet	is	managed	by	a	hierarchy	of	authorities	that	is
similar	in	structure	to	the	hierarchical	DNS	name	space,	though	not	identical.	The	top	of	the	hierarchy	is
centrally	managed	by	IANA/ICANN,	which	delegates	authority	to	other	organizations	for	registering
names	in	various	other	parts	of	the	hierarchy.	The	information	about	name	registrations	is	maintained	in
resource	records	stored	in	various	locations,	which	form	a	distributed	name	database	on	the	Internet.



DNS	Organizational	(Generic)	TLDs	and
Authorities
The	top	of	the	DNS	name	hierarchy	is	managed	by	a	central	authority,	which
controls	the	entire	name	space	by	virtue	of	deciding	which	TLDs	are	allowed	to
exist.	Obviously,	it	is	very	important	that	a	great	deal	of	thought	go	into	how	the
TLDs	are	chosen.	A	poor	design	at	this	top	level	would	make	the	entire
hierarchy	poorly	reflect	the	actual	structure	of	organizations	using	the	name
space.

The	creators	of	DNS	could	have	chosen	any	number	of	ways	to	structure	the
Internet's	name	hierarchy.	One	obvious	possibility	is	to	structure	the	Internet
based	on	geopolitical	boundaries:	countries,	states,	and	so	forth.	Another
sensible	idea	is	to	structure	the	name	space	based	on	types	of	organizations.

The	beauty	of	the	hierarchical	name	space	is	that	we	don't	need	to	choose
between	different	methods	of	structuring	the	name	space.	We	can	use	more	than
one	technique	at	the	same	time,	and	this	is	exactly	what	was	done	when	DNS
was	first	implemented.	Both	the	organization	type	and	geography	structures	were
used	for	TLDs.	This	gives	multiple	options	for	name	registration	for	most	groups
and	individuals.

I'll	begin	here	by	discussing	organizational	TLDs,	and	then	we'll	look	at
geopolitical	ones.	As	you'll	see,	although	there	are	only	a	handful	of
organizational	TLDs,	there	is	no	doubt	that	they	have	been	much	more	popular
than	the	geopolitical	ones.

Original	Generic	TLDs
The	initial	deployment	of	DNS	featured	a	set	of	seven	top-level	domains	that	are
called	generic	TLDs.	The	idea	was	that	each	company	or	organization	could
choose	a	name	within	one	of	these	TLDs;	they	were	generic	enough	that	every
organization	would	find	a	place	that	suited	them.	I	prefer	to	call	them
organizational,	because	they	divide	the	generic	portion	of	the	name	space	by
organization	type.

The	initial	TLDs	and	their	original	intended	organization	types	were	as	follows:



.ARPA	A	temporary	domain	used	many	years	ago	for	transition	to	DNS;	today,
this	domain	is	used	for	reverse	name	resolution	(see	Chapter	56).

.COM	Corporations	and	businesses

.EDU	Universities	and	other	educational	organizations

.GOV	Government	agencies

.MIL	Military	organizations

.NET	Organizations	that	implement,	deal	with,	or	manage	networking
technologies	and/or	the	Internet

.ORG	Other	organizations	that	don't	fit	into	any	of	the	previous	classifications

At	first	glance,	this	seems	like	a	reasonable	way	to	cover	the	organizations	of	the
world.	However,	since	the	.ARPA	domain	(whose	name	refers	to	the	ARPAnet,
the	precursor	of	the	modern	Internet,	as	described	in	Chapter	8)	was	temporary,
this	left	only	six	categories	for	all	other	organizations.	Also,	the	TLDs	weren't	all
used	as	was	originally	foreseen.	For	example,	the	.GOV	and	.MIL	domains	were
not	used	for	all	types	of	government	and	military	organizations,	but	primarily	for
the	United	States	federal	government	and	military.	The	.EDU	domain	ended	up
being	used	only	for	universities,	again	in	the	United	States.

This	left	only	three	common	TLDs—.COM,	.NET,	and	.ORG—for	almost	all
other	groups	and	companies	that	wanted	to	use	the	organizational	hierarchy.
Since	there	were	only	three	such	TLDs,	they	quickly	became	very	crowded,
especially	the	.COM	domain.	A	new	fourth	domain,	.INT	for	international
organizations,	was	added	fairly	soon	to	the	original	seven.	However,	it	was
intended	only	for	a	small	number	of	organizations,	such	as	international
standards	bodies.

Of	course,	there	was	no	inherent	reason	why	the	generic	domains	should	be
limited	to	only	the	few	that	were	originally	created.

New	Generic	TLDs
Over	the	years,	many	suggestions	were	made	for	new	generic	TLDs	that	would
expand	the	number	of	possible	second-level	domain	names	and	also	provide
better	categorization	for	different	organization	types—that	is,	to	make	the
generic	TLDs	less	generic.	There	was	some	resistance	at	first	to	adopting	these



generic	TLDs	less	generic.	There	was	some	resistance	at	first	to	adopting	these
new	names,	especially	because	there	were	so	many	different	ideas	about	what
new	TLDs	should	be	created.

IANA	took	input	from	a	lot	of	people	and	followed	a	complex	procedure	to
determine	what	new	TLDs	should	be	made.	In	2001	and	2002,	approval	was
given	for	the	creation	of	several	new	TLDs,	and	decisions	were	made	about
authorities	for	administering	them.

Of	the	new	TLDs	approved	in	the	past	few	years,	the	number	that	has	achieved
widespread	popularity	is,	to	my	knowledge,	zero.	Humans	are	creatures	of
inertia,	and	most	people	are	still	used	to	names	ending	in	.COM,	.NET,	or	.ORG.
In	time	this	may	change,	but	it	will	probably	take	a	few	years.

NOTE

Some	people	actually	felt	that	adding	new	generic	TLDs	was	a	bad	idea,	since	it	makes	organizations
potentially	more	difficult	to	locate	(due	to	the	possibility	of	a	name	ending	in	a	variety	of	different
TLDs).	This	is	debatable,	however,	especially	since	the	exhaustion	of	address	space	in	the	existing	TLDs
means	many	companies	have	needed	to	choose	unintuitive	domain	names	anyway.

Table	54-1	shows	all	the	current	generic	TLDs	and	describes	how	they	are	used,
and	it	lists	the	current	central	authority	that	manages	each.	The	original	TLDs
are	highlighted	in	italics	(I	am	including	.INT	as	an	original	TLD,	since	it	was
created	long	before	the	"new"	ones).	Figure	54-1	shows	the	15	generic	TLDs	in
graphical	form.

Figure	54-1.	Internet	DNS	organizational	(generic)	TLDs	There	are	15	generic	TLDs	currently	defined
for	the	Internet.	They	are	shown	here	in	alphabetical	order,	with	the	original	TLDs	shown	in	light

shading	and	the	new	ones	added	in	2001/2002	in	darker	shading.

Table	54-1.	Internet	DNS	Organizational	(Generic)	Top-Level	Domains

Generic Abbreviation
For

Authority Description



TLD
For

.AERO Aerospace Société
Internationale	de
Télécommunications
Aéronautiques
(SITA)

Used	for	members	of	the	aerospace
industry,	such	as	airlines	and	airports.
(Yes,	that	is	French!)

.ARPA Address	and
Routing
Parameter
Area

IANA/	ICANN First	defined	as	a	temporary	domain	for
migration	from	the	older	host	table	system,
the	ARPA	of	course	originally	stood	for
the	Advanced	Research	Projects	Agency,
creators	of	the	predecessors	of	the	Internet.
Today,	the	.ARPA	domain	is	used	for
internal	Internet	management	purposes;
the	expanded	name	shown	in	this	table
was,	I	believe,	chosen	to	fit	the	acronym.
The	best-known	use	of	this	domain	is	for
reverse	DNS	lookups.

.BIZ Business NeuLevel,	Inc. Used	for	businesses.	Intended	as	a
competitor	to	.COM.

.COM Commercial
Organizations

VeriSign,	Inc. Originally	intended	for	corporations	and
other	commercial	interests,	.COM	is	also
widely	used	for	other	purposes,	including
small	businesses	and	even	individuals	who
like	the	popularity	of	the	.COM	domain.

.COOP Cooperative
Associations

Dot	Cooperation,
LLC

Used	for	cooperative	associations.

.EDU Education Educause Originally	intended	for	all	types	of
educational	organizations,	.EDU	is	now
used	only	for	degree-granting	higher-
education	institutions	accredited	in	the	US.
Other	educational	institutions	such	as
public	schools	usually	use	the	country
code	TLDs.

.GOV Government U.S.	General
Services
Administration

Reserved	for	the	U.S.	federal	government.

.INFO Information Afilias,	Ltd. A	very	generic	TLD	designed	for
information	resources	of	various	sorts.	It	is
unrestricted,	in	that	anyone	can	register
any	sort	of	organization	in	.INFO.	It's	also



any	sort	of	organization	in	.INFO.	It's	also
positioned	as	an	alternative	to	.COM.

.INT International IANA	.int	Domain
Registry

Used	only	for	large	organizations
established	by	international	treaty.

.MIL Military U.S.	DoD	Network
Information	Center

Reserved	for	the	U.S.	military.

.MUSEUM Museum Museum	Domain
Management
Association

Take	a	guess.	See	http://index.museum	for
a	complete	list	of	museums	using	this
TLD.

.NAME Names Global	Name
Registry

In	the	original	generic	hierarchy,	there	was
no	place	set	aside	for	individuals	to
register	names	for	themselves,	so	people
would	create	domains	like
jonesfamily.org.	This	was	not	ideal,	so
.NAME	was	created	as	a	place	for
individuals	and	families	to	register	a
domain	for	their	names.	.NAME	also
competes	with	the	country	code	TLDs.

.NET Network VeriSign,	Inc. This	was	supposed	to	be	used	only	for
Internet	service	providers	(ISPs)	and	other
organizations	working	intimately	with	the
Internet	or	networking.	Due	to	the
exhaustion	of	name	spaces	in	.COM	and
.ORG,	many	.NET	domains	are	registered
to	other	organizations,	however.

.ORG Organizations Public	Interest
Registry

Originally	intended	for	organizations	not
fitting	into	the	other	generic	TLDs,	.ORG
quickly	became	associated	with
professional	and	nonprofit	organizations.
It	is	possible,	however,	to	have	a	for-profit
company	use	an	.ORG	name.

.PRO Professional RegistryPro Reserved	for	credentialed	professionals
such	as	lawyers	and	doctors.

TIP

KEY	CONCEPT	One	of	the	two	ways	in	which	the	Internet's	DNS	name	space	is	divided	is	using	a	set
of	generic	TLDs.	These	TLDs	are	intended	to	provide	a	place	for	all	companies	and	organizations	to	be
named	based	on	their	organization	type.	There	were	originally	six	such	domains,	but	this	has	been
expanded	so	that	there	are	now	15.



DNS	Geopolitical	(Country	Code)	TLDs	and
Authorities
In	theory,	the	generic	TLDs	would	be	sufficient	to	meet	the	needs	of	all	the
individuals,	companies,	and	groups	in	the	world.	This	is	especially	true	since
.ORG,	by	definition,	is	a	catchall	that	can	include	anyone	or	anything.	Thus,	in
an	ideal	world,	everyone	in	the	world	would	have	been	able	to	find	a	place	in
those	simple	domains.

However,	back	at	the	beginning	of	DNS,	its	creators	recognized	that	the	generic
TLDs	might	not	meet	the	needs	of	everyone	around	the	world,	especially	in
certain	cases.	There	are	several	reasons	for	this:

Americentricism	of	the	Generic	Domains	I	don't	mean	this	as	a	criticism	(I'm
an	American	citizen	and	love	my	country!).	It	is	indisputable,	however,	that
United	States	organizations	and	companies	dominate	the	generic	TLDs.	This	is
not	surprising,	given	that	the	Internet	was	first	developed	in	the	United	States,
but	it	still	presents	a	problem	for	certain	groups.	For	example,	if	the	United
States	military	controls	the	.MIL	domain,	where	does,	say,	Great	Britain's
military	fit	into	the	name	space?

Language	Most	of	the	generic	domains	are	populated	by	organizations	that
primarily	do	business	in	English.	There	are	hundreds	of	languages	in	the	world,
however,	and	it's	easier	for	the	speakers	of	those	tongues	if	they	can	more	readily
locate	resources	they	can	understand.

Local	Control	Countries	around	the	world	rarely	agree	on	much,	and	they
certainly	differ	on	how	organizations	within	their	nations	should	have	their
Internet	presence	arranged.	There	was	a	desire	on	the	parts	of	many	to	allow
nations	to	have	the	ability	to	set	up	subsets	of	the	name	space	for	their	own	use.

For	these	and	other	reasons,	the	Internet's	name	space	was	set	up	with	a	set	of
country	code	TLDs	paralleling	the	generic	ones,	sometimes	called	ccTLDs.	I	call
these	geopolitical	TLDs,	since	they	are	based	on	geopolitical	divisions	of	the
world	(similar	to	the	example	I	used	in	the	overview	of	the	DNS	name	space	in
Chapter	53).	In	this	hierarchy,	every	country	of	the	world	is	assigned	a	particular
two-letter	code	as	a	TLD,	with	a	specific	authority	put	in	charge	of	administering



the	domain.	For	example,	the	ccTLD	for	Great	Britain	is	.UK,	the	one	for
Canada	is	.CA,	and	the	one	for	Japan	is	.JP.	The	codes	often	are	more
meaningful	in	the	local	language	than	in	English.	For	example,	Germany's	is
.DE,	and	Switzerland's	is	.CH.

Country	Code	Designations
When	I	said	that	countries	rarely	agree	on	anything,	I	wasn't	kidding.	In	fact,
they	can't	even	agree	on	what's	a	country!	Real	shooting	wars	have	been	fought
over	whether	or	not	a	particular	territory	was	independent	or	part	of	another
nation,	and	the	creators	of	DNS	wanted	no	part	of	this	sort	of	controversy.	As	the
IANA	website	says,	"The	IANA	is	not	in	the	business	of	deciding	what	is	and
what	is	not	a	country,	nor	what	code	letters	are	appropriate	for	a	particular
country."

To	remain	neutral,	IANA's	ccTLD	codes	are	taken	directly	from	the	standard
country	abbreviations	maintained	by	the	International	Organization	for
Standardization	(ISO)	in	ISO	Standard	3166-1.	When	a	country	is	recognized	by
the	ISO	and	a	code	assigned	to	it	on	this	list,	IANA	creates	it	as	a	TLD.	There
are	presently	more	than	200	different	geopolitical	TLDs.	You	can	find	the
current	list	of	IANA	country	code	TLDs	at	http://www.iana.org/cctld/cctld-
whois.htm.

TIP

KEY	CONCEPT	Due	to	the	limitations	of	the	generic	TLDs,	a	set	of	country	code	top-level	domains
was	created.	This	geopolitical	hierarchy	allows	each	nation	on	earth	to	set	up	its	own	name	system	based
on	its	own	requirements	and	to	administer	it	in	the	manner	it	sees	fit.	The	IANA	determines	what	is	a
country	based	on	official	decisions	made	by	ISO.

Country	Code	TLD	Authorities
Each	country	has	the	authority	to	set	up	its	TLD	with	whatever	internal
substructure	it	chooses;	again,	this	is	the	power	of	a	hierarchical	structure.

Some	countries	enforce	a	further	geographical	substructure	at	the	lower	levels.
For	example,	the	.US	domain	for	the	United	States	was	originally	set	up	so	that
all	second-level	domains	were	two-letter	state	abbreviations	(this	was	later
changed).

http://www.iana.org/cctld/cctld-whois.htm


changed).

Other	countries	may	actually	use	organizational	subdomains	within	their	country
code.	For	example,	Great	Britain	has	.CO.UK	for	companies	in	the	country	(like
.COM	but	for	the	UK	only;	they	left	off	the	M),	and	.COM.AU	is	for
corporations	in	Australia.

Other	countries	may	not	have	any	particular	substructure	at	all,	especially	if	they
are	small.

Leasing/Sale	of	Country	Code	Domains
Interestingly,	some	very	small	countries	with	recognizable	country	codes,
especially	to	English	speakers,	have	used	their	codes	for	very	creative	purposes,
including	selling	or	renting	the	name	space	to	enterprising	companies.

A	good	example	is	the	.TV	domain,	which	technically	belongs	to	the	island
nation	of	Tuvalu.	Of	course,	to	most	people,	"TV"	means	something	quite
different.	Some	folks	thought	that	domain	names	ending	in	.TV	might	be	popular
in	the	English-speaking	world,	so	they	formed	a	company	called	The	.TV
Corporation	and	negotiated	with	the	government	of	Tuvalu	to	use	the	.TV
domain.	Today,	the	authority	for	this	TLD	is	this	corporation,	headquartered	in
California!	Similar	arrangements	can	be	found	with	the	.CC,	.NU,	.TO,	and	other
TLDs.

This	serves	as	a	good	reminder	that	the	name	space	is	logical	and	not	physical.
Obviously,	the	many	computers	with	.TV	names	are	not	actually	located	on	a
remote	island	in	the	South	Pacific.	Similarly,	if	a	website	ends	with	.CA,	for
example,	it	probably	represents	a	Canadian	organization,	but	that	doesn't
necessarily	mean	the	website	itself	is	actually	hosted	in	Canada.

Drawbacks	of	the	Geopolitical	TLDs
The	geopolitical	domains	have	been	very	popular	for	certain	uses.	National
governments	and	other	official	institutions	like	to	use	them,	for	obvious	reasons.
Typing	www.gov.xx	or	www.government.xx,	where	xx	is	a	country	code	is
likely	to	bring	you	to	the	national	government	website	of	most	countries.	Some
companies	and	organizations	use	the	ccTLDs	because	they	allow	them	to	choose
a	name	already	taken	in	the	generic	hierarchies	or	simply	to	express	national



pride.

For	many	other	companies	and	organizations,	however,	the	generic	TLDs	have
been	much	more	popular	than	the	country	codes.	I	think	the	most	important
reason	for	this	is	that	organizations	are	easier	to	locate	using	the	generic
domains.

Here's	a	good	example	of	what	I	mean.	In	the	town	near	where	I	live,	a	new
grocery	store	called	Aldi	recently	opened.	I	like	the	store	and	wanted	to	learn
more	about	it,	so	I	fired	up	my	web	browser	and	sought	out	its	website.	Yes,	I
could	have	typed	it	into	a	search	engine,	but	like	most	people,	I'm	lazy.	It	was
much	easier	to	just	enter	www.aldi.com	into	my	browser,	and	lo	and	behold,	up
popped	the	website	of	Aldi	International.

Now,	Aldi	is	actually	headquartered	in	Germany,	and	the	company	does	have	a
website	at	www.aldi.de	as	well.	But	I	didn't	know	that.	I	found	them	easily	by
going	to	www.aldi.com,	because	I	didn't	need	to	know	their	physical	location,
and	because	I	know	that	most	large	companies	have	a	.COM	domain.	Of	course,
being	findable	is	very	important,	especially	for	commercial	organizations	trying
to	do	business.

Another	good	example	is	the	United	States,	which	has	its	own	country	code,
.US,	in	addition	to	dominating	the	generic	TLDs.	The	authority	in	charge	of	this
domain	initially	chose	to	make	it	follow	a	strict	geographical	hierarchy,	so	every
domain	had	to	be	of	the	form	organization.city.state-code.us.	So,	to	use	this	part
of	the	name	space,	a	company	in	Boston	must	be	within	the	.boston.ma.us
domain.	That's	very	neat	and	logical,	but	it	makes	names	both	longer	and	harder
to	guess	than	the	generic	equivalents.

Suppose	you	wanted	to	get	information	on	metals	giant	Alcoa.	If	you're	in	the
industry,	you	might	know	Alcoa	is	located	in	Pittsburgh,	but	if	not,	which	is
easier	to	find:	www.alcoa.pittsburgh.pa.us	or	www.alcoa.com?	Anyone	here
know	how	to	spell	Albuquerque?

It	is	for	this	reason	that	the	.US	domain	achieved	success	in	certain	segments	of
society	but	not	in	others,	especially	commercial	entities	(corporations).	The	strict
hierarchy	does	have	some	real	advantages,	such	as	avoiding	name	space
conflicts,	but	its	disadvantages	were	such	that	the	rules	were	recently	relaxed	in
the	.US	domain.



the	.US	domain.



Public	Registration	for	Second-Level	and	Lower
Domains
The	IANA	is	in	charge	of	deciding	which	TLDs	exist	in	the	Internet	name	space,
and	as	such,	they	are	ultimately	responsible	for	all	names	in	the	Internet.	The
entire	point	of	the	authority	hierarchy,	however,	is	that	IANA	should	not	be
responsible	for	the	whole	name	space.	So,	while	IANA	maintains	control	over
certain	TLDs,	such	as	.INT	and	.ARPA,	control	for	managing	the	others	is
delegated	to	secondary	authorities	for	each	TLD.

Just	as	IANA	had	the	choice	of	how	to	delegate	authority	to	the	subdomains	of
the	root	domain,	the	organization	in	charge	of	each	TLD	gets	to	make	the	same
decision	about	how	second-level	domains	are	to	be	created	under	the	TLD.

In	many	TLDs,	especially	the	generic	ones,	second-level	domains	are	assigned
directly	to	individuals	or	organizations.	For	example,	a	company	named	XYZ
Industries	might	want	to	get	the	domain	xyzindustries.com.

In	other	TLDs,	second-level	domains	are	set	up	in	a	particular	structure,	like	the
state	codes	used	in	the	.US	domain.	There,	you	need	to	go	down	more	levels,	but
eventually	you	get	to	the	point	where	companies	and	people	register	their	own
domains.	For	example,	in	the	.US	domain,	XYZ	Industries	might	want	to	register
xyz.phoenix.az.us	if	it	were	headquartered	in	Phoenix.

This	transition	point	between	the	authorities	granted	responsibility	for	parts	of
the	name	space	and	the	regular	people	and	groups	who	want	to	get	names	is
important.	A	process	of	public	registration	had	to	be	established	to	allow	such
name	assignment	to	occur	in	a	consistent	and	manageable	way.	This	was	not	that
difficult	to	accomplish	back	when	the	original	generic	TLDs	and	country	code
TLDs	were	first	created.	The	Internet	was	quite	small,	and	it	made	sense	to	just
have	the	authority	in	charge	of	each	TLD	perform	registrations	within	that	TLD.
This	ensured	that	there	was	no	duplication	of	names	within	a	TLD	with	a
minimum	of	fuss.

Registration	Authority
For	very	important	generic	TLDs	such	as	.COM,	.NET,	and	.ORG,	the	authority
in	charge	of	registration	was	the	Internet	Network	Information	Center	(the



in	charge	of	registration	was	the	Internet	Network	Information	Center	(the
InterNIC).	The	InterNIC	was	set	up	as	a	service	administered	by	the	United
States	government,	who	later	granted	the	contract	to	manage	it	to	Network
Solutions	Inc.	(NSI).	NSI	was	eventually	purchased	by	VeriSign,	who	later	spun
it	off	as	a	separate	venture.	(Things	change	quickly	in	the	networking	world!)

NSI	single-handedly	performed	all	registrations	within	the	.COM,	.NET,	and
.ORG	TLDs	for	many	years.	The	popularity	of	the	original	generic	TLDs,
however,	led	to	an	explosion	in	demand	for	name	registration	in	these	domains
in	the	1990s.	Having	a	single	company	in	charge	of	registration	led	to	this
becoming	another	bottleneck	in	the	Internet's	Domain	Name	System.	There	were
also	many	folks	who	didn't	like	the	lack	of	accountability	and	competition	that
came	with	having	a	single	monopoly	in	charge	of	registration.	The	InterNIC
could	set	its	own	price	and	originally	charged	$35	per	year	per	domain	name,
then	later	$50	per	year.

In	the	late	1990s,	responsibility	for	name	registration	was	given	to	ICANN.	The
registration	process	was	deregulated,	to	borrow	a	term	referring	to	removal	of
monopolies	from	industries	like	power	generation.	As	of	December	1999,	there
was	still	a	single	authority	with	overall	responsibility	for	each	TLD,	including
.COM,	.NET,	and	.ORG.

Today,	NSI	is	still	the	authority	running	.COM	and	.NET.	However,	it	isn't	the
only	organization	that	registers	names	within	these	TLDs.	It	further	delegates
registration	authority	to	a	multitude	of	other	companies,	called	accredited
registrars.	Any	registrar	can	register	names	within	the	TLD(s)	for	which	they	are
accredited.

Registration	Coordination
Naturally,	coordination	becomes	much	more	of	a	concern	when	you	have
multiple	companies	registering	names	in	a	TLD.	A	special	set	of	technical	and
administrative	procedures	is	followed	to	ensure	that	there	are	no	problems,	such
as	two	registrars	trying	to	grab	a	name	at	the	same	time.

The	system	has	worked	well,	and	those	who	wish	to	use	TLDs	where
competition	exists	now	can	choose	from	a	variety	of	registering	companies.	The
most	noticeable	result	of	this	was	also	the	most	predictable	one:	the	cost	of
registering	a	domain	name	in	the	deregulated	generic	TLDs	is	usually	much



registering	a	domain	name	in	the	deregulated	generic	TLDs	is	usually	much
lower	than	the	fees	originally	charged	by	the	InterNIC.

Once	a	company,	individual,	or	organization	has	a	registered	lower-level
domain,	he/she/it	becomes	the	authority	for	that	domain.	Use	of	the	domain	then
becomes	private,	but	depending	on	how	the	domain	is	used,	further	public	name
registration	may	be	required.	See	the	discussion	of	private	registration,	near	the
end	of	this	chapter,	for	more	information.



DNS	Public	Registration	Disputes	and	Dispute
Resolution
The	Internet	started	off	as	a	medium	for	research	into	networking,	evolved	into	a
system	for	interconnecting	scientists,	and	ended	up	as	a	global	communications
tool	used	by	just	about	everyone.	As	part	of	this	evolution,	the	Internet	also
became	a	very	important	part	of	how	business	is	done	in	the	world.	Money
started	to	come	into	the	Internet	picture	in	the	early	1990s,	and	just	a	few	short
years	later,	its	impact	on	the	Internet	was	so	significant	that	the	growth	of	the
stock	market	to	dizzying	heights	in	the	late	1990s	is	now	often	called	"the
Internet	bubble."

Public	Registration	Disputes
Unfortunately,	the	increasing	importance	of	the	Internet	to	commercial	interests
crashed	headlong	into	the	noncommercial	original	design	of	Internet	technology,
and	nowhere	was	this	more	evident	than	in	DNS.	Since	there	were	only	a	few
generic	TLDs,	each	name	within	a	TLD	had	to	be	unique,	and	humans	are	often
confrontational	creatures,	it	didn't	take	long	before	arguments	broke	out	over
who	should	be	able	to	use	what	name	and	why.	And,	of	course,	from	there,	it
didn't	take	long	before	lawsuits	and	other	unpleasantries	were	common.

There	are	a	surprising	number	of	significant	problems	associated	with	public
registration	of	domain	names:

Corporate	Name	Conflicts	The	.COM	domain	is	for	corporations,	but	many
corporations	have	the	same	name.	The	ACME	Furniture	Company,	the	ACME
Restaurant	Supply	Corporation,	and	ACME	Footwear,	Inc.,	probably	all	would
like	to	have	the	acme.com	domain.	But	there	can	be	only	one	such	domain
within	.COM.	(These	are	fictional	examples;	acme.com	is	actually	owned	by	an
organization	called	Acme	Labs.)

Corporate/Individual/Small	Business	Name	Conflicts	There	are	many
corporations	that	have	names	similar	to	or	even	identical	to	the	names	of
individuals,	leading	to	potential	conflicts.	For	example,	suppose	your	first	name
is	Wendy	and	you	own	a	small	fabric	store	called	Wendy's	Fabrics.	But	you	are



Internet	savvy	and	decide	you	want	to	register	wendys.com	as	soon	as	you	hear
about	the	Internet	in	1993.	Then	this	big	hamburger	chain	comes	along	and	has	a
problem	with	that.

NOTE

To	my	knowledge,	no	such	issue	arose	with	respect	to	Wendy's,	but	there	actually	was	a	widely
publicized	case	that	shows	just	how	recently	most	corporations	were	out	of	the	loop	with	respect	to
domain	naming.	In	1994,	a	writer	for	Wired	magazine	was	astonished	to	find	that	the	mcdonalds.com
domain	name	was	unregistered!	To	show	just	how	unregulated	the	registration	process	was,	he	registered
it	himself,	and	caused	a	bit	of	a	stir	as	a	result.	The	Golden	Arches	folks	eventually	acquired	the	domain
from	him	in	an	amicable	arrangement,	where	he	relinquished	the	name	and	they	made	a	donation	to
charity.

Corporate	Warfare	A	particularly	ugly	type	of	conflict	is	when	companies
intentionally	try	to	take	business	from	each	other	by	registering	names	that	have
nothing	to	do	with	their	own	companies.	An	example	would	be	if	Burger	King
had	tried	to	register	mcdonalds.com	and	use	it	to	advertise	Burger	King
products.	(Which	they	didn't	do,	I	might	add,	so	please	nobody	sue	me!)	Another
example	is	when	companies	try	to	use	alternate	TLDs,	such	as	registering
burgerking.org	to	confuse	people	trying	to	find	burgerking.com.	In	fact,	many
companies	have	taken	the	step	of	registering	their	names	in	many	different	TLDs
to	prevent	this	sort	of	thing	from	happening.

Cybersquatting	Some	ambitious	(to	choose	a	nice	term)	individuals,
recognizing	early	on	the	potential	value	of	certain	names,	registered	large
volumes	of	names	with	the	hopes	of	reselling	them.	Many	people	condemned
this	as	exploitative,	and	the	term	cybersquatting	was	created	to	refer	to	this	type
of	activity.	Unfortunately,	a	lot	of	money	was	made	this	way,	and	there	are	many
domain	names	that,	to	this	day,	cannot	be	used	because	they	have	been	reserved
indefinitely	by	people	or	individuals	who	will	never	use	them.

Deceptive	Naming	Practices	Another	type	of	somewhat	diabolic	creativity	has
been	displayed	by	people	who	seek	to	take	advantage	of	the	inability	of	some	of
us	to	spell.	For	example,	if	you	were	a	competitor	of	a	large	company	called
Superb	Transceivers	Inc.,	which	registered	superbtransceivers.com,	you	might
register	superbtranscievers.com	and	redirect	traffic	from	there	to	your	own
domain.	Another	example	takes	advantage	of	the	common	mix-up	between	the



letter	O	and	0	(zero).	For	example,	a	software	company	once	registered
micros0ft.com,	much	to	the	chagrin	of	the	Redmond,	Washington	software	giant.

Incidentally,	it	was	all	this	nonsense	that	led,	in	part,	to	the	clamor	for	new
generic	TLDs.	Even	though	the	more	complicated	schemes	used	by	TLDs	like
.US	are	not	very	popular,	they	have	a	huge	advantage	over	the	generic	domains.
Since	all	these	registrations	are	geographic,	there	are	far	fewer	conflicts.	For
example,	the	ACME	Furniture	Company	might	use	acme.seattle.wa.us,	the
ACME	Restaurant	Supply	Corporation	might	have	acme.mendocino.ca.us,	and
ACME	Footwear,	Inc.,	could	go	with	acme.anchorage.ak.us.	A	dispute	would
arise	only	when	organizations	have	the	same	name	and	also	are	in	the	same	state
and	town.	You	could	still	have	three	Joe's	Pizza	Parlors	in	Chicago	duke	it	out,
but	it's	not	likely	to	be	a	problem	for	big	companies.

Methods	of	Registration	Dispute	Resolution
So,	how	do	we	resolve	these	situations?	As	the	saying	goes,	it	can	be	done	either
the	easy	way	or	the	hard	way.	Here	are	some	methods	that	have	been	used	for
dispute	resolution:

Domain	Name	Sharing	Sometimes,	the	antagonists	agree	on	a	productive
solution.	One	particularly	constructive	idea	is	to	agree	to	share	the	domain	name.
For	example,	the	three	different	ACME	companies	could	each	create	their	own
more	specifically	named	domains,	such	as	acmefurniture.com,
acmerestaurantsupply.com,	and	acmefootwear.com.	Then	they	might	agree	to
have	the	www.acme.com	registered	to	nobody,	by	having	one	company	register
it	and	not	use	it	for	anything.	Even	better,	they	could	set	it	up	with	a	simple	web
page	that	says	the	domain	is	shared,	with	a	link	to	the	three	sites.	Unfortunately,
it	seems	grade	school	children	understand	the	concept	of	sharing	better	than
most	corporate	executives	do,	so	this	type	of	resolution	is	rare.

Domain	Name	Purchase	Another	option	is	purchase.	If	a	big	company	wants	a
domain	name	already	registered	by	an	individual	or	a	small	business,	it	will
often	just	purchase	the	name,	as	this	is	the	easiest	thing	to	do.	During	the	height
of	the	Internet	mania,	there	were	domain	names	that	sold	for	millions	of	dollars
—just	for	the	right	to	use	the	name!	Many	cybersquatters	and	other	speculators
got	rich	selling	names.



Litigation	Often,	the	combatants	don't	play	nice,	and	the	usual	occurs:	threats,
intimidation,	lawsuits,	and	so	forth.	Sometimes,	a	letter	from	a	lawyer	is	enough
to	resolve	the	issue,	especially	when	some	poor	individual	owning	a	website	gets
threatened	with	legal	action	by	a	large	company—this	has	happened	many	times.
However,	often	the	disagreeing	parties	stick	to	their	guns,	especially	if	two
companies	lock	horns	and	their	lawyers	refused	to	back	down.	Usually,	the
matter	then	ends	up	in	the	courts,	where	it	is	eventually	resolved	one	way	or	the
other.	Usually,	claims	of	trademark	infringement	would	be	used	by	a	company
challenging	a	prior	domain	name	registration.

The	Uniform	Domain	Name	Dispute	Resolution
Policy
Lawsuits	are	expensive	and	time-consuming,	so	there	was	a	desire	that	some
other	mechanism	exist	for	resolving	these	conflicts	as	well.	Since	the	authority
for	each	TLD	controls	what	happens	within	it,	it	also	has	the	right	to	create	its
own	policies	for	how	to	deal	with	these	sorts	of	issues.	For	the	generic	TLDs,	the
original	registering	authority,	the	InterNIC,	had	a	dispute	resolution	policy	that
allowed	people	with	a	complaint	to	challenge	a	domain	name	registration	if	they
had	a	trademark	interest	in	that	name.	The	policy	was	controversial	for	a	number
of	reasons,	not	the	least	of	which	because	it	led	to	some	domain	names	being
successfully	challenged,	even	if	there	was	no	proof	of	trademark	infringement.

The	current	authority	for	the	generic	TLDs,	IANA/ICANN,	created	a	new
Uniform	Domain	Name	Dispute	Resolution	Policy	(UDRP)	in	1999,	to	better
handle	domain	name	conflicts.	This	policy	specifies	a	procedure	whereby	a
company	that	has	a	valid	trademark	can	challenge	a	domain	name	if	it	infringes
on	the	trademark,	is	confusingly	similar	to	it,	or	was	registered	by	someone	else
in	bad	faith.	At	the	same	time,	it	also	lists	ways	that	the	original	registrant	can
prove	that	the	registration	is	valid	and	should	be	maintained.	This	new	system
eliminates	many	of	the	problems	associated	with	public	registration	of	domain
names—such	as	deceptive	naming,	corporate	warfare,	and	cybersquatting—
while	not	automatically	allowing	a	second-comer	to	shut	down	a	legitimate
domain.



DNS	Name	Space	Administrative	Hierarchy
Partitioning:	DNS	Zones	of	Authority
I	explained	earlier	in	this	chapter	that	the	DNS	name	space	is	arranged	in	a
hierarchy	and	that	there	is	also	a	hierarchy	of	authorities	that	is	related	to	that
hierarchical	name	structure.	However,	the	two	hierarchies	are	not	exactly	the
same.	If	they	were	the	same,	we	would	need	a	separate	authority	for	every
domain	at	every	level	of	the	tree,	and	that's	something	we	are	very	unlikely	to
want	to	have	everywhere	in	the	structure.

At	the	very	top	levels	of	the	DNS	tree,	it	seems	reasonable	that	we	might	want	to
designate	a	separate	authority	at	each	level	of	the	structure.	Consider	the
geopolitical	name	hierarchy;	IANA/ICANN	manages	the	root	domain,	but	each
of	the	ccTLDs	is	managed	by	a	distinct	national	authority.

However,	when	we	get	to	the	lower	levels	of	the	structure,	it	is	often
inconvenient	or	downright	impossible	to	have	each	level	correspond	to	a
separate	authority.	As	an	example,	let's	suppose	you	are	in	charge	of	the
Googleplex	University	IT	department,	which	runs	its	own	DNS	servers	for	the
googleplex.edu	domain.	Suppose	there	were	only	two	schools	at	this	university,
teaching	fine	arts	and	computer	science.	Suppose	also	that	the	name	space	for
the	computers	were	divided	into	three	subdomains:	finearts.googleplex.edu,
compsci.googleplex.edu,	and	admin.googleplex.edu	(for	central	administrative
functions,	including	the	IT	department	itself).

Most	likely,	you	don't	want	or	need	the	Fine	Arts	department	running	its	own
DNS	servers.	The	same	is	likely	true	of	the	administration	machines.	However,
it's	possible	that	the	Computer	Science	department	does	want	to	run	its	own
DNS	servers,	because	this	department	probably	has	many	more	computers	than
the	other	departments,	and	the	staff	might	use	running	a	DNS	server	as	part	of
the	curriculum.

In	this	case,	you	might	want	yourself,	the	administrator	for	googleplex.edu,	to
maintain	authority	for	the	finearts.googleplex.edu	and	admin.googleplex.edu
subdomains	and	everything	within	them,	while	delegating	authority	for	compsci.
googleplex.edu	to	whomever	in	the	Computer	Science	department	is	designated
for	the	task.	DNS	is	specifically	designed	to	allow	these	divisions	between	the



for	the	task.	DNS	is	specifically	designed	to	allow	these	divisions	between	the
name	hierarchy	and	the	authority	structure	to	be	created.

Methods	of	Dividing	a	Name	Space	into	Zones	of
Authority
The	complete	DNS	name	structure	is	divided	by	making	cuts	(as	RFC	1034	calls
them)	between	adjacent	nodes	to	create	groups	of	contiguous	nodes	in	the
structure.	Each	group	is	called	a	zone	of	authority,	or	more	commonly,	just	a
zone.	Each	zone	is	usually	identified	by	the	domain	name	of	the	highest-level
node	in	the	zone;	that	is,	the	one	closest	to	the	root.	The	zones	in	DNS	are	by
definition	non-overlapping—every	domain	or	subdomain	is	in	exactly	one	zone.
The	division	of	the	name	space	into	zones	can	be	made	in	an	arbitrary	way.	At
one	extreme,	we	could	place	a	cut	between	every	node,	and	thereby	divide	the
entire	name	space	so	each	domain	(and	subdomain,	and	so	on)	was	a	separate
zone.	If	we	did	this,	the	name	hierarchy	and	authority	hierarchy	would	indeed	be
the	same	for	the	entire	DNS	tree.	At	the	other	end	of	the	scale,	we	could	use	no
cuts	at	all,	defining	a	single	zone	encompassing	the	entire	DNS	structure.	This
would	mean	the	root	was	the	authority	for	the	entire	tree.

Of	course	in	practice,	neither	of	these	methods	is	particularly	useful,	as	neither
reflects	how	the	real-world	administration	of	DNS	works.	Instead,	we	generally
divide	the	name	structure	in	a	variety	of	places,	depending	on	the	needs	of
different	parts	of	the	name	space.	There	are	many	cases	where	we	might	want	to
create	a	subdomain	that	is	responsible	for	its	own	DNS	server	operation;	there
are	others	where	we	might	not	want	to	do	that.	The	significance	of	a	cut	in	the
name	hierarchy	is	that	making	such	a	cut	represents,	in	essence,	a	declaration	of
DNS	independence	by	the	node	below	the	cut	from	the	one	above	the	cut.

Returning	to	our	example,	if	googleplex.edu	is	in	charge	of	its	own	DNS	servers,
then	there	would	be	a	cut	in	the	name	space	between	googleplex.edu	and	.EDU
at	the	next-higher	level.	This	means	that	the	DNS	server	for	.EDU	is	no	longer	in
charge	of	DNS	for	the	googleplex.edu	domain;	instead,	either	the	unversity	itself
or	someone	hired	as	a	third	party	must	provide	DNS	for	it.	In	this	case,	we	are
assuming	the	folks	at	Googleplex	U.	themselves	run	their	own	DNS.	Without
making	any	other	cuts,	the	googleplex.edu	domain	would	be	a	single	zone
containing	everything	below	that	name,	including	both	finearts.googleplex.edu
and	compsci.googleplex.edu.



and	compsci.googleplex.edu.

In	our	example,	however,	we	would	make	another	cut,	between	googleplex.edu
and	compsci.googleplex.edu.	This,	in	effect,	liberates	compsci.googleplex.edu,
allowing	its	administrators	to	be	in	charge	of	their	own	DNS	server.	In	doing
this,	we	end	up	with	two	distinct	zones:	one	encompassing	googleplex.edu,
finearts.googleplex.edu,	and	admin.googleplex.edu	(and	everything	underneath
them)	and	another	for	compsci.googleplex.edu	(and	everything	below	it).	This	is
illustrated	in	Figure	54-2.

The	Impact	of	Zones	on	Name	Resolution:
Authoritative	Servers
The	concept	of	zones	is	critical	to	understanding	how	DNS	name	servers	work,
and	therefore,	how	name	resolution	is	performed.	All	of	the	information	about
the	subdomains	and	individual	devices	in	the	zone	is	represented	using	a	set	of
resource	records	stored	on	a	DNS	name	server.	Usually,	this	name	server	is
associated	with	the	highest-level	domain	name	in	the	zone.	A	name	server	that
contains	the	definitive	information	for	the	zone	is	said	to	be	authoritative	for	the
zone.

Figure	54-2.	DNS	zones	of	authority	Cuts	can	be	made	between	nodes	in	the	DNS	name	tree	to	create
an	arbitrary	hierarchy	of	name	authorities.	This	example	shows	the	DNS	tree	branch	for	googleplex.edu,



with	each	zone	indicated	using	a	different	shading.	IANA/ICANN	is	responsible	for	the	root	domain,
and	a	separate	authority	named	Educause	takes	care	of	.EDU.	The	third	zone	covers	much	of
googleplex.edu,	except	that	a	cut	has	been	made	between	googleplex	and	compsci	to	create	an

independent	zone	of	authority	for	compsci.googleplex.edu.

An	authoritative	server	for	a	zone	is	one	that	maintains	the	official	information
about	the	zone,	and	the	one	that	is	ultimately	responsible	for	providing	name
resolution	information	about	it.	We'll	discuss	this	in	the	section	on	DNS	servers
and	name	resolution	in	Chapter	56.

TIP

KEY	CONCEPT	The	DNS	name	registration	hierarchy	is	divided	into	regions	called	zones	of	authority.
Each	zone	represents	an	area	that	is	administered	independently	and	consists	of	a	contiguous	segment	of
the	DNS	name	tree.

Every	DNS	zone	has	a	set	of	authoritative	servers,	which	are	usually	a	pair
called	the	primary	(or	master)	and	secondary	(or	slave)	servers.	However,	it	is
also	possible	for	a	single	DNS	name	server	to	be	authoritative	for	more	than	one
zone.

As	mentioned	earlier,	it	is	not	always	necessary	for	the	actual	owner	of	a	domain
to	provide	DNS	services	for	it.	Very	often,	especially	for	the	domains	owned	by
small	businesses	or	individuals,	DNS	services	are	provided	by	a	third	party,
often	an	ISP.	For	example,	I	have	had	pcguide.com	registered	as	a	domain	since
1997,	but	my	long-time	web-hosting	provider,	pair	Networks,	has	provided	DNS
services	for	me	since	the	beginning.	This	means	that	pair's	DNS	servers	in	the
pair.com	hierarchy	are	responsible	for	pcguide.com.	They	are	also	responsible
for	many	other	domains	for	the	company's	customers.



DNS	Private	Name	Registration
We	have	now	reviewed	the	hierarchical	nature	of	the	DNS	name	space	and	the
authority	structure	that	administers	it.	Name	registration	begins	with	the	generic
and	country	code	TLDs	within	the	root	of	the	name	hierarchy,	then	proceeds	to
second-level	domains	within	the	TLDs	and	then	lower-level	subdomains	below
those.	As	we	progress	down	the	name	tree,	we	move	from	the	most	general,
public	authority	(IANA/ICANN,	which	runs	all	of	DNS),	through	the	high-level
TLD	authorities,	and	eventually	down	to	the	level	of	individual	organizations,
corporations,	and	individuals.

This	dividing	line	between	public	authorities	and	private	authorities	occurs	in
many	different	places	in	the	name	structure.	Wherever	it	does	occur,	below	that
line,	responsibility	for	the	domain	becomes	that	of	the	organization	that
registered	it.	The	organization	can	further	subdivide	the	name	space,	granting
parts	of	it	to	other	organizations,	or	even	reselling	it.	Alternatively,	an
organization	may	decide	to	use	the	name	space	to	create	a	purely	internal
structure.	I	call	this	private	name	registration,	in	contrast	to	the	public	name
registration	described	earlier	in	this	chapter.

For	example,	if	a	company	called	XYZ	Industries	registers	xyzindustries.com,
that	company	becomes	the	owner	of	not	just	that	domain	name,	but	any
subdomain	structure	or	named	items	within	it	that	the	company	may	choose	to
create.	This	is	the	beauty	and	power	of	authority	delegation	and	the	hierarchical
structure.	The	company	has	an	important	decision	to	make,	however:	whether
they	want	to	create	names	that	are	part	of	the	global	DNS	name	structure	or	use
names	within	the	structure	purely	privately.

Using	Publicly	Accessible	Private	Names
If	an	organization's	administrators	want	names	within	their	domain	to	be	part	of
the	global	DNS	name	structure,	they	must	perform	the	work	required	to	properly
set	up	and	manage	these	names	so	they	fit	into	DNS.	The	most	common	example
is	creating	a	public	World	Wide	Web	server.	Most	companies	name	such	servers
beginning	with	www,	so	XYZ	Industries	would	probably	wish	to	have	the	name
www.xyzindustries.com	for	its	web	server	address.

Obviously,	the	XYZ	Industries	owners	want	and	need	anyone	on	the	Internet	to



Obviously,	the	XYZ	Industries	owners	want	and	need	anyone	on	the	Internet	to
be	able	to	locate	this	server.	Thus,	even	though	they	have	private	control	of	the
xyzindustries.com	domain,	and	own	the	name	www.xyzindustries.com,	they
must	follow	proper	procedures	for	ensuring	that	DNS	resource	records	are	set	up
for	their	www	subdomain	so	everyone	on	the	Internet	can	find	it.	They	may	do
this	themselves,	if	they	run	their	own	DNS	servers,	or	may	have	an	ISP	or	other
third	party	do	it	for	them,	as	described	earlier.

Using	Private	Names	for	Internal	Use
The	alternative	is	to	create	purely	private	names	for	use	only	within	the
organization.	For	example,	it	is	likely	that	even	if	XYZ	wants	a	public	web
server,	the	administrators	may	wish	to	name	many	other	machines	that	are	to	be
accessed	only	within	the	company	itself.	In	this	case,	they	don't	need	to	set	up
these	machines	so	they	are	publicly	recognizable.	They	can	create	private
machine	names	and	manage	them	internally	within	their	own	network.

TIP

KEY	CONCEPT	Once	an	organization	registers	a	particular	domain	name,	it	becomes	the	owner	of	that
name	and	can	decide	whether	and	how	to	create	a	substructure	within	that	domain.	If	an	organization
wants	objects	in	the	domain	to	be	accessible	on	the	public	Internet,	it	must	structure	its	domain	to	be
consistent	with	Internet	DNS	standards.	Alternately,	it	can	create	a	purely	private	domain	using	any
structure	and	rules	it	prefers.

One	common	way	to	do	this	is	to	make	use	of	the	older	host	table	name	system.
This	system	is	now	archaic	for	large	internetworks,	but	is	often	still	used	in
smaller	companies	due	to	its	simplicity.	A	name	is	registered	by	being	added	to
the	host	tables	on	each	of	the	computers	within	the	organization,	and	resolved
when	the	operating	system	on	a	host	checks	this	file	prior	to	using	standard	DNS
resolution	methods.	The	host	table	supplements	DNS	in	this	case	(it	is	not	really
a	part	of	DNS).	The	two	systems	are	complementary	and	can	work	together,	as
explained	in	Chapter	51.

Using	Private	Names	on	Networks	Not
Connected	to	the	Internet
Note	that	if	you	are	running	a	purely	private	network	not	connected	to	the
Internet	at	all,	you	can	actually	set	up	your	own	entirely	private	name	hierarchy



Internet	at	all,	you	can	actually	set	up	your	own	entirely	private	name	hierarchy
and	run	DNS	yourself.	In	this	case,	you	are	in	charge	of	the	DNS	root	and	can
use	any	naming	system	you	like.

This	approach	is	sometimes	considered	attractive,	because	you	can	then	use	very
simple	machine	names	on	small	networks,	without	needing	to	perform	any
public	registration	or	use	names	that	correspond	to	the	global	hierarchy.	Instead
of	the	accounting	computer	in	XYZ	Industries	being	named
accounting.xyzindustries.com,	internally	it	could	be	named	accounting.	You	can
mix	these	with	real	DNS	names,	too,	when	accessing	resources.	For	example,
Joe's	machine	could	be	called	just	joe,	while	the	website	of	UPS	would,	of
course,	still	be	www.ups.com.

The	most	common	example	of	this	mixing	of	private	and	public	names	is	the
definition	of	the	private	local	name	for	the	loopback	address	of	a	computer.	Most
Windows	and	UNIX	machines	define	the	name	localhost	to	be	the	address
127.0.0.1,	which	means	"this	computer"	on	any	TCP/IP	machine.



Chapter	55.	DNS	NAME	SERVER
CONCEPTS	AND	OPERATION

Of	all	the	components	and	functional	elements	that	combine	to	form	the	Domain
Name	System	(DNS),	name	servers	are	arguably	the	most	important.	These
servers,	which	may	be	either	dedicated	devices	or	software	processes	running	on
machines	that	also	perform	other	tasks,	are	the	workhorses	of	DNS.	They	store
and	manage	information	about	domains,	and	respond	to	resolution	requests	for
clients—in	some	cases,	millions	of	times	each	day.	Understanding	how	they
perform	this	most	basic	task	and	the	many	support	jobs	for	which	they	are	also
responsible	is	crucial	to	understanding	DNS	as	a	whole.

In	this	chapter,	I	describe	the	concepts	related	to	DNS	name	servers	and	explain
how	they	operate.	I	begin	with	an	overview	of	DNS	name	server	functions	and
general	operation.	I	describe	the	way	that	DNS	name	server	data	is	stored	in
resource	records	and	the	role	of	classes.	I	discuss	the	different	roles	of	name
servers	in	DNS	and	explain	the	all-important	root	name	servers.	I	discuss	how
DNS	zones	are	managed,	the	notions	of	domain	contacts	and	zone	transfers,	and
how	caching	and	load	balancing	are	used	to	improve	efficiency	in	DNS.	I
conclude	with	a	brief	outline	of	several	enhancements	to	basic	DNS	server
operation,	including	the	new	Notify	and	Update	message	types	and	incremental
zone	transfers.

TIP

RELATED	INFORMATION	The	information	in	this	section	should	be	considered	complementary	to
that	in	the	following	chapter	on	DNS	resolvers.

DNS	General	Operation



The	three	major	functions	of	a	name	system	are	creating	a	name	space,
performing	name	registration,	and	providing	name	resolution	services.	The
previous	chapters	describe	how	DNS	uses	a	hierarchical	tree	structure	for	its
name	space	(Chapter	53),	and	a	hierarchical	tree	for	name	authorities	and
registration	(Chapter	54).	I'm	sure	that,	given	this,	you	will	have	to	struggle	to
contain	your	surprise	when	I	tell	you	that	name	resolution	is	also	oriented	around
the	notion	of	a	hierarchical	structure.

The	devices	that	are	primarily	charged	with	performing	the	functions	required	to
enable	name	resolution	are	name	servers.	They	are	arranged	in	a	hierarchy	that	is
closely	related	to	the	authority	structure	of	the	name	system.	Just	as	the	authority
structure	complements	the	name	structure	but	is	not	exactly	the	same	as	it,	the
name	server	architecture	complements	both	the	authority	structure	and	the	name
structure,	but	may	be	different	from	them	in	its	actual	composition.

DNS	Name	Server	Architecture	and	the
Distributed	Name	Database
In	a	large	DNS	implementation,	information	about	domains	is	not	centralized	in
a	single	database	run	by	one	authority.	Instead,	it	is	distributed	across	many
different	authorities	that	manage	particular	top-level	domains	(TLDs),	second-
level	domains,	or	lower-level	subdomains.	In	the	case	of	the	global	Internet,
literally	millions	of	different	authorities,	many	of	them	responsible	only	for	their
own	local	domain	space,	participate	cooperatively	in	running	the	DNS	system.

With	authority	for	registration	distributed	in	this	manner,	the	information	about
domains	is	similarly	spread	among	many	entities,	resulting	in	a	distributed
database.	A	key	concept	in	DNS	name	resolution	is	that	each	entity	that
maintains	responsibility	for	a	part	of	the	name	space	must	also	arrange	to	have
that	information	stored	on	a	DNS	server.	This	is	required	so	that	the	server	can
provide	the	information	about	that	part	of	the	name	space	when	resolution	is
performed.	As	you	can	see,	the	existence	of	a	structured	hierarchy	of	authorities
directly	implies	the	need	for	a	hierarchy	of	servers	that	store	that	hierarchical
name	information.

Each	DNS	zone	of	authority	is	required	to	have	one	or	more	DNS	servers	that
are	in	charge	of	managing	information	about	that	zone.	These	servers	are	said	to



be	authoritative	for	the	zone.	Storing	information	about	the	domains,
subdomains,	and	objects	in	the	zone	is	done	by	recording	the	data	in	special
resource	records	that	are	read	from	DNS	master	lists	maintained	by
administrators.	Servers	then	respond	to	requests	for	this	information.

TIP

KEY	CONCEPT	DNS	public	name	information	is	stored	in	a	distributed	database	of	DNS	name	servers
that	are	structured	in	a	hierarchy	comparable	to	the	hierarchy	of	authorities.	Each	zone	has	one	or	more
DNS	name	servers	in	charge	of	the	zone's	information,	called	authoritative	name	servers.

Since	information	in	DNS	is	stored	in	a	distributed	form,	there	is	no	single	server
that	has	information	about	every	domain	in	the	system.	As	you'll	see	in	the	next
chapter,	the	process	of	resolution	instead	relies	on	the	hierarchy	of	name	servers.
At	the	top	of	the	DNS	hierarchy	is	the	root	domain,	and	in	that	domain	are	root
name	servers.	These	are	the	most	important	servers,	because	they	maintain
information	about	the	TLDs	within	the	root.	They	also	have	knowledge	of	the
servers	that	can	be	used	to	resolve	domains	one	level	below	them.	Those	servers,
in	turn,	are	responsible	for	the	TLDs	and	can	reference	servers	that	are
responsible	for	second-level	domains.	Thus,	a	DNS	resolution	may	require	that
requests	be	sent	to	more	than	one	server.

DNS	Server	Support	Functions
The	storing	and	serving	of	name	data	(through	responses	to	requests	from	DNS
resolvers)	is	the	main	function	of	a	DNS	server.	However,	other	support	jobs	are
also	typically	required	of	a	DNS	server:

Interacting	with	Other	Servers	Because	the	DNS	resolution	process	often
requires	that	multiple	servers	be	involved,	servers	must	maintain	not	just	name
information,	but	information	about	the	existence	of	other	servers.	Depending	on
the	type	of	DNS	request,	servers	may	themselves	become	clients	and	generate
requests	to	other	servers.

Zone	Management	and	Transfers	The	server	must	provide	a	way	for	DNS
information	within	the	zone	to	be	managed.	A	facility	also	exists	to	allow	a	zone
transfer	to	be	performed	between	the	master	(primary)	server	for	a	zone	and
slave	(secondary)	servers.



Performance	Enhancement	Functions	Due	to	the	large	number	of	requests
servers	handle,	they	employ	numerous	techniques	to	reduce	the	time	required	to
respond	to	queries.	The	most	important	of	these	is	caching	of	name	information.
A	variation	of	regular	caching	called	negative	caching	may	also	be	used	to
improve	performance,	and	load	balancing	is	a	feature	that	can	be	used	to
improve	efficiency	of	busy	devices	registered	within	the	DNS	system.

Administration	Various	other	administrative	details	are	required	of	name
servers,	such	as	storing	information	about	the	different	types	of	contacts
(humans)	who	are	responsible	for	certain	tasks	related	to	management	of	a
domain	or	zone.

As	you'll	see	later	in	this	chapter,	not	all	name	servers	perform	all	of	these	tasks
described;	some	perform	only	a	subset.

The	Logical	Nature	of	the	DNS	Name	Server
Hierarchy
Like	the	other	hierarchies,	the	name	server	hierarchy	is	logical	in	nature.	I
already	mentioned	that	it	often	is	not	exactly	the	same	as	the	authority	hierarchy.
For	one	thing,	it	is	common	for	a	single	DNS	name	server	to	be	the	authoritative
server	for	a	number	of	domains.	Even	if	a	particular	group	has	authority	for	a
subdomain	of	a	particular	domain,	it's	possible	they	will	share	the	DNS	servers
with	the	authority	of	their	parent	domain	for	efficiency	reasons.	For	example,	a
university	might	delegate	control	over	parts	of	its	domain	space	to	different
groups	(as	in	the	example	of	DNS	zones	in	Chapter	54)	but	still	manage	all
subdomains	on	the	same	server.	In	practice,	the	lower	the	level	of	the	subdomain
in	the	DNS	name	hierarchy,	the	less	likely	that	subdomain	has	its	own	DNS
server.

Another	important	aspect	of	the	logical	nature	of	the	name	server	hierarchy	is
that	there	is	no	necessary	relationship	between	the	structure	of	the	name	servers
and	their	location.	In	fact,	in	many	cases,	name	servers	are	specifically	put	in
different	places	for	reliability	reasons.	The	best	example	of	this	is	the	set	of	root
name	servers.	These	are	all	at	the	top	of	the	DNS	server	architecture,	but	they	are
spread	around	the	globe	to	prevent	a	single	problem	from	taking	all	of	them	out.
Also	remember	not	to	be	fooled	by	the	structure	of	a	name	in	the	geopolitical



DNS	name	hierarchy	(as	discussed	in	Chapter	53).	A	name	server	called
ns1.blahblah.ca	might	be	in	Canada,	but	it	very	well	might	not	be	located	there.

TIP

KEY	CONCEPT	The	DNS	name	server	hierarchy	is	logical	in	nature	and	not	exactly	the	same	as	the
DNS	name	server	tree.	One	server	may	be	responsible	for	many	domains	and	subdomains.	Also,	the
structure	of	the	DNS	name	server	hierarchy	doesn't	necessarily	indicate	the	physical	locations	of	name
servers.



DNS	Name	Server	Data	Storage
One	of	the	most	important	jobs	performed	by	name	servers	is	the	storage	of
name	data.	Since	the	authority	for	registering	names	is	distributed	across	the
internetwork	using	DNS,	the	database	of	name	information	is	likewise
distributed.	An	authoritative	server	is	responsible	for	storing	and	managing	all
the	information	for	the	zones	of	authority	it	is	assigned.

Each	DNS	server	is,	in	essence,	a	type	of	database	server.	The	database	contains
many	kinds	of	information	about	the	subdomains	and	individual	devices	within
the	domain	or	zone	for	which	the	server	is	responsible.	In	DNS,	the	database
entries	that	contain	this	name	information	are	called	resource	records	(RRs).	A
specific	set	of	RRs	is	associated	with	each	node	within	the	zone.

Binary	and	Text	Representations	of	Resource
Records
The	entire	point	of	DNS	is	to	allow	humans	to	work	with	names	and	computers
to	work	with	numbers.	This	principle	is	further	reflected	in	the	two	very	different
representations	that	exist	for	the	DNS	RRs	themselves	(see	Figure	55-1):

RR	Field	Format	(Binary)	Representation	Name	servers	are	required	to
respond	to	queries	for	name	information	by	sending	RRs	within	DNS	messages.
Obviously,	we	want	to	do	this	in	as	efficient	a	way	as	possible,	so	each	RR	is
internally	stored	using	a	special	field	format	that	is	similar	to	the	many	field
formats	used	for	messages	in	other	protocols.	All	RRs	use	a	general	field	format
for	some	of	their	fields	and	then	have	a	unique	portion	that	is	specific	to	the	RR
type.

Master	File	(Text)	Representation	Computers	are	happy	to	exchange	binary-
encoded	field	formats	and	have	no	problem	remembering	that,	for	example,	RR
type	15	corresponds	to	a	mail	exchange	(MX)	record.	However,	human
administrators	want	to	be	able	to	quickly	and	easily	maintain	DNS	information
without	needing	to	remember	cryptic	codes	or	work	with	binary	values.	For	this
reason,	DNS	uses	a	master	file	format	for	its	user-machine	interface,	which
allows	RRs	to	be	specified	in	text	form	for	easier	maintenance.



Figure	55-1.	DNS	RR	master	file	and	binary	field	formats

To	meet	the	needs	of	humans	and	computers,	DNS	uses	two	representations	for
the	data	stored	in	RRs.	Administrators	enter	and	maintain	information	in	textual
DNS	master	files.	These	are	read	by	DNS	server	software	and	internally	stored
in	binary	format	for	answering	DNS	requests.

Use	of	RRs	and	Master	Files
Each	node	may	have	a	variable	number	of	records,	depending	on	the	node	type
and	what	information	is	being	kept	for	it.	The	RRs	are	added,	changed,	or
deleted	when	DNS	information	changes,	by	administrators	who	make
modifications	to	the	text	master	files	on	the	server	computer.	These	files	are	then
read	into	memory	by	the	DNS	server	software,	parsed	(interpreted),	and
converted	into	binary	form.	Then	they	are	ready	for	use	in	resolving	DNS	name
requests	and	other	queries.	I	describe	both	the	binary	RR	field	formats	and
master	file	format	in	Chapter	57.

TIP

KEY	CONCEPT	DNS	name	servers	store	DNS	information	in	the	form	of	resource	records	(RRs).
Each	RR	contains	a	particular	type	of	information	about	a	node	in	the	DNS	tree.	There	are	two
representations	for	RRs:	Conventional	binary	field	formats	are	used	for	communication	between	DNS
name	servers	and	resolvers,	and	text	master	files	are	edited	by	administrators	to	manage	DNS	zones.

Common	RR	Types
The	main	DNS	standards,	RFC	1034	and	1035,	defined	a	number	of	RR	types.
Over	time,	the	list	has	changed,	with	new	RR	types	being	created	in	subsequent
standards	and	the	use	of	others	changed.	Like	other	Internet	parameters,	the	list
of	DNS	RR	types	is	maintained	in	a	file	by	the	Internet	Assigned	Numbers



Authority	(IANA).	Also	like	other	Internet	parameters,	there	are	actually	several
dozen	defined	RRs	in	DNS,	but	only	a	few	are	commonly	used;	others	are	now
obsolete,	used	for	special	purposes,	or	experimental	in	nature.	The	current	list	of
DNS	resource	records	is	maintained	in	a	file	that	can	be	found	at
http://www.iana.org/assignments/dns-parameters.

Table	55-1	summarizes	the	most	important	RR	types.	For	each,	I	have	shown	the
numeric	Type	value	for	the	record,	which	is	used	to	identify	the	RR	type	in
message	exchanges,	and	the	text	code	used	for	the	RR	in	master	files.

Table	55-1.	Summary	of	Common	DNS	Resource	Records

RR
Type
Value

RR
Text
Code

RR	Type Description

1 A Address Contains	a	32-bit	IP	address.	This	is	the	"meat	and	potatoes"	of
DNS,	since	it	is	where	the	address	of	a	node	is	stored	for	name
resolution	purposes.

2 NS Name
Server

Specifies	the	name	of	a	DNS	name	server	that	is	authoritative
for	the	zone.	Each	zone	must	have	at	least	one	NS	record	that
points	to	its	primary	name	server,	and	that	name	must	also	have
a	valid	Address	(A)	record.

5 CNAME Canonical
Name

Used	to	allow	aliases	to	be	defined	that	point	to	the	real	name	of
a	node.	The	CNAME	record	provides	a	mapping	between	this
alias	and	the	canonical	(real)	name	of	the	node.	It	is	commonly
used	to	hide	changes	in	the	internal	DNS	structure	from	outside
users,	by	letting	them	use	an	unchanging	alias,	while	the	internal
names	are	modified	based	on	the	needs	of	the	organization.	See
the	discussion	of	name	resolution	in	Chapter	56	for	an	example.

6 SOA Start	Of
Authority

Used	to	mark	the	start	of	a	DNS	zone	and	provide	important
information	about	it.	Every	zone	must	have	exactly	one	SOA
record,	which	contains	the	name	of	the	zone,	its	primary
(master)	authoritative	server	name,	and	technical	details	such	as
the	email	address	of	its	administrator	and	parameters	for	how
often	slave	(secondary)	name	servers	are	updated.

12 PTR Pointer Provides	a	pointer	to	another	location	in	the	name	space.	These
records	are	best	known	for	their	use	in	reverse	resolution
through	the	IN-ADDR.ARPA	domain	(described	in	Chapter	54).

15 MX Mail Specifies	the	location	(device	name)	that	is	responsible	for

http://www.iana.org/assignments/dns-parameters


15 MX Mail
Exchange

Specifies	the	location	(device	name)	that	is	responsible	for
handling	email	sent	to	the	domain.

16 TXT Text
String

Allows	arbitrary	additional	text	associated	with	the	domain	to	be
stored.

All	of	these	RRs	are	used	in	different	ways	to	define	zones	and	devices	within
them	and	then	permit	name	resolution	and	other	functions	to	take	place.	You'll
see	how	they	are	used	in	more	detail	in	Chapter	56,	which	covers	name
resolution.	You	can	also	find	a	more	lengthy	description	of	some	of	them	in	the
section	in	Chapter	57	devoted	to	RR	field	formats.

TIP

RELATED	INFORMATION	See	the	topic	on	IPv6	DNS	support	near	the	end	of	Chapter	57	for	IPv6-
specific	RR	types.

RR	Classes
Finally,	I	would	like	to	mention	a	historical	note	about	RRs.	When	DNS	was
first	created,	its	inventors	wanted	it	to	be	as	generic	as	possible.	To	that	end,	they
designed	it	so	that	a	DNS	server	could,	theoretically,	provide	name	service	for
more	than	one	type	of	underlying	protocol;	that	is,	DNS	could	support	TCP/IP	as
well	as	other	protocols	simultaneously.

Of	course,	protocols	have	different	addressing	schemes	and	also	varying	needs
for	name	resolution.	Therefore,	DNS	was	defined	so	that	each	protocol	could
have	a	distinct	set	of	RR	types.	Each	set	of	RR	types	was	called	a	class.
Technically,	an	RR	must	be	identified	using	both	a	class	identifier	and	an	RR
type.	Like	the	RR	types,	classes	have	a	numeric	code	number	and	a	text
abbreviation.	The	class	for	TCP/IP	uses	the	number	1,	with	the	text	code	IN	(for
Internet).

In	practice,	this	notion	of	multiple	classes	of	RRs	never	took	off.	Today,	DNS	is,
to	my	knowledge,	used	only	for	TCP/IP.	(There	may	be	some	obscure
exceptions.)	Several	other	classes	have	been	defined	by	RFC	1035	and	are	in	the
IANA	DNS	parameters	list,	but	they	are	for	relatively	obscure,	experimental,	or
obsolete	network	types,	with	names	such	as	CSNET,	CHAOS,	and	Hesiod.
You'll	still	see	this	concept	of	class	in	the	specification	of	DNS	message	and	RR
formats,	but	there	really	is	only	class	today:	IN	for	TCP/IP.	For	this	reason,	in



formats,	but	there	really	is	only	class	today:	IN	for	TCP/IP.	For	this	reason,	in
most	cases,	the	class	name	can	be	omitted	in	DNS-related	commands	and	data
entries,	and	IN	will	be	assumed	by	default.

TIP

KEY	CONCEPT	The	DNS	standards	were	originally	created	to	allow	them	to	work	with	multiple
protocols,	by	specifying	the	class	of	each	RR.	Today,	the	only	class	commonly	used	is	that	for	TCP/IP,
which	is	called	IN	(for	Internet).



DNS	Name	Server	Types	and	Roles
So	far,	we	have	looked	at	the	functions	of	DNS	servers,	focusing	on	the
important	job	of	storing	name	server	information.	There	are	many	thousands	of
DNS	servers	on	the	Internet,	and	not	all	are	used	in	the	same	way.	Each	DNS
server	has	a	particular	role	in	the	overall	operation	of	the	name	system.	The
different	kinds	of	servers	also	interact	with	each	other	in	a	variety	of	ways.

Master	(Primary)/Slave	(Secondary)	Servers
Every	zone	needs	to	have	at	least	one	DNS	name	server	that	is	responsible	for	it.
These	DNS	name	servers	are	called	authoritative	servers	for	the	zone,	because
they	contain	the	full	set	of	RRs	that	describe	the	zone.	When	any	device	on	the
Internet	wants	to	know	something	about	a	zone,	it	consults	one	of	its
authoritative	servers.

From	a	strictly	theoretical	perspective,	having	one	name	server	for	each	zone	or
domain	is	sufficient	to	provide	name	resolution	services	for	the	entire	DNS	name
structure.	From	an	implementation	standpoint,	however,	having	only	one	name
server	for	each	part	of	the	name	space	is	not	a	wise	idea.	Instead,	each	zone
usually	has	associated	with	it	at	least	two	name	servers:	one	primary	or	master
name	server,	and	one	secondary	or	slave	name	server.	Some	zones	may	have
more	than	one	secondary	name	server.

NOTE

The	terms	primary	and	secondary	are	used	often	in	the	DNS	standards	to	refer	to	the	roles	of	the	two
authoritative	servers	for	a	zone.	However,	master	and	slave	are	now	the	preferred	terms,	because	primary
and	secondary	are	somewhat	ambiguous	and	used	in	other	contexts.	You	should	be	prepared	to	see	both
terms	used.

The	master	name	server	is	obviously	the	most	essential	server.	It	is	on	this	name
server	that	the	master	files	for	the	zone's	RRs	are	maintained,	so	the	master	name
server	is	the	final	word	on	information	on	the	zone.	However,	there	are	several
reasons	why	slave	servers	are	also	important:

Redundancy	If	there	were	only	one	name	server	and	it	failed,	no	one	would	be
able	to	resolve	names	such	as	www.xyzindustries.com	into	IP	addresses,	and	that

http://www.xyzindustries.com


would	be	a	Bad	Thing.	Slave	name	servers	act	as	a	backup	for	the	masters	they
support.	Redundancy	is	the	most	important	consideration	in	setting	up	master
and	slave	name	servers.	Sticking	two	machines	side	by	side	in	a	server	room,
plugged	into	the	same	electrical	service,	both	connected	to	the	Internet	with	the
same	Internet	service	provider	(ISP),	and	making	one	your	master	DNS	server
and	the	other	your	slave	is	not	a	smart	move.	Ideally,	the	primary	and	secondary
servers	should	be	as	independent	as	possible;	they	should	be	physically	distant
and	have	separate	connections	to	the	Internet.

Maintenance	With	more	than	one	server,	we	can	easily	take	the	primary	server
down	for	maintenance	when	needed	without	name	resolution	service	being
disrupted.

Load	Handling	Busy	zones	can	use	multiple	servers	to	spread	the	load	of	name
resolution	requests	to	improve	performance.

Efficiency	There	are	many	cases	where	there	is	an	advantage	to	positioning	a
name	server	in	a	particular	geographical	location	for	the	sake	of	efficiency.	For
example,	a	company	may	have	an	office	in	a	distant	location	connected	using	a
low-speed	wide	area	network	link.	To	reduce	name	resolution	traffic	across	that
link,	it	makes	sense	to	have	that	zone's	information	available	in	a	name	server	on
both	sides	of	the	connection,	which	would	require	two	physical	servers.

Just	as	the	names	master	and	slave	suggest,	the	secondary	name	servers	are	not
the	original	source	of	information	about	a	zone.	They	normally	obtain	their	RRs
not	from	human-edited	master	files,	but	from	updates	from	the	master	server.
This	is	accomplished	using	a	process	called	a	zone	transfer.	These	transfers	are
performed	on	a	regular	basis	to	ensure	that	the	slave	servers	are	kept	up-to-date.
The	slaves	can	then	respond	to	name	resolution	requests	with	current
information.	Both	the	master	and	the	slave	are	considered	authoritative	for	the
zone.

Name	Server	Roles
The	master	and	slave	roles	for	a	zone	are	logical	and	do	not	always	correspond
to	individual	physical	hardware	devices.	A	single	physical	name	server	can	play
multiple	roles	in	the	following	cases:



It	can	be	the	master	name	server	for	more	than	one	zone.	Each	zone	in	this
case	has	a	distinct	set	of	RRs	maintained	in	separate	master	files.

It	can	be	a	slave	name	server	for	more	than	one	zone.

It	can	be	a	slave	name	server	for	certain	zones	as	well	as	a	primary	for	others.

Note,	however,	that	a	single	physical	name	server	cannot	be	a	master	and	a	slave
server	for	the	same	zone.

TIP

KEY	CONCEPT	The	master	DNS	server	for	a	zone	is	its	primary	server,	which	maintains	the	master
copy	of	DNS	information.	Most	DNS	zones	also	have	at	least	one	slave	or	secondary	DNS	server.	These
are	important	because	they	serve	as	backups	for	the	primary	server,	and	they	can	also	help	share	the	load
of	responding	to	requests	in	busy	zones.	Secondary	name	servers	get	their	information	from	primary
servers	on	a	routine	basis.	Both	master	and	slave	servers	are	considered	authoritative	for	the	zones	whose
data	they	maintain.

Caching-Only	Name	Servers
For	efficiency,	all	DNS	servers—both	masters	and	slaves—perform	caching	of
DNS	information	so	it	can	be	used	again	if	requested	in	the	near	future.	(Caching
is	described	in	the	"Name	Server	Caching"	section	later	in	this	chapter.)	The
importance	of	caching	is	so	significant	that	some	servers	are	set	up	only	to	cache
information	from	other	DNS	servers.	Unsurprisingly,	these	are	called	caching-
only	name	servers.

These	name	servers	are	not	authoritative	for	any	zone	or	domain,	and	they	don't
maintain	any	RRs	of	their	own.	They	can	answer	name	resolution	requests	only
by	contacting	other	name	servers	that	are	authoritative	and	then	relaying	the
information.	They	then	store	the	information	for	future	requests.	Why	bother?
The	reason	is	performance.	Through	strategic	placement,	a	caching-only	server
can	increase	DNS	resolution	performance	substantially	in	some	networks	by
cutting	down	on	requests	to	authoritative	servers.

TIP

KEY	CONCEPT	There	are	DNS	servers	that	do	not	maintain	DNS	RRs	of	their	own	but	solely	hold
recently	used	information	from	other	zones.	These	are	called	caching-only	name	servers	and	are	not
authoritative	for	any	zone.





DNS	Zone	Management,	Contacts,	and	Zone
Transfers
The	authority	for	a	particular	DNS	zone	is	responsible	for	performing	a	variety
of	tasks	to	manage	it.	Zone	management	encompasses	the	entire	gamut	of	jobs
related	to	a	zone:	deciding	on	the	name	hierarchy	within	the	zone,	specifying
procedures	for	name	registration,	technical	work	related	to	keeping	DNS	servers
running,	and	other	administrative	overhead	of	all	sorts.	This	job	can	be	either
very	small	or	incredibly	large,	depending	on	the	type	of	organization.	A	small
domain	owned	by	an	individual	doesn't	require	much	work	to	manage,	while	one
for	a	huge	company	might	require	a	dedicated	staff	to	maintain.

Domain	Contacts
It	is	important	that	it	be	possible	for	anyone	on	an	internetwork	to	be	able	to
determine	who	the	owner	of	a	domain	is,	so	that	person	can	be	reached	for
whatever	reason.	On	the	Internet,	each	DNS	domain	has	associated	with	it	a	set
of	three	contacts	that	are	responsible	for	different	facets	of	managing	a	domain:

Administrative	Contact	The	main	contact,	responsible	for	the	domain	as	a
whole.	This	individual	or	organization	is	considered	the	overall	owner	of	the
domain.

Billing	Contact	A	contact	responsible	for	handling	payment	for	domain	services
and	other	accounting	matters.

Technical	Contact	A	contact	who	handles	the	technical	details	of	setting	up
DNS	for	the	domain	and	making	sure	it	works.

For	smaller	domains,	there	usually	is	no	separate	billing	contact;	it	is	the	same	as
the	administrative	contact.	In	contrast,	the	technical	contact	is	often	different
from	the	administrative	contact	in	both	large	and	small	domains.	Large
organizations	will	make	the	technical	contact	someone	in	their	information
technology	department.	Small	organizations	often	let	their	ISP	provide	DNS
services,	and	in	that	case,	the	technical	contact	will	be	someone	at	that	ISP.

TIP



KEY	CONCEPT	Each	DNS	domain	has	associated	with	it	a	set	of	three	contact	names	that	indicate
who	is	responsible	for	managing	it.	The	administrative	contact	is	the	person	with	overall	responsibility
for	the	domain.	The	billing	contact	is	responsible	for	payment	issues;	this	may	be	the	same	as	the
administrative	contact.	The	technical	contact	is	in	charge	of	technical	matters	for	the	domain	and	is	often
a	different	person	than	the	administrative	contact,	especially	when	DNS	services	are	outsourced.

Zone	Transfers
The	ultimate	purpose	of	zone	management	is	to	ensure	that	information	about
the	zone	is	kept	current	on	the	zone's	master	and	slave	name	servers,	so	it	can	be
efficiently	provided	to	name	resolvers.	Thus,	the	management	of	a	zone	begins
with	decision-making	and	administrative	actions	that	result	in	changes	to	the
RRs	for	the	zone.	These	are	reflected	in	changes	made	to	the	DNS	master	files
on	the	master	(primary)	DNS	server	for	the	zone.

In	contrast,	each	zone's	secondary	DNS	server(s)	act	as	slaves	to	the	master
primary	server.	They	carry	information	about	the	zone,	but	do	not	load	it	from
local	master	files	that	are	locally	edited.	Instead,	they	obtain	their	information
from	the	master	name	server	on	a	regular	basis.	The	procedure	responsible	for
this	is	called	a	zone	transfer.

The	records	on	the	master	name	server	can	be	updated	at	any	time.	As	soon	as
the	master	name	server's	records	have	been	changed,	the	information	at	the	slave
name	servers	becomes	partially	out-of-date.	This	is	not	generally	a	big	deal,
because	most	of	the	data	will	still	be	accurate,	and	the	secondary	server	will
continue	to	respond	to	resolution	requests	using	the	most	current	information	it
has.	However,	it	is	obviously	important	that	we	update	the	slave	servers	on	a
regular	basis;	if	this	is	not	done,	eventually	their	data	will	become	stale	and
unreliable.	To	this	end,	it	is	necessary	that	zone	transfers	be	performed	on	a
regular	basis.

Control	of	When	Zone	Transfers	Occur
Controlling	when	zone	transfers	happen	requires	implementation	of	a
communication	process	between	the	servers	that	consists	of	two	basic	parts.
First,	we	need	a	mechanism	to	allow	slave	servers	to	regularly	check	for	changes
to	the	data	on	the	master.	Second,	we	must	have	a	mechanism	for	copying	the
RRs	for	the	zone	from	the	primary	name	server	to	the	secondary	server	when
needed.



needed.

Both	mechanisms	make	use	of	standard	DNS	query/response	facilities	and
special	fields	in	the	RRs	for	the	zone.	Of	particular	importance	is	the	Start	Of
Authority	(SOA)	record	for	the	zone,	which	contains	several	parameters	that
control	zone	status	checking	and	zone	transfers.	While	the	formal	description	of
these	parameters	can	be	found	in	the	description	of	RR	formats	in	Chapter	57,	I'll
discuss	how	they	are	used	here.

When	a	slave	name	server	starts	up,	it	may	have	no	information	about	the	zone
at	all,	or	it	may	have	a	copy	of	the	zone's	RRs	stored	on	its	local	storage,	from
the	last	time	it	was	running.	In	the	former	case,	it	must	immediately	perform	a
full	zone	transfer,	since	it	has	no	information.	In	the	latter	case,	it	will	read	its
last-known	copy	of	the	zone	from	local	storage;	it	may	immediately	perform	a
poll	on	the	master	server	to	see	if	the	data	has	changed,	depending	on
configuration.	A	poll	is	done	by	requesting	the	SOA	RR	for	the	zone.

The	Serial	field	in	the	SOA	record	contains	a	serial	number	(which	may	be
arbitrary	or	may	be	encoded	so	it	has	a	particular	meaning)	that	acts	as	the
version	number	of	the	master	server's	zone	database.	Each	time	the	master	file
for	the	zone	is	modified	(either	manually	by	editing	or	automatically	through
another	means),	this	serial	number	is	increased.	Therefore,	a	slave	server	can
detect	when	changes	have	been	made	on	the	master	by	seeing	if	the	Serial	field
in	the	most	recent	SOA	record	is	greater	than	the	one	the	slave	stored	the	last
time	it	polled	the	master.	If	the	serial	number	has	changed,	the	slave	begins	a
zone	transfer.

Three	other	fields	in	the	SOA	record	control	the	timing	that	slave	name	servers
use	for	polling	and	updating	their	information:

Refresh	This	field	specifies	how	many	seconds	a	slave	server	waits	between
attempts	to	check	for	an	update	on	the	master.	Assuming	the	slave	can	make
contact,	this	is	the	longest	period	of	time	that	data	on	a	slave	will	become	stale
when	the	master	changes.

Retry	This	field	controls	how	long	the	slave	must	wait	before	trying	again	to
check	in	with	the	master	if	its	last	attempt	failed.	This	is	used	to	prevent	rapid-
fire	attempts	to	contact	a	master	that	may	clog	the	network.

Expire	If,	for	whatever	reason,	the	slave	name	server	is	not	able	to	make	contact



with	the	master	for	a	number	of	seconds	given	by	this	field's	value,	it	must
assume	that	the	information	it	has	is	stale	and	stop	using	it.	This	means	that	it
will	stop	acting	as	an	authoritative	name	server	for	the	zone	until	it	receives	an
update.

The	fact	that	these	parameters	are	part	of	the	SOA	record	for	the	zone	gives	the
administrator	of	the	zone	complete	control	over	how	often	master	name	servers
are	updated.	In	a	small	zone	where	changes	are	rare,	the	interval	between	checks
made	by	the	slave	servers	can	be	increased;	for	larger	zones	or	ones	that	are
changed	often,	the	Refresh	interval	can	be	decreased.

Zone	Transfer	Mechanism
When	a	zone	transfer	is	required,	it	is	accomplished	using	a	DNS	query	sent	to
the	master	server	using	the	regular	DNS	query/response	messaging	method	used
for	name	resolution	(discussed	in	the	next	section).	A	special	DNS	question	type,
called	AXFR	(address	transfer)	is	used	to	initiate	the	zone	transfer.	The	server
will	then	transfer	the	RRs	for	the	zone	using	a	series	of	DNS	response	messages
(assuming	that	the	server	that	requested	the	transfer	is	authorized	to	do	so).	Since
it's	important	that	zone	transfers	be	received	reliably,	and	since	the	amount	of
data	to	be	sent	is	large	and	needs	to	be	managed,	a	Transmission	Control
Protocol	(TCP)	session	must	first	be	established	and	used	for	zone	transfers.	This
is	in	contrast	to	the	simpler	User	Datagram	Protocol	(UDP)	transport	used	for
regular	DNS	messages	(as	described	in	the	section	discussing	the	use	of	UDP
and	TCP	for	DNS	at	the	start	of	Chapter	57).

Once	the	zone	transfer	is	complete,	the	slave	name	server	will	update	its
database	and	return	to	regular	operation.	It	will	continue	to	perform	regular	polls
of	the	master	server	every	Refresh	seconds.	If	it	has	a	problem	with	a	regular
poll,	it	will	try	again	after	Retry	seconds.	Finally,	if	an	amount	of	time	equal	to
Expires	seconds	elapses,	the	master	name	server	will	stop	serving	data	from	the
zone	until	it	reestablishes	contact	with	the	primary	name	server.

TIP

KEY	CONCEPT	Slave	name	servers	do	not	have	their	DNS	information	managed	directly	by	an
administrator.	Instead,	they	obtain	information	from	their	master	name	server	on	a	periodic	basis	through
a	process	called	a	zone	transfer.	Several	fields	in	the	Start	Of	Authority	(SOA)	DNS	RR	control	the	zone
transfer	process,	including	specifying	how	often	transfers	are	done	and	how	slave	name	servers	handle



problem	conditions	such	as	an	inability	to	contact	the	master	server.

Note	that	the	DNS	Notify	feature	is	an	enhancement	to	the	basic	zone	status
check/zone	transfer	model.	It	allows	the	master	server	to	notify	a	slave	server
when	the	master's	database	has	changed.	Another	new	feature	allows	only	part	of
a	zone	to	be	transferred	instead	of	the	entire	zone.	See	the	discussion	of	DNS
name	server	enhancements	later	in	this	chapter	for	more	information.



DNS	Root	Name	Servers
DNS	is	strongly	oriented	around	the	notion	of	hierarchical	structure.	The	name
space,	registration	authorities,	and	name	servers	are	all	arranged	in	a	tree
structure.	Like	these	structures,	the	name	resolution	process	is	also	hierarchical.
As	explained	in	Chapter	53,	a	fully	qualified	domain	name	(FQDN)	is	resolved
by	starting	with	the	least	specific	domain	name	element	(label)	and	working
toward	the	most	specific	one.

Naturally,	the	least	specific	portion	of	every	name	is	the	root	node	under	which
the	entire	DNS	structure	exists.	This	means	that,	absent	caching	and	other
performance	enhancements,	all	name	resolution	begins	with	the	root	of	the	name
tree.	We	find	here	a	set	of	name	servers	that	are	responsible	for	name	server
functions	for	the	DNS	root:	the	DNS	root	name	servers.

Like	all	name	servers,	DNS	root	name	servers	store	information	about	and
provide	name	resolution	services	for	all	the	nodes	within	the	root	zone.	This
includes	certain	specific	TLDs	and	subdomains.	Most	TLDs,	however,	are	in
their	own	zones.	The	root	name	servers	are	used	as	the	"go-to"	spot	to	obtain	the
names	and	addresses	of	the	authoritative	servers	for	each	of	these	TLDs.	For
example,	if	we	want	to	resolve	the	name	www.xyzindustries.co.uk,	the	root
name	servers	are	where	a	resolver	would	find	the	identity	of	the	name	server	that
is	responsible	for	.UK.

Root	Name	Server	Redundancy
Clearly,	these	root	name	servers	are	extremely	important	to	the	functioning	of
the	DNS	system	as	a	whole.	If	anything	were	to	ever	happen	to	cause	the	root
name	servers	to	stop	operating,	the	entire	DNS	system	would	essentially	shut
down.	For	this	reason,	there	obviously	isn't	just	one	root	server,	nor	are	there	two
or	three;	there	are	(at	present)	thirteen	different	root	name	servers.

In	fact,	there	are	actually	far	more	than	13	physical	servers.	Most	of	the	13	name
servers	are	implemented	as	clusters	of	several	independent	physical	hardware
servers.	Some	are	distributed	collections	of	servers	that	are	in	different	physical
locations.	The	best	example	is	the	F	root	server,	which	has	been	implemented	as
a	set	of	more	than	a	dozen	mirrors	in	various	places	around	the	world,	to	provide
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better	service.

The	principles	of	redundancy	that	are	a	good	idea	for	choosing	a	secondary	name
server	for	a	regular	domain	obviously	apply	that	much	more	to	the	root.	This	is
why	the	various	physical	devices	that	compose	the	13	root	servers	are	all	located
in	different	places	all	around	the	globe.	Many	of	them	are	in	the	United	States,
but	even	these	are	in	many	locations	throughout	the	country	(albeit	concentrated
in	a	couple	of	hot	spots	in	California	and	near	Washington,	DC)	and	are	set	up	to
use	different	networks	to	connect	to	the	Internet.

The	root	name	servers	are,	of	course,	rather	powerful.	Despite	there	being
several	dozen	pieces	of	hardware	to	spread	the	load,	they	must	each	handle	large
amounts	of	data,	24	hours	a	day.	They	are	run	by	networking	professionals	who
ensure	that	they	function	efficiently.	An	Internet	standard,	RFC	2870,	"Root
Name	Server	Operational	Requirements,"	spells	out	the	basic	rules	and	practices
for	the	operation	of	these	name	servers.	It	specifies	extensive	procedures	for
ensuring	the	security	of	the	servers	and	for	avoiding	performance	problems	due
to	their	pivotal	role.

TIP

KEY	CONCEPT	Information	about	the	DNS	root	and	its	TLDs	is	managed	by	a	set	of	root	name
servers.	These	servers	are	essential	to	the	operation	of	DNS.	They	are	arranged	into	13	groups	and
physically	distributed	around	the	world.

Despite	all	the	efforts	taken	to	ensure	that	the	root	servers	are	widely	distributed
and	secure,	they	still	collectively	represent	a	point	of	weakness	in	the	global
Internet.	Millions	and	millions	of	people	depend	on	these	servers.	There	have
been	incidents	in	the	past	where	rogue	elements	on	the	Internet	have	attempted
to	disrupt	DNS	by	attacking	the	root	name	servers.	One	widely	publicized
incident	was	a	denial-of-service	(DoS)	attack	against	the	root	servers	on	October
21,	2002.	The	attack	failed,	but	it	significantly	raised	awareness	of	the
importance	of	these	servers	and	how	essential	DNS	security	is.

Current	Root	Name	Servers
Originally,	the	root	name	servers	were	given	domain	names	reflecting	the
organizations	that	ran	them.	In	these	historical	names,	we	can	see	a	veritable
who's	who	of	the	big	players	in	the	development	of	the	Internet:	the	Information



who's	who	of	the	big	players	in	the	development	of	the	Internet:	the	Information
Sciences	Institute	(ISI),	National	Aeronautics	and	Space	Administration
(NASA),	United	States	military,	and	others.	Several	of	the	servers	are	still	run	by
government	agencies	or	the	United	States	military,	where	added	security	can	be
put	into	place	to	protect	them.	For	convenience,	however,	all	the	root	name
servers	are	now	given	alphabetical	letter	names	in	the	special	domain	root-
servers.net.

Table	55-2	shows	the	most	current	information	about	the	DNS	root	name	servers
as	of	the	date	of	publishing	of	this	book.	For	your	interest	and	amusement,	I	have
also	mapped	the	locations	of	these	servers	in	Figure	55-2.

Table	55-2.	Internet	DNS	Root	Name	Servers

Root
Server
Name

IP	Address Historical
Name

Location(s)

a.root-
servers.net

198.41.0.4 ns.internic.net Dulles,	VA,	U.S.

b.root-
servers.net

128.9.0.107 ns1.isi.edu Marina	Del	Rey,	CA,	U.S.

c.root-
servers.net

192.33.4.12 c.psi.net Herndon,	VA	and	Los	Angeles,	CA,	U.S.

d.root-
servers.net

128.8.10.90 terp.umd.edu College	Park,	MD,	U.S.

e.root-
servers.net

192.203.230.10 ns.nasa.gov Mountain	View,	CA,	U.S.

f.root-
servers.net

192.5.5.241 ns.isc.org Auckland,	New	Zealand;	Sao	Paulo,	Brazil;
Hong	Kong,	China;	Johannesburg,	South
Africa;	Los	Angeles,	CA,	U.S.;	New	York,	NY,
U.S.;	Madrid,	Spain;	Palo	Alto,	CA,	U.S.;
Rome,	Italy;	Seoul,	Korea;	San	Francisco,	CA,
U.S.;	San	Jose,	CA,	U.S.;	Ottawa,	ON,	Canada

g.root-
servers.net

192.112.36.4 ns.nic.ddn.mil Vienna,	VA,	U.S.

h.root-
servers.net

128.63.2.53 aos.arl.army.mil Aberdeen,	MD,	U.S.



servers.net

i.root-
servers.net

192.36.148.17 nic.nordu.net Stockholm,	Sweden;	Helsinki,	Finland

j.root-
servers.net

192.58.128.30 — Dulles,	VA,	U.S.;	Mountain	View,	CA,	U.S.;
Sterling,	VA,	U.S.;	Seattle,	WA,	U.S.;	Atlanta,
GA,	U.S.;	Los	Angeles,	CA,	U.S.;	Amsterdam,
The	Netherlands

k.root-
servers.net

193.0.14.129 — London,	UK;	Amsterdam,	The	Netherlands

l.root-
servers.net

198.32.64.12 — Los	Angeles,	CA,	U.S.

m.root-
servers.net

202.12.27.33 — Tokyo,	Japan

Figure	55-2.	Geographic	locations	of	Internet	DNS	root	name	servers

The	current	list	of	root	name	servers	can	be	found	in	the	file
ftp://ftp.rs.internic.net/domain/named.root.	You	can	also	find	the	information	in
a	more	user-friendly	format	at	http://www.root-servers.org.

ftp://ftp.rs.internic.net/domain/named.root
http://www.root-servers.org


DNS	Name	Server	Caching
Most	of	the	grunt	work	done	by	name	servers	is	responding	to	name	resolution
requests.	Busy	servers—like	the	root	name	servers,	the	ones	that	carry	zone
information	for	the	TLDs,	and	ones	that	serve	very	busy	zones—must	handle
hundreds	or	even	thousands	of	name	resolution	requests	each	second.	Each	of
these	requests	takes	time	and	resources	to	resolve	and	takes	internetwork
bandwidth	away	from	the	business	of	transferring	data.	It	is	essential,	therefore,
that	DNS	server	implementations	employ	mechanisms	to	improve	their
efficiency	and	cut	down	on	unnecessary	name	resolution	requests.	One	of	the
most	important	of	these	is	caching.

Name	Server	Caching
The	word	cache	refers	to	a	store,	or	a	place	where	something	is	kept.	In	the
computer	world,	the	term	usually	refers	to	an	area	of	memory	set	aside	for
storing	information	that	has	been	recently	obtained	so	it	can	be	used	again.	In	the
case	of	DNS,	caching	is	used	by	DNS	name	servers	to	store	the	results	of	recent
name	resolution	and	other	requests,	so	that	if	the	request	occurs	again,	it	can	be
satisfied	from	the	cache	without	requiring	another	complete	run	of	the	name
resolution	process.	Due	to	how	most	people	use	computers,	a	particular	request
is	often	followed	by	another	request	for	the	same	name,	so	caching	can
significantly	reduce	the	number	of	requests	that	result	in	complete	name
resolution	procedures.

An	example	is	the	best	way	to	illustrate	this.	Suppose	you	are	using	a	host	on
your	company's	local	network.	This	host	is	probably	configured	to	use	your
company's	DNS	name	server	to	handle	resolution	requests.	You	type
www.xyzindustries.com	into	your	web	browser,	which	causes	a	resolution
attempt	to	be	made	for	that	address.	Most	likely,	your	local	DNS	server	doesn't
know	that	name,	so	it	will	follow	the	complete	name	resolution	process
(described	in	Chapter	56)	to	get	its	address.	After	doing	this,	your	local	DNS
server	will	cache	the	name	www.xyzindustries.com	and	the	address	associated
with	it.

If	you	click	a	link	for	a	page	at	that	website,	that	new	page	will	also	probably	be
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somewhere	at	the	www.xyzindustries.com	site.	This	will	result	in	another	DNS
resolution	request	being	sent	off	to	your	local	DNS	server.	However,	this	time,
the	local	server	will	not	need	to	perform	a	resolution.	It	remembers	that	this
name	is	in	its	cache	and	returns	the	saved	address	for	the	name	immediately.
Voilà!	You	get	your	answer	faster,	and	unnecessary	Internet	traffic	is	avoided.

TIP

KEY	CONCEPT	Caching	is	an	essential	efficiency	feature	that	reduces	DNS	message	traffic	by
eliminating	unnecessary	requests	for	recently	resolved	names.	Whenever	a	name	is	resolved,	the
resulting	DNS	information	is	cached	so	it	can	be	used	for	subsequent	requests	that	occur	shortly
thereafter.

Of	course,	things	aren't	entirely	this	simple.	One	very	important	issue	that	comes
up	with	every	caching	system,	including	the	one	used	in	DNS,	is	the	matter	of
the	freshness	of	the	cache.

Caching	Data	Persistence	and	the	Time	to	Live
Interval
Suppose	your	local	DNS	server	resolves	the	name	www.xyzindustries.com,	and
then	caches	its	address.	In	this	example,	where	you	click	a	link	a	few	seconds
after	the	XYZ	Industries	home	page	loads,	you	aren't	likely	to	be	too	concerned
about	how	fresh	the	DNS	data	is.	But	how	about	if	you	shut	down	your	computer
to	go	on	vacation	for	two	weeks,	and	then	come	back	to	work	and	type	the	name
into	your	browser	again.	If	your	local	server	still	has	the	name	in	its	cache,	how
do	you	know	the	IP	address	of	www.xyzindustries.com	hasn't	changed	during
that	two-week	period?

Two	different	mechanisms	are	used	to	address	this	issue.	The	first	is	that	when
data	is	cached,	the	caching	server	also	makes	a	note	of	the	authoritative	server
from	which	it	came.	When	a	resolver	(client)	asks	for	a	name	resolution	and	the
address	is	drawn	from	the	cache,	the	server	marks	the	answer	as	non-
authoritative	to	clearly	tell	the	client	that	the	name	came	from	the	cache.	The
server	also	supplies	the	name	of	the	authoritative	server	that	originally	supplied
the	data.

The	client	then	has	a	choice:	It	can	either	use	the	non-authoritative	answer	or
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issue	a	request	for	a	fresh	name	resolution	from	the	authoritative	server.	This	is	a
trade-off	between	performance	(using	the	cached	data)	and	currency	(asking	for
a	fresh	resolution	each	time).	Usually,	the	cached	data	can	be	used	safely,
because	DNS	information	doesn't	change	very	often.

The	second	technique	for	ensuring	that	caching	data	doesn't	get	too	old	is	a
procedure	for	limiting	the	persistence	of	DNS	cached	data.	Each	RR	has
associated	with	it	a	time	interval,	called	the	Time	to	Live	(TTL).	Whenever	an
RR	is	read	from	a	server,	the	TTL	for	the	record	is	also	read.	Any	server	caching
the	record	is	supposed	to	discard	the	record	after	that	time	interval	expires.

Each	zone	also	has	associated	with	it	a	default	value	for	the	TTL	field	to	be
applied	to	all	records	in	the	zone.	This	allows	an	administrator	to	select	a	TTL
value	for	all	records	in	a	zone	without	needing	to	enter	TTL	numbers	for	each
record	individually.	At	the	same	time,	the	administrator	can	assign	an	override
TTL	value	to	any	records	that	need	a	number	that	is	different	from	the	default.
This	default	TTL	was	originally	kept	in	the	special	SOA	RR	for	each	zone,	but	is
now	handled	using	a	special	directive	in	the	zone's	master	file.

NOTE

This	Time	to	Live	(TTL)	field	is	not	related	to	the	one	used	in	Internet	Protocol	(IP)	datagrams	(see
Chapter	21).	Obviously,	IP	and	DNS	are	totally	different	protocols,	but	more	than	that,	the	TTL	fields	in
IP	and	DNS	don't	have	the	same	meaning	at	all.

It's	worth	emphasizing	that	DNS	gives	control	over	caching	to	the	owner	of	the
record,	not	whoever	is	running	the	DNS	server	doing	the	caching.	While	it	is
possible	for	a	particular	caching	server	to	override	the	TTL	and	specify	how	long
data	will	be	held	in	its	own	cache,	DNS	is	not	supposed	to	work	that	way.	The
ability	to	specify	a	TTL	on	a	record-by-record	basis	allows	the	persistence	of
cache	data	to	be	tailored	to	the	needs	of	the	individual	data	elements.	Data	that
changes	often	can	be	given	a	small	TTL	value;	infrequently	modified	records
can	be	given	a	higher	TTL.	Selecting	the	TTL	value	must	be	done	carefully.	This
is	another	trade-off	between	performance	(which	is	optimized	with	higher	TTL
values,	reducing	the	number	of	queries	made	for	cached	data)	and	freshness	of
the	data	(which	increases	as	the	TTL	values	are	lowered).



TIP

KEY	CONCEPT	Cached	information	can	become	stale	over	time	and	result	in	incorrect	responses	sent
to	queries.	Each	RR	can	have	associated	with	it	a	time	interval,	called	the	Time	to	Live	(TTL),	that
specifies	how	long	the	record	may	be	held	in	a	cache.	The	value	of	this	field	is	controlled	by	the	owner
of	the	RR,	who	can	tailor	it	to	the	specific	needs	of	each	RR	type.

Negative	Caching
Classic	DNS	caching	stores	only	the	results	of	successful	name	resolutions.	It	is
also	possible	for	DNS	servers	to	cache	the	results	of	unsuccessful	name
resolution	attempts;	this	is	called	negative	caching.	To	extend	the	example	we've
been	using	in	this	section,	suppose	you	mistakenly	thought	the	name	of	the
company's	website	was	www.xyz-industries.com	and	typed	that	into	your
browser.	Your	local	DNS	server	would	be	unable	to	resolve	the	name	and	would
mark	that	name	as	unresolvable	in	its	cache—a	negative	cache	entry.

Suppose	you	typed	the	name	in	incorrectly	because	someone	mistyped	it	on	an
internal	memo.	If	a	colleague	later	tried	the	same	name,	the	DNS	server	would
say,	"I	already	know	this	is	a	bogus	name,"	and	not	try	to	resolve	it	again.	Since
there	is	no	RR	for	an	invalid	name,	the	server	itself	must	decide	how	long	to
cache	this	negative	information.	Negative	caching	improves	performance
because	resolving	a	name	that	doesn't	exist	takes	resources,	just	as	resolving	an
existing	one	does.	Note	that	regular	caching	is	sometimes	called	positive	caching
to	contrast	it	with	negative	caching.

The	value	to	be	used	for	negative	caching	in	a	zone	is	now	specified	by	the
Minimum	field	in	the	SOA	RR	for	each	zone.	As	mentioned	in	the	previous
section,	this	was	formerly	used	to	specify	the	default	TTL	for	a	zone.
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DNS	Name	Server	Load	Balancing
The	Address	(A)	RR	is	the	most	fundamental	one	in	DNS,	since	it	records	an
actual	mapping	between	a	domain	name	and	an	IP	address.	Let's	consider	for	a
moment	one	of	the	words	in	that	sentence	in	more	detail.	No,	I	don't	mean
address	or	RR	or	mapping.	I	mean	the	word	an!

The	Address	record	mentions	only	a	single	address	for	each	domain	name.	This
means	that	each	domain	name	maps	to	only	a	single	physical	hardware	device.
When	the	number	of	requests	that	a	particular	server	or	other	device	needs	to
handle	is	relatively	small,	this	is	not	a	problem;	the	function	can	usually	be
implemented	using	a	single	physical	hardware	device.	If	the	server	gets	busier,
the	usual	solution	is	to	throw	more	hardware	at	the	problem—get	a	bigger
machine.

However,	some	hosts	on	a	large	internetwork,	especially	the	Internet,	feature
servers	that	must	handle	tremendous	amounts	of	traffic	from	many	clients.	There
simply	is	no	single	hardware	device	that	can	readily	handle	the	traffic	of	a	site
like	www.cnn.com	or	www.microsoft.com,	for	example,	without	becoming
unwieldy.	Sites	like	these	must	use	a	technique	called	load	balancing	to	spread
requests	across	multiple	hardware	servers.

Using	Multiple	Address	Records	to	Spread	Out
Requests	to	a	Domain
One	simple	way	to	do	load	balancing	would	be	to	have	multiple	machine	names.
For	example,	CNN	could	create	several	different	websites	called
www1.cnn.com,	www2.cnn.com,	and	so	on,	each	pointing	to	a	different
hardware	device.	DNS	certainly	supports	this	type	of	solution.	The	problem	with
this	solution	is	that	it	is	cumbersome;	it	requires	users	to	remember	multiple
server	names.

It	would	be	better	if	we	could	balance	the	load	automatically.	DNS	supports	this
by	providing	a	simple	way	to	implement	load	balancing.	Instead	of	specifying	a
single	Address	RR	for	a	name,	we	can	create	several	such	records,	thereby
associating	more	than	one	IP	address	with	a	particular	DNS	name.	When	we	do
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this,	each	time	the	authoritative	name	server	for	the	zone	in	which	that	name
exists	resolves	that	name,	it	sends	all	the	addresses	on	the	list	back	to	the
requester.	The	server	changes	the	order	of	the	addresses	supplied	in	the	response,
choosing	the	order	randomly	or	in	a	sequential,	round-robin	fashion.	The	client
will	usually	use	the	first	address	in	the	list	returned	by	the	server,	so	by	changing
the	list,	the	server	ensures	that	requests	for	that	device's	name	are	resolved	to
multiple	hardware	units.

TIP

KEY	CONCEPT	Rather	than	creating	a	single	Address	(A)	RR	for	a	DNS	domain	name,	it	is	possible
to	create	multiple	ones.	This	associates	several	IP	addresses	with	one	name,	which	can	be	used	to	spread
a	large	number	of	requests	for	one	domain	name	over	many	physical	IP	devices.	This	allows	DNS	to
implement	load	balancing	for	busy	Internet	servers.

As	Internet	traffic	increases,	load	balancing	is	becoming	more	popular.	In	early
2003,	I	saw	a	survey	that	indicated	approximately	10	percent	of	Internet	names
at	that	time	used	load	balancing—a	fairly	significant	number.	Most	employed
either	two	or	three	addresses,	but	some	used	as	many	as	sixty	addresses!
Incidentally,	at	last	check,	www.cnn.com	was	associated	with	eight	different	IP
addresses.	(You	can	check	the	number	of	addresses	associated	with	a	name	using
the	host	command,	as	described	in	Chapter	88.)

Using	Multiple	DNS	Servers	to	Spread	Out	DNS
Requests
The	term	DNS	load	balancing	also	has	a	completely	different	meaning	from
what	I	described	in	the	previous	section.	In	the	discussion	of	DNS	server	roles,	I
talked	about	how	each	zone	should	have	at	least	one	slave	(secondary)	DNS
server	in	addition	to	the	master	(primary)	server.	The	usually	stated	main	reason
for	this	is	redundancy,	in	case	something	happens	to	cause	the	master	server	to
fail.	However,	having	a	slave	server	can	also	allow	the	load	of	DNS	resolution
requests	to	be	balanced	between	the	servers.	In	fact,	some	busy	domains	have
more	than	two	servers	specifically	for	this	reason.

Thus,	DNS	load	balancing	can	refer	to	either	using	DNS	to	spread	the	load	of
requests	(such	as	web	page	requests)	to	a	device	that	is	named	using	DNS	or	to
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spreading	the	load	of	DNS	requests	themselves.



DNS	Name	Server	Enhancements
The	fundamentals	of	operation	of	DNS	servers,	as	explained	in	the	preceding
sections	in	this	chapter,	are	specified	in	the	main	DNS	standards,	RFC	1034	and
1035.	These	documents	are	pretty	old	by	computer	industry	standards;	they	were
published	in	1987.	To	the	credit	of	the	designers	of	DNS,	most	of	what	they
originally	put	into	the	DNS	protocol	is	still	valid	and	in	use	today.	The	creators
of	DNS	knew	that	it	had	to	be	able	to	scale	to	a	large	size,	and	the	system	has
successfully	handled	the	expansion	of	the	Internet	to	a	degree	far	beyond	what
anyone	could	have	imagined	15	or	so	years	ago.

As	originally	defined,	DNS	requires	that	DNS	information	be	updated	manually
by	editing	master	files	on	the	master	server	for	a	zone.	The	zone	is	then	copied	in
its	entirety	to	slave	servers	using	the	polling/zone-transfer	mechanism	described
earlier	in	this	chapter.	This	method	is	satisfactory	when	the	internetwork	is
relatively	small	and	changes	to	a	zone	are	made	infrequently.	However,	in	the
modern	Internet,	large	zones	may	require	nearly	constant	changes	to	their	RRs.
Hand-editing	and	constantly	copying	master	files	can	be	impractical,	especially
when	they	grow	large,	and	having	slave	servers	get	out	of	date	between	zone
transfers	may	lead	to	reliability	and	performance	concerns.	For	these	reasons,
several	enhancements	to	the	operation	of	DNS	servers	have	been	proposed	over
the	years.	We'll	take	a	closer	look	at	three	of	them	here:	DNS	Notify,
incremental	zone	transfers,	and	Dynamic	DNS.

Automating	Zone	Transfers:	DNS	Notify
The	first	problem	that	many	DNS	administrators	wanted	to	tackle	was	the
reliance	on	polling	for	updating	slave	name	servers.	Imagine	that	you	placed	an
order	for	a	new	music	CD	at	your	favorite	online	music	store,	but	it	was	out	of
stock—backordered.	Which	makes	more	sense:	having	you	call	them	every	six
hours	to	ask	if	your	CD	has	arrived	yet,	or	having	the	store	simply	call	you	when
it	shows	up?

The	answer	is	so	obvious	that	the	question	seems	ridiculous.	Yet	DNS	uses	the
first	model:	slave	name	servers	must	constantly	call	up	their	zone	masters	and
ask	them,	"Has	anything	changed	yet?"	This	both	generates	unnecessary	traffic



and	results	in	the	slave	name	server	being	out	of	date	from	the	time	the	master
does	change	until	the	next	poll	is	performed.	Tweaking	the	Refresh	time	for	the
zone	allows	only	the	choice	between	more	polls	or	more	staleness	when	changes
happen;	neither	is	really	good.

To	improve	this	situation,	a	new	technique	was	developed	and	formalized	in
RFC	1996,	published	in	1996	(weird	coincidence!).	This	standard,	"A
Mechanism	for	Prompt	Notification	of	Zone	Changes	(DNS	NOTIFY),"	defines
a	new	DNS	message	type	called	Notify	and	describes	a	protocol	for	its	use.	The
Notify	message	is	a	variation	on	the	standard	DNS	message	type,	with	some	of
the	fields	redefined	to	support	this	new	feature.

If	both	the	master	and	slave	name	servers	support	this	feature,	when	a
modification	is	made	to	an	RR,	the	master	server	will	automatically	send	a
Notify	message	to	its	slave	server(s),	saying,	"Your	CD	has	arrived!"	er…	"The
database	has	changed."	The	slave	then	acts	as	if	its	Refresh	timer	had	just
expired.	Enabling	this	feature	allows	the	Refresh	interval	to	be	dramatically
increased,	since	slave	servers	don't	need	to	constantly	poll	the	master	for
changes.

TIP

KEY	CONCEPT	The	optional	DNS	Notify	feature	allows	a	master	name	server	to	inform	slave	name
servers	when	changes	are	made	to	a	zone.	This	has	two	advantages:	It	cuts	down	on	unnecessary	polling
by	the	slave	servers	to	find	out	if	changes	have	occurred	to	DNS	information,	and	it	also	reduces	the
amount	of	time	that	slave	name	servers	have	out-of-date	records.

Improving	Zone	Transfer	Efficiency:	Incremental
Transfers
The	second	issue	with	regular	DNS	is	the	need	to	transfer	the	entire	zone
whenever	a	change	to	any	part	of	it	is	made.	There	are	many	zones	on	the
Internet	that	have	truly	enormous	master	files	that	change	constantly.	Consider
the	master	files	for	the	.COM	zone,	for	example.	Having	to	copy	the	entire
database	to	slave	name	servers	every	time	there	is	a	change	to	even	one	record	is
beyond	inefficient—it's	downright	insane!

RFC	1995,	"Incremental	Zone	Transfer	in	DNS,"	specifies	a	new	type	of	zone



transfer	called	an	incremental	zone	transfer.	When	this	feature	is	implemented
on	master	and	slave	name	servers	in	a	zone,	the	master	server	keeps	track	of	the
most	recent	changes	made	to	the	database.	Each	time	a	slave	server	determines
that	a	change	has	occurred	and	the	slave's	database	needs	to	be	updated,	it	sends
an	IXFR	(incremental	transfer)	query	to	the	master,	which	contains	the	serial
number	of	the	slave's	current	copy	of	the	database.	The	master	then	looks	to	see
what	RRs	have	changed	since	that	serial	number	was	the	current	one	and	sends
only	the	updated	RRs	to	the	slave	server.

To	conserve	storage,	the	master	server	obviously	doesn't	keep	all	the	changes
made	to	its	database	forever.	It	will	generally	track	the	last	few	modifications	to
the	database,	with	the	serial	number	associated	with	each.	If	the	slave	sends	an
IXFR	request	that	contains	a	serial	number	for	which	recent	change	information
is	still	on	the	master	server,	only	the	changes	are	sent	in	reply.	If	the	request	has
a	serial	number	so	old	that	the	master	server	no	longer	has	information	about
some	of	the	changes	since	that	version	of	the	database,	a	complete	zone	transfer
is	performed	instead	of	an	incremental	one.

TIP

KEY	CONCEPT	The	DNS	incremental	zone	transfer	enhancement	uses	a	special	message	type	that
allows	a	slave	name	server	to	determine	what	changes	have	occurred	since	it	last	synchronized	with	the
master	server.	By	transferring	only	the	changes,	the	amount	of	time	and	bandwidth	used	for	zone
transfers	can	be	significantly	reduced.

Dealing	with	Dynamic	IP	Addresses:	DNS
Update/Dynamic	DNS
The	third	problem	with	classic	DNS	is	that	it	assumes	changes	are	made
infrequently	to	zones,	so	they	can	be	handled	by	hand-editing	master	files.	Some
zones	are	so	large	that	hand-editing	of	the	master	files	would	be	nearly
continuous.	However,	the	problem	goes	beyond	just	inconvenience.	Regular
DNS	assumes	that	the	IP	address	for	a	host	is	relatively	static.	Modern	networks,
however,	make	use	of	host	technologies	such	as	the	Dynamic	Host
Configuration	Protocol	(DHCP)	(described	in	Part	III-3),	to	assign	IP	addresses
dynamically	to	devices.	When	DHCP	is	used,	the	IP	address	of	each	host	in	a
zone	could	change	on	a	weekly,	daily,	or	even	hourly	basis!	Clearly,	there	would



be	no	hope	of	keeping	up	with	this	rate	of	change	using	a	human	being	and	a	text
editor.

In	April	1997,	RFC	2136,	"Dynamic	Updates	in	the	Domain	Name	System
(DNS	UPDATE),"	was	published.	This	standard	describes	an	enhancement	to
basic	DNS	operation	that	allows	DNS	information	to	be	dynamically	updated.
When	this	feature	is	implemented,	the	resulting	system	is	sometimes	called
Dynamic	DNS	(DDNS).

RFC	2136	defines	a	new	DNS	message	type:	the	Update	message.	Like	the
Notify	message,	the	Update	message	is	designed	around	the	structure	of	regular
DNS	messages,	but	with	changes	to	the	meanings	of	several	of	the	fields.	As	the
name	implies,	Update	messages	allow	RRs	to	be	selectively	changed	within	the
master	name	server	for	a	zone.	Using	a	special	message	syntax,	it	is	possible	to
add,	delete,	or	modify	RRs.

Obviously,	care	must	be	taken	in	how	this	feature	is	used,	since	we	don't	want
just	anyone	to	be	making	changes	willy-nilly	to	our	master	records.	The	standard
specifies	a	detailed	process	for	verifying	Update	messages,	as	well	as	security
procedures	that	must	be	put	into	place	so	the	server	accepts	such	messages	from
only	certain	individuals	or	systems.

Dynamic	DNS	allows	administrators	to	make	changes	much	more	easily,	but	its
true	power	becomes	evident	only	when	it	is	used	to	integrate	DNS	with	other
address-related	protocols	and	services.	Dynamic	DNS	solves	a	major	weakness
with	traditional	DNS:	the	inability	to	easily	associate	a	host	name	with	an
address	assigned	using	a	protocol	like	DHCP.

With	DNS	servers	supporting	this	feature,	DNS	and	DHCP	can	be	integrated,
allowing	automatic	address	and	name	assignment,	and	automatic	update	of	DNS
records	when	a	host's	IP	address	changes.	One	common	application	of	Dynamic
DNS	is	to	allow	the	use	of	DNS	names	by	those	who	access	the	Internet	using	a
service	provider	that	dynamically	assigns	IP	addresses.	Dynamic	DNS	is
similarly	used	by	certain	directory	services,	notably	Microsoft's	Active
Directory,	to	associate	addresses	with	device	names.

TIP

KEY	CONCEPT	An	enhancement	to	DNS,	commonly	called	Dynamic	DNS	(DDNS),	allows	DNS



information	in	a	server's	database	to	be	updated	automatically,	rather	than	always	requiring	hand-editing
of	master	files.	This	can	not	only	save	time	and	energy	on	the	part	of	administrators,	but	it	also	allows
DNS	to	better	handle	dynamic	address	assignment,	such	as	the	type	performed	by	host	configuration
protocols	like	DHCP.



Chapter	56.	DNS	RESOLUTION
CONCEPTS	AND	RESOLVER
OPERATIONS

In	the	preceding	three	chapters,	I	have	described	the	Domain	Name	System
(DNS)	name	space,	authorities,	registration	mechanism,	and	name	servers.	These
elements	can	all	be	considered	part	of	the	infrastructure	of	DNS;	they	are	the
parts	of	the	system	that	must	be	established	first	to	enable	it	to	be	used.	Once	we
have	these	components	in	place,	we	can	actually	get	down	to	the	business	at
hand:	name	resolution.	This	is	accomplished	using	a	specific	set	of	procedures
carried	out	by	DNS	clients	called	resolvers.

In	this	chapter,	I	describe	DNS	name	resolvers	and	the	process	of	name
resolution	itself.	I	begin	with	an	overview	of	the	functions	performed	by	DNS
resolvers	and	how	they	work	in	general	terms.	I	then	describe	the	two
fundamental	methods	of	name	resolution	used	in	DNS:	iterative	and	recursive
resolution.	I	discuss	the	way	that	resolvers	improve	efficiency	through	local
resolution	and	caching.	I	describe	the	steps	in	the	actual	name	resolution
algorithm.	I	then	cover	two	special	cases	of	name	resolution:	reverse	name
resolution	using	the	special	IN-ADDR.ARPA	domain,	and	the	way	that	DNS
provides	mail	support	using	Mail	Exchange	resource	records.

TIP

RELATED	INFORMATION	The	information	in	this	section	complements	that	in	the	previous	chapter
on	DNS	name	servers.	I	assume	in	the	topics	here	that	you	have	at	least	basic	familiarity	with	DNS
servers.



DNS	Resolver	Functions	and	General	Operation
Name	servers	are	arguably	the	most	important	part	of	the	DNS	system	as	a
whole.	After	all,	they	store	all	the	data	on	the	system	and	actually	provide	the
addresses	we	need	when	names	are	given	to	them.	Without	these	servers,	there
would	be	no	DNS	at	all.	Of	course,	what	use	is	a	server	if	nobody	is	asking	for
service?	The	clients	in	the	system,	called	resolvers,	are	also	important,	because
they	initiate	the	process	of	name	resolution.	Resolvers	are	where	the	rubber
meets	the	road,	so	to	speak.

The	operation	of	DNS	resolvers	is	explained	in	the	two	main	DNS	standards.
RFC	1034	describes	the	functions	performed	by	resolvers	and	how	they	work	in
general	terms.	This	includes	a	discussion	of	the	algorithm	used	to	conduct	name
resolution.	RFC	1035	deals	more	with	the	implementation	details	of	resolvers
and	the	fine	points	of	how	they	do	their	jobs.	Several	subsequent	standards	have
modified	these	base	standards,	changing	some	of	the	ways	that	resolvers	work	in
different	ways.

Name	Resolution	Services
Just	as	the	main	job	of	a	DNS	server	is	to	store	DNS	name	data	and	serve	it
when	it	receives	requests,	the	main	job	of	a	DNS	resolver	is	to,	well,	resolve.
While	most	people	think	of	name	resolution	as	only	the	process	of	transforming
a	DNS	name	into	an	IP	address,	this	is	just	one	of	several	types	of	resolution
services	performed	by	DNS.	The	following	are	a	few	of	the	most	typical	types	of
DNS	resolution:

Standard	Name	Resolution	Taking	a	DNS	name	as	input	and	determining	its
corresponding	IP	address.

Reverse	Name	Resolution	Taking	an	IP	address	and	determining	what	name	is
associated	with	it.

Electronic	Mail	Resolution	Determining	where	to	send	electronic	mail	(email)
messages	based	on	the	email	address	used	in	a	message.

Functions	Performed	by	Name	Resolvers
There	are	other	types	of	resolution	activities	as	well,	though	again,	most	name
resolution	requests	are	of	the	standard	variety,	making	it	the	primary	focus	in	our



resolution	requests	are	of	the	standard	variety,	making	it	the	primary	focus	in	our
discussion.	To	accomplish	this	task,	name	resolvers	perform	a	number	of	related
functions:

Providing	the	User	Interface	Normal	name	resolution	usually	doesn't	involve
explicitly	running	a	piece	of	resolver	software.	In	your	web	browser,	you	don't
have	to	say,	"Please	find	the	IP	address	for	www.xyzindustries.com,"	and	then
say,	"Please	connect	to	this	IP	address	for	XYZ	Industries."	You	just	type
www.xyzindustries.com,	and	the	name	resolution	happens.	There	is	no	magic
involved.	The	resolver	is	just	called	implicitly	instead	of	explicitly.	The	web
browser	recognizes	that	a	name	has	been	entered	instead	of	an	IP	address	and
feeds	it	to	the	resolver,	saying,	"I	need	you	to	resolve	this	name,	please."	(Hey,	it
never	hurts	to	be	polite.)	The	resolver	takes	care	of	resolution	and	provides	the
IP	address	to	the	web	browser,	which	connects	to	the	site.	Thus,	the	resolver	is
the	interface	between	the	user	(both	the	human	user	and	the	software	user,	the
browser)	and	the	DNS	system.

Forming	and	Sending	Queries	Given	a	name	to	resolve,	the	DNS	resolver	must
create	an	appropriate	query	using	the	DNS	messaging	system,	determine	what
type	of	resolution	to	perform,	and	send	the	query	to	the	appropriate	name	server.

Processing	Responses	The	resolver	must	accept	back	responses	from	the	DNS
server	to	which	it	sent	its	query	and	decide	what	to	do	with	the	information
within	the	reply.	As	you'll	see,	it	may	be	necessary	for	more	than	one	server	to
be	contacted	for	a	particular	name	resolution.

TIP

KEY	CONCEPT	The	primary	clients	in	DNS	are	software	modules	called	DNS	name	resolvers.	They
are	responsible	for	accepting	names	from	client	software,	generating	resolution	requests	to	DNS	servers,
and	processing	and	returning	responses.

These	tasks	seem	fairly	simple,	and	they	are	in	some	ways,	but	implementation
can	become	rather	complicated.	The	resolver	may	need	to	juggle	several
outstanding	name	resolutions	simultaneously.	It	must	keep	track	of	the	different
requests,	queries,	and	responses	and	make	sure	everything	is	kept	straight.

Name	resolvers	don't	need	to	perform	nearly	as	many	administrative	jobs	as
name	servers	do;	clients	are	usually	simpler	than	servers	in	this	regard.	One
important	support	function	that	many	name	resolvers	do	perform,	however,	is
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important	support	function	that	many	name	resolvers	do	perform,	however,	is
caching.	Like	name	servers,	name	resolvers	can	cache	the	results	of	the	name
resolutions	they	perform	to	save	time	if	the	same	resolution	is	required	again.
(Not	all	resolvers	perform	caching,	however.)

Even	though	resolvers	are	the	DNS	components	that	are	most	associated	with
name	resolution,	name	servers	can	also	act	as	clients	in	certain	types	of	name
resolution.	In	fact,	it	is	possible	to	set	up	a	network	so	that	the	resolvers	on	each
of	the	client	machines	do	nothing	more	than	hand	resolution	requests	to	a	local
DNS	server	and	let	the	server	take	care	of	it.	In	this	case,	the	client	resolver
becomes	little	more	than	a	shell,	sometimes	called	a	stub	resolver.	This	has	the
advantage	of	centralizing	name	resolution	for	the	network,	but	a	potential
disadvantage	of	performance	reduction.



DNS	Name	Resolution	Techniques:	Iterative	and
Recursive	Resolution
Conventional	name	resolution	transforms	a	DNS	name	into	an	IP	address.	At	the
highest	level,	this	process	can	be	considered	to	have	two	phases.	In	the	first
phase,	we	locate	a	DNS	name	server	that	has	the	information	we	need:	the
address	that	goes	with	a	particular	name.	In	the	second	phase,	we	send	that
server	a	request	containing	the	name	we	want	to	resolve,	and	it	sends	back	the
address	required.

Somewhat	ironically,	the	second	phase	(the	actual	mapping	of	the	name	into	an
address)	is	fairly	simple.	It	is	the	first	phase—finding	the	right	server—that	is
potentially	difficult	and	represents	most	of	the	work	in	DNS	name	resolution.
While	perhaps	surprising,	this	is	a	predictable	result	of	how	DNS	is	structured.
Name	information	in	DNS	is	not	centralized,	but	rather	distributed	throughout	a
hierarchy	of	servers,	each	of	which	is	responsible	for	one	zone	in	the	DNS	name
space.	This	means	we	must	follow	a	special	sequence	of	steps	to	find	the	server
that	has	the	information	we	need.

The	formal	process	of	name	resolution	parallels	the	treelike	hierarchy	of	the
DNS	name	space,	authorities,	and	servers.	Resolution	of	a	particular	DNS	name
starts	with	the	most	general	part	of	the	name	and	proceeds	to	the	most	specific
part.	Naturally,	the	most	general	part	of	every	name	is	the	root	of	the	DNS	tree,
represented	in	a	name	as	a	trailing	dot	(.),	sometimes	omitted.	The	next	most
specific	part	is	the	top-level	domain	(TLD),	then	the	second-level	domain,	and
so	forth.	The	DNS	name	servers	are	linked	in	that	the	DNS	server	at	one	level
knows	the	name	of	the	servers	that	are	responsible	for	subdomains	in	zones
below	it	at	the	next	level.

Suppose	we	start	with	C.B.A.	as	the	fully	qualified	domain	name	(FQDN).
Formally,	every	name	resolution	begins	with	the	root	of	the	tree—this	is	why	the
root	name	servers	are	so	important.	It's	possible	that	the	root	name	servers	are
authoritative	for	this	name,	but	this	is	probably	not	the	case;	that's	not	what	the
root	name	servers	are	usually	used	for.	What	the	root	name	server	does	know	is
the	name	of	the	server	responsible	for	the	TLD:	A..	The	name	server	for	A.	may
have	the	information	to	resolve	C.B.A.,	but	it's	still	fairly	high	level,	so	C.B.A.	is
probably	not	directly	within	its	zone.	In	that	case,	it	will	not	know	the	address



probably	not	directly	within	its	zone.	In	that	case,	it	will	not	know	the	address
we	seek,	but	it	will	know	the	name	of	the	server	responsible	for	B.A..	In	turn,
that	name	server	may	be	authoritative	for	C.B.A.,	or	it	may	just	know	the
address	of	the	server	for	C.B.A.,	which	will	have	the	information	we	need.	As
you	can	see,	it	is	very	possible	that	several	different	servers	may	be	needed	in	a
name	resolution.

TIP

KEY	CONCEPT	Since	DNS	name	information	is	stored	as	a	distributed	database	spread	across	many
servers,	name	resolution	cannot	usually	be	performed	using	a	single	request/response	communication.	It
is	first	necessary	to	find	the	server	that	has	the	information	that	the	resolver	requires.	This	usually
requires	a	sequence	of	message	exchanges,	starting	from	a	root	name	server	and	proceeding	down	to	the
specific	server	containing	the	resource	records	(RRs)	that	the	client	requires.

The	DNS	standards	actually	define	two	distinct	ways	of	following	this	hierarchy
of	servers	to	discover	the	correct	one.	They	both	eventually	lead	to	the	right
device,	but	they	differ	in	how	they	assign	responsibility	for	resolution	when	it
requires	multiple	steps.	The	two	techniques	are	iterative	resolution	and	recursive
resolution.

Iterative	Resolution
When	a	client	sends	an	iterative	request	to	a	name	server,	the	server	responds
with	either	the	answer	to	the	request	(for	a	regular	resolution,	the	IP	address	we
want)	or	the	name	of	another	server	that	has	the	information	or	is	closer	to	it.
The	original	client	must	then	iterate	by	sending	a	new	request	to	this	referred
server,	which	again	may	either	answer	it	or	provide	another	server	name.	The
process	continues	until	the	correct	server	is	found.	The	iterative	resolution
method	is	illustrated	in	Figure	56-1.



Figure	56-1.	Iterative	DNS	name	resolution	In	this	example,	the	client	is	performing	a	name	resolution
for	C.B.A.	using	strictly	iterative	resolution.	It	is	thus	responsible	for	forming	all	DNS	requests	and

processing	all	replies.	It	starts	by	sending	a	request	to	the	root	name	server	for	this	mythical	hierarchy.
That	server	doesn't	have	the	address	of	C.B.A.,	so	it	instead	returns	the	address	of	the	name	server	for	A.
The	client	then	sends	its	query	to	that	name	server,	which	points	the	client	to	the	server	for	B.A.	That

name	server	refers	the	client	to	the	name	server	that	actually	has	the	address	for	C.B.A.,	which	returns	it
to	the	client.	Contrast	this	to	Figure	56-2.

Recursive	Resolution
When	a	client	sends	a	recursive	request	to	a	name	server,	the	server	responds
with	the	answer	if	it	has	the	information	sought.	If	it	doesn't,	the	server	takes
responsibility	for	finding	the	answer	by	becoming	a	client	on	behalf	of	the
original	client	and	sending	new	requests	to	other	servers.	The	original	client
sends	only	one	request	and	eventually	gets	the	information	it	wants	(or	an	error
message	if	it	is	not	available).	This	technique	is	shown	in	Figure	56-2.

Contrasting	Iterative	and	Recursive	Resolution
To	help	explain	the	difference	between	iterative	and	recursive	resolution,	let's
take	a	side	trip	to	a	real-world	case.	Suppose	you	are	trying	to	find	the	phone
number	of	your	old	friend	Carol,	with	whom	you	haven't	spoken	in	years.	You
call	your	friend	Joe.	He	doesn't	have	Carol's	number,	but	he	gives	you	John's



number,	suggesting	you	call	him.	So	you	call	John.	He	doesn't	have	the
information,	but	he	knows	the	number	of	Carol's	best	friend,	Debbie,	and	gives
that	to	you.	You	call	Debbie,	and	she	gives	you	Carol's	information.	This	is	an
example	of	an	iterative	process.

Figure	56-2.	Recursive	DNS	name	resolution	This	is	the	same	theoretical	DNS	resolution	shown	in
Figure	56-1,	but	this	time,	the	client	asks	for	the	name	servers	to	perform	recursive	resolution,	and	they
agree	to	do	so.	As	in	the	iterative	case,	the	client	sends	its	initial	request	to	the	root	name	server.	That
server	doesn't	have	the	address	of	C.B.A.,	but	instead	of	merely	returning	to	the	client	the	address	of	the
name	server	for	A.,	it	sends	a	request	to	that	server	itself.	That	name	server	sends	a	request	to	the	server
for	B.A.,	which	sends	a	request	to	the	server	for	C.B.A..	The	address	of	C.B.A.	is	then	carried	back	up
the	chain	of	requests,	from	the	server	of	C.B.A.	to	that	of	B.A.,	then	A.,	then	the	root,	and	then	finally,

back	to	the	client.

In	contrast,	suppose	you	call	Joe	and	Joe	says,	"I	don't	know,	but	I	think	I	know
how	to	find	out."	He	calls	John,	and	then	Debbie,	and	then	calls	you	back	with
the	phone	number.	That	would	be	like	recursive	resolution.

So,	in	essence,	iteration	is	like	doing	the	job	yourself,	while	recursion	is	like
passing	the	buck.	You	might	think	that	everyone	would	always	want	to	use
recursion	since	it	makes	the	other	guy	do	the	work.	This	is	true,	but	passing	the
buck	is	not	considered	good	form	if	it	is	not	done	with	permission.	Not	all	name
servers	support	recursion,	especially	servers	near	the	top	of	the	hierarchy.



Obviously,	we	don't	want	to	bog	down	certain	name	servers—such	as	the	root
name	servers,	the	ones	that	handle	.COM,	and	other	critical	TLDs—with	doing
recursion.	It	is	for	this	reason	that	clients	must	request	that	name	servers	perform
recursion	for	them.	One	place	where	recursion	is	often	used	is	with	the	local
name	server	on	a	network.	Rather	than	making	client	machine	resolvers	perform
iterative	resolution,	it	is	common	for	the	resolver	to	generate	a	recursive	request
to	the	local	DNS	server,	which	then	generates	iterative	requests	to	other	servers
as	needed.	As	you	can	see,	recursive	and	iterative	requests	can	be	combined	in	a
single	resolution,	providing	significant	flexibility	to	the	process	as	a	whole.	This
is	demonstrated	in	a	more	realistic	example	in	the	"DNS	Name	Resolution
Process"	section	later	in	this	chapter.

Again,	remember	that	for	the	purpose	of	understanding	resolution,	a	DNS	server
can	act	as	a	client.	As	soon	as	a	DNS	server	accepts	a	recursive	request	for
resolution	on	a	name	it	cannot	resolve	itself,	it	becomes	a	client	in	the	process.
Also,	it	is	common	for	resolvers	to	know	the	names	of	not	one,	but	two	local
DNS	servers,	so	if	a	problem	occurs	reaching	the	first,	they	can	try	the	second.

TIP

KEY	CONCEPT	The	two	methods	of	name	resolution	in	DNS	are	iterative	resolution	and	recursive
resolution.	In	iterative	resolution,	if	a	client	sends	a	request	to	a	name	server	that	does	not	have	the
information	the	client	needs,	the	server	returns	a	pointer	to	a	different	name	server,	and	the	client	sends	a
new	request	to	that	server.	In	recursive	resolution,	if	a	client	sends	a	request	to	a	server	that	doesn't	have
the	requested	information,	that	server	takes	on	the	responsibility	for	sending	requests	to	other	servers	to
find	the	necessary	records,	and	then	returns	them	to	the	client.	A	server	doing	this	takes	on	the	role	of
client	for	its	requests	to	other	servers.



DNS	Name	Resolution	Efficiency	Improvements:
Caching	and	Local	Resolution
The	basic	resolution	techniques—iterative	and	recursive—can	be	considered
complete	from	an	algorithmic	standpoint.	By	starting	at	the	top	(root)	and
working	our	way	down,	we	are	"guaranteed"	to	always	eventually	arrive	at	the
server	that	has	the	information	we	need.	I	put	guaranteed	in	quotation	marks
because,	as	always,	there	are	no	real	guarantees	in	networking—we	might	have
asked	for	a	nonexistent	name,	or	a	server	might	have	bad	data,	for	example.	But
in	the	absence	of	such	atypical	problems,	the	process	leads	to	the	information
eventually.

The	problem	is	that	last	word:	eventually.	Both	iterative	and	recursive	resolution
will	get	us	to	the	right	server,	but	they	take	a	long	time	to	do	it,	especially	if	the
name	we	are	trying	to	resolve	is	in	a	deep	part	of	the	DNS	hierarchy	(for
example,	F.E.D.C.B.A.).	Since	resolution	is	done	so	often,	it	is	helpful	to	define
changes	to	the	basic	resolution	process	that	improve	efficiency	as	much	as
possible.

The	Motivation	for	Caching:	Locality	of
Reference
A	computer	science	principle	called	locality	of	reference	describes	two	common
phenomena	related	to	how	computers	(and	networks)	are	used.	The	first,
sometimes	called	spatial	locality	of	reference,	observes	that	a	resource	is	more
likely	to	be	referenced	if	it	is	near	another	resource	that	was	recently	referenced.
The	second,	temporal	locality	of	reference,	says	a	resource	is	more	likely	to	be
accessed	if	it	was	recently	accessed.

We	can	observe	both	of	these	phenomena	by	using	the	example	of	browsing	the
Web.	To	observe	spatial	locality	of	reference,	notice	what	happens	when	you
visit	a	site	such	as	http://www.tcpipguide.com.	The	initial	request	asks	the	server
for	the	main	index	document	of	The	TCP/IP	Guide.	However,	that	document
contains	links	to	several	images	and	other	items,	all	of	which	are	also	located	at
the	domain	tcpipguide.com.	When	your	browser	asks	for	the	main	document,	it
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will	shortly	thereafter	also	ask	for	a	number	of	graphics.	As	you	navigate	the
site,	you	will	click	links	to	go	to	other	web	pages.	Again,	most	of	these	will	be	at
the	same	domain,	tcpipguide.com.

What	this	means	is	that	if	we	resolve	a	particular	domain	name,	it	is	likely	that
we	will	need	to	resolve	it	again	very	soon	in	the	future.	It	would	be	silly	to	need
to	interrogate	the	same	domain	server	dozens	of	times,	asking	it	to	resolve	the
same	name	each	time.

The	second	phenomenon,	temporal	locality	of	reference,	is	one	you	have
probably	noticed	yourself.	You	are	far	more	likely	to	access	a	resource	you	have
used	recently	than	one	you	have	not	looked	at	in	a	year.	This	means	that
maintaining	information	about	recently	used	resources	can	be	inherently
advantageous.

These	two	phenomena	are	the	rationale	for	caching	in	the	computer	world	in
general,	and	as	you	have	seen	in	Chapter	55,	in	DNS	servers	in	particular.	The
same	advantages	apply	to	resolvers,	and	many	of	them	perform	caching	also,	in	a
way	rather	similar	to	how	it	is	done	in	servers.

Name	Resolver	Caching
On	a	particular	client	computer,	once	a	particular	name	is	resolved,	it	is	cached
and	remains	ready	for	the	next	time	it	is	needed.	Again,	this	eliminates	traffic
and	load	on	DNS	servers.	(Note,	however,	that	not	all	resolvers	perform
caching.)

You	might	be	wondering	why	we	bother	having	caching	on	both	resolvers	and
servers.	This	is	not	redundant,	as	it	may	appear.	Or	rather,	it's	redundant,	but	in	a
good	way.	To	understand	why,	we	must	recognize	that	a	fundamental	trade-off
in	caching	is	that	a	cache	provides	better	performance	the	closer	it	is	the
requester	of	the	data,	but	better	coverage	the	farther	it	is	from	the	user.

If	resolvers	didn't	cache	results	but	our	local	server	did,	we	could	get	the
information	from	the	server's	cache,	but	it	would	require	waiting	for	the
exchange	of	a	query	and	response.	The	resolver's	cache	is	closer	to	the	user	and
so	more	efficient.	At	the	same	time,	this	doesn't	obviate	the	need	for	caching	at
our	network's	local	DNS	server.	The	server	is	farther	away	from	the	user	than
the	resolver,	but	its	cache	is	shared	by	many	machines.	They	can	all	benefit	from
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the	resolver,	but	its	cache	is	shared	by	many	machines.	They	can	all	benefit	from
its	cache.	For	example,	if	you	look	up	a	particular	name,	and	then	someone	else
does	a	few	minutes	later,	she	can	use	your	cached	resolution,	even	though	she	is
typing	it	for	the	first	time.

TIP

KEY	CONCEPT	In	addition	to	the	caching	performed	by	DNS	name	servers,	many	(but	not	all)	DNS
resolvers	also	cache	the	results	of	recent	resolution	requests.	This	cache	is	checked	prior	to	beginning	a
name	resolution,	to	save	time	when	multiple	requests	are	made	for	the	same	name.

Caching	by	name	resolvers	follows	the	same	general	principles	and	rules	as
caching	by	name	servers,	outlined	in	Chapter	55.	The	amount	of	time	a	resource
record	(RR)	is	held	in	the	cache	is	specified	by	its	Time	to	Live	(TTL)	value.
Also,	resolvers	will	not	cache	the	results	of	certain	queries,	such	as	reverse
lookups,	and	may	also	not	cache	a	resolution	if	they	suspect	(for	whatever
reason)	that	the	data	returned	is	unreliable	or	corrupted.

Local	Resolution
One	other	area	where	resolution	efficiency	can	be	improved	is	the	special	case
where	we	are	trying	to	resolve	the	names	of	computers	in	our	own	organizations.
Suppose	that	you,	an	employee	at	XYZ	Industries,	want	to	get	some	sales
information	using	the	File	Transfer	Protocol	(FTP)	from	sales.xyzindustries.com.
Your	FTP	client	will	invoke	your	local	resolver	to	resolve	that	name,	by	sending
it	to	your	local	DNS	server.	Now,	would	it	be	smart	for	that	server,	which	is	here
inside	the	company,	to	start	the	resolution	process	up	at	the	root	name	server?
Not	really.

The	local	DNS	server	that	accepts	local	resolution	requests	from	resolvers	on	the
network	may	be	the	authoritative	name	server	for	sales.xyzindustries.com.	In
other	cases,	it	may	know	how	to	answer	certain	resolution	requests	directly.
Obviously,	it	makes	sense	for	the	server	to	check	to	see	if	it	can	answer	a
resolver's	query	before	heading	up	to	the	root	server,	since	this	provides	a	faster
answer	to	the	client	and	saves	internetwork	traffic.	This	is	called	local	resolution.

Most	DNS	servers	will	perform	this	check	to	see	if	they	have	the	information
needed	for	a	request	before	commencing	the	formal	top-down	resolution	process.
The	exception	is	DNS	servers	that	do	not	maintain	information	about	any	zones:
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caching-only	servers.	In	some	cases,	DNS	resolvers	on	client	machines	may	also
have	access	to	certain	local	zone	information,	in	which	case,	they	can	use	it
instead	of	sending	a	resolution	query	at	all.

NOTE

Most	operating	systems	support	the	use	of	the	old	host	table	mechanism	(described	in	Chapter	51),
which	can	be	useful	for	local	machines	on	a	network.	If	a	host	has	a	host	table,	the	resolver	will	check
the	host	table	to	see	if	it	can	find	a	mapping	for	a	name	before	it	will	bother	with	the	more	time-
consuming	DNS	resolution	process.	This	is	not	technically	part	of	DNS,	but	is	often	used	in	conjunction
with	it.



DNS	Name	Resolution	Process
In	the	first	half	of	this	chapter,	I	have	described	what	name	resolvers	do,
explained	the	basic	top-down	resolution	process	using	iterative	and	recursive
resolution,	and	discussed	how	local	resolution	and	caching	are	used	to	improve
resolution	performance.	Now	it's	time	to	tie	all	this	background	material	together
and	see	how	the	name	resolution	process	works	as	a	whole.

As	usual,	the	best	way	to	do	this	is	by	example.	Here,	I	will	actually	combine
two	examples	I	have	used	earlier:	the	fictitious	company	XYZ	Industries	and	the
nonexistent	college,	Googleplex	University.

A	Simple	Example	of	DNS	Name	Resolution
Let's	say	that	XYZ	Industries	runs	its	own	DNS	servers	for	the
xyzindustries.com	zone.	The	master	name	server	is	called	ns1.xyzindustries.com,
and	the	slave	is	ns2.xyzindustries.com.	These	are	also	used	as	local	DNS	servers
for	resolvers	on	client	machines.	We'll	assume	for	this	example	that,	as	is	often
the	case,	our	DNS	servers	will	accept	recursive	requests	from	machines	within
our	company,	but	we	will	not	assume	that	other	machines	will	accept	such
requests.	Let's	also	assume	that	both	the	server	and	resolver	perform	caching,
and	that	the	caches	are	empty.

Let's	say	that	Googleplex	University	runs	its	own	DNS	servers	for	the
googleplex.edu	domain,	as	in	the	example	in	Chapter	54.	There	are	three
subdomains:	finearts.googleplex.edu,	compsci.googleplex.edu,	and
admin.googleplex.edu.	Of	these,	compsci.googleplex.edu	is	in	a	separate	zone
with	dedicated	servers,	while	the	other	subdomains	are	in	the	googleplex.edu
zone	(see	Figure	54-2).

Now,	suppose	you	are	an	employee	within	XYZ	Industries	and	one	of	your
clients	is	in	charge	of	the	networking	department	at	Googleplex	U.	You	type	into
your	web	browser	the	address	of	that	department's	web	server,
www.net.compsci.googleplex.edu.	In	simplified	terms,	the	procedure	would
involve	the	following	steps	(Figure	56-3	shows	the	process	graphically):

1.	 Your	web	browser	recognizes	the	request	for	a	name	and	invokes	your
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local	resolver,	passing	to	it	the	name	www.net.compsci.googleplex.edu.

2.	 The	resolver	checks	its	cache	to	see	if	it	already	has	the	address	for	this
name.	If	it	does,	it	returns	it	immediately	to	the	web	browser,	but	in	this
case,	we	are	assuming	that	it	does	not.	The	resolver	also	checks	to	see	if	it
has	a	local	host	table	file.	If	so,	it	scans	the	file	to	see	if	this	name	has	a
static	mapping.	If	so,	it	resolves	the	name	using	this	information
immediately.	Again,	let's	assume	it	does	not,	since	that	would	be	boring.

3.	 The	resolver	generates	a	recursive	query	and	sends	it	to
ns1.xyzindustries.com	(using	that	server's	IP	address,	of	course,	which	the
resolver	knows).

4.	 The	local	DNS	server	receives	the	request	and	checks	its	cache.	Again,	let's
assume	it	doesn't	have	the	information	needed.	If	it	did,	it	would	return	the
information,	marked	non-authoritative,	to	the	resolver.	The	server	also
checks	to	see	if	it	has	in	its	zone	resource	records	that	can	resolve
www.net.compsci.googleplex.edu.	Of	course,	it	does	not	in	this	case,	since
they	are	in	totally	different	domains.

5.	 ns1.xyzindustries.com	generates	an	iterative	request	for	the	name	and
sends	it	to	a	root	name	server.

6.	 The	root	name	server	does	not	resolve	the	name.	It	returns	the	name	and
address	of	the	name	server	for	the	.edu	domain.

7.	 ns1.xyzindustries.com	generates	an	iterative	request	and	sends	it	to	the
name	server	for	.edu.

8.	 The	name	server	for	.edu	returns	the	name	and	address	of	the	name	server
for	the	googleplex.edu	domain.

9.	 ns1.xyzindustries.com	generates	an	iterative	request	and	sends	it	to	the
name	server	for	googleplex.edu.

10.	 The	name	server	for	googleplex.edu	consults	its	records.	It	sees,	however,
that	this	name	is	in	the	compsci.googleplex.edu	subdomain,	which	is	in	a
separate	zone.	It	returns	the	name	server	for	that	zone.

11.	 ns1.xyzindustries.com	generates	an	iterative	request	and	sends	it	to	the
name	server	for	compsci.googleplex.edu.
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12.	 The	name	server	for	compsci.googleplex.edu	is	authoritative	for
www.net.compsci.googleplex.edu.	It	returns	the	IP	address	for	that	host	to
ns1.xyzindustries.com.

13.	 ns1.xyzindustries.com	caches	this	resolution.

14.	 The	local	name	server	returns	the	resolution	to	the	resolver	on	your	local
machine.

15.	 Your	local	resolver	also	caches	the	information.

16.	 The	local	resolver	gives	the	address	to	your	browser.

17.	 Your	browser	commences	an	HTTP	request	to	the	Googleplex	machine's
IP	address.

This	seems	rather	complicated	and	slow.	Of	course,	computers	work	faster	than
you	can	read	(or	I	can	type,	for	that	matter).	Even	given	that,	the	benefits	of
caching	are	obvious—if	the	name	were	in	the	cache	of	the	resolver	or	the	local
DNS	server,	most	of	these	steps	would	be	avoided.

Note	that	this	example	is	highly	simplified	and	also	shows	only	one	possible	way
that	servers	might	be	set	up.	For	one	thing,	it	is	possible	that	even	though
compsci.googleplex.edu	is	in	a	separate	zone	from	googleplex.edu,	they	might
use	the	same	server.	In	that	case,	one	iteration	in	the	process	would	be	skipped.
The	example	also	doesn't	show	what	happens	if	an	error	occurs	in	the	process.
Also,	if	the	name	entered	were	an	alias,	indicated	by	a	CNAME	record,	this
would	change	the	processing	as	well.
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Figure	56-3.	Example	of	the	DNS	name	resolution	process	This	fairly	complex	example	illustrates	a
typical	DNS	name	resolution	using	both	iterative	and	recursive	resolution.	The	user	types	a	DNS	name
(www.net.compsci.googleplex.edu)	into	a	web	browser,	which	causes	a	DNS	resolution	request	to	be

made	from	her	client	machine's	resolver	to	a	local	DNS	name	server.	That	name	server	agrees	to	resolve
the	name	recursively	on	behalf	of	the	resolver,	but	uses	iterative	requests	to	accomplish	it.	These

requests	are	sent	to	a	DNS	root	name	server,	followed	in	turn	by	the	name	servers	for	.edu,
googleplex.edu,	and	compsci.googleplex.edu.	The	IP	address	is	then	passed	to	the	local	name	server	and

then	back	to	the	user's	resolver,	and	finally,	to	her	web	browser	software.

Changes	to	Resolution	to	Handle	Aliases
(CNAME	Records)
CNAME	records	are	used	to	allow	a	constant	name	for	a	device	to	be	presented
to	the	outside	world,	while	allowing	the	actual	device	that	corresponds	to	the
name	to	vary	inside	the	organization.	When	a	CNAME	is	used,	it	changes	the
name	resolution	process	by	adding	an	extra	step:	First	we	resolve	the	alias	to	the
canonical	name,	and	then	we	resolve	the	canonical	name.

For	example,	web	servers	are	almost	always	named	starting	with	www.,	so	at
XYZ	Industries,	we	want	people	to	be	able	to	find	our	website	at
www.xyzindustries.com.	However,	the	web	server	may	be	shared	with	other
services	on	bigserver.xyzindustries.com.	We	can	set	up	a	CNAME	record	to

http://www.net.compsci.googleplex.edu
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point	www.xyzindustries.com	to	bigserver.xyzindustries.com.	Resolution	of
www	will	result	in	a	CNAME	pointing	to	bigserver,	which	is	then	itself
resolved.	If	in	the	future,	our	business	grows	and	we	decide	to	upgrade	our	web
service	to	run	on	biggerserver.xyzindustries.com,	we	just	change	the	CNAME
record,	and	users	are	unaffected.

http://www.xyzindustries.com
http://bigserver.xyzindustries.com
http://biggerserver.xyzindustries.com


DNS	Reverse	Name	Resolution	Using	the	IN-
ADDR.ARPA	Domain
If	most	people	were	asked	to	identify	the	core	job	of	DNS	to	one	function,	they
would	probably	say	it	was	converting	the	names	of	objects	into	the	numeric	IP
addresses	associated	with	them.	(Well,	they	would	if	they	knew	much	about
DNS.)	For	this	reason,	DNS	is	sometimes	compared	to	a	telephone	book,	or	to
telephone	411	(information)	service.	There	are	certain	problems	with	this
analogy,	but	at	the	highest	level,	it	is	valid.	In	both	cases,	we	take	a	name,
consult	a	database	(of	one	type	or	another),	and	produce	from	it	a	number	that
matches	that	name.

In	the	real	world,	there	are	sometimes	situations	where	you	don't	want	to	find	the
phone	number	that	goes	with	a	name,	but	rather,	you	have	a	phone	number	and
want	to	know	what	person	it	belongs	to.	For	example,	this	might	happen	if	your
telephone	records	the	number	of	incoming	calls	but	you	don't	have	caller	ID	to
display	the	name	associated	with	a	number.	You	might	also	find	a	phone	number
on	a	piece	of	paper	and	not	remember	whose	number	it	is.

Similarly,	in	the	networking	world,	there	are	many	situations	where	we	have	an
IP	address	and	want	to	know	what	name	goes	with	it.	For	example,	a	World
Wide	Web	server	records	the	IP	address	of	each	device	that	connects	to	it	in	its
server	logs,	but	these	numbers	are	generally	meaningless	to	humans,	who	prefer
to	see	the	names	that	go	with	them.	A	more	serious	example	might	be	a	hacker
trying	to	break	into	your	computer;	by	converting	the	IP	address	into	a	name,
you	might	be	able	to	find	out	what	part	of	the	world	he	is	from,	what	Internet
service	provider	(ISP)	he	is	using,	and	so	forth.	There	are	also	many	reasons	why
a	network	administrator	might	want	to	find	out	the	name	that	goes	with	an
address,	for	setup	or	troubleshooting	purposes.

DNS	originally	included	a	feature	called	inverse	querying	that	would	allow	this
type	of	"opposite"	resolution.

The	Original	Method:	Inverse	Querying
For	inverse	querying,	a	resolver	could	send	a	query	which,	instead	of	having	a



name	filled	in	and	a	space	for	the	server	to	fill	in	the	IP	address,	had	the	IP
address	and	a	space	for	the	name.	The	server	would	check	its	RRs	and	return	the
name	to	the	resolver.

This	works	fine	in	theory,	and	even	in	practice,	if	the	internetwork	is	very	small.
However,	remember	that	due	to	the	distributed	nature	of	DNS	information,	the
biggest	part	of	the	job	of	resolution	is	finding	the	right	server.	Now,	in	the	case
of	regular	resolution,	we	can	easily	find	the	right	server	by	traversing	the
hierarchy	of	servers.	This	is	possible	because	the	servers	are	connected	together
following	a	hierarchy	of	names.

DNS	servers	are	not,	however,	arranged	based	on	IP	address.	This	means	that	to
use	inverse	queries,	we	need	to	use	the	right	name	server	for	the	IP	address	we
want	to	resolve	into	a	name,	with	no	easy	way	to	find	out	what	it	is.	Sure,	we
could	try	sending	the	inverse	query	to	the	authoritative	DNS	server	for	every
zone	in	the	hierarchy.	If	you	tried,	it	would	probably	take	you	longer	than	it	took
to	write	this	book,	so	let's	not	go	there.	The	end	result	of	all	of	this	is	that	inverse
queries	were	never	popular,	except	for	local	server	troubleshooting.	They	were
formally	removed	from	DNS	in	November	2002	through	the	publishing	of	RFC
3425.

So,	what	to	do?	Well,	the	problem	is	that	the	servers	are	arranged	by	name	and
not	by	IP	address.	The	solution,	therefore,	is	as	simple	as	it	sounds:	Arrange	the
servers	by	IP	address.	This	doesn't	mean	we	remove	the	name	hierarchy,	or
duplicate	all	the	servers,	or	anything	silly	like	that.	Instead,	we	create	an
additional,	numerical	hierarchy	that	coexists	with	the	name	hierarchy.	We	then
use	this	to	find	names	from	numbers,	using	a	process	commonly	called	reverse
name	resolution.

The	IN-ADDR.ARPA	Name	Structure	for	Reverse
Resolution
The	name	hierarchy	for	the	Internet	is	implemented	using	a	special	domain
called	IN-ADDR.ARPA,	located	within	the	reserved	.ARPA	TLD	(IN-ADDR
stands	for	INternet	ADDRess).	Recall	from	the	discussion	in	Chapter	54	that
.ARPA	was	originally	used	to	transition	old	Internet	hosts	to	DNS	and	is	now
used	by	the	folks	that	run	the	Internet	for	various	purposes.



A	special	numerical	hierarchy	is	created	within	IN-ADDR.ARPA	that	covers	the
entire	IP	address	space	(see	Figure	56-4):

At	the	first	level	within	IN-ADDR.ARPA	there	are	256	subdomains	called	0,
1,	2,	and	so	on,	up	to	255;	for	example,	191.IN-ADDR.ARPA.	(Actually,
there	may	not	be	all	256	of	these,	since	some	IP	addresses	are	reserved,	but
let's	ignore	that	for	now.)

Within	each	of	the	first-level	subdomains,	there	are	256	further	subdomains	at
the	second	level,	numbered	the	same	way.	So,	for	example,	one	of	these
would	be	27.191.IN-ADDR.ARPA.

Again,	there	are	256	subdomains	at	the	third	level	within	each	of	the	second-
level	subdomains,	such	as	203.27.191.IN-ADDR.ARPA.

Finally,	there	are	256	subdomains	at	the	fourth	level	within	each	of	the	third-
level	subdomains,	such	as	8.203.27.191.IN-ADDR.ARPA.

As	you	can	see,	within	IN-ADDR.ARPA,	we	have	created	a	name	space	that
parallels	the	address	space	of	the	Internet	Protocol	(IP).	Yes,	this	means	there	are
several	billion	nodes	and	branches	in	this	part	of	the	Internet	DNS	name	space!

RR	Setup	for	Reverse	Resolution
With	this	structure	in	place,	we	can	now	associate	one	entry	in	this	name	space
with	each	entry	in	the	real	DNS	name	space.	We	do	this	using	the	Pointer	(PTR)
RR	type.	For	example,	if	www.xyzindustries.com	has	the	IP	address
191.27.203.8,	then	the	DNS	server	for	its	zone	will	have	an	Address	(A)	RR
indicating	this.	In	master	file	text	format,	it	will	say	something	like	this:

www.xyzindustries.com.  A  191.27.203.8

http://www.xyzindustries.com


Figure	56-4.	The	DNS	IN-ADDR.ARPA	reverse	name	resolution	hierarchy	The	special	IN-
ADDR.ARPA	hierarchy	was	created	to	allow	easy	reverse	lookups	of	DNS	names.	IN-ADDR.ARPA
contains	256	subdomains	numbered	0	to	255,	each	of	which	has	256	subdomains	numbered	0	to	255,
and	so	forth,	down	to	four	levels.	Thus,	each	IP	address	is	represented	in	the	hierarchy.	This	example
shows	the	DNS	domain	name	www.xyzindustries.com.	It	would	have	a	conventional	RR	pointing	to	its
IP	address,	191.27.203.8,	as	well	as	a	reverse	resolution	record	at	8.203.27.191.IN-ADDR.ARPA,

pointing	to	the	domain	name	www.xyzindustries.com.

However,	there	will	also	be	the	following	entry	for	it	within	the	IN-
ADDR.ARPA	domain:

8.203.27.191.IN-ADDR.ARPA  PTR  www.xyzindustries.com

NOTE

Remember	that	DNS	names	are	case-insensitive,	so	IN-ADDR.ARPA	could	also	be	given	as	in-
addr.arpa.

Once	this	is	done,	reverse	name	resolution	can	be	easily	performed	by	doing	a
name	resolution	on	8.203.27.191.in-addr.arpa.	If	we	do	this,	a	server	for	the	IN-
ADDR.ARPA	domain	will	return	to	us	the	name	www.xyzindustries.com.	This

http://www.xyzindustries.com
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is	shown	in	Figure	56-4.

TIP

KEY	CONCEPT	Most	name	resolutions	require	that	we	transform	a	DNS	domain	name	into	an	IP
address.	However,	there	are	cases	where	we	want	to	perform	a	reverse	name	resolution,	by	starting	with
an	IP	address	and	finding	out	what	domain	name	matches	it.	This	is	difficult	to	do	using	the	conventional
DNS	distributed	name	hierarchy,	because	there	is	no	easy	way	to	find	the	DNS	server	containing	the
entries	for	a	particular	IP	address.	To	this	end,	a	special	hierarchy	called	IN-ADDR.ARPA	was	set	up	for
reverse	name	lookups.	This	hierarchy	contains	four	levels	of	numerical	subdomains	structured	so	that
each	IP	address	has	its	own	node.	The	node	for	an	IP	address	contains	an	entry	that	points	to	the	DNS
domain	name	associated	with	that	address.

I'm	sure	you've	noticed	that	the	numbers	are	backward	in	the	IN-ADDR.ARPA
domain.	We've	already	seen	the	reason	for	this:	Name	resolution	proceeds	from
the	least	specific	to	the	most	specific	element,	going	from	right	to	left.	In
contrast,	IP	addresses	have	the	least	specific	octet	on	the	left	and	the	most
specific	on	the	right.	Thus,	we	reverse	them	to	maintain	consistency	with	the
DNS	name	space.

This	immediately	yields	one	extra	benefit.	Just	as	we	can	delegate	authority	for
portions	of	the	regular	name	space,	for	example,	letting	XYZ	Industries	be	in
charge	of	everything	in	xyzindustries.com,	we	can	also	delegate	authority	for
parts	of	the	IN-ADDR.ARPA	name	space.	For	example,	since	the	Massachusetts
Institute	of	Technology	(MIT)	owns	all	IP	addresses	with	a	first	octet	of	18	(at
least,	I	think	it	still	does),	it	is	possible	that	if	MIT	wanted	to,	it	could	control	the
18.IN-ADDR.ARPA	domain	as	well	for	reverse	queries.	This	would	not	be
possible	without	reversing	the	octets.

Note	that	for	this	system	to	work	reliably,	it	is	essential	that	the	data	in	the
regular	name	space	and	the	reverse	name	space	remain	consistent.	Whenever	a
new	DNS	name	is	registered,	an	appropriate	entry	must	be	made	within	IN-
ADDR.ARPA	as	well.	Special	procedures	have	been	put	into	place	to	allow
these	pointer	entries	to	be	created	automatically.

TIP

RELATED	INFORMATION	A	similar	scheme	using	a	different	reverse	domain	is	used	for	DNS	under
version	6	of	the	Internet	Protocol	(IPv6).	See	the	end	of	Chapter	57	for	more	information.

http://xyzindustries.com


DNS	Electronic	Mail	Support	and	Mail	Exchange
(MX)	Resource	Records
Most	savvy	users	of	the	Internet	know	that	DNS	exists,	and	they	usually
associate	it	with	the	most	common	Internet	applications.	Of	these	applications,
the	"Big	Kahuna"	is	the	World	Wide	Web.	It's	probably	the	case	that	the
majority	of	DNS	name	resolution	requests	are	spawned	as	a	result	of	web	server
domain	names	being	typed	into	browsers	billions	of	times	a	day,	as	well	as
requests	for	named	pages	generated	by	both	user	mouse	clicks	and	web-based
applications.

Of	course,	DNS	is	not	tied	specifically	to	any	one	application.	We	can	specify
names	in	any	place	where	an	IP	address	would	go.	For	example,	you	can	use	a
DNS	name	instead	of	an	address	for	an	FTP	client,	or	even	for	a	troubleshooting
utility	like	traceroute	or	ping	(see	Chapter	88).	The	resolver	will,	in	each	case,
take	care	of	translating	the	name	for	you.

There's	one	application	that	has	always	used	DNS,	but	it's	one	that	doesn't
usually	spring	to	mind	when	you	think	about	DNS:	electronic	mail	(discussed	in
Part	III-7).	Electronic	mail	(email)	is,	in	fact,	more	reliant	on	DNS	than	just
about	any	other	TCP/IP	application.	Consider	that	while	you	may	sometimes
type	an	IP	address	for	a	command	like	traceroute,	or	even	type	it	into	a	browser,
you	probably	have	never	sent	anyone	mail	by	entering	joe@14.194.29.60	into
your	email	client.	You	type	something	like	joe@xyzindustries.com,	and	DNS
takes	care	of	figuring	out	where	email	for	XYZ	Industries	is	to	go.

Special	Requirements	for	Email	Name
Resolution
Name	resolution	for	email	addresses	is	different	from	other	applications	in	DNS,
for	three	reasons	(which	I	describe	in	more	detail	in	the	discussion	of	TCP/IP
email	addressing	and	address	resolution	in	Chapter	75):

We	may	not	want	email	to	go	to	the	exact	machine	specified	by	the	address.

We	need	to	be	able	to	change	server	names	without	changing	everyone's
email	address.

mailto:joe@14.194.29.60
mailto:joe@xyzindustries.com


We	need	to	be	able	to	support	multiple	servers	for	handling	mail.

For	example,	XYZ	Industries	might	want	to	use	a	dedicated	mail	server	called
mail.xyzindustries.com	to	handle	incoming	mail,	but	actually	construct	all	of	its
email	addresses	to	use	@xyzindustries.com.	This	makes	addresses	shorter	and
allows	the	server's	name	to	be	changed	without	affecting	user	addresses.	If	the
company	wishes,	it	might	decide	to	use	two	servers,	mail1.xyzindustries.com
and	mail2.xyzindustries.com,	for	redundancy,	and	again	have	just
@xyzindustries.com	for	addresses.

To	allow	the	flexibility	needed	for	these	situations,	a	special	DNS	RR	type,
called	a	Mail	Exchange	(MX)	record,	is	defined.

The	Mail	Exchange	(MX)	Record	and	Its	Use
Each	MX	record	specifies	a	particular	mail	server	that	is	to	be	used	to	handle
incoming	email	for	a	particular	domain.	Once	this	record	is	established,
resolution	of	email	messages	is	pretty	much	similar	to	regular	resolution.
Suppose	you	want	to	send	a	message	to	joe@xyzindustries.com.	The	basic
process	is	as	follows:

1.	 Your	email	client	invokes	the	resolver	on	your	local	machine	to	perform	an
email	resolution	on	xyzindustries.com.

2.	 Your	local	resolver	and	local	DNS	server	follow	the	process	described
earlier	in	this	chapter	to	find	the	authoritative	server	for	xyzindustries.com,
which	is	ns1.xyzindustries.com.

3.	 ns1.xyzindustries.com	finds	the	MX	record	for	xyzindustries.com	and
replies	back	indicating	that	mail.xyzindustries.com	should	be	used	for
email.

The	email	client	can't	actually	send	anything	to	mail.xyzindustries.com;	it	needs
its	IP	address.	So,	it	would	then	need	to	resolve	that	name.	This	resolution
request	will	likely	end	up	right	back	at	the	same	DNS	name	server	that	just
handled	the	MX	request.	To	eliminate	the	inefficiency	of	two	separate
resolutions,	the	DNS	name	server	can	combine	the	information.	In	our	example,
ns1.xyzindustries.com	will	include	the	A	(Address)	RR	for
mail.xyzindustries.com	in	the	Additional	section	of	the	DNS	message	that	it

http://mail.xyzindustries.com
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sends	in	step	3.

NOTE

RFC	1035	originally	defined	several	other	RR	types	related	to	email	as	well:	Mailbox	(MB),	Mail	Group
(MG),	and	Mail	Rename	(MR).	These	are	called	"experimental"	in	the	standard.	I	think	the	experiment
failed,	whatever	it	was,	because	I	don't	believe	these	are	used	today.	There	are	also	two	even	older	mail-
related	RRs,	Mail	Destination	(MD)	and	Mail	Forwarder	(MF),	which	must	have	been	used	at	one	time
but	were	already	obsolete	at	the	time	RFC	1035	itself	was	written.

It	is	also	possible	to	specify	multiple	MX	records	for	a	particular	domain,	each
pointing	to	a	different	mail	server's	name.	This	provides	redundancy,	so	if	there
is	a	problem	with	one	mail	server,	another	can	pick	up	the	slack.	DNS	allows
each	mail	server	to	be	specified	with	a	preference	value,	so	you	can	clearly
indicate	which	is	the	main	mail	server,	which	is	the	first	backup,	the	second
backup,	and	so	on.	The	DNS	server	will	choose	the	mail	server	with	the	lowest
preference	value	first,	then	the	next	highest	one,	and	so	on.

TIP

KEY	CONCEPT	Since	email	is	sent	using	host	names	and	not	IP	addresses,	DNS	contains	special
provisions	to	support	the	transfer	of	email	between	sites.	Special	Mail	Exchange	(MX)	DNS	RRs	are	set
up	that	contain	the	names	of	mail	servers	that	a	domain	wants	to	use	for	handling	incoming	email.
Before	sending	email	to	a	site,	a	device	performs	a	name	resolution	to	get	that	site's	MX	record,	so	it
knows	where	to	send	the	message.



Chapter	57.	DNS	MESSAGING
AND	MESSAGE,	RESOURCE
RECORD,	AND	MASTER	FILE
FORMATS

Networking	is	all	about	the	communication	of	information	between	connected
devices.	In	the	case	of	the	Domain	Name	System	(DNS),	information	about
names	and	objects	on	the	internetwork	is	exchanged	during	each	of	the	many
types	of	operations	DNS	performs.	This	involves	sending	messages	between
devices.	Like	most	protocols,	DNS	uses	its	own	set	of	messages	with	distinct
field	formats,	and	it	follows	a	particular	set	of	rules	for	generating	them	and
transporting	them	over	the	internetwork.

In	this	chapter,	I	explain	how	messages	are	generated	and	sent	in	DNS,	and	I
describe	the	formats	used	for	messages	and	resource	records	(RRs).	I	begin	with
an	overview	discussion	of	DNS	messages	and	how	they	are	generated	and
transported.	I	provide	an	overview	of	the	general	DNS	message	format	and	the
five	sections	it	contains.	I	describe	the	notation	used	for	names	and	the	special
compression	method	that	helps	keep	DNS	messages	down	in	size.	I	then	show
the	fields	in	the	DNS	message	Header	and	Question	section.	I	illustrate	the
common	field	format	used	for	all	RRs	and	the	specific	fields	in	the	most
important	record	types.	I	also	provide	a	description	of	the	format	used	for	DNS
text	master	files.

I	conclude	with	a	brief	discussion	of	the	changes	made	to	DNS	to	support
Internet	Protocol	version	6	(IPv6).	Most	of	these	changes	(but	not	all	of	them)
are	associated	with	message	formats	and	RRs,	the	subject	of	this	chapter.



TIP

BACKGROUND	INFORMATION	This	chapter	assumes	that	you	are	already	familiar	with	DNS
concepts	and	operation	as	described	in	Chapters	Chapter	52	through	Chapter	56.

DNS	Message	Generation	and	Transport
In	the	preceding	chapters	in	this	part	of	the	book,	we	have	explored	the	many
different	tasks	that	servers	and	resolvers	perform:	regular	name	resolution,
reverse	name	resolution,	email	resolution,	zone	transfers,	and	more.	Each	of
these	operations	requires	that	information	be	exchanged	between	a	pair	of	DNS
devices.	Like	so	many	other	TCP/IP	protocols,	DNS	is	designed	to	accomplish
this	information	transfer	using	a	client/server	model.	All	DNS	exchanges	begin
with	a	client	sending	a	request	and	a	server	responding	with	an	answer.

DNS	Client/Server	Messaging	Overview
In	Chapter	8's	overview	of	TCP/IP's	client/server	nature,	I	explained	a	potential
source	of	confusion	regarding	these	terms:	the	fact	that	they	refer	to	hardware
roles,	software	roles,	and	transactional	roles.	This	issue	definitely	applies	when	it
comes	to	DNS.	You've	already	seen	that	DNS	implementation	consists	of	two
sets	of	software	elements:	resolvers	that	act	as	clients	and	name	servers	that	are
the	servers.	Resolver	software	usually	runs	on	client	machines	like	PCs,	while
name	server	software	often	runs	on	dedicated	server	hardware.	However,	these
designations	are	based	on	the	overall	role	of	the	hardware	and	software.

From	a	messaging	viewpoint,	the	client	is	the	initiator	of	the	communication,
regardless	of	what	type	of	machine	does	this	initiating,	and	the	server	is	the
device	that	responds	to	the	client.	A	resolver	usually	acts	as	a	client	and	a	name
server	as	a	server.	However,	in	a	particular	exchange,	a	DNS	name	server	can	act
as	a	client,	in	at	least	two	cases.	First,	in	recursive	name	resolution,	a	server
generates	requests	to	others	servers	and	therefore	acts	as	a	client.	Second,	in
administrative	functions	like	zone	transfers,	one	server	acts	as	a	client	and	sends
a	request	to	another	server.	(There	are	no	cases	in	DNS	that	I	know	of	where	a
resolver	acts	as	a	server,	incidentally.)

Most	transactions	in	DNS	consist	of	the	exchange	of	a	single	query	message	and
a	single	response	message.	The	device	acting	as	client	for	the	transaction	creates



a	single	response	message.	The	device	acting	as	client	for	the	transaction	creates
the	query	and	sends	it	to	the	server;	the	server	then	sends	back	a	reply.	In	certain
cases	where	a	great	deal	of	data	needs	to	be	sent,	such	as	zone	transfers,	the
server	may	send	back	multiple	messages.	Multiple	such	transactions	may	be
required	to	perform	a	complete	name	resolution,	as	the	example	of	the	DNS
resolution	process	in	the	previous	chapter	demonstrated.

DNS	Message	Transport	Using	UDP	and	TCP
TCP/IP	has	two	different	transport	layer	protocols:	the	User	Datagram	Protocol
(UDP)	and	Transmission	Control	Protocol	(TCP)	(see	Part	II-8).	UDP	and	TCP
share	layer	4	in	the	TCP/IP	model,	because	they	are	so	different	in	terms	of
capabilities	and	operation.	Some	application	layer	protocols	need	the	services	of
TCP	and	can	use	it	to	take	advantage	of	them,	while	others	are	better	off	with	the
simpler	UDP.	DNS	is	itself	a	perfect	example	of	the	valid	reasons	for	having
both	UDP	and	TCP	in	the	protocol	suite	(see	Chapter	42),	because	it	uses	both.

UDP	is	a	simple	connectionless	protocol	that	provides	no	real	features	but	is
very	fast.	It	is	ideally	suited	for	small,	quick	exchanges	of	information	and	can
be	faster	than	TCP	because	there	is	no	need	to	establish	a	connection.	This
makes	it	a	good	choice	for	most	of	the	conventional	queries	used	in	DNS,
because	they	are	normally	very	short,	and	fast	data	exchange	is	important.	For
this	reason,	the	DNS	standards	recommend	use	of	UDP	for	queries	and	replies	as
part	of	regular	and	reverse	name	resolution.	UDP	DNS	messages	are	limited	to
512	bytes;	longer	messages	are	truncated,	and	a	special	bit	in	the	header	is	set	to
indicate	that	this	has	occurred.	If	a	message	being	truncated	causes	a	problem	for
its	recipient,	the	query	must	be	repeated	using	TCP.

NOTE

The	512-byte	limit	on	DNS	UDP	messages	can	be	surpassed	if	the	optional	Extension	Mechanisms	for
DNS	(EDNS0)	are	implemented.	These	are	described	in	RFC	2671.

Since	UDP	does	not	provide	reliable	delivery	of	messages,	DNS	clients	must
keep	track	of	requests	they	have	sent.	If	no	response	is	received	after	a	particular
amount	of	time,	the	request	must	be	retransmitted.	The	need	to	take	care	of	these
details	is	considered	an	acceptable	trade-off	for	the	lower	setup	costs	involved
with	UDP,	such	as	not	requiring	a	connection.	The	rate	at	which	retransmissions
are	sent	is	usually	set	at	a	minimum	of	two	to	five	seconds	to	prevent	excessive



are	sent	is	usually	set	at	a	minimum	of	two	to	five	seconds	to	prevent	excessive
DNS	traffic	on	the	internetwork.

For	certain	special	DNS	transactions,	UDP	is	simply	inappropriate.	The	most
common	example	of	such	a	transaction	is	a	zone	transfer.	While	the	query	for	a
zone	transfer	is	small	in	size,	the	amount	of	data	sent	in	response	can	be	quite
large.	The	limit	of	512	bytes	for	UDP	is	not	even	close	to	enough.	Furthermore,
we	really	do	need	to	make	sure	that	a	zone	transfer	is	accomplished	reliably	and
with	flow	control	and	other	data	transfer	management	features,	or	we	risk	having
corrupted	zone	information	in	our	secondary	DNS	server	databases.

The	solution	is	to	use	TCP	for	these	types	of	exchanges.	TCP	allows	messages	to
be	of	arbitrary	length,	and	as	a	connection-oriented,	acknowledged,	reliable
protocol,	automatically	provides	the	mechanisms	we	need	to	ensure	that	zone
transfers	and	other	lengthy	operations	complete	successfully.	The	cost	is	the
small	amount	of	overhead	needed	to	establish	the	connection,	but	since	zone
transfers	are	infrequent	(compared	to	the	sheer	volume	of	regular	name
resolutions),	this	is	not	a	problem.

You	can	see	how	DNS	nicely	illustrates	the	roles	of	both	TCP	and	UDP	in
TCP/IP.	Since	both	transport	protocols	can	be	used,	name	servers	listen	for	UDP
and	TCP	requests	on	the	same	well-known	port	number,	53.	The	device	acting	as
the	client	uses	an	ephemeral	port	number	for	the	transaction.	All	DNS	messages
are	sent	unicast	from	one	device	directly	to	another.

TIP

KEY	CONCEPT	DNS	uses	both	UDP	and	TCP	to	send	messages.	Conventional	message	exchanges	are
short,	and	thus	well	suited	to	the	use	of	the	very	fast	UDP;	DNS	itself	handles	the	detection	and
retransmission	of	lost	requests.	For	larger	or	more	important	exchanges	of	information,	especially	zone
transfers,	TCP	is	used—both	for	its	reliability	and	its	ability	to	handle	messages	of	any	size.

DNS	Message	Processing	and	General	Message
Format
As	we've	just	discussed,	DNS	message	exchanges	are	all	based	on	the	principle
of	client/server	computing.	In	a	particular	exchange,	one	device	acts	as	a	client,
initiating	the	communication	by	sending	a	query;	the	other	acts	as	the	server	by



responding	to	the	query	with	an	answer.	This	query/response	behavior	is	an
integral	part	of	DNS,	and	it	is	reflected	in	the	format	used	for	DNS	messages.

A	common	message	format	is	used	for	DNS	queries	and	responses.	This
message	format	contains	five	sections	that	provide	a	place	for	the	query	asked	by
the	client,	the	answer(s)	provided	by	the	server,	and	header	information	that
controls	the	entire	process.	Table	57-1	describes	the	DNS	general	message
format,	providing	a	brief	summary	of	each	of	its	sections	and	how	they	are	used.
You	can	also	see	a	simplified	illustration	of	the	message	format	in	Figure	57-1.

Table	57-1.	DNS	General	Message	Format

Section
Name

Description

Header Contains	fields	that	describe	the	type	of	message	and	provide	important
information	about	it.	Also	contains	fields	that	indicate	the	number	of	entries	in	the
other	sections	of	the	message.

Question Carries	one	or	more	questions—that	is,	queries	for	information	being	sent	to	a
DNS	name	server.

Answer Carries	one	or	more	RRs	that	answer	the	question(s)	indicated	in	the	Question
section.

Authority Contains	one	or	more	RRs	that	point	to	authoritative	name	servers	that	can	be	used
to	continue	the	resolution	process.

Additional Conveys	one	or	more	RRs	that	contain	additional	information	related	to	the	query
that	is	not	strictly	necessary	to	answer	the	queries	(questions)	in	the	message.

The	Header	section	is	always	present	in	all	messages	and	is	fixed	in	length.	In
addition	to	containing	important	DNS	control	information,	it	has	a	flag	(QR)	that
indicates	whether	a	message	is	a	query	or	a	response.	It	also	has	four	"count"
fields	that	tell	the	recipient	the	number	of	entries	in	the	other	four	sections.

When	a	client	initiates	a	query,	it	creates	a	message	with	the	fields	in	the	Header
section	filled	in,	and	one	or	more	queries	(requests	for	information)	in	the
Question	section.	It	sets	the	QR	flag	to	0	to	indicate	that	this	is	a	query,	and	it
places	a	number	in	the	QDCount	field	of	the	header	that	indicates	the	number	of
questions	in	the	Question	section.	The	number	of	entries	in	the	other	sections	are
usually	0,	so	their	count	fields	(ANCount,	NSCount,	and	ARCount)	are	set	to	0



usually	0,	so	their	count	fields	(ANCount,	NSCount,	and	ARCount)	are	set	to	0
in	the	header.	(Although	more	than	one	question	can	be	put	into	a	query,	usually
only	one	is	included.)

Figure	57-1.	DNS	general	message	format

When	the	server	receives	the	query,	it	processes	it	and	performs	the	information
retrieval	operation	requested	(if	it	can).	It	then	uses	the	query	as	the	basis	for	its
response	message.	The	Header	and	Question	sections	are	copied	to	the	response
message,	and	the	QR	flag	is	set	to	1	to	indicate	that	the	message	is	a	reply.
Certain	fields	are	also	changed	in	the	Header	section	to	provide	information	back
to	the	client.	For	example,	the	server	sets	the	RCode	(Response	Code)	field	to
indicate	whether	the	query	was	successful	or	if	an	error	occurred,	and	if	one	did
occur,	to	indicate	what	the	problem	was.	The	next	section	of	this	chapter
illustrates	all	the	Header	fields	and	indicates	how	each	is	used	by	both	client	and
server.

The	server	is	also	responsible	for	filling	in	the	other	three	sections	of	the
message:	Answer,	Authority,	and	Additional.	These	sections	share	the	same
basic	format,	each	carrying	one	or	more	RRs	that	use	a	common	record	format.
The	number	of	records	in	each	section	is	indicated	using	the	count	fields	in	the
message	header.	The	sections	differ	only	in	terms	of	the	types	of	records	they
carry.	Answer	records	are	directly	related	to	the	question	asked,	while	Authority
records	carry	RRs	that	identify	other	name	servers.	Authority	records	are	thus
the	means	by	which	name	servers	are	hierarchically	linked	when	the	server



the	means	by	which	name	servers	are	hierarchically	linked	when	the	server
doesn't	have	the	information	the	client	requested.

The	Additional	section	exists	for	the	specific	purpose	of	improving	DNS
efficiency.	There	are	cases	where	a	server	supplies	an	answer	to	a	query	that	it
has	reason	to	believe	will	lead	to	a	subsequent	question	that	the	server	can	also
answer.	For	example,	suppose	a	server	provides	the	name	of	another	name	server
in	the	Authority	section	(an	NS	RR).	The	client	may	not	have	the	address	for	that
server,	which	would	mean	it	must	perform	an	extra	name	resolution	to	contact
the	referenced	server.	If	the	server	providing	the	NS	record	already	knows	the	IP
address	for	this	name	server,	it	can	include	it	in	the	Additional	section.	The	same
goes	for	a	server	providing	an	MX	record	as	I	explained	in	the	discussion	of
DNS	mail	support	in	the	previous	chapter.

TIP

KEY	CONCEPT	DNS	uses	a	general	message	format	for	all	messages.	It	consists	of	a	fixed	12-byte
header,	a	Question	section	that	contains	a	query,	and	then	three	additional	sections	that	can	carry	RRs	of
different	types.	The	Answer	section	usually	contains	records	that	directly	answer	the	question	of	the
message;	the	Authority	section	holds	the	names	of	name	servers	being	sent	back	to	the	client;	and	the
Additional	section	holds	extra	information	that	may	be	of	value	to	the	client,	such	as	the	IP	address	of	a
name	server	mentioned	in	the	Authority	section.

Another	optimization	by	DNS	is	a	special	compression	technique	used	to	reduce
the	size	of	DNS	messages.	This	is	explained	in	the	"DNS	Name	Notation	and
Message	Compression"	section	later	in	this	chapter.

Note	that	the	special	Notify	and	Update	messages	use	a	different	format	than	the
regular	DNS	query/response	messages.	These	special	messages	(whose	use	is
described	in	the	section	about	DNS	server	enhancements	in	Chapter	55)	are
based	on	the	regular	format	but	with	the	meanings	of	certain	fields	changed.	You
can	find	these	field	formats	in	RFC	1996	and	RFC	2136,	respectively.

The	client/server	information	exchange	in	DNS	is	facilitated	using
query/response	messaging.	Both	queries	and	responses	have	the	same	general
format,	containing	up	to	five	individual	sections	carrying	information.	Of	these,
two	are	usually	found	in	both	queries	and	responses:	the	Header	section	and	the
Question	section.	We	will	look	at	these	two	sections	first,	and	then	examine	the
RR	formats	used	by	servers	for	the	other	three	message	sections.



DNS	Message	Header	Format
The	header	is	the	most	important	part	of	any	message,	since	it	is	where	critical
control	fields	are	carried.	In	DNS	messages,	the	Header	section	carries	several
key	control	flags,	and	it	also	indicates	which	of	the	other	sections	are	used	in	the
message.	Examining	the	Header	section	can	help	you	understand	several	of	the
nuances	of	how	messaging	works	in	DNS.

The	format	of	the	Header	section	used	in	all	DNS	messages	is	illustrated	in
Figure	57-2	and	described	in	detail	in	Tables	Table	57-2,	Table	57-3,	and
Table	57-4.	Where	fields	are	used	differently	by	the	client	and	server	in	an
exchange,	I	have	mentioned	in	Table	57-2	how	the	use	is	differentiated	between
the	two.

Note	that	the	current	lists	of	valid	question	types,	query	operation	codes,	and
response	codes	are	maintained	by	the	Internet	Assigned	Numbers	Authority
(IANA)	as	one	of	its	many	lists	of	Internet	parameters.	Response	codes	0	to	5	are
part	of	regular	DNS	and	are	defined	in	RFC	1035;	codes	6	to	10	implement
Dynamic	DNS	and	are	defined	in	RFC	2136.

Table	57-2.	DNS	Message	Header	Format

Field
Name

Size
(Bytes)

Description

ID 2 Identifier:	A	16-bit	identification	field	generated	by	the	device	that	creates
the	DNS	query.	It	is	copied	by	the	server	into	the	response,	so	it	can	be
used	by	that	device	to	match	that	query	to	the	corresponding	reply
received	from	a	DNS	server.	This	is	used	in	a	manner	similar	to	how	the
Identifier	field	is	used	in	many	of	the	Internet	Control	Message	Protocol
(ICMP)	message	types.

QR 1/8	(1
bit)

Query/Response	Flag:	Differentiates	between	queries	and	responses.	Set
to	0	when	the	query	is	generated;	changed	to	1	when	that	query	is
changed	to	a	response	by	a	replying	server.

OpCode 1/2	(4
bits)

Operation	Code:	Specifies	the	type	of	query	the	message	is	carrying.	This
field	is	set	by	the	creator	of	the	query	and	copied	unchanged	into	the
response.	See	Table	57-3	for	the	OpCode	values.

AA 1/8	(1
bit)

Authoritative	Answer	Flag:	This	bit	is	set	to	1	in	a	response	to	indicate
that	the	server	that	created	the	response	is	authoritative	for	the	zone	in



bit) that	the	server	that	created	the	response	is	authoritative	for	the	zone	in
which	the	domain	name	specified	in	the	Question	section	is	located.	If	it
is	0,	the	response	is	non-authoritative.

TC 1/8	(1
bit)

Truncation	Flag:	When	set	to	1,	indicates	that	the	message	was	truncated
due	to	its	length	being	longer	than	the	maximum	permitted	for	the	type	of
transport	mechanism	used.	TCP	doesn't	have	a	length	limit	for	messages;
UDP	messages	are	limited	to	512	bytes,	so	this	bit	being	sent	usually	is	an
indication	that	the	message	was	sent	using	UDP	and	was	too	long	to	fit.
The	client	may	need	to	establish	a	TCP	session	to	get	the	full	message.
On	the	other	hand,	if	the	portion	truncated	was	part	of	the	Additional
section,	it	may	choose	not	to	bother.

RD 1/8	(1
bit)

Recursion	Desired:	When	set	in	a	query,	requests	that	the	server	receiving
the	query	attempt	to	answer	the	query	recursively,	if	the	server	supports
recursive	resolution.	The	value	of	this	bit	is	not	changed	in	the	response.

RA 1/8	(1
bit)

Recursion	Available:	Set	to	1	or	cleared	to	0	in	a	response	to	indicate
whether	the	server	creating	the	response	supports	recursive	queries.	This
can	then	be	noted	by	the	device	that	sent	the	query	for	future	use.

Z 3/8	(3
bits)

Zero:	Three	reserved	bits	set	to	0.

RCode 1/2	(4
bits)

Response	Code:	Set	to	0	in	queries,	then	changed	by	the	replying	server	in
a	response	to	convey	the	results	of	processing	the	query.	This	field	is	used
to	indicate	if	the	query	was	answered	successfully	or	if	some	sort	of	error
occurred.	See	Table	57-4	for	the	RCode	values.

QDCount 2 Question	Count:	Specifies	the	number	of	questions	in	the	Question
section	of	the	message.

ANCount 2 Answer	Record	Count:	Specifies	the	number	of	RRs	in	the	Answer
section	of	the	message.

ARCount 2 Additional	Record	Count:	Specifies	the	number	of	RRs	in	the	Additional
section	of	the	message.

Table	57-3.	Header	OpCode	Values

OpCode
Value

Query
Name

Description

0 Query A	standard	query.

1 IQuery An	inverse	query;	now	obsolete.	RFC	1035	defines	the	inverse	query	as
an	optional	method	for	performing	inverse	DNS	lookups;	that	is,	finding



an	optional	method	for	performing	inverse	DNS	lookups;	that	is,	finding
a	name	from	an	IP	address.	Due	to	implementation	difficulties,	the
method	was	never	widely	deployed,	however,	in	favor	of	reverse
mapping	using	the	IN-ADDR.ARPA	domain.	Use	of	this	OpCode	value
was	formally	obsoleted	in	RFC	3425,	November	2002.

2 Status A	server	status	request.

3 Reserved Reserved,	not	used.

4 Notify A	special	message	type	added	by	RFC	1996.	It	is	used	by	a	primary
(master,	authoritative)	server	to	tell	secondary	servers	that	data	for	a	zone
has	changed	and	prompt	them	to	request	a	zone	transfer.	See	the
discussion	of	DNS	server	enhancements	in	Chapter	55	for	more	details.

5 Update A	special	message	type	added	by	RFC	2136	to	implement	Dynamic
DNS.	It	allows	RRs	to	be	added,	deleted,	or	updated	selectively.	See	the
discussion	of	DNS	server	enhancements	in	Chapter	55	for	more	details.

Table	57-4.	Header	RCode	Values

RCode
Value

Response
Code

Description

0 No	Error No	error	occurred.

1 Format	Error The	server	was	unable	to	respond	to	the	query	due	to	a	problem	with
how	it	was	constructed.

2 Server
Failure

The	server	was	unable	to	respond	to	the	query	due	to	a	problem	with
the	server	itself.

3 Name	Error The	name	specified	in	the	query	does	not	exist	in	the	domain.	This
code	can	be	used	by	an	authoritative	server	for	a	zone	(since	it	knows
all	the	objects	and	subdomains	in	a	domain)	or	by	a	caching	server	that
implements	negative	caching.

4 Not
Implemented

The	type	of	query	received	is	not	supported	by	the	server.

5 Refused The	server	refused	to	process	the	query,	generally	for	policy	reasons
and	not	technical	ones.	For	example,	certain	types	of	operations,	such
as	zone	transfers,	are	restricted.	The	server	will	honor	a	zone	transfer
request	only	from	certain	devices.

6 YX	Domain A	name	exists	when	it	should	not.

7 YX	RR	Set An	RR	set	exists	that	should	not.



7 YX	RR	Set An	RR	set	exists	that	should	not.

8 NX	RR	Set An	RR	set	that	should	exist	does	not.

9 Not	Auth The	server	receiving	the	query	is	not	authoritative	for	the	zone
specified.

10 Not	Zone A	name	specified	in	the	message	is	not	within	the	zone	specified	in	the
message.

Figure	57-2.	DNS	message	header	format



DNS	Question	Section	Format
DNS	queries	always	contain	at	least	one	entry	in	the	Question	section	that
specifies	what	the	client	in	the	exchange	is	trying	to	find	out.	These	entries	are
copied	to	the	response	message	unchanged,	for	reference	on	the	part	of	the	client
if	needed.	The	format	used	for	each	entry	in	the	Question	section	of	a	DNS
message	described	in	detail	in	Tables	Table	57-5	and	Table	57-6,	and	illustrated
in	Figure	57-3.

Table	57-5.	DNS	Message	Question	Section	Format

Field
Name

Size
(Bytes)

Description

QName Variable Question	Name:	Contains	the	object,	domain,	or	zone	name	that	is	the
subject	of	the	query,	encoded	using	standard	DNS	name	notation,	which	is
explained	later	in	this	chapter.

QType 2 Question	Type:	Specifies	the	type	of	question	being	asked	by	the	device
acting	as	a	client.	This	field	may	contain	a	code	number	corresponding	to	a
particular	type	of	RR	being	requested.	(Table	55-1	in	Chapter	55	contains
the	numbers	for	the	most	common	RRs.)	If	so,	this	means	the	client	is
asking	for	that	type	of	record	to	be	sent	for	the	domain	name	listed	in
QName.	The	QType	field	may	also	contain	one	of	the	codes	listed	in
Table	57-6,	corresponding	to	a	special	type	of	requests.

QClass 2 Question	Class:	Specifies	the	class	of	the	RR	being	requested,	normally	the
value	1	for	Internet	(IN).	See	the	discussion	of	classes	and	RR	types	in
Chapter	56	for	an	explanation.	In	addition,	the	QClass	value	255	is	defined
to	have	the	special	meaning	"any	class."

Table	57-6.	Question	Section	QType	Values

QType
Value

Question
Type

Description

251 IXFR A	request	for	an	incremental	(partial)	zone	transfer,	per	RFC	1995

252 AXFR A	request	for	a	zone	transfer

253 MAILB A	request	for	mailbox-related	records	(RR	types	MB,	MG,	or
MR;	now	obsolete)



254 MAILA A	request	for	mail	agent	RR	(now	obsolete;	MX	records	are	used
instead)

255 *	(asterisk) A	request	for	all	records

Figure	57-3.	DNS	message	Question	section	format



DNS	Message	Resource	Record	Field	Formats
As	you've	learned	in	this	and	the	previous	chapter,	the	exchange	of	information
in	DNS	consists	of	a	series	of	client/server	transactions.	Clients	send	requests,	or
queries,	to	servers,	and	the	servers	send	back	responses.	DNS	servers	are
database	servers,	and	they	store	DNS	name	database	information	in	the	form	of
RRs.	The	questions	asked	by	clients	are	requests	for	information	from	a	DNS
server's	database,	and	they	are	answered	by	the	DNS	server	looking	up	the
requested	RRs	and	putting	them	into	the	DNS	response	message.

The	Answer,	Authority,	and	Additional	sections	of	the	overall	DNS	message
format	are	the	places	where	servers	put	DNS	RRs	to	be	sent	back	to	a	client.
Each	section	consists	of	zero	or	more	records,	and	in	theory,	any	record	can	be
placed	in	any	section.	The	sections	differ	only	in	the	semantics	(meaning)	that
the	client	draws	from	a	record	being	in	one	section	rather	than	in	another	section.

RRs	have	two	representations:	binary	and	text.	The	text	format	is	used	for	master
files	edited	by	humans	and	is	discussed	in	the	"DNS	Master	File	Format"	section
later	in	this	chapter.	The	binary	representation	consists	of	regular	numeric	and
text	fields,	just	like	the	other	fields	in	the	DNS	message	format.

DNS	Common	RR	Format
There	are	certain	types	of	information	that	are	common	to	all	RRs	and	other
types	that	are	unique	to	each	type	of	record.	To	handle	this,	all	RRs	are
represented	using	a	common	field	format,	which	contains	a	single	RData	field
that	varies	by	record	type.	The	common	RR	format	is	described	in	Table	57-7
and	illustrated	in	Figure	57-4.

Table	57-7.	DNS	Common	Resource	Record	Format

Field
Name

Size
(Bytes)

Description

Name Variable Name:	Contains	the	object,	domain,	or	zone	name	that	is	the	subject	of
the	RR,	encoded	using	standard	DNS	name	notation,	which	is	explained
later	in	this	chapter.	All	of	the	information	in	the	RR	is	associated	with
this	object,	which	I	call	the	named	object	for	the	record.



Type 2 Type:	A	code	value	specifying	the	type	of	resource	record.	The	type
values	for	the	most	common	kinds	of	RRs	are	shown	in	Table	55-1,	in
Chapter	55	and	also	in	the	following	sections	of	this	chapter.

Class 2 Class:	Specifies	the	class	of	the	RR	being	requested,	normally	the	value
1	for	Internet	(IN).	See	Chapter	55	for	an	explanation.

TTL 4 Time	to	Live:	Specifies	the	number	of	seconds	that	the	record	should	be
retained	in	the	cache	of	the	device	reading	the	record.	See	the	discussion
of	DNS	name	server	caching	in	Chapter	55	for	a	full	explanation.	A
value	of	0	means	to	use	this	information	for	the	current	name	resolution
only;	do	not	cache	it.

RDLength 2 Resource	Data	Length:	Indicates	the	size	of	the	RData	field,	in	bytes.

RData Variable Resource	Data:	The	data	portion	of	the	RR.

RData	Field	Formats	for	Common	RRs
The	RData	field	consists	of	one	or	more	subfields	that	carry	the	actual	payload
for	the	RR.	The	following	sections	present	the	most	common	RR	types.	For
each,	I	have	indicated	the	RR	text	code,	name,	and	type	value;	provided	a	brief
summary	of	the	RR's	use;	and	shown	the	structure	of	the	RData	field	in	a	table.

Figure	57-4.	DNS	common	RR	format

A	(Address)	RR	(Type	Value	1)
A	(Address)	is	the	primary	RR	type	in	DNS.	It	contains	a	32-bit	IP	address
associated	with	a	domain	name,	as	shown	in	Table	57-8.

Table	57-8.	DNS	Address	RR	Data	Format



Subfield
Name

Size
(Bytes)

Description

Address 4 Address:	The	32-bit	IP	address	corresponding	to	this	record's
named	object.

NS	(Name	Server)	RR	(Type	Value	2)
The	NSDName	data	field	carries	the	domain	name	of	a	name	server,	as	shown	in
Table	57-9.

Table	57-9.	DNS	Name	Server	RR	Data	Format

Subfield
Name

Size
(Bytes)

Description

NSDName Variable Name	Server	Domain	Name:	A	variable-length	name	of	a	name	server
that	should	be	authoritative	for	this	record's	named	object.	Like	all
names,	this	name	is	encoded	using	standard	DNS	name	notation.	A
request	for	this	RR	type	normally	results	in	an	A	record	for	the	name
server	specified	also	being	returned	in	the	Additional	section	of	the
response,	if	available.

CName	(Canonical	Name)	RR	(Type	Value	5)
The	CName	data	field	contains	the	real	name	of	a	named	object	that	has	been
referenced	using	an	alias,	as	shown	in	Table	57-10.

Table	57-10.	DNS	Canonical	Name	RR	Data	Format

Subfield
Name

Size
(Bytes)

Description

CName Variable Canonical	Name:	The	canonical	(real)	name	of	the	named	object.	This
name	is	then	resolved	using	the	standard	DNS	resolution	procedure	to	get
the	address	for	the	originally	specified	name.

SOA	(Start	Of	Authority)	RR	(Type	Value	6)
The	SOA	record	marks	the	start	of	a	DNS	zone	and	contains	key	information
about	how	it	is	to	be	managed	and	used.	The	SOA	record	is	the	most	complex	of
the	DNS	RR	types.	Its	format	is	explained	in	Table	57-11	and	illustrated	in



Figure	57-5.	See	the	discussion	of	zone	transfers	in	Chapter	55	for	information
about	how	the	fields	in	this	RR	are	used.

Table	57-11.	DNS	Start	Of	Authority	RR	Data	Format

Subfield
Name

Size
(Bytes)

Description

MName Variable Master	Name:	The	domain	name	of	the	name	server	that	is	the	source	of
the	data	for	the	zone.	This	is	normally	the	primary	authoritative	server	for
the	zone.	It	is	encoded	using	the	standard	DNS	name	format.

RName Variable Responsible	Name:	The	email	address	of	the	person	responsible	for	this
zone.	Email	addresses	in	DNS	are	encoded	using	a	special	variation	of
the	regular	DNS	name	notation,	discussed	later	in	this	chapter.

Serial 4 Serial	Number:	The	serial	number,	or	version	number,	of	the	RR	database
for	this	zone.	Used	to	determine	when	changes	have	been	made	to	the
database	to	trigger	zone	transfers.

Refresh 4 Refresh	Interval:	The	number	of	seconds	that	secondary	name	servers	for
this	zone	will	wait	between	attempts	to	check	for	changes	made	to	the
zone	database	on	the	primary	name	server.

Retry 4 Retry	Interval:	The	number	of	seconds	a	secondary	name	server	waits
before	trying	again	to	check	with	a	primary	for	changes	if	its	previous
attempt	failed.

Expire 4 Expire	Interval:	The	number	of	seconds	that	can	elapse	between
successful	contacts	with	the	primary	name	server	before	a	secondary
name	server	must	consider	the	information	it	holds	stale.

Minimum 4 Negative	Caching	TTL:	Originally	carried	the	default	TTL	value	for
records	where	no	explicit	TTL	value	was	specified.	Now	represents	the
zone's	negative	cache	TTL.	See	the	discussion	of	DNS	name	server
caching	in	Chapter	55.

PTR	(Pointer)	RR	(Type	Value	12)
The	PTR	record	carries	a	pointer	to	an	RR.	It's	used	for	reverse	address	lookups.
It	contains	one	data	field,	shown	in	Table	57-12.

Table	57-12.	DNS	Pointer	RR	Data	Format

Subfield Size Description



Subfield
Name

Size
(Bytes)

Description

PTRDName Variable Pointer	Domain	Name:	A	variable-length	domain	name.	This	is	a	name
pointed	to	by	the	RR.	See	the	description	of	reverse	resolution	in
Chapter	56	for	the	most	common	way	that	this	record	type	is	used.

Figure	57-5.	DNS	Start	Of	Authority	(SOA)	RR	Data	Format

MX	(Mail	Exchange)	RR	(Type	Value	15)
The	special	MX	record	contains	information	about	the	mail	server(s)	to	be	used
for	sending	email	to	the	domain	(see	Chapter	56).	Each	record	contains	two
fields,	as	shown	in	Table	57-13.

Table	57-13.	DNS	Mail	Exchange	RR	Data	Format

Subfield
Name

Size
(Bytes)

Description

Preference 2 Preference	Value:	The	preference	level	for	this	mail	exchange.	Lower
values	signify	higher	preference.

Exchange Variable Exchange	Domain	Name:	The	domain	name,	encoded	using	standard



Exchange Variable Exchange	Domain	Name:	The	domain	name,	encoded	using	standard
DNS	name	notation,	of	a	host	willing	to	provide	mail	exchange	services
for	this	named	object.

TXT	(Text)	RR	(Type	Value	16)
The	TXT	record	contains	additional	descriptive	information	about	the	named
object,	as	shown	in	Table	57-14.

Table	57-14.	DNS	Text	RR	Data	Format

Subfield	Name Size	(Bytes) Description

TXT-Data Variable Text	Data:	Variable-length	descriptive	text.



DNS	Name	Notation	and	Message	Compression
Obviously,	the	entire	DNS	protocol	is	oriented	around	dealing	with	names	for
domains,	subdomains,	and	objects.	As	you've	seen	in	the	preceding	topics,	there
are	many	fields	in	DNS	messages	and	RRs	that	carry	the	names	of	objects,	name
servers,	and	so	forth.	DNS	uses	a	special	notation	for	encoding	names	in	RRs
and	fields,	a	variation	of	this	notation	for	email	addresses,	and	a	special
compression	method	that	reduces	the	size	of	messages	for	efficiency.

Standard	DNS	Name	Notation
In	Chapter	53,	you	learned	how	DNS	names	are	constructed.	Each	node	in	the
name	hierarchy	has	a	label	associated	with	it.	The	fully	qualified	domain	name
(FQDN)	for	a	particular	device	consists	of	the	sequence	of	labels	that	starts	from
the	root	of	the	tree	and	progresses	down	to	that	device.	The	labels	at	each	level
in	the	hierarchy	are	listed	in	sequence,	starting	with	the	highest	level,	from	right
to	left,	separated	by	dots.	This	results	in	the	domain	names	we	are	used	to
working	with,	such	as	www.xyzindustries.com.

It	would	be	possible	to	encode	these	names	into	RRs	or	other	DNS	message
fields	directly:	Put	the	letter	w	into	each	of	the	first	three	bytes	of	the	name,	then
put	a	dot	(.)	into	the	fourth	byte,	an	x	into	the	fifth	byte,	and	so	on.	The
disadvantage	of	this	is	that	as	a	computer	was	reading	the	name,	it	wouldn't	be
able	to	tell	when	each	name	was	finished.	We	would	need	to	include	a	length
field	for	each	name.

Instead,	DNS	uses	a	special	notation	for	DNS	names.	Each	label	is	encoded,	one
after	the	next,	in	the	name	field.	Before	each	label,	a	single	byte	is	used	that
holds	a	binary	number	indicating	the	number	of	characters	in	the	label.	Then	the
label's	characters	are	encoded,	one	per	byte.	The	end	of	the	name	is	indicated	by
a	null	label,	representing	the	root;	this	has	a	length	of	zero,	so	each	name	ends
with	just	a	0	character,	indicating	this	zero-length	root	label.

Note	that	the	dots	between	the	labels	aren't	necessary,	since	the	length	numbers
delineate	the	labels.	The	computer	reading	the	name	also	knows	how	many	bytes
are	in	each	label	as	it	reads	the	name,	so	it	can	easily	allocate	space	for	the	label
as	it	reads	it	from	the	name.

http://www.xyzindustries.com


For	example,	www.xyzindustries.com	would	be	encoded	as	follows:
[3] w w w [13] x y z i n d u s t r i e s [3] c o m [0]

I	have	shown	the	label	lengths	in	square	brackets	to	distinguish	them.	Remember
that	these	label	lengths	are	binary	encoded	numbers,	so	a	single	byte	can	hold	a
value	from	0	to	255;	that	[13]	is	one	byte,	not	two,	as	you	can	see	in	Figure	57-6.
Labels	are	actually	limited	to	a	maximum	of	63	characters,	and	you'll	see	shortly
why	this	is	significant.

Figure	57-6.	DNS	standard	name	notation	In	DNS,	every	named	object	or	other	name	is	represented	by
a	sequence	of	label	lengths	and	then	labels,	with	each	label	length	taking	one	byte	and	each	label	taking

one	byte	per	character.	This	example	shows	the	encoding	of	the	name	www.xyzindustries.com.

DNS	Electronic	Mail	Address	Notation
Email	addresses	are	used	in	certain	DNS	resource	records,	such	as	the	RName
field	in	the	SOA	RR.	Email	addresses	take	the	form	<name>@<domain-name>.
DNS	encodes	these	in	exactly	the	same	way	as	regular	DNS	domains,	simply
treating	the	@	like	another	dot.	So,	johnny@somewhere.org	would	be	treated	as
johnny.somewhere.org	and	encoded	as	follows:

[6] j o h n n y [9] s o m e w h e r e [3] o r g [0]

Note	that	there	is	no	specific	indication	that	this	is	an	email	address.	The	name	is
interpreted	as	an	email	address	instead	of	a	device	name	based	on	context.

DNS	Message	Compression
A	single	DNS	message	may	contain	many	domain	names.	Now,	consider	that
when	a	particular	name	server	sends	a	response	containing	multiple	domain
names,	they	are	all	usually	in	the	same	zone	or	are	related	to	the	zone.	Most	of
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these	names	will	have	common	elements	to	their	names.

Consider	our	previous	mail	example	of	a	client	asking	for	an	MX	record	for
xyzindustries.com.	The	response	to	this	client	will	contain,	among	other	things,
these	two	records:

MX	Record	An	MX	record	that	has	xyzindustries.com	in	the	Name	field	of	the
record	and	mail.xyzindustries.com	in	the	RData	field.

A	Record	Assuming	the	name	server	knows	the	IP	address	of
mail.xyzindustries.com,	the	Additional	section	will	contain	an	A	record	that	has
mail.xyzindustries.com	in	the	Name	field	and	its	address	in	the	RData	field.

This	is	just	one	small	example	of	name	duplication.	It	can	be	much	more
extreme	with	other	types	of	DNS	messages,	with	certain	string	patterns	being
repeated	many	times.	Normally,	this	would	require	that	each	name	be	spelled	out
fully	using	the	encoding	method	described	here.	But	this	would	be	wasteful,
since	a	large	portion	of	these	names	is	common.	To	cut	down	on	this	duplication,
a	special	technique	called	message	compression	is	used.

Using	Message	Compression	to	Avoid	Duplication	of	a	Full
Name
Using	message	compression,	instead	of	a	DNS	name	encoded	using	the
combination	of	labels	and	label	lengths,	a	two-byte	subfield	represents	a	pointer
to	another	location	in	the	message	where	the	name	can	be	found.	The	first	two
bits	of	this	subfield	are	set	to	1	(the	value	11	in	binary),	and	the	remaining	14
bits	contain	an	offset	that	specifies	where	in	the	message	the	name	can	be	found,
counting	the	first	byte	of	the	message	(the	first	byte	of	the	ID	field)	as	0.

Let's	go	back	to	our	example.	Suppose	that	in	the	DNS	message,	the	RData	field
of	the	MX	record,	containing	mail.xyzindustries.com,	begins	at	byte	47.	In	this
first	instance,	we	would	find	the	name	encoded	in	full	as	follows:

[4] m a i l [13] x y z i n d u s t r i e s [3] c o m [0]

However,	in	the	second	instance,	where	mail.xyzindustries.com	shows	up	in	the
Name	field	of	the	A	record,	we	would	instead	put	two	1	bits,	followed	by	the
number	47	encoded	in	binary.	So,	this	would	be	the	16-bit	binary	pattern
11000000	00101111,	or	two	numeric	byte	values	192	and	47.	This	second
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instance	now	takes	2	bytes	instead	of	duplicating	the	24	bytes	needed	for	the	first
instance	of	the	name.

How	does	a	device	reading	a	Name	field	differentiate	a	pointer	from	a	real
name?	This	is	the	reason	that	11	is	used	at	the	start	of	the	field.	Doing	this
guarantees	that	the	first	byte	of	the	pointer	will	always	have	a	value	of	192	or
larger.	Since	labels	are	restricted	to	a	length	of	63	or	less,	when	the	host	reads
the	first	byte	of	a	name,	if	it	sees	a	value	of	63	or	less	in	a	byte,	it	knows	this	is	a
real	name;	a	value	of	192	or	more	means	it	is	a	pointer.

Using	Message	Compression	to	Avoid	Duplication	of	Part
of	a	Name
The	previous	example	shows	how	pointers	can	be	used	to	eliminate	duplication
of	a	whole	name:	The	name	mail.xyzindustries.com	was	used	in	two	places,	and
a	pointer	was	used	instead	of	the	second.	Pointers	are	even	more	powerful	than
this,	however.	They	can	also	be	used	to	point	to	only	part	of	a	real	name	or	can
be	combined	with	additional	labels	to	provide	a	compressed	representation	of	a
name	related	to	another	name	in	a	RR.	This	provides	even	greater	space	savings.

In	the	previous	example,	this	means	that	even	the	first	instance	of
mail.xyzindustries.com	can	be	compressed.	Recall	that	the	MX	record	will	have
xyzindustries.com	in	the	Name	field	and	mail.xyzindustries.com	in	the	RData
field.	If	the	Name	field	of	that	record	starts	at	byte	19,	then	we	can	encode	the
RData	field	as	follows:

[4] m a i l [pointer-to-byte-19]

The	device	reading	the	record	will	get	"mail"	for	the	first	label	and	then	read
"xyzindustries.com"	from	the	Name	field	to	get	the	complete	name,
mail.xyzindustries.com.

Similarly,	suppose	we	had	a	record	in	this	same	message	that	contained	a
reference	to	the	parent	domain	for	xyzindustries.com,	which	is	"com."	This
could	simply	be	encoded	as	follows:

[pointer-to-byte-33]

The	reason	is	that	byte	33	is	where	we	find	the	[3] c o m [0]	part	of	the	Name
field	containing	[13] x y z i n d u s t r i e s [3] c o m [0].
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DNS	Master	File	Format
DNS	servers	answer	queries	from	clients	by	sending	reply	messages	containing
RRs.	You	have	already	seen	in	this	chapter	the	binary	message	formats	used	to
encode	these	RRs.	These	message	formats	are	great	for	transmitted	messages,
because	they	are	compact	and	efficient.	Computers	have	no	problem	reading
fields	very	quickly	and	knowing	how	to	interpret	a	particular	string	of	ones	and
zeros.

Humans,	on	the	other	hand,	don't	deal	well	with	cryptic	codes	in	binary.	Before
an	RR	can	be	provided	by	a	server,	it	is	necessary	for	a	human	administrator	to
tell	the	server	what	those	records	are	and	what	information	they	contain.	To
make	this	job	easier,	DNS	includes	a	special	text	representation	for	zones	and
RRs.	Administrators	edit	special	master	files	that	describe	the	zone	and	the
records	it	contains.	These	files	are	then	read	into	memory	by	the	server's	DNS
software	and	converted	into	binary	form	for	responding	to	client	requests.	This	is
described	in	more	detail	in	Chapter	56.

Each	master	file	consists	of	a	simple,	flat	text	file	that	can	be	created	with	any
sort	of	text	editor.	Each	file	contains	a	number	of	lines	expressed	using	a	simple
set	of	syntax	rules	that	describe	a	zone	and	the	records	within	it.	The	basic
syntactic	rules	for	DNS	master	files	are	specified	in	RFC	1035,	Section	5.1.
Certain	DNS	implementations	use	their	own	variations	on	the	syntax	in	the
standard,	though	they	are	all	pretty	similar.

DNS	Common	Master	File	Record	Format
Just	as	all	RRs	are	stored	internally	using	a	common	field	format,	they	also	use	a
common	master	file	format.	Each	record	normally	appears	on	a	separate	line	of
the	file.	This	format	is	as	follows,	with	optional	fields	shown	in	square	brackets:

<domain-name>  [<ttl>]  <class>  <type>  <rdata>

The	fields	are	as	follows:

<domain-name>	A	DNS	domain	name,	which	may	be	either	an	FQDN	or	a
partially	qualified	name	(PQDN).

<ttl>	A	TTL	value,	in	seconds,	for	the	record.	If	omitted,	the	default	TTL	value



for	the	zone	is	used.	In	fact,	most	RRs	do	not	have	a	specified	TTL	and	just	use
the	default	provided	by	the	SOA	record.

<class>	The	RR	class.	For	modern	DNS,	this	field	is	optional,	and	it	defaults	to
IN,	for	Internet.

<type>	The	RR	type,	specified	using	a	text	code	such	as	A	or	NS,	not	the
numeric	code.

<rdata>	RR	data,	which	is	a	set	of	space-separated	entries	that	depends	on	the
record	type.

The	<rdata>	can	be	either	a	single	piece	of	information	or	a	set	of	entries,
depending	on	the	record	type.	In	the	case	of	longer	record	types,	especially	the
SOA	record,	multiple	entry	<rdata>	fields	are	spread	over	several	lines	and
enclosed	in	parentheses;	the	parentheses	make	all	the	entries	act	as	if	they	were
on	a	single	line.	Note	that	if	the	<ttl>	field	is	present,	the	order	of	it	and	the
<class>	field	may	be	switched	without	any	problems,	because	one	is	a	number
and	the	other	text	(IN).

Use	and	Interpretation	of	Partially	Qualified
Domain	Names	(PQDNs)
Domain	names	may	be	mixed	between	FQDNs	and	PQDNs	(described	in
Chapter	53).	PQDNs	are	used	to	make	master	files	faster	to	create	and	more
readable,	by	cutting	down	on	the	common	parts	of	names.	They	are	sort	of	the
human	equivalent	of	DNS	message	compression.	An	FQDN	is	shown	as	a	full
domain	name	ending	in	a	dot	(.)	to	represent	the	DNS	name	tree	root.	A	PQDN
is	given	as	just	a	partial	name	with	no	root,	and	is	interpreted	as	an	FQDN	by	the
software	reading	the	master	file.	(See	the	description	of	the	$ORIGIN	directive	in
the	next	section	for	more	information.)

It	is	important	to	remember	the	trailing	dot	to	mark	FQDNs.	If	the	origin	is
xyzindustries.com	and	in	its	zone	file	the	name	bigisp.net	appears,	the	server	will
read	this	as	bigisp.net.xyzindustries.com—probably	not	what	you	want.	Also,
email	addresses,	such	as	the	<r-name>	field	in	the	SOA	record,	have	the	@	of
the	email	address	converted	to	a	dot,	following	the	standard	DNS	convention.

http://xyzindustries.com
http://bigisp.net.xyzindustries.com


Master	File	Directives
In	addition	to	RRs,	most	master	file	implementations	also	support	the	use	of
directives.	These	are	commands	that	specify	certain	important	pieces	of
information	to	guide	how	the	master	file	is	to	be	interpreted.	The	following	are
three	of	the	most	common	directives:

$ORIGIN	Specifies	the	domain	name	that	is	appended	to	unqualified
specifications.	This	is	the	base	used	to	convert	PQDNs	to	FQDNs.	For	example,
if	the	origin	is	xyzindustries.com.,	then	a	PQDN	such	as	"sales"	will	be
interpreted	as	sales.xyzindustries.com.	Once	defined,	the	origin	can	be
referenced	by	just	using	@	in	place	of	a	name,	as	you	will	see	in	the	example	of
a	sample	master	file	shown	at	the	end	of	this	section.

$TTL	Specifies	the	default	TTL	value	to	be	used	for	any	RRs	that	do	not	specify
a	TTL	value	in	the	record	itself.	(This	value	was	formerly	specified	by	the
Minimum	field	in	the	SOA	record.)

$INCLUDE	Allows	one	master	file	to	include	the	contents	of	another.	This	is
sometimes	used	to	save	the	duplication	of	certain	entries	that	are	common
between	zones.

Syntax	Rules	for	Master	Files
There	are	a	few	other	syntax	rules	for	DNS	master	files,	some	of	which	are
intended	to	save	time	or	energy	on	the	part	of	administrators:

Multiple-Record	Shorthand	If	multiple	consecutive	records	pertain	to	the	same
domain,	the	<domain-name>	is	specified	for	the	first	one	and	can	be	then	be	left
blank	for	the	subsequent	ones.	The	server	will	assume	that	any	RRs	without	a
<domain-name>	indicated	apply	to	the	last	<domain-name>	it	saw.

Comments	A	semicolon	(;)	marks	a	comment.	Any	text	from	the	semicolon
until	the	end	of	the	line	is	ignored.

Escape	Character	A	backslash	(\)	is	used	to	"escape"	the	special	meaning	of	a
character.	For	example,	a	double-quotation	(quote)	mark	(")	is	used	to	delimit
text	strings;	a	literal	double-quote	character	is	indicated	by	a	backslash–double-
quote	combination	(\").

http://xyzindustries.com
http://sales.xyzindustries.com


White	Space	Tabs	and	spaces	are	used	as	delimiters	and	blank	lines	are	ignored.
For	readability,	most	smart	administrators	indent	using	tabs	to	clarify	which
records	belong	with	which	names,	and	group	records	using	blank	lines	and
comments.

Case	Like	DNS	domain	names,	master	file	entries	are	case-insensitive.

Specific	RR	Syntax	and	Examples
The	following	sections	show	the	specific	formats	and	examples	for	each	of	the
common	RR	types.	The	fields	are	basically	the	same	as	the	ones	explained	in	the
NS	binary	record	formats.	The	examples	include	explanatory	comments	using
the	DNS	comment	format.	Assume	that	these	examples	are	for	the	zone
googleplex.edu.

A	(Address)	RR
The	format	for	an	A	record	is	as	follows:

<domain-name> [<ttl>] IN A <ip-address>

Here	is	an	example:
admin1.googleplex.edu IN A 204.13.100.3    ; An FQDN
admin2 IN A 204.13.100.44                  ; A PQDN equivalent to
                                           ; admin2.googleplex.edu

NS	(Name	Server)	RR
The	format	for	an	NS	record	is	as	follows:

<domain-name>  [<ttl>]  IN  NS  <name-server-name>

Here	is	an	example:
< googleplex.edu. IN NS custns.bigisp.net  ; Secondary NS

CName	(Canonical	Name)	RR
The	format	for	a	CName	record	is	as	follows:

<domain-name>  [<ttl>]  IN  CNAME  <canonical-name>

Here	is	an	example:
www IN CNAME bigserver   ; www.googleplex.edu is really
                         ; bigserver.googleplex.edu.

SOA	(Start	Of	Authority)	RR



The	format	for	an	SOA	record	is	as	follows:
<domain-name> [<ttl>] IN SOA <m-name> <r-name> (
      <serial-number>
      <refresh-interval>
      <retry-interval>
      <expire-interval>
      <default-ttl>)

Here	is	an	example:
< googleplex.edu. IN SOA ns1.googleplex.edu it.googleplex.edu (
      42     ; Version 42 of the zone.
      21600  ; Refresh every 6 hours.
      3600   ; Retry every hour.
      604800 ; Expire after one week.
      86400) ; Negative Cache TTL is one day.

PTR	(Pointer)	RR
The	format	for	a	PTR	record	is	as	follows:

<reverse-domain-name> [<ttl>] IN PTR <domain-name>

Here	is	an	example:
3.100.13.204.IN-ADDR.ARPA. IN PTR admin1.googleplex.edu.

Note	that	the	PTR	record	would	actually	be	in	the	IN-ADDR.ARPA	domain.

MX	(Mail	Exchange)	RR
The	format	of	an	MX	record	is	as	follows:

<domain-name> [<ttl>] IN MX <preference-value> <exchange-name>

Here	is	an	example:
googleplex.edu.     IN MX 10 mainmail.googleplex.edu.
                    IN MX 20 backupmail.googleplex.edu

TXT	(Text)	RR
The	format	of	a	TXT	record	is	as	follows:

<domain-name> [<ttl>] IN TXT <text-information>

Here	is	an	example:
googleplex.edu. IN TXT "Contact Joe at X321 for more info."

Sample	Master	File
The	following	is	a	real-world	example	of	a	DNS	master	file,	taken	from	my	own



pcguide.com	server	(slightly	modified),	hosted	by	(and	DNS	information
provided	by)	the	fine	folks	at	pair.com.	Note	the	use	of	@	as	a	shortcut	to	mean
"this	domain"	(pcguide.com).

$ORIGIN pcguide.com.
@ IN SOA ns23.pair.com. root.pair.com. (
      2001072300  ; Serial
      3600        ; Refresh
      300         ; Retry
      604800      ; Expire
      3600 )      ; Minimum
 
@ IN NS ns23.pair.com.
@ IN NS ns0.ns0.com.
 
localhost  IN A  127.0.0.1
@          IN A  209.68.14.80
           IN MX 50  qs939.pair.com.
 
www    IN CNAME   @
ftp    IN CNAME   @
mail   IN CNAME   @
relay  IN CNAME   relay.pair.com.

http://pcguide.com
http://pair.com
http://pcguide.com


DNS	Changes	to	Support	IPv6
Version	4	of	the	Internet	Protocol	(IPv4)	is	the	basis	of	today's	Internet	and	the
foundation	upon	which	the	TCP/IP	protocol	suite	is	built.	While	IPv4	has	served
us	well	for	over	two	decades,	it	has	certain	important	drawbacks	that	would	limit
internetworks	of	the	future	if	it	were	to	continue	to	be	used.	For	this	reason,	the
next	generation	of	IP,	IP	version	6	(IPv6),	has	been	in	development	for	many
years.	IPv6	will	eventually	replace	IPv4	and	take	TCP/IP	into	the	future.

The	change	from	IPv4	to	IPv6	will	have	effects	that	ripple	to	other	TCP/IP
protocols,	including	DNS.	DNS	is	a	higher-level	protocol,	so	you	might	think
that	based	on	the	principle	of	layering,	a	change	to	IP	should	not	affect	it.
However,	this	is	another	example	of	how	strict	layering	doesn't	always	apply.
DNS	works	directly	with	IP	addresses,	and	one	of	the	most	significant
modifications	that	IPv6	makes	to	IP	is	in	the	area	of	addressing,	so	this	means
that	using	DNS	on	IPv6	requires	some	changes	to	how	the	protocol	works.

IPv6	DNS	Extensions
In	fact,	because	DNS	is	so	architecturally	distant	from	IP	down	there	at	layer	3,
the	changes	required	are	not	extensive.	RFC	1886,	"IPv6	DNS	Extensions,"
published	in	December	1995,	was	the	Internet	Engineering	Task	Force's	(IETF's)
first	formalized	attempt	to	describe	the	changes	needed	in	DNS	to	support	IPv6.
It	defines	three	specific	modifications	to	DNS	for	IPv6:

New	RR	Type—AAAA	(IPv6	Address)	The	regular	DNS	Address	(A)	RR	is
defined	for	a	32-bit	IPv4	address,	so	a	new	one	was	created	to	allow	a	domain
name	to	be	associated	with	a	128-bit	IPv6	address.	The	four	As	(AAAA)	are	a
mnemonic	to	indicate	that	the	IPv6	address	is	four	times	the	size	of	the	IPv4
address.	The	AAAA	record	is	structured	in	very	much	the	same	way	as	the	A
record	in	both	binary	and	master	file	formats;	it	is	just	much	larger.	The	DNS
RR	Type	value	for	AAAA	is	28.

New	Reverse	Resolution	Hierarchy	A	new	hierarchical	structure	similar	to	IN-
ADDR.ARPA	is	defined	for	IPv6	reverse	lookups,	but	the	IETF	put	it	in	a
different	top-level	domain	(TLD).	The	new	domain	is	IP6.INT	and	is	used	in	a
way	similar	to	how	IN-ADDR.ARPA	works.	However,	since	IPv6	addresses	are



expressed	in	hexadecimal	instead	of	dotted-decimal,	IP6.INT	has	16	subdomains
0	through	F,	and	each	of	those	has	16	subdomains	0	through	F,	and	so	on,	16
layers	deep.	Yes,	this	leads	to	a	potentially	frightfully	large	reverse	resolution
database!

Changes	to	Query	Types	and	Resolution	Procedure	All	query	types	that	work
with	A	records	or	result	in	A	records	being	included	in	the	Additional	section	of
a	reply	must	be	changed	to	also	handle	AAAA	records.	Also,	queries	that	would
normally	result	in	A	records	being	returned	in	the	Additional	section	must	return
the	corresponding	AAAA	records	only	in	the	Answer	section,	not	in	the
Additional	section.

TIP

KEY	CONCEPT	Even	though	DNS	resides	far	above	IP	in	the	TCP/IP	protocol	suite	architecture,	it
works	intimately	with	IP	addresses.	For	this	reason,	changes	are	required	to	allow	it	to	support	the	new
IPv6.	These	changes	include	the	definition	of	a	new	IPv6	address	RR	(AAAA),	a	new	reverse	resolution
domain	hierarchy,	and	certain	changes	to	how	messaging	is	performed.

Proposed	Changes	to	the	IPv6	DNS	Extensions
In	2000,	the	IETF	published	RFC	2874,	"DNS	Extensions	to	Support	IPv6
Address	Aggregation	and	Renumbering."	This	standard	proposed	a	replacement
for	the	IPv6	support	introduced	in	RFC	1886,	using	a	new	record	type,	A6,
instead	of	RFC	1886's	AAAA.	The	main	difference	between	AAAA	and	A6
records	is	that	the	former	are	just	whole	addresses	like	A	records,	while	A6
records	can	contain	either	a	whole	or	partial	address.

The	idea	behind	RFC	2874	was	that	A6	records	could	be	set	up	in	a	manner	that
complements	the	IPv6	format	for	unicast	addresses	(see	Chapter	25).	Then	name
resolution	would	involve	a	technique	called	chaining	to	determine	a	full	address
for	a	name	from	a	set	of	partially	specified	address	components.	In	essence,	this
would	make	the	addresses	behave	much	the	way	hierarchical	names	themselves
work,	providing	some	potential	flexibility	benefits.

For	a	couple	of	years,	both	RFC	1886	and	RFC	2874	were	proposed	standards,
and	this	led	to	considerable	confusion.	In	August	2002,	RFCs	3363	and	3364
were	published,	which	clarified	the	situation	with	these	two	proposals.	RFC
3363	represents	the	"Supreme	Court	decision,"	which	was	that	RFC	2874	and



3363	represents	the	"Supreme	Court	decision,"	which	was	that	RFC	2874	and
the	A6	record	be	changed	to	experimental	status	and	the	AAAA	record	of	RFC
1886	be	kept	as	the	DNS	IPv6	standard.

The	full	explanation	for	the	decision	can	be	found	in	RFC	3364.	In	a	nutshell,	it
boiled	down	to	the	IETF	believing	that	there	were	significant	potential	risks	in
the	successful	implementation	of	RFC	2874.	While	the	capabilities	of	the	A6
record	were	interesting,	it	was	not	clear	that	they	were	needed,	and	given	those
risks,	the	IETF	felt	that	sticking	with	RFC	1886	was	the	better	move.



Part	III-2.	NETWORK	FILE	AND	RESOURCE
SHARING	PROTOCOLS
Chapter	58

To	the	typical	end	user,	networks	were	created	for	one	main	reason:	to	permit	the
sharing	of	information.	Most	information	on	computers	exists	in	the	form	of	files
that	reside	on	storage	devices	such	as	hard	disks;	thus,	one	primary	purpose	of
networks	is	to	let	users	share	files.	File	transfer	and	message	transfer	protocols
allow	users	to	manually	move	files	from	one	place	to	the	next,	but	a	more
automated	method	is	preferable	in	many	cases.	Internetworking	protocols
provide	such	capabilities	in	the	form	of	network	file	and	resource	sharing
protocols.

In	this	brief	part,	I	describe	network	file	and	resource	sharing	protocols	from	the
standpoint	of	TCP/IP	networks.	The	one	chapter	here	provides	an	overview	of
the	concepts	and	operation	of	this	class	of	protocols,	discussing	some	of	the
elements	common	to	the	different	types.	It	then	describes	the	most	common	one
defined	specifically	for	TCP/IP:	the	Network	File	System	(NFS).

Obviously,	network	file	and	resource	sharing	protocols	and	services	are	closely
related	to	the	file	and	message	transfer	protocols	I	mentioned	earlier.	For
example,	NFS	can	be	used	to	accomplish	tasks	similar	to	those	performed	by
TCP/IP	file	and	message	transfer	applications	such	as	the	File	Transfer	Protocol
(FTP)	and	the	Hypertext	Transfer	Protocol	(HTTP).	I	consider	those	protocols
more	like	specific	end-user	applications	unto	themselves,	and	therefore	describe
them	in	later	parts	on	application	protocols	(FTP	in	Part	III-6	and	HTTP	in
Part	III-8).	I	realize	that	this	distinction	between	manual	and	automatic	file
transfer	is	somewhat	arbitrary,	but	then,	so	are	a	lot	of	other	things	in	the	great
world	of	networking.



Chapter	58.	NETWORK	FILE	AND
RESOURCE	SHARING	AND	THE
TCP/IP	NETWORK	FILE	SYSTEM
(NFS)

File	and	resource	sharing	protocols	are	important	because	they	let	users
seamlessly	share	files	over	a	network.	Due	to	the	dominance	of	Microsoft
operating	systems	in	the	industry,	many	people	are	familiar	with	the	way
Microsoft	networking	can	be	used	in	this	way.	However,	Microsoft	is	somewhat
of	a	"Johnny	come	lately"	to	file	sharing	protocols.	Long	before	Microsoft
Windows	even	existed,	the	Network	File	System	(NFS)	was	letting	users	share
files	over	a	network	using	the	UNIX	operating	system.

In	this	chapter,	I	provide	a	brief	look	at	network	file	and	resource	sharing	in
TCP/IP,	with	a	focus	on	the	operation	of	NFS.	I	begin	with	a	general	look	at	file
and	resource	sharing	protocol	concepts.	Then	I	provide	an	overview	and	history
of	NFS,	and	discuss	its	common	versions	and	standards.	I	describe	the
architecture	of	NFS	and	the	three	components	that	compose	it.	I	then	describe
the	NFS	file	system	model	and	how	data	is	encoded	using	the	External	Data
Representation	(XDR)	standard.	I	explain	the	client/server	operation	of	NFS
using	Remote	Procedure	Calls	(RPCs).	I	then	list	the	procedures	and	operations
used	in	NFS,	and	conclude	with	a	description	of	the	separate	NFS	Mount
protocol,	used	to	attach	network	resources	to	a	device.

File	and	Resource	Sharing	Concepts	and
Components
A	primary	reason	why	networks	and	internetworks	are	created	is	to	allow	files



A	primary	reason	why	networks	and	internetworks	are	created	is	to	allow	files
and	other	resources	to	be	shared	among	computers.	Thus,	in	any	internetworking
protocol	stack,	we	need	some	mechanism	by	which	users	can	easily	move	files
across	a	network	in	a	simple	way.	Application	layer	file	and	message	transfer
protocols	like	the	File	Transfer	Protocol	(FTP)	and	Hypertext	Transfer	Protocol
(HTTP)	were	created	for	just	this	purpose:	to	let	users	access	resources	across	a
network	while	hiding	the	details	of	how	the	network	operates	at	the	layers	below
them.

However,	even	though	these	protocols	hide	the	lower	layers,	they	are	somewhat
manual	in	nature.	They	require	a	user	to	invoke	an	application	protocol	and	use
specific	commands	that	accomplish	network-based	resource	access.	In	fact,	the
problem	with	such	protocols	isn't	so	much	that	they	require	manual	intervention,
but	that	they	make	sharing	more	difficult	because	they	don't	allow	a	file	to	be
used	directly	on	another	resource.

Consider	a	protocol	like	FTP.	It	does	lets	you	share	files	between	machines,	but
it	draws	a	clear	distinction	between	a	file	that	is	yours	and	a	file	that	is	someone
else's.	If	you	want	to	use	a	file	on	Joe's	machine,	you	must	transfer	it	to	your
machine,	use	it,	and	then	transfer	it	back.	Also,	if	you	don't	transfer	the	file	back,
Joe	might	never	even	see	the	updated	version.

The	Power	of	File	and	Resource	Sharing
Protocols
The	ultimate	in	file	and	resource	sharing	is	achieved	when	we	can	hide	even	the
details	of	where	the	files	are	located	and	the	commands	required	to	move	them
around.	Such	a	system	would	use	an	automatic	sharing	protocol	that	lets	files
and	resources	be	used	over	a	network	seamlessly.	Once	set	up,	a	network
resource	in	such	a	scheme	can	be	used	in	much	the	same	way	that	one	on	a	local
computer	is.	Such	protocols	are	sometimes	called	network	file	and	resource
sharing	protocols.

It	is	this	blurring	of	the	line	between	a	local	file	and	a	remote	one	that	makes	file
and	resource	sharing	protocols	so	powerful.	Once	the	system	is	set	up,	users	can
access	resources	on	another	host	as	readily	as	on	their	own	host.	This	is	an
extremely	useful	capability,	especially	in	the	modern	era	of	client/server
computing.	For	example,	it	allows	a	company	to	store	information	that	is	used	by



computing.	For	example,	it	allows	a	company	to	store	information	that	is	used	by
many	individuals	in	a	common	place,	such	as	in	a	directory	on	a	server,	where
each	of	those	individuals	can	access	it.	In	essence,	there	is	a	virtual	file	system
that	spans	network	devices,	instead	of	being	simply	on	one	storage	device	on	a
single	computer.

Components	of	a	File	and	Resource	Sharing
Protocol
File	and	transfer	protocols	allow	users	to	share	files	effortlessly,	but	that	doesn't
mean	no	work	is	involved.	The	work	is	still	there,	but	it's	shouldered	by	those
who	write	the	protocol	and	those	who	administer	its	operation.	Generally
speaking,	these	protocols	require	at	least	the	following	general	components:

File	System	Model	and	Architecture	A	mechanism	for	defining	resources	and
files	to	be	shared,	and	for	describing	how	the	virtual	file	system	works.

Resource	Access	Method	Procedures	that	describe	how	users	can	attach	or
detach	a	distant	resource	from	their	local	host.

Operation	Set	A	set	of	operations	for	accomplishing	various	tasks	that	the	users
need	to	perform	on	files	on	other	hosts.

Messaging	Protocol	Message	formats	that	carry	operations	to	be	performed,
status	information,	and	more,	and	a	protocol	for	exchanging	these	messages
between	devices.

Administrative	Tools	Miscellaneous	functionality	needed	to	support	the
operation	of	the	protocol	and	tie	the	other	elements	together.



NFS	Design	Goals,	Versions,	and	Standards
The	histories	of	TCP/IP	and	the	Internet	are	inextricably	linked,	as	I	discussed	in
Chapter	8.	However,	there	is	a	third	partner	that	is	less	often	mentioned	but	very
much	part	of	the	development	history	of	these	technologies.	That	is	the	operating
system	that	ran	on	the	machines	in	the	early	Internet	and	is	still	used	on	a	large
percentage	of	Internet	servers	today:	the	UNIX	operating	system.

Sun	Microsystems	was	one	of	the	early	pioneers	in	the	development	of	UNIX
and	in	TCP/IP	networking.	Early	in	the	evolution	of	TCP/IP,	certain	tools	were
created	to	allow	a	user	to	access	another	machine	over	the	network—after	all,
this	is	arguably	the	entire	point	of	networking.	Remote-access	protocols	such	as
Telnet	allowed	a	user	to	log	in	to	another	host	computer	and	use	resources	there.
FTP	allowed	people	to	copy	a	file	from	a	distant	machine	to	their	own	and	edit
it.	However,	neither	of	these	solutions	really	fit	the	bill	of	allowing	a	user	to
access	a	file	on	a	remote	machine	in	a	way	similar	to	how	a	local	file	is	used.	To
fill	this	need,	Sun	created	the	Network	File	System	(NFS).

NFS	Design	Goals
NFS	was	specifically	designed	with	the	goal	of	eliminating	the	distinction
between	a	local	and	a	remote	file.	To	a	user,	after	the	appropriate	setup	is
performed,	a	file	on	a	remote	computer	can	be	used	as	if	it	were	on	a	hard	disk
on	the	user's	local	machine.	Sun	also	crafted	NFS	specifically	to	be	vendor-
independent,	to	ensure	that	both	hardware	made	by	Sun	and	that	made	by	other
companies	could	interoperate.

One	of	the	most	important	design	goals	of	NFS	was	performance.	Obviously,
even	if	you	set	up	a	file	on	a	distant	machine	as	if	it	were	local,	the	actual	read
and	write	operations	must	travel	across	a	network.	Usually,	this	takes	more	time
than	simply	sending	data	within	a	computer,	so	the	protocol	itself	needed	to	be
as	lean	and	mean	as	possible.	This	decision	led	to	some	interesting	choices,	such
as	the	use	of	the	unreliable	User	Datagram	Protocol	(UDP)	for	transport	in
TCP/IP,	instead	of	the	reliable	Transmission	Control	Protocol	(TCP),	as	with
most	file	transfer	protocols.	This,	in	turn,	has	interesting	implications	on	how	the
protocol	works	as	a	whole.



Another	key	design	goal	for	NFS	was	simplicity	(which	of	course	is	related	to
performance).	NFS	servers	are	said	to	be	stateless,	which	means	that	the	protocol
is	designed	so	that	servers	do	not	need	to	keep	track	of	which	files	have	been
opened	by	which	clients.	This	allows	requests	to	be	made	independently	of	each
other,	and	allows	a	server	to	gracefully	deal	with	events	such	as	crashes	without
the	need	for	complex	recovery	procedures.

The	protocol	is	also	designed	so	that	if	requests	are	lost	or	duplicated,	file
corruption	will	not	occur.

TIP

KEY	CONCEPT	The	Network	File	System	(NFS)	was	created	to	allow	client	hosts	to	access	files	on
remote	servers	as	if	they	were	local.	It	was	designed	primarily	with	the	goals	of	performance,	simplicity,
and	cross-vendor	compatibility.

NFS	Versions	and	Standards
Since	it	was	initially	designed	and	marketed	by	Sun,	NFS	began	as	a	de	facto
standard.	The	first	widespread	version	of	NFS	was	version	2	(NFSv2),	and	this	is
still	the	most	common	version	of	the	protocol.	NFSv2	was	eventually	codified	as
an	official	TCP/IP	standard	when	RFC	1094,	"NFS:	Network	File	System
Protocol	Specification,"	was	published	in	1989.

NFS	version	3	(NFSv3)	was	subsequently	developed,	and	it	was	published	in
1995	as	RFC	1813,	"NFS	Version	3	Protocol	Specification."	It	is	similar	to
NFSv2,	but	makes	a	few	changes	and	adds	some	new	capabilities.	These	include
support	for	larger	files	and	file	transfers,	better	support	for	setting	file	attributes,
and	several	new	file	access	and	manipulation	procedures.

NFS	version	4	(NFSv4)	was	published	in	2000	as	RFC	3010,	"NFS	Version	4
Protocol."	Where	NFSv3	contained	only	relatively	small	changes	to	the	previous
version,	NFSv4	is	virtually	a	rewrite	of	NFS.	It	includes	numerous	changes,
most	notably	the	following:

Reflecting	the	needs	of	modern	internetworking,	NFSv4	puts	greater
emphasis	on	security.

NFSv4	introduces	the	concept	of	a	compound	procedure,	which	allows



several	simpler	procedures	to	be	sent	from	a	client	to	a	server	as	a	group.

NFSv4	almost	doubles	the	number	of	individual	procedures	that	a	client	can
use	in	accessing	a	file	on	an	NFS	server.

NFSv4	makes	a	significant	change	in	messaging,	with	the	specification	of
TCP	as	the	transport	protocol	for	NFS.

NFSv4	integrates	the	functions	of	the	Mount	protocol	into	the	basic	NFS
protocol,	eliminating	it	as	a	separate	protocol	as	it	is	in	previous	versions.

The	NFSv4	standard	also	has	a	lot	more	details	about	implementation	and
optional	features	than	the	earlier	standards—it's	275	pages	long.	So	much	for
simplicity!	RFC	3010	was	later	updated	by	RFC	3530,	"Network	File	System
(NFS)	Version	4	Protocol,"	in	April	2003.	This	standard	makes	several	further
revisions	and	clarifications	to	the	operation	of	NFSv4.



NFS	Architecture	and	Components
NFS	follows	the	classic	TCP/IP	client/server	model	of	operation.	A	hard	disk	or
a	directory	on	a	storage	device	of	a	particular	computer	can	be	set	up	by	an
administrator	as	a	shared	resource.	This	resource	can	then	be	accessed	by	client
computers,	which	mount	the	shared	drive	or	directory,	causing	it	to	appear	as	if
it	were	a	local	directory	on	the	client	machine.	Some	computers	may	act	as	only
servers	or	only	clients;	others	may	be	both,	sharing	some	of	their	own	resources
and	accessing	resources	provided	by	others.

Considered	from	the	perspective	of	the	TCP/IP	protocol	suite	as	a	whole,	NFS	is
a	single	protocol	that	resides	at	the	application	layer	of	the	TCP/IP	(DOD)	model
(described	in	Chapter	8).	This	TCP/IP	layer	encompasses	the	session,
presentation,	and	application	layers	of	the	OSI	Reference	Model	(described	in
Chapter	6).	As	I	have	said	before	in	this	book,	I	don't	see	much	value	in	trying	to
differentiate	between	layers	5	through	7	most	of	the	time.	In	some	situations,
however,	these	layers	can	be	helpful	in	understanding	the	architecture	of	a
protocol,	and	that's	the	case	with	NFS.

NFS	Main	Components
The	operation	of	NFS	is	defined	in	the	form	of	three	main	components	that	can
be	viewed	as	logically	residing	at	each	of	the	three	OSI	model	layers
corresponding	to	the	TCP/IP	application	layer,	as	illustrated	in	Figure	58-1:

Remote	Procedure	Call	(RPC)	RPC	is	a	generic	session	layer	service	used	to
implement	client/server	internetworking	functionality.	It	extends	the	notion	of	a
program	calling	a	local	procedure	on	a	particular	host	computer	to	the	calling	of
a	procedure	on	a	remote	device	across	a	network.

External	Data	Representation	(XDR)	XDR	is	a	descriptive	language	that
allows	data	types	to	be	defined	in	a	consistent	manner.	XDR	conceptually
resides	at	the	presentation	layer.	Its	universal	representations	allow	data	to	be
exchanged	using	NFS	between	computers	that	may	use	very	different	internal
methods	of	storing	data.

NFS	Procedures	and	Operations	The	actual	functionality	of	NFS	is



implemented	in	the	form	of	procedures	and	operations	that	conceptually	function
at	layer	7	of	the	OSI	model.	These	procedures	specify	particular	tasks	to	be
carried	out	on	files	over	the	network,	using	XDR	to	represent	data	and	RPC	to
carry	the	commands	across	an	internetwork.

These	three	key	"subprotocols,"	if	you	will,	compose	the	bulk	of	the	NFS
protocol.	Each	is	described	in	more	detail	in	a	separate	section	in	this	chapter.

Figure	58-1.	NFS	architectural	components

TIP

KEY	CONCEPT	NFS	resides	architecturally	at	the	TCP/IP	application	layer.	Even	though	in	the
TCP/IP	model	no	clear	distinction	is	made	generally	between	the	functions	of	layers	5	through	7	of	the
OSI	Reference	Model,	NFS's	three	subprotocols	correspond	well	to	those	three	layers	as	shown.NFS
resides	architecturally	at	the	application	layer	of	the	TCP/IP	model.	Its	functions	are	implemented
primarily	through	three	distinct	functional	components	that	implement	the	functions	of	layers	5	through
7	of	the	OSI	Reference	Model:	the	Remote	Procedure	Call	(RPC),	which	provide	session-layer	services;
the	External	Data	Representation	(XDR)	standard,	which	manages	data	representation	and	conversion;
and	NFS	procedures	and	operations,	which	allow	application	layer	tasks	to	be	performed	using	the	other
two	components.

Other	Important	NFS	Functions
Aside	from	it	three	main	components,	the	NFS	protocol	as	a	whole	involves	a
number	of	other	functions,	most	notably	the	following:



number	of	other	functions,	most	notably	the	following:

Mount	Protocol	A	specific	decision	was	made	by	the	creators	of	NFS	to	not
have	NFS	deal	with	the	particulars	of	file	opening	and	closing.	Instead,	a
separate	protocol	called	the	Mount	protocol	is	used	for	this	purpose.	Accessing	a
file	or	other	resource	over	the	network	involves	first	mounting	it	using	this
protocol.	The	Mount	protocol	is	architecturally	distinct,	but	obviously	closely
related	to	NFS,	and	is	even	defined	in	an	appendix	of	the	NFS	standard.	I
describe	it	in	the	last	section	in	this	chapter.	(Note	that	in	NFSv4,	the	functions
of	the	Mount	protocol	have	been	incorporated	into	NFS	proper.)

NFS	File	System	Model	NFS	uses	a	particular	model	to	implement	the	directory
and	file	structure	of	the	systems	that	use	it.	This	model	is	closely	based	on	the
file	system	model	of	UNIX,	but	is	not	specific	to	only	that	operating	system.	It	is
discussed	in	conjunction	with	the	explanation	of	the	Mount	protocol	at	the	end	of
this	chapter.

Security	Versions	2	and	3	of	NFS	include	only	limited	security	provisions.	They
use	UNIX-style	authentication	to	check	permissions	for	various	operations.
NFSv4	greatly	increases	the	security	options	available	for	NFS	implementations.
These	include	provisions	for	multiple	authentication	and	encryption	algorithms,
and	many	changes	to	the	protocol	as	a	whole	to	make	it	more	secure.



NFS	Data	Definition	with	the	External	Data
Representation	(XDR)	Standard
The	overall	idea	behind	NFS	is	to	allow	you	to	read	from	or	write	to	a	file	on
another	computer	as	readily	as	you	do	on	your	local	machine.	Of	course,	the	files
on	your	local	machine	are	all	stored	in	the	same	file	system,	using	the	same	file
structure	and	the	same	means	of	representing	different	types	of	data.	You	can't
be	sure	that	this	will	be	the	case	when	accessing	a	remote	device,	and	this	creates
a	bit	of	a	Tower	of	Babel	problem.

One	approach	would	be	to	simply	restrict	access	only	to	remote	files	on
machines	that	use	the	same	operating	system.	However,	this	would	remove	much
of	the	effectiveness	of	NFS.	It	would	also	be	highly	impractical	to	require	every
computer	to	understand	the	internal	representation	of	every	other	one.	A	more
general	method	is	needed	to	allow	even	very	dissimilar	machines	to	share	data.
To	this	end,	the	creators	of	NFS	defined	NFS	so	that	it	deals	with	data	using	a
universal	data	description	language.	This	language	is	called	the	External	Data
Representation	(XDR)	standard	and	was	originally	described	in	RFC	1014.	It
was	updated	in	RFC	1832,	"XDR:	External	Data	Representation	Standard,"	in
1995.

A	Method	of	Universal	Data	Exchange:	XDR
The	idea	behind	XDR	is	simple,	and	it	can	be	easily	understood	in	the	form	of	an
analogy.	If	you	had	delegates	speaking	50	different	languages	at	a	convention,
they	would	have	a	hard	time	communicating.	You	could	hire	translators	to
facilitate,	but	you	would	never	find	translators	to	handle	all	the	different	possible
combinations	of	languages.	A	more	practical	solution	is	to	declare	one	language,
such	as	English,	to	be	a	common	language.	You	then	need	only	49	translators:
one	to	translate	from	English	to	each	of	the	non-English	languages	and	back
again.	To	translate	from	Swedish	to	Portuguese,	you	translate	from	Swedish	to
English	and	then	from	English	to	Portuguese.	The	common	language	could	be
French,	Spanish,	or	something	else,	as	long	as	a	translator	could	be	found	from
all	the	other	languages.

XDR	works	in	the	same	manner.	When	information	about	how	to	access	a	file	is
to	be	transferred	from	Device	A	to	Device	B,	Device	A	first	converts	it	from



to	be	transferred	from	Device	A	to	Device	B,	Device	A	first	converts	it	from
Device	A's	internal	representation	to	the	XDR	representation	of	those	data	types.
The	information	is	transmitted	across	the	network	using	XDR	encoding.	Then
Device	B	translates	from	XDR	back	to	its	own	internal	representation,	so	it	can
be	presented	to	the	user	as	if	it	were	on	the	local	file	system.	Each	device	needs
to	know	only	how	to	convert	from	its	own	language	to	XDR	and	back	again;
Device	A	doesn't	need	to	know	Device	B's	internal	details	and	vice	versa.	This
sort	of	translation	is	a	classic	job	of	the	presentation	layer,	which	is	where	XDR
resides	in	the	OSI	Reference	Model.	XDR	is	itself	based	on	an	International
Organization	for	Standardization	(ISO)	standard	called	"Abstract	Syntax
Notation."

NOTE

The	idea	behind	XDR	is	also	used	in	other	protocols	to	allow	the	exchange	of	data	independent	of	the
nature	of	the	underlying	systems.	For	example,	a	similar	idea	is	behind	the	way	management	information
is	exchanged	using	the	Simple	Network	Management	Protocol	(SNMP),	which	is	described	in
Chapter	66.	The	same	basic	idea	underlies	the	important	Network	Virtual	Terminal	(NVT)	paradigm
used	in	the	Telnet	protocol,	which	is	described	in	Chapter	87.

TIP

KEY	CONCEPT	The	purpose	of	the	External	Data	Representation	(XDR)	standard	is	to	define	a
common	method	for	representing	common	data	types.	Using	this	universal	representation,	data	can	be
exchanged	between	devices,	regardless	of	what	internal	file	system	each	uses.	This	enables	NFS	to
exchange	file	data	between	clients	and	servers	that	may	be	implemented	using	very	different	hardware
and	software	platforms.

XDR	Data	Types
For	XDR	to	be	universal,	it	must	allow	the	description	of	all	the	common	types
of	data	that	are	used	in	computers.	For	example,	it	must	allow	integers,	floating-
point	numbers,	strings,	and	other	data	constructs	to	be	exchanged.	The	XDR
standard	describes	the	structure	of	many	data	types	using	a	notation	somewhat
similar	to	the	C	programming	language.	As	you	may	know,	this	is	one	of	the
most	popular	languages	in	computing	history,	and	it	is	closely	associated	with
UNIX	(and	thus,	certain	TCP/IP	technologies	as	well).

Table	58-1	shows	the	data	types	defined	by	XDR,	which	can	be	used	by	NFS	in



exchanging	data	between	the	client	and	server.	For	each,	I	have	included	the	data
type	code,	its	size	in	bytes,	and	a	brief	description.

Table	58-1.	NFS	External	Data	Representation	(XDR)	Data	Types

Data
Type
Code

Size
(Bytes)

Description

int 4 Signed	integer:	A	32-bit	signed	integer	in	two's	complement	notation,
capable	of	holding	a	value	from	-2,147,483,648	to	+2,147,483,647.

unsigned
int

4 Unsigned	integer:	A	32-bit	unsigned	integer,	from	0	to	4,294,967,295.

enum 4 Enumeration:	An	alternate	way	of	expressing	a	signed	integer	where
some	of	the	integer	values	are	used	to	stand	for	particular	constant	values.
For	example,	you	could	represent	the	colors	of	the	rainbow,	by	defining
the	value	1	to	stand	for	PURPLE,	2	to	stand	for	BLUE,	and	so	on.

bool 4 Boolean:	A	logical	representation	of	an	integer,	analogous	to	a	two-level
enumeration	where	a	value	of	0	is	defined	as	FALSE	and	1	is	TRUE.

hyper 8 Signed	hyper	integer:	Same	as	a	regular	signed	integer,	but	8	bytes	wide
to	allow	much	larger	numbers.

unsigned
hyper

8 Unsigned	hyper	integer:	Same	as	a	regular	unsigned	integer	but	8	bytes
wide	to	allow	much	larger	numbers.

float 4 Floating-point	number:	A	32-bit	signed	floating-point	number.	1	bit	holds
the	sign	(positive	or	negative),	8	bits	hold	the	exponent	(power),	in	base
2,	and	23	bits	hold	the	mantissa	(fractional	part	of	the	number).

double 8 Double-precision	floating-point	number:	The	same	as	float	but	with	more
bits	to	allow	greater	precision.	1	bit	is	for	the	sign,	11	bits	for	the
exponent,	and	52	bits	for	the	mantissa.

quadruple 16 Quadruple-precision	floating-point	number:	The	same	as	float	and	double
but	with	still	more	bits	to	allow	greater	precision.	1	bit	is	for	the	sign,	15
bits	for	the	exponent,	and	112	bits	for	the	mantissa.

opaque Variable Opaque	data:	Data	that	is	to	be	passed	between	devices	without	being
given	a	specific	representation	using	XDR.	The	term	opaque	means	that
the	data	is	treated	like	a	"black	box"	whose	insides	cannot	be	seen.
Obviously,	any	machines	using	this	data	type	must	themselves	know	how
to	deal	with	it,	since	NFS	does	not.



string Variable String:	A	variable-length	string	of	ASCII	characters.

(array) Variable Arrays:	A	group	of	any	single	type	of	the	elements	above,	such	as
integers,	floating-point	numbers,	and	so	on,	may	be	specified	in	an	array
to	allow	many	to	be	referenced	as	a	single	unit.	They	are	not	indicated
using	a	separate	data	type	code.

struct Variable Structure:	An	arbitrary	structure	containing	other	data	elements	from	this
table.	This	allows	the	definition	of	complex	data	types.

union Variable Discriminated	union:	A	complex	data	type	where	a	code	value	called	a
"discriminant"	is	used	to	determine	the	nature	of	the	rest	of	the	structure.
See	section	3.14	of	RFC	1014	for	details.

void 0 Void:	A	null	data	type	that	contains	nothing.

const 0 Constant:	A	constant	value	used	in	other	representations.

As	you	can	see,	XDR	provides	considerable	data	description	capabilities.	If	you
know	the	C	language,	much	of	what	is	in	Table	58-1	is	probably	familiar	to	you.
Unfortunately,	I	can't	really	describe	many	of	the	more	complex	data	types
without	turning	this	into	a	guide	to	C	programming.

XDR	also	provides	a	means	of	defining	new	data	types	and	a	method	for
specifying	optional	data.	This	offers	even	more	flexibility	beyond	the	large
number	of	specific	types	already	specifically	described.	Each	version	of	NFS	has
a	slightly	different	list	of	data	types	it	supports.



NFS	Client/Server	Operation	Using	Remote
Procedure	Calls	(RPCs)
Almost	all	applications	deal	with	files	and	other	resources.	When	a	software
program	on	a	particular	computer	wants	to	read	a	file,	write	a	file,	or	perform
related	tasks,	it	needs	to	use	the	correct	software	instructions	for	this	purpose.	It
would	be	inefficient	to	require	each	software	program	to	contain	a	copy	of	these
instructions,	so	instead,	they	are	encoded	as	standardized	software	modules,
sometimes	called	procedures.	To	perform	an	action,	a	piece	of	software	calls	the
procedure.	The	procedure	temporarily	takes	over	for	the	main	program	and
performs	a	task	such	as	reading	or	writing	data.	The	procedure	then	returns
control	of	the	program	back	to	the	software	that	called	it,	and	optionally,	returns
data	as	well.

Since	the	key	concept	of	NFS	was	to	make	remote	file	access	look	like	local	file
access,	it	was	designed	around	the	use	of	a	network-based	version	of	this
procedure	calling	method.	A	software	application	that	wants	to	do	something
with	a	file	still	makes	a	procedure	call,	but	it	makes	the	call	to	a	procedure	on	a
different	computer	instead	of	the	local	one.	A	special	set	of	routines	is	used	to
handle	the	transmission	of	the	call	across	the	network,	in	a	way	largely	invisible
to	software	performing	the	call.

This	functionality	could	have	been	implemented	directly	in	NFS,	but	instead	Sun
created	a	separate	session-layer	protocol	component	called	the	Remote
Procedure	Call	(RPC)	specification,	which	defines	how	this	works.	RPC	was
originally	created	as	a	subcomponent	of	NFS,	but	it	is	generic	enough	and	useful
enough	that	it	has	been	used	for	other	client/server	applications	in	TCP/IP.	For
this	reason,	it	is	really	considered	in	many	respects	a	distinct	protocol.

Because	RPC	is	the	actual	process	of	communicating	in	NFS,	NFS	itself	is
different	from	many	other	TCP/IP	protocols.	Its	operation	can't	be	described	in
terms	of	specific	message	exchanges	and	state	diagrams	the	way	a	protocol	like
HTTP	or	the	Dynamic	Host	Configuration	Protocol	(DHCP),	or	even	TCP	can,
because	RPC	does	all	of	that.	NFS	is	defined	in	terms	of	a	set	of	RPC	server
procedures	and	operations	that	an	NFS	server	makes	available	to	NFS	clients.
These	procedures	and	operations	each	allow	a	particular	type	of	action	to	be
taken	on	a	file,	such	as	reading	from	it,	writing	to	it,	or	deleting	it.



taken	on	a	file,	such	as	reading	from	it,	writing	to	it,	or	deleting	it.

RPC	Operation	and	Transport	Protocol	Usage
When	a	client	wants	to	perform	some	type	of	action	on	a	file	on	a	particular
machine,	it	uses	RPC	to	make	a	call	to	the	NFS	server	on	that	machine.	The
server	accepts	the	request	and	performs	the	action	required,	then	returns	a	result
code	and	possibly	data	back	to	the	client,	depending	on	the	request.	The	result
code	indicates	if	the	action	was	successful.	If	it	was,	the	client	can	assume	that
whatever	it	asked	to	be	done	was	completed.	For	example,	in	the	case	of	writing
data,	the	client	can	assume	the	data	has	been	successfully	written	to	long-term
storage.

TIP

KEY	CONCEPT	NFS	does	not	use	a	dedicated	message	format,	like	most	other	protocols	do.	Instead,
clients	and	servers	use	the	Remote	Procedure	Call	(RPC)	protocol	to	exchange	file	operation	requests
and	data.

NFS	can	operate	over	any	transport	mechanism	that	has	a	valid	RPC
implementation	at	the	session	layer.	NFS	has	seen	an	evolution	of	sorts	in	its	use
of	transport	protocol.	The	NFSv2	standard	says	that	it	operates	normally	using
UDP,	and	this	is	still	a	common	way	that	NFS	information	is	carried.	NFSv3
says	that	either	UDP	or	TCP	may	be	used,	but	NFSv4	specifies	TCP	to	carry
data.	The	nominal	registered	port	number	for	use	by	NFS	is	2049,	but	other	port
numbers	are	sometimes	used	for	NFS,	through	the	use	of	RPC's	port	mapper
capability.

Client	and	Server	Responsibilities	in	NFS
Since	UDP	is	unreliable,	the	use	of	that	protocol	to	transport	important
information	may	seem	strange.	For	example,	we	obviously	don't	want	data	that
we	are	trying	to	write	to	a	file	to	be	lost	in	transit.	Remember,	however,	that
UDP	doesn't	preclude	the	use	of	measures	to	ensure	reliable	communications;	it
simply	doesn't	provide	those	capabilities	itself.	UDP	can	be	used	by	NFS
because	the	protocol	itself	is	designed	to	tolerate	loss	of	transmitted	data	and	to
recover	from	it.

Consistent	with	this	concept,	the	general	design	of	NFS	puts	most	of	the



Consistent	with	this	concept,	the	general	design	of	NFS	puts	most	of	the
responsibility	for	implementing	the	protocol	on	the	client,	not	the	server.	As	the
NFSv3	standard	says,	"NFS	servers	are	dumb,	and	NFS	clients	are	smart."	What
this	means	is	that	the	servers	focus	only	on	responding	to	requests,	while	clients
must	take	care	of	most	of	the	nitty-gritty	details	of	the	protocol,	including
recovery	from	failed	communications.	This	is	a	common	requirement	when	UDP
is	used,	because	if	a	client	request	is	lost	in	transit,	the	server	has	no	way	of
knowing	that	it	was	ever	sent.

As	mentioned	in	the	NFS	overview	earlier	in	this	chapter,	NFS	servers	are
designed	to	be	stateless.	In	simplified	terms,	this	means	that	the	NFS	server	does
not	keep	track	of	the	state	of	the	clients	using	it	from	one	request	to	another.
Each	request	is	independent	of	the	previous	one,	and	the	server	in	essence	has	no
memory	of	what	it	did	before	when	it	gets	a	new	command	from	a	client.	This
again	requires	more	intelligence	to	be	put	into	the	clients,	but	has	the	important
advantage	of	simplifying	recovery	in	the	case	that	the	server	crashes.	Since	there
is	nothing	that	the	server	was	keeping	track	of	for	the	client,	there's	nothing	that
can	be	lost.	This	is	an	important	part	of	ensuring	that	files	are	not	damaged	as	a
result	of	network	problems	or	congestion.

Client	and	Server	Caching
Both	NFS	clients	and	servers	can	make	use	of	caching	to	improve	performance.
Servers	may	use	caching	to	store	recently	requested	information	in	case	it	is
needed	again.	They	may	also	use	predictive	caching,	sometimes	called
prefetching.	In	this	technique,	a	server	that	receives	a	request	to	read	a	block	of
data	from	a	file	may	load	into	memory	the	next	block	after	it,	on	the	theory	that
it	will	likely	be	requested	next.

Client-side	caching	is	used	to	satisfy	repeat	NFS	requests	from	applications
while	avoiding	additional	RPC	calls.	Like	almost	everything	else	about	NFS,
caching	is	implemented	much	more	thoroughly	in	NFSv4	than	in	the	previous
versions.

TIP

KEY	CONCEPT	NFS	is	designed	to	be	a	stateless	protocol,	with	intelligent	clients	and	relatively	dumb
servers	that	respond	to	requests	and	do	not	maintain	status	information	about	what	files	are	in	use.	NFS
was	originally	designed	to	use	UDP	for	transport,	for	efficiency	purposes.	This	requires	that	NFS	clients



take	care	of	detecting	lost	requests	and	retransmitting	them.	NFSv4	uses	TCP	to	take	advantage	of	TCP's
reliability	and	other	features.



NFS	Server	Procedures	and	Operations
The	actual	exchange	of	information	between	an	NFS	client	and	server	is
performed	by	the	underlying	RPC	protocol.	NFS	functionality	is	therefore
described	not	in	terms	of	specific	protocol	operations,	but	by	delineating	the
different	actions	that	a	client	may	take	on	files	residing	on	a	server.	In	the
original	version	of	NFS,	NFSv2,	these	are	called	NFS	server	procedures.

Each	procedure	represents	a	particular	action	that	a	client	may	perform,	such	as
reading	from	a	file,	writing	to	a	file,	or	creating	or	removing	a	directory.	The
operations	performed	on	the	file	require	that	the	file	be	referenced	using	a	data
structure	called	a	file	handle.	As	the	name	suggests,	the	file	handle,	like	the
handle	of	a	real	object,	lets	the	client	and	server	"grasp"	the	file.	The	Mount
protocol,	described	later	in	this	chapter,	is	used	to	mount	a	file	system,	to	enable
a	file	handle	to	be	accessed	for	use	by	NFS	procedures.

NFSv3	uses	the	same	basic	model	for	server	procedures,	but	makes	certain
changes.	Two	of	the	NFSv2	procedures	were	removed,	and	several	new	ones
added	to	support	new	functionality.	The	numbers	assigned	to	identify	each
procedure	were	also	changed.

NFS	Version	2	and	Version	3	Server	Procedures
Table	58-2	shows	the	server	procedures	defined	in	versions	2	and	3	of	NFS.	The
table	shows	the	procedure	numbers	for	both	NFSv2	and	NFSv3,	as	well	as	the
name	of	each	procedure	and	a	description	of	what	it	does.	I	have	kept	the
descriptions	short	so	the	table	can	serve	as	a	useful	summary	of	what	NFS	can
do.	They	are	listed	in	order	of	the	procedure	number	used	in	NFSv2.

Table	58-2.	NFS	Version	2	and	Version	3	Server	Procedures

Procedure
No.	(v2)

Procedure
No.	(v3)

Procedure
Name

Procedure
Summary

Description

0 0 null Do	nothing Dummy	procedure	provided	for	testing
purposes.

1 1 getattr Get	file
attributes

Retrieves	the	attributes	of	a	file	on	a
remote	server.



attributes remote	server.

2 2 setattr Set	file
attributes

Sets	(changes)	the	attributes	of	a	file	on
a	remote	server.

3 — root Get	file
system	root
(obsolete)

This	procedure	was	originally	defined
to	allow	a	client	to	find	the	root	of	a
remote	file	system,	but	is	now	obsolete.
This	function	is	instead	now
implemented	as	part	of	the	Mount
protocol.	It	was	removed	in	NFSv3.

4 3 lookup Look	up
filename

Returns	the	file	handle	of	a	file	for	the
client	to	use.

5 5 readlink Read	from
symbolic
link

Reads	the	name	of	a	file	specified
using	a	symbolic	link.

6 6 read Read	from
rile

Reads	data	from	a	file.

7 — writecache Write	to
cache

Proposed	for	future	use	in	NFSv2	but
abandoned	and	removed	from	NFSv3.

8 7 write Write	to	file Writes	data	to	a	file.

9 8 create Create	file Creates	a	file	on	the	server.

10 12 remove Remove	file Deletes	a	file	from	the	server.

11 14 rename Rename	file Changes	the	name	of	a	file.

12 15 link Create	link
to	file

Creates	a	hard	(nonsymbolic)	link	to	a
file.

13 10 symlink Create
symbolic
link

Creates	a	symbolic	link	to	a	file.

14 9 mkdir Create
directory

Creates	a	directory	on	the	server.

15 13 rmdir Remove
directory

Deletes	a	directory.

16 16 readdir Read	from
directory

Reads	the	contents	of	a	directory.

17 — statfs Get	file Provides	to	the	client	general



17 — statfs Get	file
system
attributes

Provides	to	the	client	general
information	about	the	remote	file
system,	including	the	size	of	the	file
system	and	the	amount	of	free	space
remaining.	In	NFSv3,	this	was	replaced
by	fsstat	and	fsinfo.

— 4 access Check
access
permission

Determines	the	access	rights	that	a	user
has	for	a	particular	file	system	object.
This	is	new	in	NFSv3.

— 11 mknod Create	a
special
device

Creates	a	special	file	such	as	a	named
pipe	or	device	file.	This	is	new	in
NFSv3.

— 17 readdirplus Extended
read	from
directory

Retrieves	additional	information	from	a
directory.	This	is	new	in	NFSv3.

— 18 fsstat Get
dynamic
file	system
information

Returns	volatile	(dynamic)	file	system
status	information	such	as	the	current
amount	of	file	system	free	space	and
the	number	of	free	file	slots.	This	is
new	in	NFSv3.

— 19 fsinfo Get	static
file	system
information

Returns	static	information	about	the
file	system,	such	as	general	data	about
how	the	file	system	is	used	and
parameters	for	how	requests	to	the
server	should	be	structured.	This	is	new
in	NFSv3.

— 20 pathconf Retrieve
POSIX
information

Retrieves	additional	information	for	a
file	or	directory.	This	is	new	in	NFSv3.

— 21 commit Commit
cached	data
on	a	server
to	stable
storage

Flushes	any	data	that	the	server	is
holding	in	a	write	cache	to	storage.
This	is	used	to	ensure	that	any	data	that
the	client	has	sent	to	the	server	but	that
the	server	has	held	pending	write	to
storage	is	written	out.	This	is	new	in
NFSv3.

It	is	common	that	a	client	may	want	to	perform	multiple	actions	on	a	file,	such	as
several	consecutive	reads.	One	of	the	problems	with	the	server	procedure	system
in	NFSv2	and	NFSv3	is	that	each	client	action	required	a	separate	procedure



in	NFSv2	and	NFSv3	is	that	each	client	action	required	a	separate	procedure
call.	This	was	somewhat	inefficient,	especially	when	NFS	was	used	over	a	high-
latency	link.

NFS	Version	4	Server	Procedures	and
Operations
To	improve	the	efficiency	of	server	procedures,	NFSv4	makes	a	significant
change	to	the	way	that	server	procedures	are	implemented.	Instead	of	each	client
action	being	a	separate	procedure,	a	single	procedure,	called	a	compound
procedure,	is	defined.	Within	this	compound	procedure,	a	large	number	of	server
operations	are	encapsulated.	These	are	all	sent	as	a	single	unit,	and	the	server
interprets	and	follows	the	instructions	in	each	operation	in	sequence.

This	change	means	there	are	actually	only	two	RPC	procedures	in	NFSv4,	as
shown	in	Table	58-3.

Table	58-3.	NFS	Version	4	Server	Procedures

Procedure
Number

Procedure
Name

Procedure
Summary

Description

0 null Do	nothing Dummy	procedure	provided	for	testing
purposes.

1 compound Compound
operations

Combines	a	number	of	NFS	operations	into
a	single	request.

All	the	real	client	actions	are	defined	as	operations	within	the	compound
procedure,	as	shown	in	Table	58-4.	You'll	notice	that	the	number	of	NFSv4
operations	is	much	larger	than	the	number	of	procedures	in	NFSv2	and	NFSv3.
This	is	due	both	to	the	added	features	in	NSFv4	and	the	fact	that	it	incorporates
functions	formerly	performed	by	the	separate	Mount	protocol.

Table	58-4.	NFS	Version	4	Server	Operations

Operation
Number

Operation	Name Operation
Summary

Description

3 access Check
access
rights

Determines	the	access	rights	a	user	has	for	an
object.



rights

4 close Close	file Closes	a	file.

5 commit Commit
cached	data

Flushes	any	data	that	the	server	is	holding	in	a
write	cache	to	storage,	to	ensure	that	any
pending	data	is	permanently	recorded.

6 create Create	a
nonregular
file	object

This	is	similar	to	the	mknod	procedure	in
NFSv3;	it	creates	a	"nonregular"	(special)
object	file.	(Regular	files	are	created	using	the
open	operation.)

7 delepurge Purge
delegations
awaiting
recovery

NFSv4	has	a	feature	where	a	server	may
delegate	to	a	client	responsibility	for	certain
files.	This	operation	removes	delegations
awaiting	recovery	from	a	client.

8 delegreturn Return
delegation

Returns	a	delegation	from	a	client	to	the	server
that	granted	it.

9 getattr Get
attributes

Obtains	the	attributes	for	a	file.

10 getfh Get	current
file	handle

Returns	a	file	handle,	which	is	a	logical	object
used	to	allow	access	to	a	file.

11 link Create	link
to	a	file

Creates	a	hard	(nonsymbolic)	link	to	a	file.

12 lock Create	lock Creates	a	lock	on	a	file.	Locks	are	used	to
manage	access	to	a	file—for	example,	to
prevent	two	clients	from	trying	to	write	to	a	file
simultaneously	and	thus	corrupting	it.

13 lockt Test	for
lock

Tests	for	the	existence	of	a	lock	on	an	object
and	returns	information	about	it.

14 locku Unlock	lile Removes	a	lock	previously	created	on	a	file.

15 lookup Look	up
filename

Looks	up	or	finds	a	file.

16 lookupp Look	up
parent
directory

Returns	the	file	handle	of	an	object's	parent
directory.

17 nverify Verify
difference

Checks	to	see	if	attributes	have	changed	on	a
file.



difference
in
attributes

file.

18 open Open	a
regular	file

Opens	a	file.

19 openattr Open
named
attribute
directory

Opens	an	attribute	directory	associated	with	a
file.

20 open_confirm Confirm
open

Confirms	information	related	to	an	opened	file.

21 open_	downgrade Reduce
open	file
access

Adjusts	the	access	rights	for	a	file	that	is
already	open.

22 putfh Set	current
file	handle

Replaces	one	file	handle	with	another.

23 putpubfh Set	public
file	handle

Sets	the	current	file	handle	to	be	the	public	file
handle	of	the	server.	This	may	or	may	not	be
the	same	as	the	root	file	handle.

24 putrootfh Set	root	file
handle

Sets	the	current	file	handle	to	be	the	root	of	the
server's	file	system.

25 read Read	from
file

Reads	data	from	a	file.

26 readdir Read
directory

Reads	the	contents	of	a	directory.

27 readlink Read
symbolic
link

Reads	the	name	of	a	file	specified	using	a
symbolic	link.

28 remove Remove
file	system
object

Removes	(deletes)	an	object.

29 rename Rename
directory
entry

Changes	the	name	of	an	object.

30 renew Renew	a
lease

Renews	an	NFS	delegation	made	by	a	server.
(Note	that	these	leases	have	nothing	to	do	with



lease (Note	that	these	leases	have	nothing	to	do	with
DHCP	leases,	which	are	discussed	in
Chapter	61.)

31 restorefh Restore
saved	file
handle

Allows	a	file	handle	previously	saved	to	be
made	the	current	file	handle.

32 savefh Save
current	file
handle

Allows	a	file	handle	to	be	saved	so	it	can	later
be	restored	when	needed.

33 secinfo Obtain
available
security

Retrieves	NFS	security	information.

34 setattr Set
attributes

Changes	one	or	more	attributes	of	a	file.

35 setclientid Negotiate
client	ID

Allows	a	client	to	communicate	information	to
the	server	regarding	how	the	client	wants	to	use
NFS.

36 setclientid_confirm Confirm
client	ID

Used	to	confirm	the	results	of	a	previous
negotiation	using	setclientid.

37 verify Verify
same
attributes

Allows	a	client	to	verify	certain	attributes
before	proceeding	with	a	particular	action.

38 write Write	to
file

Writes	data	to	a	file.

39 release_lockowner Release
lock	owner
state

Used	by	a	client	to	tell	a	server	to	release
certain	information	related	to	file	locks.

10044 illegal Illegal
operation

A	placeholder	(dummy)	operation	used	to
support	error	reporting	when	an	invalid
operation	is	used	in	a	request	from	a	client.

TIP

KEY	CONCEPT	File	operations	in	NFS	are	carried	out	using	NFS	server	procedures.	In	versions	2	and
3	of	NFS,	each	procedure	performs	one	action,	such	as	reading	data	from	a	file.	In	NFSv4,	a	special
compound	action	is	defined	that	allows	many	individual	operations	to	be	sent	in	a	single	request	to	a
server.





NFS	File	System	Model	and	the	Mount	Protocol
Since	NFS	is	used	by	a	client	to	simulate	access	to	remote	directories	of	files	as
if	they	were	local,	the	protocol	must	present	the	files	from	the	remote	system	to
the	local	user.	Just	as	files	on	a	local	storage	device	are	arranged	using	a
particular	file	system,	NFS	uses	a	file	system	model	to	represent	how	files	are
shown	to	a	user.

The	NFS	File	System	Model
The	file	system	model	used	by	NFS	is	the	same	one	that	most	of	us	are	familiar
with:	a	hierarchical	arrangement	of	directories	that	contain	files	and
subdirectories.	The	top	of	the	hierarchy	is	the	root,	which	contains	any	number
of	files	and	first-level	directories.	Each	directory	may	contain	more	files	or	other
directories,	allowing	an	arbitrary	tree	structure	to	be	created.

A	file	can	be	uniquely	specified	by	using	its	filename	and	a	path	name	that
shows	the	sequence	of	directories	one	must	traverse	from	the	root	to	find	the	file.
Since	NFS	is	associated	with	UNIX,	files	in	NFS	discussions	are	usually	shown
in	UNIX	notation;	for	example,	/etc/hosts.	The	same	basic	tree	idea	can	also	be
expressed	using	the	method	followed	by	Windows	operating	systems:
C:\WINDOWS\HOSTS.

The	Mount	Protocol
Before	NFS	can	be	used	to	allow	a	client	to	access	a	file	on	a	remote	server,	the
client	must	be	given	a	way	of	accessing	the	file.	This	means	that	a	portion	of	the
remote	file	system	must	be	made	available	to	the	client,	and	the	file	opened	for
access.	A	specific	decision	was	made	when	NFS	was	created	to	not	put	file
access,	opening,	and	closing	functions	into	NFS	proper.	Instead,	a	separate
protocol	was	created	to	work	with	NFS,	so	that	if	the	method	of	providing	file
access	needed	to	be	changed	later,	it	wouldn't	require	changes	to	NFS	itself.	This
separate	mechanism	is	called	the	Mount	protocol	and	is	described	in	Appendix	A
of	RFC	1094	(NFSv2).	Note	that	while	its	functionally	distinct,	Mount	is
considered	part	of	the	overall	NFS	package.

When	NFS	was	revised	to	version	3,	the	Mount	protocol	was	similarly	modified.
The	NFSv3	version	of	the	Mount	protocol	is	defined	in	Appendix	I	of	RFC	1813



The	NFSv3	version	of	the	Mount	protocol	is	defined	in	Appendix	I	of	RFC	1813
(NFSv3).	It	contains	some	changes	to	how	the	protocol	works,	but	the	overall
operation	of	the	two	versions	of	Mount	is	pretty	much	the	same.

The	term	mount	is	actually	an	analog	to	a	hardware	term	that	refers	to	making	a
physical	storage	volume	available.	In	the	past,	storage	devices	were	usually
removable	disk	packs,	and	to	use	one,	you	mounted	it	onto	a	drive	unit.	In	a
similar	manner,	NFS	resources	are	logically	mounted	using	the	Mount	protocol,
which	makes	the	shared	file	system	available	to	the	client.	A	file	can	then	be
opened	and	a	file	handle	returned	to	the	NFS	client,	so	it	can	reference	the	file
for	operations	such	as	reading	and	writing.

TIP

KEY	CONCEPT	Versions	2	and	3	of	NFS	do	not	include	procedures	for	opening	or	closing	resources
on	a	remote	server.	Before	NFS	tasks	can	be	accomplished	on	these	versions,	the	special	Mount	protocol
must	be	employed	to	mount	a	file	system	and	create	a	file	handle	to	access	a	file	on	it.	The	protocol	is
also	used	to	unmount	the	file	system	when	no	longer	required.	The	Mount	protocol	is	implemented	in	a
manner	similar	to	NFS	itself,	defining	a	sequence	of	procedures	that	use	RPC	and	XDR.	In	NFSv4,	the
Mount	protocol	is	no	longer	needed,	because	the	tasks	it	performs	have	been	implemented	as	NFSv4
operations.

The	actual	implementation	of	the	Mount	protocol	is	very	similar	to	that	of	NFS
itself.	Like	NFS,	the	Mount	protocol	uses	XDR	to	define	data	types	to	be
exchanged	between	the	client	and	server	and	RPC	to	define	a	set	of	server
procedures	that	clients	may	use	to	perform	different	operations.	The	main
difference	between	Mount	and	NFS	is	simply	that	Mount	defines	procedures
related	to	opening	and	closing	file	systems,	rather	than	file	access	operations.
Table	58-5	shows	the	server	procedures	used	in	the	Mount	protocol.

Table	58-5.	NFS	Mount	Protocol	Server	Procedures

Procedure
Number

Procedure
Name

Procedure
Summary

Description

0 null Do	nothing Dummy	procedure	provided	for	testing	purposes.

1 mnt Add	mount
entry

Performs	a	mount	operation	by	mapping	a	path	on	a
server	to	a	file	handle	for	the	client	to	use.

2 dump Return Returns	a	list	of	remotely	mounted	file	systems.



2 dump Return
mount
entries

Returns	a	list	of	remotely	mounted	file	systems.

3 umnt Remove
mount	entry

Performs	an	unmount	operation	by	removing	a	mount
entry.	(Yes,	it	should	be	dismount;	techies	usually
aren't	English	majors.)

4 umntall Remove	all
mount
entries

Removes	all	mount	entries,	thus	eliminating	all
mounted	file	systems	between	server	and	client.

5 export Return
export	list

Returns	a	list	of	exported	file	systems	and	indicates
which	clients	are	allowed	to	mount	them.	This	is	used
to	let	the	client	see	which	served	file	systems	are
available	for	use.

Again,	NFSv4	does	away	with	the	notion	of	a	separate	Mount	protocol,
incorporating	file	mounting	operations	into	NFS	directly.



Part	III-3.	HOST	CONFIGURATION	AND	TCP/IP
HOST	CONFIGURATION	PROTOCOLS
Chapter	59

Chapter	60

Chapter	61

Chapter	62

Chapter	63

Chapter	64

Each	host	that	is	placed	on	a	network	or	internetwork	must	be	set	up	and
configured	before	it	can	be	used.	Configuration	ensures	that	the	host	functions
properly	and	that	it	is	told	the	parameters	needed	for	it	to	successfully
communicate	with	other	hosts	and	devices.	In	the	good	old	days,	administrators
would	manually	set	up	each	host	as	it	was	added	to	the	network,	and	they	would
also	manually	make	changes	to	the	configuration	as	required.

Modern	networks,	however,	are	very	large,	and	manual	configuration	of	hosts	is
a	time-consuming	chore.	Furthermore,	we	often	need	features	that	only
automated	configuration	can	provide,	particularly	for	special	hosts	that	have	no
internal	storage.	It	is	for	these	reasons	that	host	configuration	protocols	were
developed.

This	part	includes	six	chapters	that	describe	the	concepts	behind	host
configuration	protocols	and	then	illustrate	the	operation	of	two	of	the	most
important	ones	in	use	today.	The	first	chapter	is	an	overview	of	host
configuration	concepts	and	issues,	which	will	help	you	understand	why	these
protocols	are	so	important.	In	the	second	chapter,	I	describe	the	TCP/IP
Bootstrap	Protocol	(BOOTP),	the	first	truly	capable	automated	configuration
tool	for	Internet	Protocol	(IP)	hosts.

The	remaining	chapters	in	this	part	cover	BOOTP's	successor,	the	feature-filled
Dynamic	Host	Configuration	Protocol	(DHCP).	The	third	chapter	introduces
DHCP	and	talks	about	the	different	ways	DHCP	can	assign	addresses,	with	a
focus	on	dynamic	addressing.	The	fourth	chapter	discusses	how	DHCP	operates,
including	a	look	at	configuration	parameter	management	and	the	procedures	for



including	a	look	at	configuration	parameter	management	and	the	procedures	for
allocating	addresses	and	managing	those	allocations.	The	fifth	chapter	describes
DHCP	messaging	and	illustrates	the	DHCP	message	format.	The	final	chapter
details	DHCP	clients	and	servers,	looks	at	special	features	and	issues	with
DHCP,	and	describes	DHCP	changes	to	support	the	new	IP	version	6	(IPv6).

Technically,	the	very	first	host	configuration	protocol	for	TCP/IP	was	the
Reverse	Address	Resolution	Protocol	(RARP).	RARP	is	a	simple,	crude	protocol
that	allows	very	basic	host	configuration	to	be	performed,	but	little	else.	RARP
is	very	different	from	BOOTP	and	DHCP,	not	only	because	of	its	more	limited
capabilities,	but	because	it	operates	between	layers	2	and	3,	like	the	Address
Resolution	Protocol	(ARP)	on	which	it	is	based.	It	is	therefore	covered	in	Part	II-
2,	which	also	describes	ARP.



Chapter	59.	HOST
CONFIGURATION	CONCEPTS,
ISSUES,	AND	MOTIVATION

Putting	a	host	on	an	internetwork	requires	that	certain	setup	and	configuration
procedures	be	followed.	Hardware	must	be	selected	and	set	up,	and	software
must	be	chosen	and	installed	on	the	hardware.	Once	the	software	is	set	up,	we
aren't	finished,	however.	We	must	also	perform	other	configuration	tasks	that	tell
the	software	how	we	want	it	to	operate	and	give	it	certain	parameters,	so	it
knows	its	role	on	the	network	and	how	to	function.

In	this	brief	chapter,	I	discuss	the	purpose	of	host	configuration,	the	problems
associated	with	it,	and	host	configuration	protocols.

The	Purpose	of	Host	Configuration
Probably	the	most	important	configuration	task	that	must	be	performed	for	each
host	on	an	internetwork	is	to	give	it	an	identity,	in	the	form	of	an	address	that	is
unique	to	it	alone.	In	TCP/IP	networks,	each	device	must	be	given	an	IP	address.
Hosts	also	often	require	other	parameters	to	ensure	that	they	operate	properly.
For	a	TCP/IP	network,	we	might	want	to	tell	each	host	some	of	the	following:

The	address	of	a	default	router	on	the	local	network

The	network	mask	the	host	should	use

The	addresses	of	servers	providing	particular	services	to	the	host,	such	as	a
mail	server	or	a	Domain	Name	System	(DNS)	name	server

The	maximum	transmission	unit	(MTU)	of	the	local	network	(see	Chapter	22)

What	Time	to	Live	(TTL)	value	to	use	for	IP	datagrams	(see	Chapter	21)



There	may	be	a	lot	more	information	that	must	be	relayed	to	the	host.	Dozens	of
different	parameters	must	be	set	up	for	certain	networks.	Many	of	these	may	be
common	to	all	the	machines	on	a	network,	but	IP	addresses	must	be	unique.	The
administrator	must	therefore	ensure	that	each	IP	address	is	assigned	to	only	one
computer,	even	as	machines	are	added	to	and	removed	from	the	network.



The	Problems	with	Manual	Host	Configuration
If	you're	an	administrator	in	charge	of	a	small	local	area	network	(LAN)	with	ten
hosts,	performing	setup	and	configuration	is	simple.	For	each	host,	you	set	up
the	hardware,	install	the	software,	and	then	configure	the	software.	Even	making
changes	and	keeping	track	of	IP	addresses	wouldn't	be	a	big	deal;	a	single	sheet
of	paper	would	suffice.	However,	what	happens	when	your	network	has	a
hundred	computers,	or	a	thousand	computers,	or	even	ten	thousand?

As	the	size	of	the	network	grows,	the	work	needed	for	manual	configuration
grows	with	it.	And	while	initial	hardware	setup	may	be	time-consuming,	at	least
it	is	done	mainly	when	the	host	is	first	set	up,	and	rarely	changed	thereafter.	This
is	not	the	case	with	configuration	parameters.	If	the	address	of	the	local	router
changes	on	a	network	with	a	thousand	hosts,	do	you	really	want	to	go	to	each
host	to	edit	a	configuration	file?

The	drudge	work	associated	with	manual	configuration	is	significant,	but	the
problems	go	well	beyond	the	inefficiency	issue.	There	are	situations	where
manual	configuration	is	not	just	inconvenient,	but	is	actually	impossible:

Remote	Configuration	An	administrator	cannot	be	everywhere;	modern
networks	can	span	cities	or	nations.	Unless	we	want	to	train	every	user	on	how
to	configure	network	hosts,	we	must	use	an	automated	protocol.

Mobile	Device	Configuration	IP	was	designed	when	computers	were	large	and
attached	to	each	other	using	heavy	cables;	today,	we	have	computers	that	fit	in	a
shirt	pocket	and	communicate	using	radio	waves.	IP	addresses	must	be	assigned
based	on	the	network	to	which	they	are	attached,	and	this	makes	reconfiguration
required	when	a	device	is	moved.	This	is	not	conducive	to	manual	configuration
at	all.

Dumb	Host	Configuration	Most	of	the	hosts	we	use	today	are	full-fledged
computers,	with	their	own	internal	storage.	We	can	assign	such	a	device	an
address	by	entering	it	into	a	file	that	the	device	reads	when	it	starts	up.	There	are
certain	devices,	however,	that	do	not	include	any	form	of	storage.	Since	they	are
mass-produced,	they	are	all	identical	and	cannot	have	individualized	parameters
stored	within	them.	Such	a	device	relies	on	a	configuration	protocol	to	learn



what	it	needs	to	function	on	a	network—especially	including	its	individual
identity.

Address	Sharing	The	proliferation	of	devices	attached	to	the	global	Internet	has
led	to	a	situation	where	IP	addresses	must	be	carefully	managed	to	ensure	that
they	are	not	wasted	on	devices	that	aren't	using	them.	Some	organizations	even
find	themselves	with	more	potential	hosts	than	they	have	addresses.	A	host
configuration	protocol	can	allow	an	address	to	be	automatically	assigned	to	a
host	when	needed,	and	then	have	that	address	returned	to	a	common	pool	for
reuse	when	the	host	leaves	the	network.	This	permits	addresses	to	be	shared	and
reduces	the	need	for	more	address	space.



Automating	the	Process:	Host	Configuration
Protocols
Even	though	most	of	us	don't	have	robots	that	can	automate	the	hardware
portions	of	the	setup	and	configuration	job,	we	can	employ	tools	that	will	make
the	rest	of	the	job	easier.	This	includes	the	use	of	special	host	configuration
protocols.	These	protocols	allow	hosts	to	be	automatically	configured	when	they
are	set	up	and	to	have	additional	parameters	assigned	when	needed.

Host	configuration	protocols	generally	function	by	having	a	host	send	a	request
for	an	address	and	other	parameters,	which	is	satisfied	by	a	response	from	a
server.	The	information	in	the	response	is	used	by	the	client	to	set	its	address,
identify	a	local	router,	and	perform	other	necessary	setup	so	it	can	communicate.

The	use	of	an	automated	protocol	solves	all	of	the	problems	associated	with
manual	configuration.	We	can	configure	devices	remotely,	rather	than	needing	to
walk	to	each	one.	We	can	instantly	assign	a	valid	address	to	mobile	devices.	We
can	have	dumb	hosts	boot	up	and	obtain	the	information	they	need	to	operate.
Finally,	we	can	maintain	a	pool	of	addresses	that	is	shared	by	a	group	of	hosts.

TIP

KEY	CONCEPT	Host	configuration	protocols	enable	administrators	to	set	up	hosts	so	that	they	can
automatically	determine	their	address	and	other	key	parameters.	They	are	useful	not	only	because	of	the
effort	they	save	over	manual	configuration,	but	because	they	enable	the	automatic	setup	of	remote,
storageless,	or	mobile	devices.



The	Role	of	Host	Configuration	Protocols	in
TCP/IP
You	might	find	it	strange	that	host	configuration	protocols	would	exist	in	the
lofty	heights	of	the	application	layer.	It	certainly	sounds	like	host	configuration
is	a	function	related	more	to	the	network	layer,	where	internetwork	addresses
such	as	IP	addresses	function.	In	fact,	some	host	configuration	protocols,	like	the
rudimentary	Reverse	Address	Resolution	Protocol	(RARP,	discussed	in
Chapter	14),	do	exist	down	at	that	level.

However,	there	are	advantages	to	having	host	configuration	protocols	reside	at
higher	levels.	A	major	one	is	that	the	operation	of	the	protocol	does	not	depend
on	the	hardware	on	which	it	runs,	making	it	more	universal.	Another	is	being
able	to	convey	host	configuration	messages	between	networks,	which	is	not
possible	with	a	low-level	protocol	operating	on	the	local	network.



Chapter	60.	TCP/IP	BOOTSTRAP
PROTOCOL	(BOOTP)

Before	a	device	on	a	TCP/IP	network	can	effectively	communicate,	it	needs	to
know	its	IP	address.	While	a	conventional	network	host	can	read	this
information	from	its	internal	disk,	some	devices	have	no	storage,	so	they	do	not
have	this	luxury.	They	need	help	from	another	device	on	the	network	to	provide
them	with	an	IP	address	and	the	other	information	and/or	software	they	need	to
become	active	Internet	Protocol	(IP)	hosts.	This	problem	of	getting	a	new
machine	up	and	running	is	commonly	called	bootstrapping,	and	to	provide	this
capability	to	IP	hosts,	the	TCP/IP	Bootstrap	Protocol	(BOOTP)	was	created.

In	this	chapter,	I	provide	a	detailed	look	at	BOOTP.	I	begin	with	an	overview
and	history	of	the	protocol	and	a	look	at	the	standards	that	define	it.	I	then
discuss	the	general	client/server	nature	of	BOOTP	and	how	addressing	is	done	in
communication	between	the	client	and	the	server.	I	describe	the	operation	of
BOOTP	step	by	step	and	illustrate	the	format	of	BOOTP	messages.	I	conclude
with	a	description	of	BOOTP	vendor	extensions,	which	are	used	to	allow	the
information	sent	in	BOOTP	messages	to	be	customized,	and	a	discussion	of
BOOTP	relay	agents,	which	allow	the	protocol	to	operate	even	when	the
BOOTP	server	and	client	are	on	different	networks.

TIP

RELATED	INFORMATION	BOOTP	was	the	predecessor	of	the	Dynamic	Host	Configuration
Protocol	(DHCP).	DHCP	was	built	to	be	substantially	compatible	with	BOOTP,	and	so	the	two	protocols
have	a	fair	degree	of	commonality.	To	avoid	duplication,	certain	information	has	been	included	only	in
the	following	chapters	about	DHCP	(with	references	to	this	chapter	where	appropriate).	On	the	other
hand,	some	of	the	historical	background	information	behind	features	like	vendor	information	extensions
and	relay	agents,	which	were	first	developed	for	BOOTP	and	adopted	by	DHCP,	is	in	this	chapter	and
referenced	from	the	DHCP	chapters.	If	you	plan	to	read	about	DHCP	as	well	as	BOOTP,	I	recommend



reading	this	section	first.	If	you	don't	plan	to	read	up	on	DHCP,	you	may	wish	to	check	the	discussion	of
DHCP/BOOTP	interoperability	in	Chapter	64.

BOOTP	Overview,	History,	and	Standards
The	TCP/IP	protocol	suite	has	been	with	us	for	over	two	decades,	and	the
problem	of	how	to	automate	the	configuration	of	parameters	on	IP	hosts	has
been	around	almost	as	long.	Back	in	the	early	1980s,	networks	were	small	and
relatively	simple,	so	manual	configuration	wasn't	that	difficult.	Automated	host
configuration	was	primarily	needed	because	it	was	the	only	way	to	configure
devices	like	diskless	workstations.

As	I	discussed	in	Chapter	59,	without	a	form	of	internal	storage,	a	device	must
rely	on	someone	or	something	to	tell	it	"who	it	is"	(its	address)	and	how	to
function	each	time	it	is	powered	up.	When	a	device	like	this	is	turned	on,	it	is	in
a	difficult	position:	It	needs	to	use	IP	to	communicate	with	another	device	that
will	tell	it	how	to	communicate	using	IP!	This	process,	called	bootstrapping	or
booting,	comes	from	an	analogy	to	a	person	"pulling	himself	up	using	his	own
bootstraps."	You've	likely	encountered	this	term	before,	if	at	no	other	time	then
when	some	tech	support	person	has	told	you	to	"reboot"	your	computer.

BOOTP:	Correcting	the	Weaknesses	of	RARP
The	Reverse	Address	Resolution	Protocol	(RARP)	was	the	first	attempt	to
resolve	this	bootstrap	problem.	Created	in	1984,	RARP	is	a	direct	adaptation	of
the	low-level	Address	Resolution	Protocol	(ARP)	that	binds	IP	addresses	to	link-
layer	hardware	addresses	(see	Chapter	13).	RARP	is	capable	of	providing	a
diskless	device	with	its	IP	address,	using	a	simple	client/server	exchange	of	a
request	and	reply	between	a	host	and	an	RARP	server.

The	difficulty	with	RARP	is	that	it	has	so	many	limitations.	It	operates	at	a	fairly
low	level	using	hardware	broadcasts,	so	it	requires	adjustments	for	different
hardware	types.	An	RARP	server	is	also	required	on	every	physical	network	to
respond	to	layer	2	broadcasts.	Each	RARP	server	must	have	address	assignments
manually	provided	by	an	administrator.	And	perhaps	worst	of	all,	RARP
provides	only	an	IP	address	to	a	host	and	none	of	the	other	information	a	host
may	need.	(I	describe	these	issues	in	detail	in	Chapter	14.)



RARP	clearly	wasn't	sufficient	for	the	host	configuration	needs	of	TCP/IP.	To
support	both	diskless	hosts	and	other	situations	where	the	benefits	of
autoconfiguration	were	required,	BOOTP	was	created.	BOOTP	was	standardized
in	RFC	951,	published	in	September	1985.	This	relatively	straightforward
protocol	was	designed	specifically	to	address	the	shortcomings	of	RARP:

BOOTP	is	still	based	on	a	client/server	exchange,	but	is	implemented	as	a
higher-layer	software	protocol,	using	the	User	Datagram	Protocol	(UDP)	for
message	transport	(see	Chapter	44).	It	is	not	dependent	on	the	particular
hardware	of	the	network	as	RARP	is.

It	supports	sending	additional	configuration	information	to	a	client	beyond
just	an	IP	address.	This	extra	information	can	usually	be	sent	in	one	message
for	efficiency.

It	can	handle	having	the	client	and	server	on	different	networks	of	an
internetwork.	This	allows	the	administration	of	the	server	providing	IP
addresses	to	be	more	centralized,	saving	money	as	well	as	administrative	time
and	hassle.

It	should	be	noted	that,	even	though	the	name	of	BOOTP	implies	that	it	defines
everything	needed	for	a	storageless	device	to	boot,	this	isn't	really	the	case.	As
the	BOOTP	standard	itself	describes,	bootstrapping	generally	requires	two
phases.	In	the	first,	the	client	is	provided	with	an	address	and	other	parameters.
In	the	second,	the	client	downloads	software,	such	as	an	operating	system	and
drivers,	that	let	it	function	on	the	network	and	perform	other	tasks.	BOOTP
really	deals	with	only	the	first	of	these	phases:	address	assignment	and
configuration.	The	second	is	assumed	to	take	place	using	a	simple	file	transfer
protocol	like	the	Trivial	File	Transfer	Protocol	(TFTP,	discussed	in	Chapter	73).

TIP

KEY	CONCEPT	The	first	widely	used	host	configuration	protocol	for	TCP/IP	was	the	Boot	Protocol
(BOOTP).	It	was	created	specifically	to	enable	host	configuration	while	addressing	many	of	the
weaknesses	of	RARP.	BOOTP	is	intended	to	be	used	as	the	first	phase	of	a	two-phase	boot	procedure	for
storageless	devices.	After	obtaining	an	IP	address	and	other	configuration	parameters	using	BOOTP,	the
device	employs	a	protocol	such	as	TFTP	to	download	software	necessary	to	function	on	the	network.



Vendor-Specific	Parameters
One	smart	decision	made	when	BOOTP	was	created	was	the	inclusion	of	a
vendor-specific	area.	This	was	intended	to	provide	a	place	where	hardware
vendors	could	define	parameters	relevant	to	their	own	products.	As	the
complexity	of	TCP/IP	increased,	it	was	realized	that	this	field	could	be	used	to
define	a	method	of	communicating	certain	parameters	that	were	commonly
needed	by	IP	hosts,	and	were	in	fact	vendor-independent.	This	was	first
proposed	in	RFC	1048,	"BOOTP	Vendor	Information	Extensions,"	published	in
February	1988.

The	fact	that	BOOTP	can	be	used	to	provide	information	to	a	client	beyond	just
an	IP	address	makes	it	useful	even	in	cases	where	a	device	already	knows	its
address.	BOOTP	can	be	used	to	send	parameters	that	the	administrator	wants	all
hosts	to	have,	to	ensure	that	they	use	the	network	in	a	consistent	manner.	Also,
in	the	case	of	devices	that	do	have	local	storage	(and	therefore	do	not	need
BOOTP	to	get	an	IP	address),	BOOTP	can	still	be	used	to	let	these	devices	get
the	name	of	a	boot	file	for	phase	two	of	bootstrapping,	in	which	the	client
downloads	software.

Changes	to	BOOTP	and	the	Development	of
DHCP
BOOTP	was	the	TCP/IP	host	configuration	protocol	of	choice	from	the	mid-
1980s	through	the	end	of	the	1990s.	The	vendor	extensions	introduced	in	RFC
1048	were	popular,	and	over	the	years,	additional	vendor	extensions	were
defined.	RFC	1048	was	replaced	by	RFCs	1084,	1395,	and	1497	in	succession.

Some	confusion	also	resulted	over	the	years	in	how	some	sections	of	RFC	951
should	be	interpreted	and	how	certain	features	of	BOOTP	work.	RFC	1542,
"Clarifications	and	Extensions	for	the	Bootstrap	Protocol,"	was	published	in
October	1993	to	address	this	and	also	to	make	some	slight	changes	to	the
protocol's	operation.	(RFC	1542	is	actually	a	correction	of	the	nearly	identical
RFC	1532,	which	had	some	small	errors.)

While	BOOTP	was	obviously	quite	successful,	it	also	had	certain	weaknesses.
One	of	the	most	important	of	these	was	the	lack	of	support	for	dynamic	address



assignment.	The	need	for	dynamic	assignment	became	much	more	pronounced
when	the	Internet	really	started	to	take	off	in	the	late	1990s.	This	led	directly	to
the	development	of	the	Dynamic	Host	Configuration	Protocol	(DHCP).

While	DHCP	replaced	BOOTP	as	the	TCP/IP	host	configuration	protocol	of
choice,	it	would	be	inaccurate	to	say	that	BOOTP	is	gone.	It	is	still	used	to	this
day	in	some	networks.	Furthermore,	DHCP	was	based	directly	on	BOOTP,	and
they	share	many	attributes,	including	a	common	message	format.	BOOTP
vendor	extensions	were	used	as	the	basis	for	DHCP	options,	which	work	in	the
same	way	but	include	extra	capabilities.	In	fact,	the	successor	to	RFC	1497	is
RFC	1533,	which	officially	merges	BOOTP	vendor	extensions	and	BOOTP
options	into	the	same	standard.



BOOTP	Client/Server	Messaging	and
Addressing
While	BOOTP	can	be	used	for	a	variety	of	devices,	one	of	the	primary	motives
behind	its	creation	was	to	provide	a	way	to	automatically	configure	"dumb"
devices	that	have	no	storage.	Most	of	these	devices	are	relatively	limited	in	their
capabilities,	so	requiring	them	to	support	a	fancy	boot	protocol	would	not	make
sense.	BOOTP	is	thus	an	uncomplicated	protocol,	which	accomplishes	host
configuration	without	a	lot	of	complicated	concepts	or	implementation
requirements.

Like	so	many	other	TCP/IP	protocols,	BOOTP	is	client/server	in	nature.	The
operation	of	the	protocol	consists	of	a	single	exchange	of	messages	between	a
BOOTP	client	and	a	BOOTP	server.	A	BOOTP	client	can	be	any	type	of	device
that	needs	to	be	configured.	A	BOOTP	server	is	a	network	device	that	has	been
specially	set	up	to	respond	to	BOOTP	client	requests,	and	has	been	programmed
with	addressing	and	other	information	it	can	provide	to	clients	when	required.

The	BOOTP	server	maintains	a	special	set	of	information	about	the	clients	it
serves.	One	key	part	of	this	is	a	table	that	maps	the	hardware	(layer	2,	the	data
link	layer)	addresses	of	each	client	to	an	assigned	IP	address	for	that	device.	The
client	specifies	its	hardware	address	in	its	request,	and	the	server	uses	that
address	to	look	up	the	client's	IP	address	and	return	it	to	the	client.	(Other
techniques	can	also	be	used,	but	a	mapping	table	is	most	common.)

BOOTP	Messaging	and	Transport
BOOTP	messaging	uses	UDP	as	its	layer	4	transport	protocol,	for	a	couple	of
reasons:

UDP	is	a	lot	less	complex	than	the	other	layer	4	transport	protocol,	the
Transmission	Control	Protocol	(TCP),	and	is	ideal	for	simple	request/reply
protocols	like	BOOTP.

Since	the	client	obviously	doesn't	know	the	address	of	a	BOOTP	server,	the
request	is	broadcast	on	its	local	network.	UDP	supports	broadcasts;	TCP	does
not.

UDP	uses	a	special	well-known	(reserved)	port	number	for	BOOTP	servers:



UDP	uses	a	special	well-known	(reserved)	port	number	for	BOOTP	servers:
UDP	port	67.	BOOTP	servers	listen	on	port	67	for	these	broadcast	BOOTP
requests	sent	by	clients.	After	processing	the	request,	the	server	sends	a	reply
back	to	the	client.	How	this	is	handled	depends	on	whether	or	not	the	client
knows	its	own	address.

BOOTP	is	often	used	to	provide	an	IP	address	to	a	client	that	doesn't	know	its
address.	This	is	sometimes	called	a	chicken-and-egg	problem,	because	it
represents	a	loop	of	sorts	like	the	old	conundrum	of	which	came	first,	the
chicken	or	the	egg?	To	resolve	this	dilemma,	the	BOOTP	server	has	two	choices.
If	the	operating	system	supports	it,	the	server	can	use	the	client's	hardware
address	to	create	an	ARP	entry	for	the	device,	and	then	use	a	layer	2	unicast	to
deliver	the	reply.	Otherwise,	it	must	send	the	reply	as	a	broadcast	as	well	on	the
local	network.

However,	in	the	case	where	the	BOOTP	client	already	knows	its	own	address,
that	address	can	be	used	by	the	BOOTP	server	to	send	back	its	reply	directly.

BOOTP	Use	of	Broadcasts	and	Ports
The	fact	that	BOOTP	servers	may	need	to	broadcast	back	to	the	client
necessitates	a	bit	of	a	change	from	the	way	most	TCP/IP	protocols	use	client
ports.	Recall	that	normally,	the	client	in	a	client/server	transaction	using	UDP	or
TCP	generates	a	temporary,	or	ephemeral,	port	number	that	it	uses	as	the	source
port	in	its	request.	The	server	sends	the	reply	back	to	the	client's	IP	address	using
that	ephemeral	port	number.

Ephemeral	port	numbers	must	be	unique	for	a	particular	IP	address,	but	may	not
necessarily	be	unique	across	all	the	devices	on	a	network.	For	example,	Device
A	may	be	using	ephemeral	port	number	1248	for	an	HTTP	request	to	a	web
server,	while	Device	B	may	be	using	port	number	1248	on	its	TCP/IP	stack	to
send	a	Domain	Name	System	(DNS)	request.	Since	the	server	in	BOOTP	is
broadcasting,	it	is	not	targeting	a	particular	device	with	a	unicast	transmission.
This	means	it	cannot	safely	send	to	an	ephemeral	port	number.	This	is	because
some	other	device	on	the	network	may	have	selected	the	same	ephemeral	port
number	for	some	other	transaction	and	may	mistake	the	BOOTP	server's
response	as	being	intended	for	itself.	To	avoid	this	problem,	another	well-known



port	number	is	used	just	for	BOOTP	clients:	UDP	port	68.	Clients	listen	on	this
port	for	broadcast	or	unicast	transmissions;	devices	that	have	not	sent	a	BOOTP
request	will	ignore	it.	This	dual-broadcast	BOOTP	communication	process	is
illustrated	in	Figure	60-1.

Figure	60-1.	General	operation	of	BOOTP

TIP

KEY	CONCEPT	BOOTP	is	a	relatively	simple	client/server	protocol	that	relies	on	broadcasts	to	permit
communication	with	devices	that	do	not	have	an	assigned	IP	address.	In	this	example,	Device	A	is	trying
to	determine	its	IP	address	and	other	parameters.	It	broadcasts	a	BOOTP	request	on	the	local	network
using	UDP	port	67	and	then	listens	for	a	reply	on	port	68.	Device	D	is	configured	as	a	BOOTP	server
and	listens	on	this	port.	When	it	receives	the	request,	it	sends	a	broadcast	on	port	68	telling	Device	A
what	its	IP	address	is.	A	BOOTP	client	uses	broadcasts	to	send	its	requests	to	any	listening	BOOTP
server.	In	most	cases,	the	BOOTP	client	device	does	not	know	its	own	IP	address	when	it	uses	the
protocol.	For	this	reason,	a	BOOTP	server	will	also	typically	use	broadcast	in	sending	its	reply,	to	be
sure	it	reaches	the	client.

Retransmission	of	Lost	Messages
The	drawback	of	the	simplicity	of	using	UDP	for	BOOTP	messaging	is	that
UDP	is	unreliable,	which	means	a	BOOTP	request	might	be	lost	before	it	gets	to
the	server,	or	the	server's	response	may	not	get	back	to	the	client.	Like	many
other	protocols	using	UDP,	BOOTP	clients	take	care	of	this	by	using	a
retransmission	timer.	If	after	a	certain	period	of	time	the	client	has	not	received	a



response,	it	resends	its	request.

However,	BOOTP	clients	must	take	care	in	how	they	implement	their
retransmission	strategy.	Consider	a	scenario	where	a	network	with	200	BOOTP
clients	loses	power.	These	machines	are	all	pretty	much	the	same,	so	when	the
power	comes	back	on,	they	all	restart	and	try	to	send	BOOTP	requests	at	about
the	same	time.	Most	likely,	problems	will	occur	due	to	all	these	requests:	Some
will	be	lost,	or	the	server	may	drop	some	due	to	overload.	If	all	the	clients	use
the	same	amount	of	time	for	retransmission,	then	after	that	time	elapses,	a	whole
bunch	of	machines	will	again	send	requests	and	re-create	the	original	problem.

To	avoid	retransmission	problems,	the	BOOTP	standard	recommends	using	an
exponential	backoff	scheme	for	retransmissions,	starting	with	a	retransmission
interval	of	4	seconds	and	doubling	it	for	successive	tries.	A	randomness	element
is	also	added	to	prevent	many	devices	from	overlapping	their	retransmissions.
The	idea	is	very	similar	to	the	backoff	method	used	by	Ethernet	(in	fact,	the
standard	even	refers	to	the	Ethernet	specification).	For	example,	the	first
retransmission	would	occur	after	a	random	period	of	time	between	0	and	4
seconds	(plus	or	minus	a	random	amount);	a	second	retransmission,	if	needed,
after	a	random	time	interval	between	0	and	8	seconds,	plus	or	minus,	and	so
forth.	This	helps	reduce	the	chances	of	retransmissions	being	lost	and	also	helps
ensure	BOOTP	traffic	doesn't	bog	down	the	network.

TIP

KEY	CONCEPT	BOOTP	uses	UDP	for	transport,	which	provides	no	reliability	features.	For	this
reason,	the	BOOTP	client	must	detect	when	its	requests	are	lost	and,	if	necessary,	retransmit	them.



BOOTP	Detailed	Operation
Now	that	you	have	seen	how	BOOTP	messaging	works	in	general	terms,	let's
take	a	closer	look	at	the	detailed	operation	of	the	protocol.	This	will	clarify	how
clients	and	servers	create	and	process	messages,	and	also	help	make	sense	of
some	of	the	important	fields	in	the	BOOTP	message	field	format.	Understanding
the	basic	operation	of	BOOTP	will	also	be	of	use	when	we	examine	BOOTP
relay	agents	later	in	this	chapter,	and	even	when	we	discuss	DHCP	in	the
following	chapters.

BOOTP	Bootstrapping	Procedure
The	following	are	the	basic	steps	performed	by	the	client	and	server	in	a	regular
BOOTP	bootstrapping	procedure	(see	Figure	60-2).

Client	Creates	Request	The	client	machine	begins	the	procedure	by	creating	a
BOOTP	request	message.	In	creating	this	message,	it	fills	in	the	following
information:

It	sets	the	message	type	(Op)	to	the	value	1,	for	a	BOOTREQUEST	message.

If	it	knows	its	own	IP	address	that	it	plans	to	keep	using,	it	specifies	it	in	the
CIAddr	(Client	IP	Address)	field.	Otherwise,	it	fills	this	field	with	zeros.	(The
CIAddr	field	is	discussed	in	more	detail	in	the	next	section.)

It	puts	its	own	layer	2	hardware	address	in	the	CHAddr	field.	This	is	used	by
the	server	to	determine	the	right	address	and	other	parameters	for	the	client.

It	generates	a	random	transaction	identifier	and	puts	this	in	the	XID	field.

The	client	may	specify	a	particular	server	that	it	wants	to	send	it	a	reply	and
put	that	in	the	SName	field.	It	may	also	specify	the	name	of	a	particular	type
of	boot	file	that	it	wants	the	server	to	provide	in	the	File	field.

The	client	may	specify	vendor-specific	information,	if	programmed	to	do	so.

Client	Sends	Request	The	client	broadcasts	the	BOOTREQUEST	message	by
transmitting	it	to	address	255.255.255.255.	Alternatively,	if	it	already	knows	the
address	of	a	BOOTP	server,	it	may	send	the	request	unicast.

Server	Receives	Request	and	Processes	It	A	BOOTP	server,	listening	on	UDP



port	67,	receives	the	broadcasted	request	and	processes	it.	If	a	name	of	a
particular	server	was	specified	and	this	name	is	different	from	the	name	of	this
server,	the	server	may	discard	the	request.	This	is	especially	true	if	the	server
knows	that	the	server	the	client	asked	for	is	also	on	the	local	network.	If	no
particular	server	is	specified,	or	this	particular	server	was	the	one	the	client
wanted,	the	server	will	reply.

Server	Creates	Reply	The	server	creates	a	reply	message	by	copying	the
request	message	and	changing	several	fields:

It	changes	the	message	type	(Op)	to	the	value	2,	for	a	BOOTREPLY
message.

It	takes	the	client's	specified	hardware	address	from	the	CHAddr	field	and
uses	it	in	a	table	lookup	to	find	the	matching	IP	address	for	this	host.	It	then
places	this	value	into	the	YIAddr	(Your	IP	Address)	of	the	reply.

It	processes	the	File	field	and	provides	the	filename	type	the	client	requested,
or	if	the	field	was	blank,	the	default	filename.

It	puts	its	own	IP	address	and	name	in	the	SIAddr	and	SName	fields.

It	sets	any	vendor-specific	values	in	the	Vend	field.

Server	Sends	Reply	The	server	sends	the	reply.	The	method	it	uses	depends	on
the	contents	of	the	request:

If	the	B	(Broadcast)	flag	is	set,	this	indicates	that	the	client	can't	have	the
reply	sent	unicast,	so	the	server	will	broadcast	it.

If	the	CIAddr	field	is	nonzero,	the	server	will	send	the	reply	unicast	back	to
that	CIAddr.

If	the	B	flag	is	zero	and	the	CIAddr	field	is	also	zero,	the	server	may	either
use	an	ARP	entry	or	broadcast,	as	described	earlier.

Client	Processes	Reply	The	client	receives	the	server's	reply	and	processes	it,
storing	the	information	and	parameters	provided.	(See	the	next	section	for	one
important	issue	related	to	this	processing.)

Client	Completes	Boot	Process	Once	configured,	the	client	proceeds	to	phase
two	of	the	bootstrapping	process,	by	using	a	protocol	such	as	TFTP	to	download



its	boot	file	containing	operating	system	software,	using	the	filename	the	server
provided.

Interpretation	of	the	Client	IP	Address	(CIAddr)
Field
A	complication	can	arise	when	a	client	chooses	to	specify	an	IP	address	in	the
CIAddr	field	in	its	request.	The	problem	is	how	exactly	to	interpret	this	field.
Does	it	mean	that	the	client	is	already	using	this	IP	address?	Or	is	it	just	the	one
it	used	last	time	it	was	booted?	Then	there	is	the	related	problem	of	what	to	do	if
the	server	supplies	an	address	in	the	YIAddr	that	is	different	from	the	one	the
client	is	using.	Should	the	server's	provided	address	override	the	client's	address?
Or	should	the	client	ignore	it?	Who	makes	the	decision,	the	server	or	the	client?

Figure	60-2.	BOOTP	operation	BOOTP	uses	a	simple	two-step	message	exchange	consisting	of	a
broadcast	request	and	broadcast	reply.	After	the	client	receives	configuration	information	from	the

BOOTP	server,	it	completes	the	bootstrapping	process	using	a	protocol	such	as	TFTP.

Much	confusion	occurred	due	to	the	vagueness	of	the	original	standard	in	this
regard,	and	this	led	to	nonuniformity	in	how	different	implementations	chose	to
handle	this	issue.	There	were	even	some	implementations	that	used	the	CIAddr
to	mean	"the	client	requests	this	IP	address,"	which	was	never	part	of	BOOTP
functionality.	This	is	an	especially	bad	idea	since	it	could	lead	to	BOOTP	replies
never	reaching	the	client.

RFC	1542	was	written	in	part	to	try	to	clean	up	this	mess.	It	suggests	that	the



following	is	the	best	way	to	handle	the	meaning	of	these	fields:

If	a	client	is	willing	to	accept	whatever	IP	address	the	server	provides,	it	sets
CIAddr	to	all	zeros,	even	if	it	knows	a	previous	address.

If	the	client	fills	in	a	value	for	the	field,	it	is	saying	it	will	use	this	address,
and	it	must	be	prepared	to	receive	unicast	messages	sent	to	that	address.

If	the	client	specifies	an	address	in	CIAddr	and	receives	a	different	address	in
the	YIAddr	field,	the	server-provided	address	is	ignored.

Note	that	not	all	hardware	devices	may	necessarily	agree	with	this	interpretation
as	provided	by	RFC	1542,	so	there	are	still	potential	interoperability	concerns
here	with	older	equipment.	Then	again,	RFC	1542	was	written	in	1993,	so	this	is
probably	no	longer	much	of	an	issue!



BOOTP	Message	Format
The	exchange	of	information	in	BOOTP	takes	the	form	of	a	request	sent	by	a
client	and	a	reply	sent	back	by	the	server.	BOOTP,	like	a	number	of	other
request/reply	protocols,	uses	a	common	message	format	for	requests	and	replies.
The	client	starts	by	setting	aside	memory	space	for	the	message	and	clearing	it	to
all	zeros.	It	then	fills	in	the	fields	of	the	message	and	sends	the	request,	as	you
saw	in	the	previous	section.	The	server	creates	its	reply	not	from	scratch,	but	by
copying	the	request	and	changing	certain	fields.

BOOTP	messages	contain	a	considerable	number	of	fields,	so	the	message
format	is	rather	large.	It	is	described	in	Tables	Table	60-1	and	Table	60-2,	and
illustrated	in	Figure	60-3.

Table	60-1.	BOOTP	Message	Format

Field
Name

Size
(Bytes)

Description

Op 1 Operation	Code:	Specifies	the	type	of	message.	A	value	of	1	indicates	a
request	(BOOTREQUEST	message).	A	value	of	2	is	a	reply
(BOOTREPLY	message).

HType 1 Hardware	Type:	This	field	specifies	the	type	of	hardware	used	for	the	local
network	and	is	used	in	exactly	the	same	way	as	the	equivalent	field	(HRD)
in	the	ARP	message	format	(see	Chapter	13).	Some	of	the	most	common
values	for	this	field	are	shown	in	Table	60-2.

HLen 1 Hardware	Address	Length:	Specifies	how	long	hardware	addresses	are	in
this	message.	For	Ethernet	or	other	networks	using	IEEE	802	MAC
addresses,	the	value	is	6.	This	is	the	same	as	the	field	with	a	similar	name
(HLN)	in	the	ARP	field	format.

Hops 1 Hops:	Set	to	0	by	a	client	before	transmitting	a	request	and	used	by
BOOTP	relay	agents	to	control	the	forwarding	of	BOOTP	messages.

XID 4 Transaction	Identifier:	A	32-bit	identification	field	generated	by	the	client,
to	allow	it	to	match	up	the	request	with	replies	received	from	BOOTP
servers.

Secs 2 Seconds:	According	to	RFC	951,	the	client	enters	into	this	field	the	number
of	seconds	"elapsed	since	[the]	client	started	trying	to	boot."	This	is
supposed	to	provide	information	to	BOOTP	servers	to	help	them	decide



supposed	to	provide	information	to	BOOTP	servers	to	help	them	decide
which	requests	to	respond	to	first.	Unfortunately,	it	isn't	clear	if	this	meant
the	amount	of	time	since	the	machine	was	powered	on	or	since	the	first
BOOTREQUEST	message	was	sent.	In	addition,	some	devices	incorrectly
implemented	this	field.	As	a	result,	it	is	not	always	used.

Flags 2 Flags:	In	the	original	BOOTP	standard	(RFC	951),	this	was	an	empty	2-
byte	field.	RFC	1542	changed	this	to	a	Flags	field,	which	at	present
contains	only	one	flag.	It	has	a	B	(Broadcast)	flag	subfield,	1	bit	in	size,
which	is	set	to	1	if	the	client	doesn't	know	its	own	IP	address	at	the	time	it
sends	its	BOOTP	request.	This	serves	as	an	immediate	indicator	to	the
BOOTP	server	or	relay	agent	that	receives	the	request	that	it	definitely
should	send	its	reply	by	broadcast.	The	other	subfield	is	Reserved,	which	is
15	bits,	set	to	0,	and	not	used.

CIAddr 4 Client	IP	Address:	If	the	client	has	a	current	IP	address	that	it	plans	to	keep
using,	it	puts	it	in	this	field.	By	filling	in	this	field,	the	client	is	committing
to	responding	to	unicast	IP	datagrams	sent	to	this	address.	Otherwise,	it
sets	this	field	to	all	0s	to	tell	the	server	it	wants	an	address	assigned.	(See
the	previous	section	in	this	chapter	for	important	information	about	this
field.)

YIAddr 4 Your	IP	Address:	The	IP	address	that	the	server	is	assigning	to	the	client.
This	may	be	different	than	the	IP	address	currently	used	by	the	client.

SIAddr 4 Server	IP	Address:	The	IP	address	of	the	BOOTP	server	sending	a
BOOTREPLY	message.

GIAddr 4 Gateway	IP	Address:	Used	to	route	BOOTP	messages	when	BOOTP	relay
agents	facilitate	the	communication	of	BOOTP	requests	and	replies
between	a	client	and	a	server	on	different	subnets	or	networks.	To
understand	the	name,	remember	that	the	old	TCP/IP	term	for	router	is
gateway;	BOOTP	relay	agents	are	typically	routers.	Note	that	this	field	is
set	to	0	by	the	client	and	should	be	ignored	by	the	client	when	processing	a
BOOTREPLY.	It	specifically	does	not	represent	the	server	giving	the
client	the	address	of	a	default	router	address	to	be	used	for	general	IP
routing	purposes.

CHAddr 16 Client	Hardware	Address:	The	hardware	(layer	2)	address	of	the	client
sending	a	BOOTREPLY.	It	is	used	to	look	up	a	device's	assigned	IP
address	and	also	possibly	in	delivery	of	a	reply	message.

SName 64 Server	Name:	The	server	sending	a	BOOTREPLY	may	optionally	put	its
name	in	this	field.	This	can	be	a	simple	text	nickname	or	a	fully	qualified
DNS	domain	name	(such	as	myserver.organization.org).	Note	that	a	client
may	specify	a	name	in	this	field	when	it	creates	its	request.	If	it	does	so,	it
is	saying	that	it	wants	to	get	a	reply	only	from	the	BOOTP	server	with	this
name.	This	may	be	done	to	ensure	that	the	client	is	able	to	access	a
particular	boot	file	stored	on	only	one	server.



particular	boot	file	stored	on	only	one	server.

File 128 Boot	Filename:	Contains	the	full	directory	path	and	filename	of	a	boot	file
that	can	be	downloaded	by	the	client	to	complete	its	bootstrapping	process.
The	client	may	request	a	particular	type	of	file	by	entering	a	text
description	here,	or	it	may	leave	the	field	blank	and	the	server	will	supply
the	filename	of	the	default	file.

Vend 64 Vendor-Specific	Area:	Originally	created	to	allow	vendors	to	customize
BOOTP	to	the	needs	of	different	types	of	hardware,	this	field	is	now	also
used	to	hold	additional	vendor-independent	configuration	information.	The
next	section,	on	BOOTP	vendor	information	extensions,	contains	much
more	detail	on	this	field.	It	may	be	used	by	the	client	and/or	the	server.

Table	60-2.	BOOTP	Message	HType	Values

HType	Value Hardware	Type

1 Ethernet	(10	Mb)

6 IEEE	802	Networks

7 ARCNet

15 Frame	Relay

16 Asynchronous	Transfer	Mode	(ATM)

17 High-Level	Data	Link	Control	(HDLC)

18 Fibre	Channel

19 ATM

20 Serial	Line

As	I	mentioned	earlier	in	this	chapter,	both	requests	and	replies	are	encapsulated
into	UDP	messages	for	transmission.	The	BOOTP	standard	specifies	that	the	use
of	UDP	checksums	is	optional.	Using	the	checksum	provides	protection	against
data-integrity	errors	and	is	thus	recommended.	This	may	cause	unacceptable
processing	demands	on	the	part	of	very	simple	clients,	so	the	checksum	can
legally	be	skipped.

Similarly,	for	simplicity,	BOOTP	assumes	that	its	messages	will	not	be
fragmented.	This	is	to	allow	BOOTP	clients	to	avoid	the	complexity	of



fragmented.	This	is	to	allow	BOOTP	clients	to	avoid	the	complexity	of
reassembling	fragmented	messages.	Since	BOOTP	messages	are	only	300	bytes
in	length,	under	the	maximum	transmission	unit	(MTU)	required	for	all	TCP/IP
links,	this	is	not	normally	an	issue.

Figure	60-3.	BOOTP	message	format



BOOTP	Vendor-Specific	Area	and	Vendor
Information	Extensions
The	creators	of	BOOTP	realized	that	certain	types	of	hardware	might	require
additional	information	to	be	passed	from	the	server	to	the	client	in	order	for	the
client	to	boot.	For	this	reason,	they	put	into	the	BOOTP	field	format	the	64-byte
Vend	field,	also	called	the	Vendor-Specific	Area.	Including	this	field	makes
BOOTP	flexible,	since	it	allows	vendors	to	decide	for	themselves	how	they	want
to	use	the	protocol	and	to	tailor	it	to	their	needs.

A	client	can	use	the	Vend	field	by	asking	for	certain	types	of	information	in	the
field	when	composing	its	request.	The	server	can	then	respond	to	these	requests,
and	it	may	also	include	parameters	it	wants	the	client	to	have,	even	if	they	were
not	requested.	The	original	BOOTP	protocol	does	not	define	any	structure	for
the	Vendor-Specific	Area,	leaving	this	up	to	each	manufacturer	to	decide.

Obviously,	there	is	nothing	preventing	a	client	made	by	one	manufacturer	from
trying	to	send	a	request	to	a	server	made	by	another	one.	If	each	one	is	expecting
the	Vend	field	to	contain	something	different,	the	results	will	be	less	than
satisfactory.	Thus,	for	the	Vend	field	to	be	used	properly,	both	devices	must	be
speaking	the	same	language	when	it	comes	to	the	meaning	of	this	field.	This	is
done	by	setting	the	first	four	bytes	of	the	field	to	a	special	value.	Each
manufacturer	chooses	its	own	magic	number,	sometimes	called	a	magic	cookie,
for	this	four-byte	subfield.

NOTE

Why	is	it	called	a	magic	cookie?	I'm	not	sure,	to	be	honest.	I	have	heard	that	its	origin	may	be	the	cookie
that	Alice	ate	to	grow	or	shrink	in	the	story	Alice	in	Wonderland.

BOOTP	Vendor	Information	Extensions
Including	the	Vend	field	in	BOOTP	gives	the	protocol	extensibility	for	vendor-
specific	information.	Unfortunately,	the	original	field	format	didn't	include	any
way	of	extending	the	information	sent	from	a	server	to	a	client	for	generic,
nonvendor-specific	TCP/IP	information.	This	was	a	significant	oversight	in	the



creation	of	the	protocol,	because	there	are	many	types	of	information	that	a
TCP/IP	host	needs	when	it	starts	up	that	really	have	nothing	to	do	with	its
vendor.	For	example,	when	a	host	boots,	we	probably	want	it	to	be	told	the
address	of	a	default	router,	the	subnet	mask	for	its	local	subnet,	the	address	of	a
local	DNS	server,	the	MTU	of	the	local	network,	and	much	more.	None	of	these
things	are	vendor-specific,	but	there	is	no	place	to	put	them	in	the	BOOTP	reply
message.

Since	there	was	no	nonvendor-specific	area	field	in	BOOTP,	the	decision	was
made	to	define	a	way	of	using	the	Vendor-Specific	Area	(Vend	field)	for
communicating	this	additional	generic	information.	This	was	first	standardized
in	RFC	1048	and	then	refined	in	later	RFCs,	as	I	explained	in	the	BOOTP
overview	earlier	in	this	chapter.	This	scheme	basically	represents	one	particular
way	of	using	the	Vend	field	that	most	TCP/IP	BOOTP	implementations	have
chosen	to	adopt,	regardless	of	their	vendor.	This	enhancement	is	formally
referred	to	as	BOOTP	vendor	information	extensions.

TIP

KEY	CONCEPT	The	BOOTP	message	format	includes	a	Vend	field	that	was	originally	intended	for
vendor-specific	customized	fields.	It	was	later	changed	to	a	place	where	additional	generic	information
could	be	sent	from	a	BOOTP	server	to	a	BOOTP	client.	Each	such	parameter	is	carried	in	a	BOOTP
vendor	information	field.

To	clearly	mark	that	this	particular	meaning	of	the	Vend	field	is	being	used,	a
special,	universal	magic	cookie	value	of	99.130.83.99	is	inserted	into	the	first
four	bytes	of	the	field.	Then	the	remaining	60	bytes	can	contain	a	sequence	of
one	or	more	vendor	information	fields.	The	overall	structure	of	the	Vendor-
Specific	Area	when	vendor	information	extensions	are	used	is	shown	in
Figure	60-4.



Figure	60-4.	BOOTP	Vendor-Specific	Area	format	showing	vendor	information	fields

NOTE

The	BOOTP	Vendor-Specific	Area	begins	with	the	four-byte	magic	cookie	and	then	contains	a	number
of	variable-length	vendor	information	fields,	each	of	which	has	the	format	shown	above	and	in	Table	60-
3.	Despite	the	use	of	IP	dotted-decimal	notation	to	represent	the	value	99.130.83.99,	this	is	not	an	IP
address.	It's	just	a	marker—a	magic	number	that	is	universally	recognized.

BOOTP	Vendor	Information	Fields
Each	vendor	information	field	specifies	a	particular	type	of	information	to	be
communicated,	and	it	is	encoded	using	a	special	subfield	structure	that	specifies
the	field's	type,	length,	and	value.	This	is	a	common	method	of	specifying
options,	called	TLV-encoding	(for	type,	length,	value).	The	same	basic	method
is	used	for	encoding	Internet	Protocol	versions	4	and	6	(IPv4	and	IPv6)	options.
Table	60-3	shows	the	structure	and	the	common	names	for	the	subfields	of	each
vendor	information	field.

Table	60-3.	BOOTP	Vendor	Information	Field	Format

Subfield
Name

Size
(Bytes)

Description

Code 1 Vendor	Information	Field	Code:	A	single	octet	that	specifies	the	vendor
information	field	type.

Len 1 Vendor	Information	Field	Length:	The	number	of	bytes	in	this	particular
vendor	information	field.	This	does	not	include	the	two	bytes	for	the
Code	and	Len	fields.



Code	and	Len	fields.

Data Variable Vendor	Information	Field	Data:	The	data	being	sent,	which	has	a	length
indicated	by	the	Len	subfield,	and	which	is	interpreted	based	on	the	Code
subfield.

There	are	two	special	cases	that	violate	the	field	format	shown	in	Table	60-3.	A
Code	value	of	0	is	used	as	padding	when	subfields	need	to	be	aligned	on	word
boundaries;	it	contains	no	information.	The	value	255	is	used	to	mark	the	end	of
the	vendor	information	fields.	Both	of	these	codes	contain	no	actual	data.	To
save	space,	when	either	is	used,	just	the	single	Code	value	is	included,	and	the
Len	and	Data	fields	are	omitted.	A	device	seeing	a	Code	value	of	0	just	skips	it
as	filler;	a	device	seeing	a	Code	value	of	255	knows	it	has	reached	the	end	of	the
vendor	information	fields	in	this	Vend	field.

The	vendor	information	extensions	of	BOOTP	have	become	so	popular	that	the
use	of	this	field	for	sending	extra	generic	information	is	pretty	much	standard.	In
fact,	I	am	not	sure	if	anyone	today	still	uses	the	Vend	field	solely	for	vendor-
specific	information.

When	the	vendor	information	extensions	were	introduced,	one	was	created	that
points	to	a	file	where	vendor-specific	information	can	be	found.	This	lets	devices
have	the	best	of	both	worlds—they	can	use	the	standard	vendor-independent
fields	and	can	incorporate	vendor-specific	fields	(through	the	referenced	file)
where	needed.	Later,	another	field	type	was	created	that	lets	vendor-specific
fields	be	mixed	with	vendor-independent	ones	directly	in	a	BOOTP	message.

When	DHCP	was	created,	the	same	vendor	extension	mechanism	was
maintained	and	enhanced	further,	but	instead	of	the	field	being	called	vendor
information	extensions,	it	was	renamed	to	Options.	(A	much	better	name!)	The
BOOTP	vendor	information	fields	were	retained	in	DHCP,	and	new	DHCP-
specific	options	were	defined.	To	avoid	duplication,	I	have	listed	all	the	BOOTP
vendor	information	fields	and	DHCP	options	in	a	set	of	tables	in	Chapter	63,
which	covers	DHCP	messaging.	This	includes	a	discussion	of	how	vendor-
specific	and	vendor-independent	information	can	be	mixed.	You	may	also	want
to	read	the	section	in	Chapter	63	that	describes	DHCP	options,	which	discusses
how	they	were	created	from	BOOTP	vendor	information	extensions.



BOOTP	Relay	Agents	(Forwarding	Agents)
One	reason	why	RARP	was	quickly	replaced	by	BOOTP	is	that	RARP	required
the	client	being	configured	and	the	server	providing	it	with	an	IP	address	to	be
on	the	same	physical	network.	This	is	fine	when	you	run	a	small	organization
with	ten	machines,	which	are	probably	all	on	the	same	physical	network.	Larger
networks	must	be	divided	into	multiple	physical	networks	for	efficiency,
however.	RARP	would	require	a	separate	RARP	server	for	each	network,
meaning	needing	to	duplicate	all	the	functions	of	a	single	server	onto	multiple
machines.	Worse	yet,	all	the	configuration	information	would	also	be	duplicated,
and	any	changes	would	need	to	be	made	to	all	the	different	servers	each	time.

BOOTP	is	designed	to	allow	the	BOOTP	server	and	the	clients	it	serves	to	be	on
different	networks.	This	centralizes	the	BOOTP	server	and	greatly	reduces	the
amount	of	work	required	of	network	administrators.	However,	implementing	this
feature	means	increasing	the	complexity	of	the	protocol.	In	particular,	we	need
to	involve	a	third-party	device	in	the	configuration	process.

You	might	rightly	wonder	why	this	would	be	the	case.	RARP	is	a	low-level
protocol	that	works	at	the	link	layer,	so	that	explains	why	it	would	have
problems	putting	the	client	and	server	on	different	physical	networks.	But	wasn't
the	whole	point	of	making	BOOTP	a	high-level	protocol	that	it	was	able	to	use
IP?	And	if	BOOTP	uses	IP,	can't	we	send	from	one	network	to	another
arbitrarily,	just	like	any	IP-based	messaging	protocol?

The	answer	is	that	even	though	we	are	indeed	using	IP	and	UDP,	BOOTP	still
has	one	of	the	same	issues	that	RARP	had:	a	reliance	on	broadcasts.	The	client
usually	doesn't	know	the	address	of	a	server,	so	it	must	send	out	its	request	as	a
broadcast,	saying	in	essence,	"Can	anyone	hear	this	and	give	me	the	information
I	need?"	For	efficiency	reasons,	routers	do	not	route	such	broadcasts,	as	they
would	clog	the	network.	This	means	that	if	the	server	and	client	are	not	on	the
same	network,	the	server	can't	hear	the	client's	broadcast.	Similarly,	if	the	server
ever	did	get	the	request	and	broadcast	its	reply	back	to	the	client,	the	client
would	never	get	it	anyway.	To	make	this	all	work,	we	need	something	to	act	as
an	intermediary	between	the	client	and	the	server:	a	BOOTP	relay	agent.



The	Function	of	BOOTP	Relay	Agents
The	job	of	a	BOOTP	relay	agent	is	to	sit	on	a	physical	network	where	BOOTP
clients	may	be	located	and	act	as	a	proxy	for	the	BOOTP	server.	The	agent	gets
its	name	because	it	relays	messages	between	the	client	and	server,	and	thus
enables	them	to	be	on	different	networks.

NOTE

BOOTP	relay	agents	were	originally	called	forwarding	agents.	RFC	1542	changed	the	name	to	make
explicit	the	fact	that	BOOTP	relaying	was	not	the	same	as	conventional	IP	datagram	forwarding	by
regular	routers.

In	practice,	a	BOOTP	relay	agent	is	not	usually	a	separate	piece	of	hardware.
Rather,	it's	a	software	module	that	runs	on	an	existing	piece	of	hardware	that
performs	other	functions.	It	is	common	for	BOOTP	relay	agent	functionality	to
be	implemented	on	an	IP	router.	In	that	case,	the	router	is	acting	both	as	a
regular	router	and	also	playing	the	role	of	a	BOOTP	agent.	The	forwarding
functions	required	of	a	BOOTP	relay	agent	are	distinct	from	the	normal	IP
datagram	forwarding	tasks	of	a	router.

TIP

KEY	CONCEPT	Since	BOOTP	uses	broadcasts,	the	BOOTP	client	and	BOOTP	server	must	be	on	the
same	physical	network	to	be	able	to	hear	each	other's	broadcasted	transmissions.	For	a	client	and	server
on	different	networks	to	communicate,	a	third	party	is	required	to	facilitate	the	transaction:	a	BOOTP
relay	agent.	This	device,	which	is	often	a	router,	listens	for	transmissions	from	BOOTP	clients	and	relays
them	to	the	BOOTP	server.	The	server	responds	back	to	the	agent,	which	then	sends	the	server's
response	back	to	the	client.

Naturally,	the	placement	of	the	client	and	server	on	different	networks	and	the
presence	of	a	relay	agent	change	the	normal	request/reply	process	of	BOOTP
significantly.	A	couple	of	specific	fields	in	the	BOOTP	message	format	are	used
to	control	the	process.	RFC	951	was	rather	vague	in	describing	how	this	process
works,	so	RFC	1542	described	it	in	much	more	detail.

Normal	BOOTP	Operation	Using	a	Relay	Agent
The	following	shows,	in	simplified	form,	a	revised	set	of	BOOTP	operation



steps	when	a	relay	agent	is	involved.	To	keep	the	size	of	this	discussion
manageable,	I	have	omitted	the	details	of	the	basic	request/reply	process	to	focus
on	the	relaying	functionality,	which	you	can	also	see	graphically	in	Figure	60-5.

Client	Creates	Request	The	client	machine	creates	its	request	normally.	The
existence	of	a	relay	agent	is	totally	transparent	to	the	client.

Client	Sends	Request	The	client	broadcasts	the	BOOTREQUEST	message	by
transmitting	it	to	address	255.255.255.255.	(Note	that	in	the	case	where	a	client
already	knows	both	its	own	address	and	the	address	of	a	BOOTP	server,	we
don't	need	the	relay	agent	at	all—both	the	request	and	reply	can	be	sent	unicast
over	an	arbitrary	internetwork.)

Relay	Agent	Receives	Request	and	Processes	It	The	BOOTP	relay	agent	on
the	physical	network	where	the	client	is	located	is	listening	on	UDP	port	67	on
the	server's	behalf.	It	processes	the	request	as	follows:

It	checks	the	value	of	the	Hops	field.	If	the	value	is	less	than	or	equal	to	16,	it
increments	it.	If	the	value	is	greater	than	16,	it	discards	the	request	and	does
nothing	further.

It	examines	the	contents	of	the	GIAddr	field.	If	this	field	is	all	zeros,	it	knows
it	is	the	first	relay	agent	to	handle	the	request	and	puts	its	own	IP	address	into
this	field.	(If	the	agent	is	a	router,	it	has	more	than	one	IP	address,	so	it
chooses	the	one	of	the	interface	on	which	it	received	the	request.)

Relay	Agent	Relays	Request	The	relay	agent	sends	the	BOOTP	request	to	the
BOOTP	server.	If	the	relay	agent	knows	the	server's	IP	address,	it	will	send	it
unicast	directly	to	the	server.	Otherwise,	if	the	agent	is	a	router,	it	may	choose	to
broadcast	the	request	on	a	different	interface	from	the	one	on	which	it	received
the	request.	In	the	latter	case,	it	is	possible	that	multiple	relay	agents	may	be
required	to	convey	the	request	to	the	server.	See	the	next	section	for	more	on
this.

Server	Receives	Request	and	Processes	It	The	BOOTP	server	receives	the
relayed	request	from	the	BOOTP	relay	agent.	It	processes	it	as	normal.

Server	Creates	Reply	The	server	creates	a	reply	message	as	normal.

Server	Sends	Reply	Seeing	that	the	GIAddr	field	in	the	request	was	nonzero,



the	server	knows	the	request	was	relayed.	Instead	of	trying	to	send	its	reply	back
to	the	client	that	sent	the	request,	it	transmits	the	reply	unicast	back	to	the	relay
agent	specified	in	GIAddr.

Relay	Agent	Relays	Reply	The	BOOTP	relay	agent	transmits	the
BOOTREPLY	message	back	to	the	client.	It	does	this	either	unicast	or
broadcast,	depending	on	the	value	of	the	CIAddr	field	and	the	B	(Broadcast)
flag,	just	as	a	server	does	in	the	nonrelay	case.

Figure	60-5.	BOOTP	operation	using	a	relay	agent	In	this	example,	Device	A	is	trying	to	access	a
BOOTP	server,	but	the	only	one	is	on	a	different	network;	the	two	are	connected	by	a	workgroup	router
that	is	configured	to	act	as	a	BOOTP	relay	agent.	Device	A	broadcasts	its	request,	which	the	router

receives.	It	relays	the	request	to	the	BOOTP	server,	Device	D,	and	puts	its	own	IP	address	(IPR)	into	the
BOOTP	GIAddr	field.	The	BOOTP	server	sends	the	reply	back	to	the	router	using	address	IPR.	The

router	then	broadcasts	it	on	Device	A's	local	network	so	that	Device	A	can	receive	it.

Relaying	BOOTP	Requests	Using	Broadcasts
The	simplest	case	of	relaying	is	when	each	network	has	a	relay	agent	that	knows
the	IP	address	of	the	BOOTP	server.	The	relay	agent	captures	the	request	in	step



3	of	the	procedure	described	in	the	preceding	section,	and	sends	it	directly	to	the
BOOTP	server,	wherever	it	may	be	on	the	network.	The	request	is	relayed	as	a
regular	unicast	UDP	message	and	routed	to	the	BOOTP	server.	The	BOOTP
server's	reply	is	routed	back	to	the	BOOTP	relay	agent,	just	like	any	UDP
message	in	an	IP	datagram,	and	the	relay	agent	forwards	the	reply.

It	is	also	possible	to	set	up	BOOTP	relay	agents	to	relay	requests	even	if	they
don't	know	the	BOOTP	server's	address.	These	agents	take	requests	received	on
one	network	and	relay	them	to	the	next,	where	they	expect	another	agent	to
continue	the	relaying	process	until	a	BOOTP	server	is	reached.	For	example,
suppose	we	have	a	set	of	three	networks.	Network	N1	is	connected	to	Network
N2	using	Router	RA,	and	Network	N2	connects	to	Network	N3	using	Router
RB.	Both	of	these	routers	function	as	relay	agents	but	don't	know	the	IP	address
of	the	BOOTP	server.	Here's	what	would	happen	if	a	client	on	Network	N1	sent
a	request	and	the	server	was	on	Network	N3:

1.	 The	client	would	send	its	request.

2.	 Router	RA	would	capture	the	request	and	put	its	address	into	GIAddr.	It
would	increment	the	Hops	field	to	a	value	of	1	and	then	broadcast	the
request	out	on	Network	N2.

3.	 Router	RB	would	capture	this	request.	It	would	see	there	is	already	an
address	in	GIAddr,	so	it	would	leave	that	alone.	It	would	increment	the
Hops	field	to	2	and	broadcast	the	request	on	Network	N3.

4.	 The	BOOTP	server	would	receive	the	request,	process	it,	and	return	the
reply	directly	back	to	Router	RA.

5.	 Router	RA	would	relay	the	reply	back	to	the	client.

As	you	can	see,	the	purpose	of	the	Hops	field	is	to	ensure	that	errant	requests
don't	circle	around	the	network	endlessly.	Each	relay	agent	increments	it,	and	if
the	value	of	16	is	ever	exceeded,	the	request	is	dropped.	You	can	also	see	that
any	relay	agents	other	than	the	first	are	involved	only	for	handling	the	request;
the	reply	is	sent	unicast	back	to	the	agent	closest	to	the	client.

Incidentally,	if	this	multiple-step	relaying	process	sounds	like	IP	routing	(only
using	broadcasts),	and	the	Hops	field	sounds	like	the	Time	to	Live	(TTL)	field	in
an	IP	datagram,	then	you've	been	paying	attention.	It	is	essentially	the	same	idea



(as	explained	in	Chapter	21).



Chapter	61.	DHCP	OVERVIEW
AND	ADDRESS	ALLOCATION
CONCEPTS

In	some	ways,	technological	advancement	can	be	considered	more	a	journey
than	a	destination.	When	a	particular	technology	is	refined	or	replaced	with	a
superior	one,	it's	usually	only	a	matter	of	time	before	it,	too,	is	replaced	with
something	better.	And	so	it	was	with	the	TCP/IP	Boot	Protocol	(BOOTP),
described	in	the	previous	chapter.	While	BOOTP	was	far	more	capable	than	the
protocol	it	replaced,	Reverse	Address	Resolution	Protocol	(RARP),	after	a
number	of	years	BOOTP,	itself	was	replaced	with	a	new	TCP/IP	configuration
protocol:	the	Dynamic	Host	Configuration	Protocol	(DHCP).

Where	BOOTP	represented	a	revolutionary	change	from	RARP,	DHCP	is	more
of	an	evolution	of	BOOTP.	It	was	built	using	BOOTP	as	a	foundation,	with	the
same	basic	message	format.	The	most	significant	addition	in	DHCP	is	the	ability
to	dynamically	assign	addresses	to	clients	and	to	centrally	manage	them.	It	is	this
capability	that	makes	DHCP	so	powerful.	Today,	DHCP	is	the	standard	TCP/IP
host	configuration	protocol	and	is	used	in	everything	from	single-client	home
networks	to	enterprise-class	internetworks.

In	this	first	chapter	on	DHCP,	I	provide	an	overview	of	the	protocol	and	a
description	of	the	concepts	behind	DHCP	address	assignment	and	leasing.	I	take
a	high-level	look	at	how	DHCP	address	assignment	works	and	give	a	description
of	the	three	DHCP	address	allocation	mechanisms.	I	then	delve	into	DHCP
leases	and	the	policies	and	techniques	used	to	decide	how	to	implement	DHCP
leasing.	I	provide	an	overview	of	the	lease	life	cycle	from	start	to	finish	and
describe	the	two	DHCP	lease	timers	that	help	control	the	process.	Finally,	I
describe	DHCP	lease	address	pools	and	ranges,	and	the	general	concepts	behind



describe	DHCP	lease	address	pools	and	ranges,	and	the	general	concepts	behind
address	management.

TIP

RELATED	INFORMATION	Since	DHCP	builds	on	BOOTP,	they	have	a	number	of	things	in
common.	For	example,	DHCP	makes	use	of	BOOTP	relay	agent	functionality,	and	DHCP	options	are
basically	the	same	as	BOOTP	vendor	information	fields.	Since	DHCP	is	the	more	common	of	the	two
protocols,	I	have	tried	to	be	complete	in	describing	the	operation	of	these	features	here,	highlighting
especially	any	differences	between	how	they	work	for	DHCP	and	in	BOOTP.	However,	I	have	avoided
duplicating	the	history	and	reasoning	for	the	existence	of	many	of	these	features.	Since	BOOTP	came
first,	I	have	placed	more	of	the	historical	information	in	the	previous	chapter.	In	general,	if	you	plan	to
read	about	DHCP	as	well	as	BOOTP,	I	recommend	reading	the	chapter	on	BOOTP	first.	If	you	don't
plan	to	read	up	on	BOOTP,	you	may	wish	to	check	the	topic	on	DHCP/BOOTP	interoperability	in
Chapter	64	instead.

DHCP	Overview,	History,	and	Standards
As	you	learned	in	the	previous	chapter,	BOOTP	represents	a	significant
improvement	over	RARP	because	it	solves	so	many	of	RARP's	problems.
BOOTP	is	a	higher-layer	protocol,	not	hardware-dependent	like	RARP.	It	can
support	sending	extra	information	beyond	an	IP	address	to	a	client	to	enable
customized	configuration.	Also,	through	the	use	of	BOOTP	relay	agents,	it
allows	a	large	organization	to	use	just	one	or	two	BOOTP	servers	to	handle
clients	spread	out	over	many	physical	networks.	In	so	doing,	BOOTP	effectively
solves	one	of	the	major	classes	of	problems	that	administrators	have	with	manual
configuration:	the	"I	have	to	go	configure	each	host	myself"	issue.	It	allows
"dumb"	(storageless)	hosts	to	configure	themselves	automatically	and	saves
administrators	the	hassles	of	needing	to	trek	to	each	host	individually	to	specify
important	configuration	parameters.

BOOTP	normally	uses	a	static	method	of	determining	what	IP	address	to	assign
to	a	device.	When	a	client	sends	a	request,	it	includes	its	hardware	address,
which	the	server	looks	up	in	a	table	to	determine	the	IP	address	for	that	client.	(It
is	possible	for	BOOTP	to	use	other	methods	of	determining	the	relationship
between	an	IP	and	hardware	address,	but	static	mapping	is	usually	used.)	This
means	BOOTP	works	well	in	relatively	static	environments,	where	changes	to
the	IP	addresses	assigned	to	different	devices	are	infrequent.	Such	networks
were	basically	the	norm	in	the	1980s	and	early	1990s.



Over	time,	many	networks	quickly	started	to	move	away	from	this	model,	for	a
number	of	reasons.	As	computers	became	smaller	and	lighter,	it	was	more
common	for	them	to	move	from	one	network	to	another,	where	they	would
require	a	different	address	using	the	new	network's	network	ID.	Laptop	and	even
palmtop	computers	could	literally	move	from	one	network	to	another	many
times	per	day.	Another	major	issue	was	the	looming	exhaustion	of	the	IP	address
space	(see	Chapter	17).	For	many	organizations,	permanently	assigning	a	static
IP	address	to	each	and	every	computer	that	might	connect	to	their	network	was	a
luxury	they	could	not	afford.

In	many	organizations,	trying	to	keep	track	of	constant	IP	address	changes
became	a	daunting	task	in	and	of	itself.	BOOTP,	with	its	static	table	of	mappings
between	hardware	addresses	and	IP	addresses,	simply	wasn't	up	to	the	task.	It
also	offered	no	way	to	reuse	addresses;	once	an	address	had	been	assigned,	a
device	could	keep	it	forever,	even	if	it	were	no	longer	needed.

DHCP:	Building	on	BOOTP's	Strengths
A	new	host	configuration	protocol	was	needed	to	serve	modern	networks,	which
would	move	away	from	static,	permanent	IP	address	assignment.	The	Internet
Engineering	Task	Force	(IETF)	supplied	this	in	the	form	of	DHCP,	first
formalized	in	RFC	1541,	published	in	October	1993.	(Actually,	it	was	really
originally	specified	in	RFC	1531	in	that	same	month,	but	due	to	minor	errors	in
1531,	the	standard	was	quickly	revised	and	1541	published.)

Because	BOOTP	worked	well	within	its	limitations	and	was	also	already	widely
deployed,	it	would	not	have	made	sense	to	start	over	from	scratch	with	DHCP.
This	was	especially	so	given	that	such	a	decision	would	have	meant	dealing	with
the	inevitable	painful	transition,	as	well	as	compatibility	problems	associated
with	having	both	BOOTP	and	DHCP	around	for	many	years.

So,	instead	of	tossing	out	BOOTP,	DHCP	was	built	on	it	as	a	foundation.	In	it
simplest	form,	DHCP	consists	of	two	major	components:	an	address	allocation
mechanism	and	a	protocol	that	allows	clients	to	request	configuration
information	and	servers	to	provide	it.	DHCP	performs	both	functions	in	a
manner	similar	to	BOOTP,	but	with	improvements.



Overview	of	DHCP	Features
The	most	significant	differences	between	BOOTP	and	DHCP	are	in	the	area	of
address	allocation,	which	is	enhanced	through	the	support	for	dynamic	address
assignment.	Rather	than	using	a	static	table	that	absolutely	maps	hardware
addresses	to	IP	addresses,	a	pool	of	IP	addresses	is	used	to	dynamically	allocate
addresses.	Dynamic	addressing	allows	IP	addresses	to	be	efficiently	allocated,
and	even	shared	among	devices.	At	the	same	time,	DHCP	still	supports	static
mapping	of	addresses	for	devices	where	this	is	needed.

The	overall	operation	and	communication	between	clients	and	servers	are	similar
to	that	used	by	BOOTP,	but	with	changes.	The	same	basic	request/reply	protocol
using	UDP	was	retained	for	communicating	configuration	information,	but
additional	message	types	were	created	to	support	DHCP's	enhanced	capabilities.
BOOTP	relay	agents	can	be	used	by	DHCP	in	a	manner	very	similar	to	how	they
are	used	by	BOOTP	clients	and	server.	The	vendor	information	extensions	from
BOOTP	were	retained	as	well,	but	were	formalized,	renamed	DHCP	options,
and	extended	to	allow	the	transmission	of	much	more	information.

The	result	of	all	of	this	development	effort	is	a	widely	accepted,	universal	host
configuration	protocol	for	TCP/IP	that	retains	compatibility	with	BOOTP	while
significantly	extending	its	capabilities.	Today,	DHCP	is	found	on	millions	of
networks	worldwide.	It	is	used	for	everything	from	assigning	IP	addresses	to
corporate	networks	with	thousands	of	hosts,	to	allowing	a	home	Internet	access
router	to	automatically	providing	the	correct	Internet	configuration	information
to	a	single	user's	computer.

TIP

KEY	CONCEPT	The	Dynamic	Host	Configuration	Protocol	(DHCP)	is	the	host	configuration	protocol
currently	used	on	modern	TCP/IP	internetworks.	It	was	based	on	BOOTP	and	is	similar	to	its
predecessor	in	many	respects,	including	the	use	of	request/reply	message	exchanges	and	a	nearly
identical	message	format.	However,	DHCP	includes	added	functionality,	the	most	notable	of	which	is
dynamic	address	assignment,	which	allows	clients	to	be	assigned	IP	addresses	from	a	shared	pool
managed	by	a	DHCP	server.

The	original	DHCP	specification	was	revised	in	March	1997	with	the	publishing
of	RFC	2131,	also	titled	"Dynamic	Host	Configuration	Protocol."	This	standard
defined	another	new	DHCP	message	(DHCPINFORM)	type	to	allow	active	IP



defined	another	new	DHCP	message	(DHCPINFORM)	type	to	allow	active	IP
hosts	to	request	additional	configuration	information.	It	also	made	several	other
small	changes	to	the	protocol.	Since	that	time,	numerous	other	DHCP-related
RFCs	have	been	published,	most	of	which	either	define	new	DHCP	option	types
(other	kinds	of	information	DHCP	servers	can	send	to	DHCP	clients)	or	slightly
refine	the	way	that	DHCP	is	used	in	particular	applications.



DHCP	Address	Assignment	and	Allocation
Mechanisms
The	two	main	functions	of	DHCP	are	to	provide	a	mechanism	for	assigning
addresses	to	hosts	and	to	provide	a	method	by	which	clients	can	request
addresses	and	other	configuration	data	from	servers.	Both	functions	are	based	on
the	ones	implemented	in	DHCP's	predecessor,	BOOTP,	but	the	changes	are
much	more	significant	in	the	area	of	address	assignment	than	they	are	in
communication.	It	makes	sense	to	start	our	look	at	DHCP	here,	since	this	will
naturally	lead	us	into	a	detailed	discussion	of	defining	characteristic	of	DHCP:
dynamic	addressing.

DHCP	Address	Allocation
Providing	an	IP	address	to	a	client	is	the	most	fundamental	configuration	task
performed	by	a	host	configuration	protocol.	To	provide	flexibility	for
configuring	addresses	on	different	types	of	clients,	the	DHCP	standard	includes
three	different	address	allocation	mechanisms:	manual,	automatic,	and	dynamic.

I	don't	really	care	for	the	names	automatic	and	dynamic	allocation,	because	they
don't	do	a	good	job	of	clearly	conveying	the	differences	between	these	methods.
Both	methods	can	be	considered	automatic,	because	in	each,	the	DHCP	server
assigns	an	address	without	requiring	any	administrator	intervention.	The	real
difference	between	them	is	only	in	how	long	the	IP	address	is	retained,	and
therefore,	whether	a	host's	address	varies	over	time.	I	think	better	names	would
be	static	or	permanent	automatic	allocation	and	dynamic	or	temporary	automatic
allocation.

Regardless	of	what	you	call	them,	all	three	of	these	methods	exist	for
configuring	IP	hosts	using	DHCP.	It	is	not	necessary	for	administrators	to
choose	one	over	the	others.	Instead,	they	will	normally	combine	the	methods,
using	each	where	it	makes	the	most	sense.

DHCP	Manual	Allocation
With	manual	allocation,	a	particular	IP	address	is	preallocated	to	a	single	device
by	an	administrator.	DHCP	communicates	only	the	IP	address	to	the	device.



Manual	allocation	is	the	simplest	method,	and	it	is	equivalent	to	the	method
BOOTP	uses	for	address	assignment,	described	in	the	previous	chapter.	Each
device	has	an	address	that	an	administrator	gives	it	ahead	of	time,	and	all	DHCP
does	is	look	up	the	address	in	a	table	and	send	it	to	the	client	for	which	it	is
intended.	This	technique	makes	the	most	sense	for	devices	that	are	mainstays	of
the	network,	such	as	servers	and	routers.	It	is	also	appropriate	for	other	devices
that	must	have	a	stable,	permanent	IP	address.

Okay,	now	here's	a	fair	question	you	might	have.	DHCP	acts	basically	like
BOOTP	in	the	case	of	manual	allocation.	But	BOOTP	was	created	for	devices
that	needed	help	with	configuration.	Servers	and	routers	are	complex	devices
with	their	own	internal	storage,	and	they	obviously	don't	need	a	DHCP	server	to
tell	them	their	IP	address	as	a	diskless	workstation	does,	so	why	bother	using
DHCP	for	them	at	all?

Well,	in	fact,	you	could	just	manually	assign	the	address	to	the	device	directly
and	tell	DHCP	to	ignore	those	addresses.	However,	using	DHCP	for	manual
assignments	yields	a	different	benefit:	an	administrative	one.	It	keeps	all	the	IP
address	information	centralized	in	the	DHCP	address	database,	instead	of
requiring	an	administrator	to	go	from	machine	to	machine	checking	addresses
and	ensuring	there	are	no	duplicates.	Updates	can	be	made	in	a	single	place	as
well.

DHCP	Dynamic	Allocation
While	manual	allocation	is	possible	in	DHCP,	dynamic	allocation	is	its	real
raison	d'etre.	With	dynamic	allocation,	DHCP	assigns	an	IP	address	from	a	pool
of	addresses	for	a	limited	period	of	time	chosen	by	the	server,	or	until	the	client
tells	the	DHCP	server	that	it	no	longer	needs	the	address.	An	administrator	sets
up	the	pool	(usually	a	range	or	set	of	ranges)	of	IP	addresses	that	are	available
for	use.	Each	client	that	is	configured	to	use	DHCP	contacts	the	server	when	it
needs	an	IP	address.	The	server	keeps	track	of	which	IP	addresses	are	already
assigned,	and	it	leases	one	of	the	free	addresses	from	the	pool	to	the	client.	The
server	decides	the	amount	of	time	that	the	lease	will	last.	When	the	time	expires,
the	client	must	either	request	permission	to	keep	using	the	address	(renew	the
lease)	or	must	get	a	new	one.

Dynamic	allocation	is	the	method	used	for	most	client	machines	in	modern



Dynamic	allocation	is	the	method	used	for	most	client	machines	in	modern
DHCP-enabled	IP	internetworks.	It	offers	numerous	benefits,	such	as	the
following:

Automation	Each	client	can	be	automatically	assigned	an	IP	address	when	it	is
needed,	without	any	administrator	intervention.	Administrators	do	not	need	to
manually	decide	which	address	goes	with	which	client.

Centralized	Management	All	the	IP	addresses	are	managed	by	the	DHCP
server.	An	administrator	can	easily	look	to	see	which	devices	are	using	which
addresses	and	perform	other	network-wide	maintenance	tasks.

Address	Reuse	and	Sharing	By	limiting	the	amount	of	time	that	each	device
holds	an	IP	address,	the	DHCP	server	can	ensure	that	the	pool	of	IP	addresses	is
used	only	by	devices	actively	using	the	network.	After	a	period	of	time,
addresses	no	longer	being	used	are	returned	to	the	pool,	allowing	other	devices
to	use	them.	This	allows	an	internetwork	to	support	a	total	number	of	devices
larger	than	the	number	of	IP	addresses	available,	as	long	as	not	all	the	devices
connect	to	the	internetwork	at	the	same	time.

Portability	and	Universality	BOOTP	(and	DHCP	manual	allocation)	both
require	that	the	DHCP	server	know	the	identity	of	each	client	that	connects	to	it,
so	the	server	can	find	the	client's	assigned	address.	With	dynamic	allocation,
there	are	no	predefined	allocations,	so	any	client	can	request	an	IP	address.	This
inherently	makes	dynamic	allocation	the	ideal	choice	for	supporting	mobile
devices	that	travel	between	networks.

Conflict	Avoidance	Since	IP	addresses	are	all	assigned	from	a	pool	that	is
managed	by	the	DHCP	server,	IP	address	conflicts	are	avoided.	This,	of	course,
assumes	that	all	the	clients	use	DHCP.	The	administrator	must	ensure	that	the
address	pool	is	not	used	by	non-DHCP	devices.

DHCP	Automatic	Allocation
With	the	automatic	allocation	method,	DHCP	automatically	assigns	an	IP
address	permanently	to	a	device,	selecting	it	from	a	pool	of	available	addresses.
This	method	can	be	used	in	cases	where	there	are	enough	IP	addresses	for	each
device	that	may	connect	to	the	network,	but	where	devices	don't	really	care
which	IP	address	they	use.	Once	an	address	is	assigned	to	a	client,	that	device



will	keep	using	it.	Automatic	allocation	can	be	considered	a	special	case	of
dynamic	allocation:	It	is	essentially	dynamic	allocation	where	the	time	limit	on
the	use	of	the	IP	address	by	a	client	(the	lease	length)	is	forever.

In	practice,	automatic	allocation	is	not	used	nearly	as	much	as	dynamic
allocation,	for	a	simple	reason:	Automatically	assigning	an	IP	address	to	a	device
permanently	is	a	risky	move.	Most	administrators	feel	it	is	better	to	use	manual
allocation	for	the	limited	number	of	machines	that	really	need	a	permanent	IP
address	assignment	and	to	use	dynamic	addressing	for	others.

TIP

KEY	CONCEPT	DHCP	defines	three	basic	mechanisms	for	address	assignment.	Dynamic	allocation	is
the	method	most	often	used,	and	it	works	by	having	each	client	lease	an	address	from	a	DHCP	server	for
a	period	of	time.	The	server	chooses	the	address	dynamically	from	a	shared	address	pool.	Automatic
allocation	is	like	dynamic	allocation,	but	the	address	is	assigned	permanently	instead	of	being	leased.
Manual	allocation	preassigns	an	address	to	a	specific	device,	just	as	BOOTP	does,	and	is	normally	used
only	for	servers	and	other	permanent,	important	hosts.



DHCP	Leases
Of	the	three	address	allocation	methods	supported	by	DHCP,	dynamic	address
allocation	is	by	far	the	most	popular	and	important.	The	significance	of	the
change	that	dynamic	addressing	represents	to	how	IP	addresses	are	used	in
TCP/IP	can	be	seen	in	the	semantics	of	how	addresses	are	treated	in	DHCP.
Where	conventionally	a	host	was	said	to	own	an	IP	address,	when	dynamic
address	allocation	is	used,	hosts	are	said	instead	to	lease	an	address.

The	notion	of	a	lease	conveys	very	accurately	the	difference	between	dynamic
allocation	and	the	other	types.	A	host	no	longer	is	strictly	entitled	to	a	particular
address,	with	a	server	merely	telling	it	what	the	address	is.	In	DHCP,	the	server
remains	the	real	owner	of	all	the	IP	addresses	in	the	address	pool,	and	it	merely
gives	permission	for	a	client	to	use	the	address	for	a	period	of	time.	The	server
guarantees	that	it	will	not	try	to	use	the	address	for	another	client	only	during
this	time.	The	client	is	responsible	for	taking	certain	actions	if	it	wants	to
continue	using	the	address.	If	it	does	not	successfully	reacquire	permission	for
using	the	address	after	a	period	of	time,	it	must	stop	using	it	or	risk	creating	an
IP	address	conflict	on	the	network.

TIP

KEY	CONCEPT	DHCP's	most	significant	new	feature	is	dynamic	allocation,	which	changes	the	way
that	IP	addresses	are	managed.	Where	in	traditional	IP	each	device	owns	a	particular	IP	address,	in
DHCP	the	server	owns	all	the	addresses	in	the	address	pool,	and	each	client	leases	an	address	from	the
server,	usually	for	only	a	limited	period	of	time.

DHCP	Lease	Length	Policy
When	dynamic	address	allocation	is	used,	the	administrator	of	the	network	must
provide	parameters	to	the	DHCP	server	to	control	how	leases	are	assigned	and
managed.	One	of	the	most	important	decisions	to	be	made	is	the	lease	length
policy	of	the	internetwork:	how	long	the	administrator	wants	client	leases	to	last.
This	choice	will	depend	on	the	network,	the	server,	and	the	clients.	The	choice	of
lease	time,	like	so	many	other	networking	parameters,	comes	down	to	a	trade-off
between	stability	and	allocation	efficiency.

The	primary	benefit	of	using	long	lease	times	is	that	the	addresses	of	devices	are



The	primary	benefit	of	using	long	lease	times	is	that	the	addresses	of	devices	are
relatively	stable.	A	device	doesn't	need	to	worry	about	its	IP	address	changing	all
the	time,	and	neither	does	its	user.	This	is	a	significant	advantage	in	many	cases,
especially	when	it	is	necessary	for	the	client	to	perform	certain	server	functions,
accept	incoming	connections,	or	use	a	DNS	domain	name	(ignoring	for	the
moment	dynamic	DNS	capabilities).	In	those	situations,	having	the	IP	address	of
a	device	moving	all	over	the	place	can	cause	serious	complications.

The	main	drawback	of	using	long	leases	is	that	they	substantially	increase	the
amount	of	time	that	an	IP	address,	once	it	is	no	longer	needed,	is	tied	up	before	it
can	be	reused.	In	the	worst-case	scenario,	the	amount	of	wasted	time	for	an
allocation	can	be	almost	as	long	as	the	lease	itself.	If	we	give	a	device	a
particular	address	for	six	months	and	after	two	weeks	the	device	is	shut	down
and	no	longer	used,	the	IP	address	that	it	was	using	is	still	unavailable	for
another	five	and	a	half	more	months.

For	this	reason,	many	administrators	prefer	to	use	short	leases.	This	forces	a
client	to	continually	renew	the	lease	as	long	as	it	needs	it.	When	it	stops	asking
for	permission,	the	address	is	quickly	put	back	into	the	pool.	This	makes	shorter
leases	a	better	idea	in	environments	where	the	number	of	addresses	is	limited
and	must	be	conserved.	The	drawback	is	the	opposite	of	the	benefit	of	long
leases:	constantly	changing	IP	addresses.

Administrators	do	not	need	to	pick	from	short	and	long	lease	durations.	They	can
compromise	by	choosing	a	number	that	best	suits	the	network.	The	following	are
some	examples	of	lease	times	and	the	reasoning	behind	them:

One	Hour	or	Less	Ensures	maximum	IP	address	allocation	efficiency	in	a	very
dynamic	environment	where	there	are	many	devices	connecting	and
disconnecting	from	the	network,	and	the	number	of	IP	addresses	is	limited.

One	Day	Suitable	for	situations	where	guest	machines	typically	stay	for	a	day,
to	increase	IP	efficiency	when	many	employees	work	part	time,	or	otherwise	to
ensure	that	every	day	each	client	must	ask	again	for	permission	to	use	an
address.

Three	Days	The	default	used	by	Microsoft,	which	alone	makes	it	a	popular
choice.

One	Week	A	reasonable	compromise	between	the	shorter	and	longer	times.



One	Month	Another	compromise,	closer	to	the	longer	end	of	the	lease	time
range.

Three	Months	Provides	reasonable	IP	address	stability	so	that	addresses	don't
change	very	often	in	reasonably	static	environments.	Also	a	good	idea	if	there
are	many	IP	addresses	available	and	machines	are	often	turned	off	for	many	days
or	weeks	at	a	time.	For	example,	this	duration	may	be	used	in	a	university	setting
to	ensure	that	IP	addresses	of	returning	students	are	maintained	over	the	summer
recess.

One	Year	An	approximation	of	an	infinite	lease.

Not	only	is	the	administrator	not	restricted	to	a	limited	number	of	possible	lease
durations,	it	is	not	necessary	for	the	administrator	to	choose	a	constant	lease
length	policy	for	all	clients.	Depending	on	the	capabilities	of	the	DHCP	server,
an	administrator	may	select	different	lease	lengths	for	certain	clients.	For
example,	the	administrator	may	decide	to	use	long	leases	for	desktop	computers
that	are	permanently	assigned	to	a	particular	subnet	and	not	moved,	and	a	pool	of
short-leased	addresses	for	notebook	computers	and	visitors.	In	some	DHCP
implementations,	this	can	be	done	by	assigning	clients	to	particular	classes.	Of
course,	this	requires	more	work	(and	may	even	require	multiple	servers).

In	selecting	a	lease	time	policy,	the	administrator	must	also	bear	in	mind	that,	by
default,	after	half	the	length	of	a	lease,	the	client	will	begin	attempting	to	renew
the	lease.	This	may	make	it	more	advisable	to	use	a	longer	lease	time,	to	increase
the	amount	of	time	between	when	a	client	tries	to	renew	the	lease	and	when	the
lease	expires.	For	example,	in	a	network	with	a	single	DHCP	server,	an
administrator	may	want	to	use	leases	no	shorter	than	eight	hours.	This	provides	a
four-hour	window	for	maintenance	on	the	server	without	leases	expiring.

When	a	lease	is	very	short,	such	as	minutes	or	hours,	it	will	typically	expire
when	a	client	machine	is	turned	off	for	a	period	of	time,	such	as	overnight.
Longer	leases	will	persist	across	reboots.	The	client	in	this	case	will	still	contact
the	DHCP	server	each	time	it	is	restarted	to	reallocate	the	address—confirm	that
it	may	continue	using	the	address	it	was	assigned.

TIP

KEY	CONCEPT	A	key	decision	that	a	network	administrator	using	DHCP	must	make	is	what	the



network's	lease	length	policy	will	be.	Longer	leases	allow	devices	to	avoid	changing	addresses	too	often;
shorter	leases	are	more	efficient	in	terms	of	reallocating	addresses	that	are	no	longer	required.	An
administrator	can	choose	from	a	variety	of	different	lease	times	and	may	choose	longer	leases	for	some
devices	than	for	others.

Issues	with	Infinite	Leases
In	addition	to	choosing	a	particular	lease	length	number,	it	is	possible	to	specify
an	infinite	lease	length	duration	for	certain	clients.	This	effectively	turns
dynamic	allocation	into	automatic	allocation	for	a	particular	client.	As	I	said
earlier,	however,	this	is	generally	not	done.	The	reason	is	that	an	infinite	lease
never	expires,	and	as	the	old	saw	goes,	"Never	is	a	long	time."

Permanently	assigning	an	IP	address	from	a	pool	is	a	somewhat	risky	move,
because	once	assigned,	if	anything	occurs	that	causes	that	address	to	be	no
longer	used,	it	can	never	be	recovered.	A	worst-case	scenario	would	be	a	visitor
to	a	company	site	who	plugs	a	notebook	computer	in	to	the	network	to	check
email	or	transfer	a	file.	If	that	machine	is	assigned	an	IP	address	using	automatic
allocation,	the	visitor	will	take	it	with	him	when	he	leaves.	Obviously,	this	is	not
a	great	idea.

For	this	reason,	most	administrators	prefer	to	use	dynamic	allocation	instead,
with	addresses	set	to	a	very	long	time	frame,	such	as	a	year	or	two	years.	This	is
considered	near	enough	to	infinity	that	it	approximates	a	permanent	assignment,
but	allows	an	IP	address	to	eventually	be	recovered	if	a	device	stops	using	it.	In
such	a	policy,	anything	that	really,	truly	needs	a	permanent	assignment	is	given
an	address	using	manual	assignment,	which	requires	a	conscious	decision	to
dedicate	the	address	to	a	particular	device.

TIP

RELATED	INFORMATION	For	a	little	more	information	related	to	lease	length	selection,	see	the
section	on	DHCP	server	implementation	problems	and	issues	in	Chapter	64.



DHCP	Lease	Life	Cycle	and	Lease	Timers
The	use	of	dynamic	address	allocation	in	DHCP	means	a	whole	new	way	of
thinking	about	addresses.	A	client	no	longer	owns	an	address,	but	rather	leases	it.
This	means	that	when	a	client	machine	is	set	to	use	DHCP	dynamic	addressing,
it	can	never	assume	that	it	has	an	address	on	a	permanent	basis.	Each	time	it
powers	up,	it	must	engage	in	communications	with	a	DHCP	server	to	begin	or
confirm	the	lease	of	an	address.	It	also	must	perform	other	activities	over	time	to
manage	this	lease	and	possibly	terminate	it.

Calling	dynamic	address	assignments	leases	is	a	good	analogy,	because	a	DHCP
IP	address	lease	is	similar	to	a	real-world	lease	in	a	number	of	respects.	For
example,	when	you	rent	an	apartment,	you	sign	the	lease.	Then	you	use	the
apartment	for	a	period	of	time.	Typically,	assuming	you	are	happy	with	the
place,	you	will	renew	the	lease	before	it	expires,	so	you	can	keep	using	it.	If	by
the	time	you	get	near	the	end	of	the	lease	the	owner	of	the	apartment	has	not
allowed	you	to	renew	it,	you	will	probably	lease	a	different	apartment	to	ensure
you	have	somewhere	to	live.	And	if	you	decide,	say,	to	move	out	of	the	country,
you	may	terminate	the	lease	and	not	get	another.

DHCP	Lease	Life	Cycle	Phases
DHCP	leases	follow	a	lease	life	cycle	that	generally	consists	of	the	following	six
phases:

Allocation	A	client	begins	with	no	active	lease,	and	hence,	no	DHCP-assigned
address.	It	acquires	a	lease	through	a	process	of	allocation.

Reallocation	If	a	client	already	has	an	address	from	an	existing	lease,	then	when
it	reboots	or	starts	up	after	being	shut	down,	it	will	contact	the	DHCP	server	that
granted	it	the	lease	to	confirm	the	lease	and	acquire	operating	parameters.	This	is
sometimes	called	reallocation;	it	is	similar	to	the	full	allocation	process	but
shorter.

Normal	Operation	Once	a	lease	is	active,	the	client	functions	normally,	using
its	assigned	IP	address	and	other	parameters	during	the	main	part	of	the	lease.
The	client	is	said	to	be	bound	to	the	lease	and	the	address.



Renewal	After	a	certain	portion	of	the	lease	time	has	expired,	the	client	will
attempt	to	contact	the	server	that	initially	granted	the	lease	to	renew	the	lease,	so
it	can	keep	using	its	IP	address.

Rebinding	If	renewal	with	the	original	leasing	server	fails	(because,	for
example,	the	server	has	been	taken	offline),	the	client	will	try	to	rebind	to	any
active	DHCP	server,	in	an	attempt	to	extend	its	current	lease	with	any	server	that
will	allow	it	to	do	so.

Release	The	client	may	decide	at	any	time	that	it	no	longer	wishes	to	use	the	IP
address	it	was	assigned,	and	may	terminate	the	lease,	releasing	the	IP	address.
Like	the	apartment	renter	moving	out	of	the	country,	this	may	be	done	if	a
device	is	moving	to	a	different	network,	for	example.	(Of	course,	unlike	DHCP
servers,	landlords	usually	don't	let	you	cancel	a	lease	at	your	leisure,	but	hey,	no
analogy	is	perfect.)

Figure	61-1	illustrates	the	DHCP	life	cycle	using	an	example	that	spans	three
individual	leases.



Figure	61-1.	DHCP	life	cycle	example	In	this	example,	the	initial	lease	has	a	duration	of	8	days	and
begins	at	day	0.	The	T1	and	T2	timers	are	set	for	4	days	and	7	days,	respectively.	When	the	T1	timer
expires,	the	client	enters	the	renewal	period	and	successfully	renews	at	day	5	with	a	new	8-day	lease.

When	this	second	lease's	T1	timer	expires,	the	client	is	unable	to	renew	with	the	original	server.	It	enters
the	rebinding	period	when	its	T2	timer	goes	off,	and	it	is	granted	a	renewed	8-day	lease	with	a	different
server.	Three	days	into	this	lease,	it	is	moved	to	a	different	network	and	no	longer	needs	its	leased

address,	so	it	voluntarily	releases	it.

Renewal	and	Rebinding	Timers
The	processes	of	renewal	and	rebinding	are	designed	to	ensure	that	a	client's
lease	can	be	extended	before	it	is	scheduled	to	end,	so	no	loss	of	functionality	or
interruption	occurs	to	the	user	of	the	client	machine.	Each	time	an	address	is
allocated	or	reallocated,	the	client	starts	two	timers	that	control	the	renewal	and
rebinding	process:

Renewal	Timer	(T1)	This	timer	is	set	by	default	to	50	percent	of	the	lease



period.	When	it	expires,	the	client	will	begin	the	process	of	renewing	the	lease.	It
is	simply	called	T1	in	the	DHCP	standards.

Rebinding	Timer	(T2)	This	timer	is	set	by	default	to	87.5	percent	of	the	length
of	the	lease.	When	it	expires,	the	client	will	try	to	rebind,	as	described	in	the
previous	section.	It	is	given	the	snappy	name	T2	in	the	DHCP	standards.

Naturally,	if	the	client	successfully	renews	the	lease	when	the	T1	timer	expires,
this	will	result	in	a	fresh	lease,	and	both	timers	will	be	reset.	T2	comes	into	play
only	if	the	renewal	is	not	successful.	It	is	possible	to	change	the	amount	of	time
to	which	these	timers	are	set,	but	obviously	T1	must	expire	before	T2,	which
must	expire	before	the	lease	itself	ends.	These	usually	are	not	changed	from	the
default,	but	may	be	modified	in	certain	circumstances.

TIP

KEY	CONCEPT	DHCP	leases	follow	a	conceptual	life	cycle.	The	lease	is	first	assigned	to	the	client
through	a	process	of	allocation;	if	the	device	later	reboots,	it	will	reallocate	the	lease.	After	a	period	of
time	controlled	by	the	renewal	timer	(T1),	the	device	will	attempt	to	renew	its	lease	with	the	server	that
allocated	it.	If	this	fails,	the	rebinding	timer	(T2)	will	go	off,	and	the	device	will	attempt	to	rebind	the
lease	with	any	available	server.	The	client	may	also	release	its	IP	address	if	it	no	longer	needs	it.

The	lease	life	cycle	is	described	in	the	DHCP	standards	in	the	form	of	states	that
the	client	moves	through	as	it	acquires	a	lease,	uses	it,	and	then	either	renews	or
ends	it.	The	next	chapter	describes	these	states	and	the	specific	exchanges	of
messages	between	a	client	and	server	to	accomplish	different	lease	activities.



DHCP	Lease	Address	Pools,	Ranges,	and
Address	Management
Simpler	host	configuration	methods	such	as	BOOTP	(or	DHCP	manual
allocation	for	that	matter)	associate	a	single	IP	address	with	each	client	machine.
DHCP	dynamic	addressing	removes	this	one-to-one	correspondence,	in	favor	of
flexible	address	mapping	to	clients	on	an	as-needed	basis.	The	clients	no	longer
own	the	addresses,	but	lease	them	from	the	true	owner,	the	server.	Thus,	a
primary	job	of	both	a	DHCP	server	and	the	administrator	of	that	server	is	to
maintain	and	manage	these	client	addresses.

Address	Pool	Size	Selection
The	set	of	all	addresses	that	a	DHCP	server	has	available	for	assignment	is	most
often	called	the	address	pool.	The	first	issue	related	to	address	management	is
ensuring	that	the	address	pool	is	large	enough	to	serve	all	the	clients	that	will	be
using	the	server.	The	number	of	addresses	required	depends	on	several	factors:

Number	of	Clients	This	is	an	obvious	factor.

Stability	and	Frequency	of	Use	of	Clients	If	most	clients	are	left	on	and
connected	to	the	network	all	the	time,	you	will	probably	need	to	plan	on	an
address	for	each	one.	In	contrast,	if	you	are	serving	part-time	employees	or
consultants	who	frequently	travel,	you	can	get	away	with	sharing	a	smaller
number	of	addresses.

Consequences	of	Overallocation	If	having	certain	clients	be	unable	to	get	a	free
address	is	a	problem,	you	need	to	more	carefully	manage	the	address	pool	to
ensure	that	you	don't	run	out	of	IP	addresses.	If	having	a	client	not	get	an	address
is	never	acceptable,	make	sure	you	have	as	many	or	more	addresses	as	clients.

I'm	sure	you've	probably	noticed	that	these	issues	are	similar	to	those	that	I
raised	in	discussing	lease	lengths	earlier	in	this	chapter.	In	fact,	the	two	matters
are	intimately	related.	Generally	speaking,	having	more	addresses	gives	the
administrator	the	luxury	of	using	longer	leases.	If	you	are	short	on	addresses,
you	probably	need	to	use	shorter	leases	to	reduce	the	chances	of	any	unused
addresses	continuing	to	be	allocated	to	devices	not	needing	them.



Lease	Address	Ranges	(Scopes)
In	its	simplest	form,	the	address	pool	takes	the	form	of	a	list	of	all	addresses	that
the	DHCP	server	has	reserved	for	dynamic	client	allocation.	Along	with	each
address,	the	server	stores	certain	parameters,	such	as	a	default	lease	length	for
the	address	and	other	configuration	information	to	be	sent	to	the	client	when	it	is
assigned	that	address	(for	example,	a	subnet	mask	and	the	address	of	a	default
router).	All	of	this	data	is	stored	in	a	special	database	on	the	server.

Of	course,	many	clients	will	request	addresses	from	this	pool.	Most	of	these
clients	are	equals	as	far	as	the	DHCP	server	is	concerned,	and	it	doesn't	matter
which	address	each	individual	client	gets.	This	means	most	of	the	information
stored	with	each	of	the	addresses	in	a	pool	may	be	the	same,	except	for	the
address	number	itself.	Due	to	this	similarity,	it	would	be	inefficient	to	need	to
specify	each	address	and	its	parameters	individually.	Instead,	a	range	of
addresses	is	normally	handled	as	a	single	group	defined	for	a	particular	network
or	subnet.	These	are	not	given	any	particular	name	in	the	DHCP	standards,	but
are	commonly	called	scopes.	This	term	has	been	popularized	by	Microsoft	in	its
DHCP	server	implementations.	Other	operating	systems	sometimes	just	call
these	blocks	of	addresses	ranges,	but	I	prefer	scope.

TIP

KEY	CONCEPT	Each	DHCP	server	maintains	a	set	of	IP	addresses	that	it	uses	to	allocate	leases	to
clients.	These	are	usually	contiguous	blocks	of	addresses	assigned	to	the	server	by	an	administrator,
called	DHCP	address	ranges	or	scopes.

The	exact	method	for	setting	up	scopes	depends	on	the	particular	operating
system	and	DHCP	server	software.	However,	each	scope	definition	typically
begins	by	specifying	a	range	of	addresses	using	a	starting	and	an	ending	IP
address.	For	example,	if	a	company	was	assigned	the	IP	address	block
111.14.56.0/24,	the	administrator	might	set	up	a	scope	encompassing	addresses
111.14.56.20	through	111.14.56.254,	as	shown	in	Figure	61-2.	Then	for	that
scope,	the	administrator	can	set	up	various	parameters	to	be	specified	to	each
client	assigned	an	address	from	the	scope.



Figure	61-2.	DHCP	scope	A	single	DHCP	server	scope,	encompassing	addresses	111.14.56.1	through
111.14.56.254.

Why	not	start	at	111.14.56.1?	Usually,	we	will	want	to	set	aside	certain	IP
addresses	for	manual	configuration	of	servers,	routers,	and	other	devices
requiring	a	fixed	address.	One	easy	way	to	do	that	is	to	simply	reserve	a	block	of
addresses	that	aren't	used	by	DHCP.	Alternatively,	most	DHCP	server	software
will	allow	you	to	specify	a	range	but	exclude	an	address	or	set	of	addresses	from
the	range.	So,	we	could	specify	111.14.56.1	through	111.14.56.254	and
individually	mark	as	not	available	addresses	we	manually	assign.	Or	we	could
specify	that	111.14.56.1	through	111.14.56.19	are	reserved.

Instead	of	putting	all	of	its	addresses	(except	excluded	ones)	in	a	single	scope,	a
server	may	use	multiple	scopes.	One	common	reason	for	the	latter	approach	is	to
support	more	than	one	subnet	on	a	server.	Multiple	scopes	are	also	commonly
used	when	multiple	DHCP	servers	are	used	to	serve	the	same	clients.	There	are
two	ways	to	do	this:	by	having	either	overlapping	or	non-overlapping	scopes.

Overlapping	scopes	allows	each	server	to	assign	any	address	from	the	same	pool.
However,	the	DHCP	standard	doesn't	specify	any	way	for	servers	to
communicate	with	each	other	when	they	assign	an	address,	so	if	both	servers
were	told	they	could	assign	addresses	from	the	same	address	pool,	this	could
result	in	both	servers	trying	to	assign	a	particular	address	to	two	different
devices.	As	a	result,	if	you	are	using	two	DHCP	servers	(as	is	often
recommended	for	redundancy	reasons),	the	administrator	generally	gives	them
different,	non-overlapping	scope	assignments.	Alternatively,	the	same	scope	is
given	to	each	server,	with	each	server	told	to	exclude	from	use	the	addresses	the
other	server	is	assigning.

For	example,	suppose	we	have	two	DHCP	servers:	Server	A	(the	main	server)
and	Server	B	(the	backup).	We	want	to	assign	most	of	the	addresses	to	Server	A
and	a	few	as	backup	to	Server	B.	We	could	give	both	Server	A	and	Server	B	the



scope	111.14.56.1	through	111.14.56.254.	We	would	exclude	111.14.56.1
through	111.14.56.19	from	both.	Then	we	would	exclude	from	Server	A	the
range	111.14.56.200	through	111.14.56.254	and	exclude	from	Server	B	the
range	111.14.20	through	111.14.56.199.	Figure	61-3	shows	how	this	would
work.	The	main	advantage	of	this	method	is	that	if	one	server	goes	down,	the
administrator	can	quickly	remove	the	exclusion	and	let	the	remaining	server
access	all	addresses.	Also,	if	one	server	runs	out	of	addresses	while	the	other	has
plenty,	the	allocations	can	be	shifted	easily.

Figure	61-3.	DHCP	multiple-server	non-overlapping	scopes	DHCP	Servers	A	and	B	have	been	assigned
non-overlapping	scopes	to	ensure	that	they	do	not	conflict.	This	has	been	done	by	starting	with	the	same
scope	definition	for	both.	The	common	reserved	range	is	excluded	from	each.	Then	Server	A	has	Server
B's	address	range	excluded	(hatched	area	at	right	in	the	top	bar),	and	Server	B	has	Server	A's	range

excluded	(hatched	area	in	the	middle	at	bottom).

Other	Issues	with	Address	Management
There	are	many	other	issues	related	to	address	management,	which	start	to	get
into	the	guts	of	DHCP	server	implementation.	For	example,	as	was	the	case	with
BOOTP,	we	may	need	to	use	relay	agents	when	the	DHCP	server	is	responsible
for	addresses	on	a	subnet	different	from	its	own.	There	are	also	special	DHCP
features	that	affect	how	addresses	are	managed.	For	example,	the	DHCP	conflict
detection	feature	can	actually	allow	two	servers	to	have	overlapping	scopes,
despite	what	I	said	in	the	previous	section.	Chapter	64,	which	covers	DHCP
implementation	and	features,	describes	these	issues	in	more	detail.

TIP



KEY	CONCEPT	If	a	site	has	multiple	DHCP	servers,	they	can	be	set	up	with	either	overlapping	or	non-
overlapping	scopes.	Overlapping	scopes	allow	each	server	to	assign	from	the	same	pool,	providing
flexibility,	but	raising	the	possibility	of	two	clients	being	assigned	the	same	address	unless	a	feature	such
as	server	conflict	detection	is	employed.	non-overlapping	scopes	are	safer	because	each	server	has	a
dedicated	set	of	addresses	for	its	use,	but	this	means	one	server	could	run	out	of	addresses	while	the
other	still	has	plenty,	and	if	a	server	goes	down,	its	addresses	will	be	temporarily	unallocatable.



Chapter	62.	DHCP
CONFIGURATION	AND
OPERATION

The	big	news	in	DHCP	is	dynamic	address	allocation,	along	with	the	concept	of
address	leasing.	It	is	this	new	functionality	that	makes	DHCP	significantly	more
complex	than	its	predecessor,	the	Boot	Protocol	(BOOTP).	BOOTP	is	a	simple
request/reply	protocol—a	server	only	needs	to	look	up	a	client's	hardware
address	and	send	back	the	client's	assigned	IP	address	and	other	parameters.	In
contrast,	DHCP	clients	and	servers	must	do	much	more	to	carry	out	both
parameter	exchange	and	the	many	tasks	needed	to	manage	IP	address	leasing.

In	this	chapter,	I	delve	into	the	nuts	and	bolts	of	how	DHCP	operates.	I	begin
with	two	background	topics.	The	first	provides	an	overview	of	the
responsibilities	of	clients	and	servers	in	DHCP,	and	shows	in	general	terms	how
they	relate	to	each	other.	The	second	discusses	DHCP	configuration	parameters
and	how	they	are	stored	and	communicated.

In	the	rest	of	the	chapter,	I	illustrate	the	operation	of	DHCP	in	detail.	I	explain
the	DHCP	client	finite	state	machine,	which	will	give	you	a	high-level	look	at
the	entire	client	lease	life	cycle,	including	address	allocation,	reallocation,
renewal,	rebinding,	and	optionally,	lease	termination.	This	theoretical
description	is	then	used	as	the	basis	for	several	topics	that	explain	the	actual
processes	by	which	DHCP	client	lease	activities	occur.	These	show	the	specific
actions	taken	by	both	client	and	server	and	when	and	how	DHCP	messages	are
created	and	sent.	The	last	part	of	the	chapter	describes	the	special	mechanism	by
which	a	device	not	using	DHCP	for	address	allocation	can	request	configuration
parameters.



DHCP	Overview	of	Client	and	Server
Responsibilities
DHCP	is	the	newest	and	most	current	TCP/IP	host	configuration	protocol.
However,	as	you	saw	in	the	previous	chapter,	it	wasn't	built	from	scratch—it	was
designed	as	an	extension	of	BOOTP.	In	many	ways,	DHCP	is	like	BOOTP	with
more	features,	and	this	can	be	seen	in	the	basic	setup	of	the	protocol	and	how	it
works.

Both	BOOTP	and	DHCP	are	designed	based	on	the	common	TCP/IP	model	of
client/server	operation	(see	Chapter	8).	In	any	interaction,	one	device	plays	the
role	of	client	and	the	other	server.	Each	has	specific	responsibilities	and	must
send	and	receive	messages	following	the	protocol	described	in	the	DHCP
standard.	The	difference	is	that	where	BOOTP	involves	relatively	little	work	for
servers	and	clients	and	uses	a	simple	single-message	exchange	for
communication,	DHCP	requires	that	both	servers	and	clients	do	more,	and	it
uses	several	types	of	message	exchanges.

DHCP	Server	Responsibilities
A	DHCP	server	is	a	network	device	that	has	been	programmed	to	provide	DHCP
services	to	clients.	The	server	plays	a	central	role	in	DHCP	because	DHCP's
main	function	is	host	configuration,	and	the	server	configures	hosts	(clients)	that
communicate	with	it.	Smaller	networks	may	have	only	a	single	server	to	support
many	clients,	while	larger	networks	may	use	multiple	servers.	Regardless	of	the
number	of	servers,	each	will	usually	service	many	clients.

The	following	are	the	key	responsibilities	of	servers	in	making	DHCP	work:

Address	Storage	and	Management	DHCP	servers	are	the	owners	of	the
addresses	used	by	all	DHCP	clients.	The	server	stores	the	addresses	and	manages
their	use,	keeping	track	of	which	addresses	have	been	allocated	and	which	are
still	available.

Configuration	Parameter	Storage	and	Management	DHCP	servers	also	store
and	maintain	other	parameters	that	are	intended	to	be	sent	to	clients	when
requested.	Many	of	these	are	important	configuration	values	that	specify	in	detail
how	a	client	is	to	operate.



Lease	Management	DHCP	servers	use	leases	to	dynamically	allocate	addresses
to	clients	for	a	limited	time.	The	DHCP	server	maintains	information	about	each
of	the	leases	it	has	granted	to	clients,	as	well	as	policy	information	such	as	lease
lengths.

Response	to	Client	Requests	DHCP	servers	respond	to	different	types	of
requests	from	clients	to	implement	the	DHCP	communication	protocol.	This
includes	assigning	addresses;	conveying	configuration	parameters;	and	granting,
renewing,	and	terminating	leases.

Administration	Services	To	support	all	of	its	other	responsibilities,	the	DHCP
server	includes	functionality	to	allow	a	human	administrator	to	enter,	view,
change,	and	analyze	addresses,	leases,	parameters,	and	all	other	information
needed	to	run	DHCP.

DHCP	Client	Responsibilities
A	DHCP	client	is	any	device	that	sends	DHCP	requests	to	a	server	to	obtain	an
IP	address	or	other	configuration	information.	Due	to	the	advantages	of	DHCP,
most	host	computers	on	TCP/IP	internetworks	today	include	DHCP	client
software,	making	them	potential	DHCP	clients	if	their	administrator	chooses	to
enable	the	function.	There	are	several	main	responsibilities	of	a	DHCP	client:

Configuration	Initiation	The	client	takes	the	active	role	by	initiating	the
communication	exchange	that	results	in	it	being	given	an	IP	address	and	other
parameters.	The	server,	in	contrast,	is	passive	and	will	not	really	do	anything	for
the	client	until	the	client	makes	contact.

Configuration	Parameter	Management	The	client	maintains	parameters	that
pertain	to	its	configuration,	some	or	all	of	which	may	be	obtained	from	a	DHCP
server.

Lease	Management	Assuming	its	address	is	dynamically	allocated,	the	client
keeps	track	of	the	status	of	its	own	lease.	It	is	responsible	for	renewing	the	lease
at	the	appropriate	time,	rebinding	if	renewal	is	not	possible,	and	terminating	the
lease	early	if	the	address	is	no	longer	needed.

Message	Retransmission	Since	DHCP	uses	the	unreliable	User	Datagram
Protocol	(UDP,	see	Chapter	44)	for	messaging,	clients	are	responsible	for



detecting	message	loss	and	retransmitting	requests	if	necessary.

DHCP	Client/Server	Roles
The	DHCP	server	and	client	obviously	play	complementary	roles.	The	server
maintains	configuration	parameters	for	all	clients.	Each	client	maintains	its	own
parameters,	as	discussed	in	the	next	section.

IP	address	assignment	and	lease	creation,	renewal,	rebinding,	and	termination
are	accomplished	through	specific	exchanges	using	a	set	of	eight	DHCP	message
types,	as	discussed	in	the	"DHCP	General	Operation	and	Client	Finite	State
Machine"	and	"DHCP	Lease	Allocation,	Reallocation,	and	Renewal"	sections
later	in	this	chapter.	To	accomplish	this	messaging,	special	rules	are	followed	to
generate,	address,	and	transport	messages,	as	explained	in	Chapter	63.

DHCP	Relay	Agents
Like	BOOTP,	DHCP	also	supports	a	third	type	of	device:	the	relay	agent.	Relay
agents	are	neither	clients	nor	servers,	but	rather	intermediaries	that	facilitate
cross-network	communication	between	servers	and	clients.	They	are	described	in
more	detail	in	Chapter	64	(where	you	can	also	find	more	of	the	implementation
details	of	servers	and	clients).

TIP

KEY	CONCEPT	DHCP	servers	are	devices	programmed	to	provide	DHCP	services	to	clients.	They
manage	address	information	and	other	parameters	and	respond	to	client	configuration	requests.	DHCP
clients	are	TCP/IP	devices	that	have	been	set	to	use	DHCP	to	determine	their	configuration.	They	send
requests	and	read	responses,	and	are	responsible	for	managing	their	own	leases,	including	renewing	or
rebinding	a	lease	when	necessary.



DHCP	Configuration	Parameters,	Storage,	and
Communication
One	of	the	more	important	oversights	in	DHCP's	predecessor,	BOOTP,	was	that
it	allowed	a	server	to	tell	a	client	only	three	pieces	of	information:	its	IP	address,
the	name	of	the	server	it	could	use	to	download	a	boot	file,	and	the	name	of	the
boot	file	to	use.	This	was	a	result	of	BOOTP's	legacy	as	a	protocol	created
primarily	to	let	diskless	workstations	be	bootstrapped.

Obviously,	the	IP	address	is	a	very	important	parameter,	but	in	modern	networks
it	isn't	the	only	one	that	a	client	needs	to	be	given	for	it	to	function	properly.	A
typical	host	needs	to	be	given	other	essential	information	to	allow	it	to	know
how	it	should	operate	on	its	local	network	and	interact	with	other	devices.	For
example,	it	needs	to	know	the	address	of	a	default	local	router,	the	subnet	mask
for	the	subnet	it	is	on,	parameters	for	creating	outgoing	IP	datagrams,	and	much
more.

Configuration	Parameter	Management
The	inability	to	specify	additional	configuration	parameters	in	BOOTP	was
resolved	by	using	the	special	BOOTP	Vendor-Specific	Area	for	vendor-
independent	vendor	information	fields,	as	first	defined	in	RFC	1048.	In	DHCP,
this	idea	has	been	extended	further,	and	more	important,	formalized,	as	part	of
the	effort	to	make	DHCP	a	more	general-purpose	configuration	tool.
Configuration	parameter	storage,	maintenance,	and	communication	are	no	longer
optional	features;	they	are	an	essential	part	of	the	host	configuration	process.

Just	as	DHCP	servers	are	the	bosses	that	own	and	manage	IP	addresses,	they	also
act	as	the	repository	for	other	configuration	parameters	that	belong	to	DHCP
clients.	This	centralization	of	parameter	storage	provides	many	of	the	same
benefits	that	centralizing	IP	addresses	in	DHCP	does:	Administrators	can	check
and	adjust	parameters	in	a	single	place,	rather	than	needing	to	go	to	each	client
machine.

Each	DHCP	server	is	programmed	with	parameters	that	are	to	be	communicated
to	clients	in	addition	to	an	IP	address	when	an	address	is	assigned.	Alternatively,
a	client	that	has	already	been	assigned	an	address	using	some	other	mechanism



a	client	that	has	already	been	assigned	an	address	using	some	other	mechanism
may	still	query	the	DHCP	server	to	get	parameter	information,	using	the
DHCPINFORM	message	type.	(This	was	actually	added	to	the	protocol	in	RFC
2131;	it	was	not	in	the	original	DHCP	standard.)

Parameter	Storage
The	exact	method	of	storage	of	client	parameters	is	to	some	extent
implementation-dependent.	Typically,	there	will	be	some	parameters	that	apply
to	all	clients.	For	example,	on	a	small	network	with	only	one	router,	that	router
will	probably	be	the	default	router	for	every	DHCP	client,	regardless	of	address.

The	DHCP	server	will	also	have	certain	parameters	that	are	client-specific.	The
IP	address	itself	is	an	obvious	example,	but	there	are	other	parameters	that	may
apply	to	only	certain	clients	on	a	network.	These	parameters	are	stored	in	some
sort	of	a	database	and	indexed	using	a	particular	client	identifier.	The	default
identifier	consists	of	the	client's	IP	subnet	number	and	its	hardware	address.
Thus,	when	a	server	gets	a	request	from	a	particular	subnet,	it	can	use	the	client's
hardware	address	in	the	request	to	look	up	client-specific	parameters	and	return
them.	The	client	identifier	can	be	changed	if	a	different	identification	scheme	is
desired.

Clients	are	also	responsible	for	storing	their	own	parameters.	Many	of	these	will
be	obtained	from	the	DHCP	server,	although	some	may	be	supplied	in	other
ways.	The	specific	implementation	of	the	client	determines	which	parameters	it
considers	important	and	how	they	are	discovered.

Configuration	Parameter	Communication
Communication	of	configuration	parameters	between	DHCP	clients	and	servers
is	accomplished	using	DHCP	options,	which	replace	BOOTP	vendor
information	fields.	A	number	of	options	were	defined	when	DHCP	was	first
created,	and	additional	new	ones	have	been	created	over	the	years.

Today,	there	are	several	dozen	DHCP	options.	Obviously,	the	ability	to	have	so
many	different	parameters	automatically	delivered	to	a	client	provides	a	great
deal	of	host	configuration	flexibility	to	administrators.	DHCP	options	are
described	further	in	Chapter	63.



DHCP	General	Operation	and	the	Client	Finite
State	Machine
Dynamic	address	allocation	is	probably	the	most	important	new	capability
introduced	by	DHCP.	In	the	previous	chapter,	I	discussed	the	significance	of	the
change	from	IP	address	ownership	to	IP	address	leasing.	I	also	provided	a	high-
level	look	of	the	activities	involved	in	leasing,	by	providing	an	overview	of	the
DHCP	lease	life	cycle.

An	overview	of	this	sort	is	useful	to	get	a	general	handle	on	how	leases	work,
but	to	really	understand	the	mechanics	of	DHCP	address	assignment	and
client/server	communication,	you	need	more	details	on	how	the	devices	behave
and	the	messages	they	send.	One	tool	often	employed	by	networking	engineers
to	describe	a	protocol	is	a	theoretical	model	called	a	finite	state	machine	(FSM).
Using	this	technique,	the	protocol's	specific	behavior	is	illustrated	by	showing
the	different	states	a	device	can	be	in,	what	possible	transitions	exist	from	one
state	to	another,	what	events	cause	transitions	to	occur,	and	what	actions	are
performed	in	response	to	an	event.	The	TCP	operational	overview	contains	more
general	background	information	on	FSMs	(see	Chapter	47).

The	DHCP	standard	uses	an	FSM	to	describe	the	lease	life	cycle	from	the
perspective	of	a	DHCP	client.	The	client	begins	in	an	initial	INIT	state	where	it
has	no	lease	and	then	transitions	through	various	states	as	it	acquires,	renews,
rebinds,	and/or	releases	its	IP	address.	The	FSM	also	indicates	which	message
exchanges	occurs	between	the	server	and	client	at	various	stages.

NOTE

The	DHCP	standard	does	not	describe	the	DHCP	server's	behavior	in	the	form	of	a	FSM;	only	the
client's	is	described	this	way.

Some	people	think	FSMs	are	a	little	dense	and	hard	to	understand,	and	I	can	see
why.	You	can	skip	this	topic,	of	course,	but	I	think	the	FSM	provides	a	useful
way	of	illustrating	in	a	comprehensive	way	most	of	the	behavior	of	a	DHCP
client.

Table	62-1	describes	each	of	the	DHCP	client	states,	and	summarizes	the



messages	sent	and	received	by	the	client	in	each,	as	well	as	showing	the	state
transitions	that	occur	in	response.	The	FSM's	states,	events,	and	transitions	are
easier	to	envision	in	Figure	62-1,	which	also	incorporates	a	shading	scheme	so
you	can	see	which	states	are	associated	with	each	of	the	main	DHCP	processes.

Table	62-1.	DHCP	Client	Finite	State	Machine

State State	Description Event	and	Transition

INIT This	is	the	initialization
state,	where	a	client	begins
the	process	of	acquiring	a
lease.	It	also	returns	here
when	a	lease	ends	or	when	a
lease	negotiation	fails.

Client	sends	DHCPDISCOVER.	The	client
creates	a	DHCPDISCOVER	message	and
broadcasts	it	to	try	to	find	a	DHCP	server.	It
transitions	to	the	SELECTING	state.

SELECTING The	client	is	waiting	to
receive	DHCPOFFER
messages	from	one	or	more
DHCP	servers,	so	it	can
choose	one.

Client	receives	offers,	selects	preferred	offer,
and	sends	DHCPREQUEST.	The	client
chooses	one	of	the	offers	it	has	been	sent,	and
broadcasts	a	DHCPREQUEST	message	to	tell
DHCP	servers	what	its	choice	was.	It
transitions	to	the	REQUESTING	state.

	 	 Client	receives	DHCPACK,	successfully
checks	that	IP	address	is	free.	The	client
receives	a	DHCPACK	message	from	its	chosen
server,	confirming	that	it	can	have	the	lease
that	was	offered.	It	checks	to	ensure	that
address	is	not	already	used,	and	assuming	it	is
not,	records	the	parameters	the	server	sent	it,
sets	the	lease	timers	T1	and	T2,	and	transitions
to	the	BOUND	state.

REQUESTING The	client	is	waiting	to	hear
back	from	the	server	to
which	it	sent	its	request.

Client	receives	DHCPACK,	but	IP	address	is	in
use.	The	client	receives	a	DHCPACK	message
from	its	chosen	server,	confirming	that	it	can
have	the	lease	that	was	offered.	However,	it
checks	and	finds	the	address	already	in	use.	It
sends	a	DHCPDECLINE	message	back	to	the
server	and	returns	to	the	INIT	state.

	 	 Client	receives	DHCPNAK.	The	client	receives
a	DHCPNAK	message	from	its	chosen	server,
which	means	the	server	has	withdrawn	its
offer.	The	client	returns	to	the	INIT	state.



INIT-
REBOOT

When	a	client	that	already
has	a	valid	lease	starts	up
after	a	power	down	or
reboot,	it	starts	here	instead
of	the	INIT	state.

Client	sends	DHCPREQUEST.	The	client
sends	a	DHCPREQUEST	message	to	attempt
to	verify	its	lease	and	reobtain	its	configuration
parameters.	It	then	transitions	to	the
REBOOTING	state	to	wait	for	a	response.

	 	 Client	receives	DHCPACK,	successfully
checks	that	IP	address	is	free.	The	client
receives	a	DHCPACK	message	from	the	server
that	has	its	lease	information,	confirming	that
the	lease	is	still	valid.	To	be	safe,	the	client
checks	anyway	to	ensure	that	the	address	is	not
already	in	use	by	some	other	device.	Assuming
it	is	not,	the	client	records	the	parameters	the
server	sent	it	and	transitions	to	the	BOUND
state.

REBOOTING A	client	that	has	rebooted
with	an	assigned	address	is
waiting	for	a	confirming
reply	from	a	server.

Client	receives	DHCPACK,	but	IP	address	is	in
use.	The	client	receives	a	DHCPACK	message
from	the	server	that	had	its	lease,	confirming
that	the	lease	is	still	valid.	However,	the	client
checks	and	finds	that	while	the	client	was
offline,	some	other	device	has	grabbed	its
leased	IP	address.	The	client	sends	a
DHCPDECLINE	message	back	to	the	server
and	returns	to	the	INIT	state	to	obtain	a	new
lease.

	 	 Client	receives	DHCPNAK.	The	client	receives
a	DHCPNAK	message	from	a	server.	This	tells
it	that	its	current	lease	is	no	longer	valid;	for
example,	the	client	may	have	moved	to	a	new
network	where	it	can	no	longer	use	the	address
in	its	present	lease.	The	client	returns	to	the
INIT	state.

	 	 Renewal	timer	(T1)	expires.	The	client
transitions	to	the	RENEWING	state.

BOUND A	client	has	a	valid	lease
and	is	in	its	normal
operating	state.

Client	terminates	lease	and	sends
DHCPRELEASE.	The	client	decides	to
terminate	the	lease	(due	to	user	command,	for
example).	It	sends	a	DHCPRELEASE	message
and	returns	to	the	INIT	state.

	 	 Client	receives	DHCPACK.	The	client	receives
a	DHCPACK	reply	to	its	DHCPREQUEST.	Its
lease	is	renewed,	it	restarts	the	T1	and	T2



lease	is	renewed,	it	restarts	the	T1	and	T2
timers,	and	it	returns	to	the	BOUND	state.

RENEWING A	client	is	trying	to	renew
its	lease.	It	regularly	sends
DHCPREQUEST	messages
with	the	server	that	gave	it
its	current	lease	specified,
and	waits	for	a	reply.

Client	receives	DHCPNAK.	The	server	has
refused	to	renew	the	client's	lease.	The	client
goes	to	the	INIT	state	to	get	a	new	lease.

	 	 Rebinding	timer	(T2)	expires.	While	the	client
is	attempting	to	renew	its	lease,	the	T2	timer
expires,	indicating	that	the	renewal	period	has
ended.	The	client	transitions	to	the
REBINDING	state.

	 	 Client	receives	DHCPACK.	Some	server	on
the	network	has	renewed	the	client's	lease.	The
client	binds	to	the	new	server	granting	the
lease,	restarts	the	T1	and	T2	timers,	and	returns
to	the	BOUND	state.

REBINDING The	client	has	failed	to
renew	its	lease	with	the
server	that	originally	granted
it	and	now	seeks	a	lease
extension	with	any	server
that	can	hear	it.	It
periodically	sends
DHCPREQUEST	messages
with	no	server	specified,
until	it	gets	a	reply	or	the
lease	ends.

Client	receives	DHCPNAK.	A	server	on	the
network	is	specifically	telling	the	client	it	needs
to	restart	the	leasing	process.	This	may	be	the
case	if	a	new	server	is	willing	to	grant	the
client	a	lease,	but	only	with	terms	different
from	the	client's	current	lease.	The	client	goes
to	the	INIT	state.

	 	 Lease	expires.	The	client	receives	no	reply
prior	to	the	expiration	of	the	lease.	It	goes	back
to	the	INIT	state.



Figure	62-1.	DHCP	client	finite	state	machine	This	diagram	shows	the	finite	state	machine	(FSM)	used
by	DHCP	clients.	The	shaded	background	areas	show	the	transitions	taken	by	a	DHCP	client	as	it	moves

through	the	four	primary	DHCP	processes:	allocation,	reallocation,	renewal,	and	rebinding.

This	is	just	a	summary	of	the	FSM,	and	it	does	not	show	every	possible	event
and	transition,	since	it	is	complex	enough	already.	For	example,	if	a	client	that
received	two	offers	in	the	SELECTING	state	receives	a	DHCPNAK	from	its
chosen	server	in	the	REQUESTING	state,	it	may	choose	to	send	a	new
DHCPREQUEST	to	its	second	choice,	instead	of	starting	over	from	scratch.
Also,	the	client	must	have	logic	that	lets	it	time	out	if	it	receives	no	reply	to	sent
messages	in	various	states,	such	as	not	receiving	any	offers	in	the	SELECTING
state.	The	next	sections	discuss	these	matters	in	more	detail.

Also	note	that	this	FSM	applies	to	dynamically	allocated	clients—that	is,	ones



with	conventional	leases.	A	device	configured	using	automatic	allocation	will	go
through	the	same	basic	allocation	process,	but	does	not	need	to	renew	its	lease.
The	process	for	manual	allocation	is	somewhat	different.



DHCP	Lease	Allocation,	Reallocation,	and
Renewal
To	implement	DHCP,	an	administrator	must	first	set	up	a	DHCP	server	and
provide	it	with	configuration	parameters	and	policy	information:	IP	address
ranges,	lease	length	specifications,	and	configuration	data	that	DHCP	hosts	will
need	to	be	delivered	to	them.	Host	devices	can	then	have	their	DHCP	client
software	enabled,	but	nothing	will	happen	until	the	client	initiates
communication	with	the	server.	When	a	DHCP	client	starts	up	for	the	first	time,
or	when	it	has	no	current	DHCP	lease,	it	will	be	in	an	initial	state	where	it
doesn't	have	an	address	and	needs	to	acquire	one.	It	will	do	so	by	initiating	the
process	of	lease	allocation.

Before	we	examine	the	steps	in	the	lease	allocation,	reallocation,	and	renewal
processes,	I	need	to	clarify	some	issues	related	to	DHCP	lease	communications.
First,	DHCP	assumes	that	clients	will	normally	broadcast	messages,	since	they
don't	know	the	address	of	servers	when	they	initiate	contact,	but	that	servers	will
send	replies	back	unicast	to	the	client.	This	can	be	done	even	before	the	client
has	an	IP	address,	by	sending	the	message	at	the	link	layer.	Some	clients	don't
support	this	and	require	that	messages	to	them	be	broadcast	instead.

DHCP	uses	many	of	the	same	basic	fields	as	BOOTP,	but	much	of	the	extra
information	the	protocol	requires	is	carried	in	DHCP	options.	Some	of	these
options	aren't	really	optional,	despite	the	name—they	are	needed	for	the	basic
function	of	DHCP.	An	obvious	example	is	the	DHCP	Message	Type	option,
which	is	what	specifies	the	message	type	itself.

The	details	of	how	messages	are	created	and	addressed,	along	with	a	full
description	of	all	DHCP	fields	and	options,	are	presented	in	Chapter	63.

NOTE

I	have	assumed	that	no	relay	agents	are	in	use	here.	See	the	discussion	of	DHCP/BOOTP	relay	agents	in
Chapter	60	for	more	on	how	they	change	the	allocation	process	(and	other	processes).

Initial	Lease	Allocation	Process



The	following	are	the	basic	steps	taken	by	a	DHCP	client	and	server	in	the	initial
allocation	of	an	IP	address	lease,	focusing	on	the	most	important	tasks	each
device	performs	(see	Figure	62-2).

1.	 Client	Creates	DHCPDISCOVER	Message

The	client	begins	in	the	INIT	(initialization)	state.	It	has	no	IP	address	and
doesn't	even	know	whether	or	where	a	DHCP	server	may	be	on	the
network.	To	find	one,	it	creates	a	DHCPDISCOVER	message,	including
the	following	information:

Its	own	hardware	address	in	the	CHAddr	field	of	the	message,	to
identify	itself

A	random	transaction	identifier,	put	into	the	XID	field	(used	to	identify
later	messages	as	being	part	of	the	same	transaction)

Optionally,	the	client	may	request	a	particular	IP	address	using	a	Requested
IP	Address	DHCP	option,	a	particular	lease	length	using	an	IP	Address
Lease	Time	option,	and/or	specific	configuration	parameters	by	including	a
Parameter	Request	List	option	in	the	message

2.	 Client	Sends	DHCPDISCOVER	Message

The	client	broadcasts	the	DHCPDISCOVER	message	on	the	local	network.
The	client	transitions	to	the	SELECTING	state,	where	it	waits	for	replies	to
its	message.

3.	 Servers	Receive	and	Process	DHCPDISCOVER	Message

Each	DHCP	server	on	the	local	network	receives	the	client's
DHCPDISCOVER	message	and	examines	it.	The	server	looks	up	the
client's	hardware	address	in	its	database	and	determines	if	it	is	able	to	offer
the	client	a	lease	and	what	the	terms	of	the	lease	will	be.	If	the	client	has
made	requests	for	a	particular	IP	address,	lease	length,	or	other	parameters,
the	server	will	attempt	to	satisfy	these	requests,	but	it	is	not	required	to	do
so.	A	server	may	decide	not	to	offer	a	lease	to	a	particular	client	if	it	has
not	been	programmed	to	provide	service	for	it,	it	has	no	remaining	IP
addresses,	or	for	other	reasons.

4.	 Servers	Create	DHCPOFFER	Messages

Each	server	that	chooses	to	respond	to	the	client	creates	a	DHCPOFFER



Each	server	that	chooses	to	respond	to	the	client	creates	a	DHCPOFFER
message	including	the	following	information:

The	IP	address	to	be	assigned	to	the	client,	in	the	YIAddr	field	(if	the
server	previously	had	a	lease	for	this	client,	it	will	attempt	to	reuse	the
IP	address	it	used	last	time;	failing	that,	it	will	try	to	use	the	client's
requested	address,	if	present;	otherwise,	it	will	select	any	available
address)

The	length	of	the	lease	being	offered

Any	client-specific	configuration	parameters	either	requested	by	the
client	or	programmed	into	the	server	to	be	returned	to	the	client

Any	general	configuration	parameters	to	be	returned	to	all	clients	or
clients	in	this	client's	class

The	server's	identifier	in	the	DHCP	Server	Identifier	option

The	same	transaction	ID	(XID)	used	in	the	DHCPDISCOVER	message

5.	 Servers	Probe	and/or	Reserve	Offered	Address	(Optional)

The	DHCP	standard	specifies	that	before	sending	a	DHCPOFFER	to	a
client,	the	server	should	check	to	see	that	the	IP	address	isn't	already	in	use
by	sending	an	ICMP	Echo	message	to	that	address.	It	is	considered	a	key
part	of	the	DHCP	server	conflict	detection	feature	(discussed	in
Chapter	64).	This	may	be	disabled	by	an	administrator.	Whether	or	not	it
probes	the	address	offered,	the	server	may	also	reserve	the	address	so	that
if	the	client	decides	to	use	it,	it	will	be	available.	This	isn't	mandatory,
because	the	protocol	handles	the	case	where	an	offered	lease	is	retracted.	It
is	more	efficient	if	servers	do	reserve	addresses,	but	if	IP	addresses	are	in
very	short	supply,	such	reservations	may	not	be	practical.

6.	 Servers	Send	DHCPOFFER	Messages

Each	server	sends	its	DHCPOFFER	message.	They	may	not	all	be	sent	at
exactly	the	same	time.	The	messages	are	sent	either	unicast	or	broadcast,	as
mentioned	earlier.

7.	 Client	Collects	and	Processes	DHCPOFFER	Messages

The	client	waits	for	DHCPOFFER	messages	to	arrive	in	response	to	its
DHCPDISCOVER	message.	The	exact	behavior	of	the	client	here	is



DHCPDISCOVER	message.	The	exact	behavior	of	the	client	here	is
implementation-dependent.	The	client	may	decide	to	simply	take	the	first
offer	it	receives,	for	expediency.	Alternatively,	it	may	choose	to	shop
around	by	waiting	for	a	period	of	time.	It	can	then	process	each	offer	and
take	the	one	with	the	most	favorable	terms—for	example,	the	one	with	the
longest	lease.	If	no	DHCPOFFER	messages	are	received,	the	client	will
enter	a	retransmission	mode	and	try	sending	the	DHCPDISCOVER	again
for	a	period	of	time.

8.	 Client	Creates	DHCPREQUEST	Message

The	client	creates	a	DHCPREQUEST	message	for	the	server	offer	it	has
selected.	This	message	serves	two	purposes:	It	tells	the	server	whose	offer
the	client	has	accepted,	"Yes,	I	accept	your	offer,	assuming	it	is	still
available,"	and	also	tells	the	other	servers,	"Sorry,	your	offer	was	rejected."
(Well,	except	for	the	"sorry"	part;	servers	are	pretty	thick-skinned	about
rejection.)	In	this	message,	the	client	includes	the	following	information:

The	identifier	of	the	chosen	server	in	the	DHCP	Server	Identifier
option,	so	everyone	knows	who	won

The	IP	address	that	the	DHCP	server	assigned	the	client	in	the
DHCPOFFER	message,	which	the	client	puts	in	the	Requested	IP
Address	DHCP	option	as	a	confirmation

Any	additional	configuration	parameters	it	wants	in	a	Parameter
Request	List	option	in	the	message

9.	 Client	Sends	DHCPREQUEST	Message

The	client	sends	the	DHCPREQUEST	message.	Since	it	is	intended	for	not
just	the	selected	DHCP	server,	but	all	servers,	it	is	broadcast.	After	doing
this,	the	client	transitions	to	the	REQUESTING	state,	where	it	waits	for	a
reply	from	the	chosen	server.

10.	 Servers	Receive	and	Process	DHCPREQUEST	Message

Each	of	the	servers	receives	and	processes	the	client's	request	message.
The	servers	not	chosen	will	take	the	message	as	a	rejection.	However,	a
client	may	select	one	offer,	attempt	to	request	the	lease,	and	have	the
transaction	not	complete	successfully.	The	client	may	then	come	back	and



try	its	second-choice	offer	by	sending	a	DHCPREQUEST	containing	a
different	Server	Identifier.	This	means	that	if	Server	A	receives	a	single
DHCPREQUEST	with	a	Server	Identifier	of	Server	B,	that	doesn't
necessarily	mean	that	Server	A	is	finished	with	the	transaction.	For	this
reason,	rejected	servers	will	wait	for	a	while	before	offering	a	previously
offered	lease	to	another	client.

11.	 Server	Sends	DHCPACK	or	DHCPNAK	Message

The	chosen	server	will	see	that	its	lease	has	been	selected.	If	it	did	not
previously	reserve	the	IP	address	that	was	offered	to	the	client,	it	must
check	to	make	sure	it	is	still	available.	If	it	is	not,	the	server	sends	back	a
DHCPNAK	(negative	acknowledgment)	message,	which	essentially
means,	"Never	mind,	that	lease	is	no	longer	available."	Usually,	however,
the	server	will	still	have	that	lease.	It	will	create	a	binding	for	that	client,
and	send	back	a	DHCPACK	(acknowledgment)	message	that	confirms	the
lease	and	contains	all	the	pertinent	configuration	parameters	for	the	client.

12.	 Client	Receives	and	Processes	DHCPACK	or	DHCPNAK	Message

The	client	receives	either	a	positive	or	negative	acknowledgment	for	its
request.	If	the	message	is	a	DHCPNAK,	the	client	transitions	back	to	the
INIT	state	and	starts	over—back	to	square	one	(step	1).	If	it	is	a
DHCPACK,	the	client	reads	the	IP	address	from	the	YIAddr	field,	and
records	the	lease	length	and	other	parameters	from	the	various	message
fields	and	DHCP	options.	If	the	client	receives	neither	message,	it	may
retransmit	the	DHCPREQUEST	message	one	or	more	times.	If	it	continues
to	hear	nothing,	it	must	conclude	that	the	server	flaked	out	and	go	back	to
step	1.

13.	 Client	Checks	That	Address	Is	Not	in	Use

The	client	device	should	perform	a	final	check	to	ensure	that	the	new
address	isn't	already	in	use	before	it	concludes	the	leasing	process.	This	is
typically	done	by	generating	an	Address	Resolution	Protocol	(ARP)
request	on	the	local	network,	to	see	if	any	other	device	thinks	it	already	has
the	IP	address	this	client	was	just	leased.	If	another	device	responds,	the
client	sends	a	DHCPDECLINE	message	back	to	the	server,	which
basically	means,	"Hey	server,	you	messed	up.	Someone	is	already	using



basically	means,	"Hey	server,	you	messed	up.	Someone	is	already	using
that	address."	The	client	then	goes	back	to	step	1	and	starts	over.

14.	 Client	Finalizes	Lease	Allocation

Assuming	that	the	address	is	not	already	in	use,	the	client	finalizes	the
lease	and	transitions	to	the	BOUND	state.	It	also	sets	its	two	lease	timers,
T1	and	T2.	It	is	now	ready	for	normal	operation.

As	you	can	see	in	this	description,	there	are	a	number	of	situations	that	may
occur	that	require	a	client	to	retransmit	messages.	This	is	because	DHCP	uses
UDP,	which	is	unreliable	and	can	cause	messages	to	be	lost.	If	retransmissions
don't	fix	a	problem	such	as	not	receiving	a	DHCPOFFER	or	a	DHCPACK	from
a	server,	the	client	may	need	to	start	the	allocation	process	over	from	scratch.
The	client	must	include	enough	intelligence	to	prevent	it	from	simply	trying
forever	to	get	a	lease	when	there	may	not	be	a	point.	For	example,	if	there	are	no
DHCP	servers	on	the	network,	no	number	of	retransmissions	will	help.

Thus,	after	a	number	of	retries,	the	client	will	give	up	and	the	allocation	process
will	fail.	If	the	client	is	configured	to	use	the	Automatic	Private	IP	Addressing
(APIPA)	feature	(see	Chapter	64),	this	is	where	it	would	be	used	to	give	the
client	a	default	address.	Otherwise,	the	client	will	be,	well,	dead	in	the	water.



Figure	62-2.	DHCP	lease	allocation	process	This	diagram	shows	the	steps	involved	in	DHCP	client
lease	allocation.	This	diagram	is	a	bit	different	from	most	of	the	other	client/server	exchange	diagrams
in	this	book,	in	that	I	have	shown	two	servers	instead	of	one.	This	shows	how	a	client	handles	responses
from	multiple	DHCP	servers	and	how	each	server	reacts	differently,	depending	on	whether	its	lease

offer	was	chosen	by	the	client.

TIP

KEY	CONCEPT	The	most	important	configuration	process	in	DHCP	is	the	lease	allocation	process,
used	by	clients	to	acquire	a	lease.	The	client	broadcasts	a	request	to	determine	if	any	DHCP	servers	can
hear	it.	Each	DHCP	server	that	is	willing	to	grant	the	client	a	lease	sends	it	an	offer.	The	client	selects
the	lease	it	prefers	and	sends	a	response	to	all	servers	telling	them	its	choice.	The	selected	server	then
sends	the	client	its	lease	information.

DHCP	Lease	Reallocation	Process
When	a	DHCP	client	starts	up	for	the	first	time	and	has	no	lease,	it	begins	in	the
INIT	(initialize)	state	and	goes	through	the	allocation	process	described	in	the
preceding	section	to	acquire	a	lease.	The	same	process	is	used	when	a	lease	ends,



preceding	section	to	acquire	a	lease.	The	same	process	is	used	when	a	lease	ends,
if	a	lease	renewal	fails,	or	if	something	happens	to	cause	a	client	to	need	a	new
lease.

There	are,	however,	certain	situations	in	which	a	client	starts	up	while	it	still	has
a	lease	already	in	place.	In	this	situation,	the	client	does	not	need	to	go	through
the	entire	process	of	getting	an	IP	address	allocation	and	a	new	lease	setup.
Instead,	it	simply	tries	to	reestablish	its	existing	lease,	through	a	reallocation
process.

A	client	performs	reallocation	rather	than	allocation	when	it	restarts	with	an
existing	lease.	The	length	of	time	that	a	client	lease	lasts	can	range	from	minutes
to	years;	it	is	entirely	a	matter	of	the	lease	length	policy	set	for	the	network	and
client	by	the	administrator.	Many,	if	not	most,	client	machines	are	not	connected
to	the	network	24	hours	a	day.	They	are	turned	on	during	the	day	and	then	shut
down	at	night,	and	also	shut	down	on	weekends.	A	client	with	a	very	short	lease
that	is	shut	down	and	then	later	started	again	will	probably	find	that	its	lease	has
expired,	and	it	will	need	to	get	a	new	one.	However,	if	a	lease	is	longer	than	a
few	days,	it	will	still	probably	be	in	effect	when	the	client	starts	up	again.	Clients
are	also	sometimes	rebooted,	to	install	new	software	or	correct	a	problem.	In	this
case,	even	when	the	lease	length	is	very	short,	the	restarting	client	will	still	have
a	valid	lease	when	it	starts	up.

The	reallocation	process	is	essentially	an	abbreviated	version	of	the	allocation
process	described	in	the	previous	section.	There	is	no	need	for	the	client	to	go
through	the	whole	"Yoohoo,	any	servers	out	there	want	to	give	me	a	lease?"
routine.	Instead,	the	client	attempts	to	find	the	server	that	gave	it	the	lease	in	the
first	place,	seeking	a	confirmation	that	the	lease	is	still	valid	and	that	it	may
resume	using	its	previously	allocated	IP	address.	It	also	receives	confirmation	of
the	parameters	it	should	use.

The	following	steps	summarize	the	reallocation	process	(see	Figure	62-3).

1.	 Client	Creates	DHCPREQUEST	Message

The	client	begins	in	the	INIT-REBOOT	state	instead	of	the	INIT	state.	It
creates	a	DHCPREQUEST	message	to	attempt	to	find	a	server	with
information	about	its	current	lease.	This	may	or	may	not	be	the	server	that
originally	granted	the	lease.	The	server	responsible	for	a	lease	could,



theoretically,	have	changed	in	the	time	since	the	client	obtained	the	lease.
Thus,	unlike	the	DHCPREQUEST	message	in	step	8	in	the	allocation
process,	the	client	does	not	include	a	DHCP	Server	Identifier	option.	It
does	includes	the	following	information:

Its	own	hardware	address	in	the	CHAddr	field	of	the	message,	to
identify	itself

The	IP	address	of	its	existing	lease,	in	the	Requested	IP	Address	DHCP
option	(this	address	is	not	put	into	the	CIAddr	field)

A	random	transaction	identifier,	put	into	the	XID	field	(used	to	identify
later	messages	as	being	part	of	the	same	transaction)

Any	additional	configuration	parameters	it	wants,	in	a	Parameter
Request	List	option	in	the	message

2.	 Client	Sends	DHCPREQUEST	Message

The	client	broadcasts	the	DHCPREQUEST	message.	It	then	transitions	to
the	REBOOTING	state,	where	it	waits	for	a	reply	from	a	server.

3.	 Servers	Receive	and	Process	DHCPREQUEST	Message	and	Generate
Replies
Each	server	on	the	network	receives	and	processes	the	client's	request.	The
server	looks	up	the	client	in	its	database,	attempting	to	find	information
about	the	lease.	Each	server	then	decides	how	to	reply	to	the	client:

If	the	server	has	valid	client	lease	information,	it	sends	a	DHCPACK
message	to	confirm	the	lease.	It	will	also	reiterate	any	parameters	the
client	should	be	using.

If	the	server	determines	the	client	lease	is	invalid,	it	sends	a	DHCPNAK
message	to	negate	the	lease	request.	Common	reasons	for	this
happening	are	the	client	trying	to	confirm	a	lease	after	it	has	moved	to	a
different	network	or	after	the	lease	has	already	expired.

If	the	server	has	no	definitive	information	about	the	client	lease,	it	does
not	respond.	A	server	is	also	required	not	to	respond	unless	its
information	is	guaranteed	to	be	accurate.	So,	for	example,	if	a	server	has
knowledge	of	an	old	expired	lease,	it	cannot	assume	that	the	lease	is	no



longer	valid	and	send	a	DHCPNAK,	unless	it	also	has	certain
knowledge	that	no	other	server	has	a	newer,	valid	lease	for	that	client.

4.	 Servers	Send	Replies

Servers	that	are	going	to	respond	to	the	client's	DHCPREQUEST	send
their	DHCPACK	or	DHCPNAK	messages.

5.	 Client	Receives	and	Processes	DHCPACK	or	DHCPNAK	Message

The	client	waits	for	a	period	of	time	to	get	a	reply	to	its	request.	Again,
there	are	three	possibilities	that	match	the	three	in	step	3:

The	client	receives	a	DHCPACK	message,	which	confirms	the	validity
of	the	lease.	The	client	will	prepare	to	begin	using	the	lease	again,	and
continue	with	step	6.

The	client	receives	a	DHCPNAK	message,	which	tells	the	client	that	its
lease	is	no	longer	valid.	The	client	transitions	back	to	the	INIT	state	to
get	a	new	lease—step	1	in	the	allocation	process.

If	the	client	receives	no	reply	at	all,	it	may	retransmit	the
DHCPREQUEST	message.	If	no	reply	is	received	after	a	period	of	time,
it	will	conclude	that	no	server	has	information	about	its	lease	and	will
return	to	the	INIT	state	to	try	to	get	a	new	lease.

6.	 Client	Checks	That	Address	Is	Not	in	Use

Before	resuming	use	of	its	lease,	the	client	device	should	perform	a	final
check	to	ensure	that	the	new	address	isn't	already	in	use.	Even	though	this
should	not	be	the	case	when	a	lease	already	exists,	it's	done	anyway,	as	a
safety	measure.	The	check	is	the	same	as	described	in	step	13	of	the
allocation	process:	an	ARP	request	is	issued	on	the	local	network,	to	see	if
any	other	device	thinks	it	already	has	the	IP	address	this	client	was	just
leased.	If	another	device	responds,	the	client	sends	a	DHCPDECLINE
message	back	to	the	server,	which	tells	it	that	the	lease	is	no	good	because
some	other	device	is	using	the	address.	The	client	then	goes	back	to	the
INIT	state	to	get	a	new	lease.

7.	 Client	Finalizes	Lease	Allocation

Assuming	that	the	address	is	not	already	in	use,	the	client	finalizes	the
lease	and	transitions	to	the	BOUND	state.	It	is	now	ready	for	normal



lease	and	transitions	to	the	BOUND	state.	It	is	now	ready	for	normal
operation.

Figure	62-3.	DHCP	lease	reallocation	process	The	lease	reallocation	process	consists	of	seven	steps	that
correspond	approximately	to	steps	8	through	14	of	the	full	lease	allocation	process	shown	in	Figure	62-
2.	In	this	example,	the	server	that	originally	granted	the	lease	to	the	client	is	Server	2,	so	it	is	normally

the	only	one	that	responds.

TIP

KEY	CONCEPT	If	a	client	starts	up	and	already	has	a	lease,	it	does	not	need	to	go	through	the	full
lease	allocation	process;	instead,	it	can	use	the	shorter	reallocation	process.	The	client	broadcasts	a
request	to	find	the	server	that	has	the	current	information	on	its	lease.	That	server	responds	back	to
confirm	that	the	client's	lease	is	still	valid.

DHCP	Lease	Renewal	and	Rebinding	Processes
Once	a	DHCP	client	completes	the	allocation	or	reallocation	process,	it	enters
the	BOUND	state.	The	client	is	now	in	its	regular	operating	mode,	with	a	valid
IP	address	and	other	configuration	parameters	it	received	from	the	DHCP	server,
and	it	can	be	used	like	any	regular	TCP/IP	host.

While	the	client	is	in	the	BOUND	state,	DHCP	essentially	lies	dormant.	As	long
as	the	client	stays	on	and	functioning	normally,	no	real	DHCP	activity	will	occur
while	in	this	state.	The	most	common	occurrence	that	causes	DHCP	to	wake	up
and	become	active	again	is	arrival	of	the	time	when	the	lease	is	to	be	renewed.
Renewal	ensures	that	a	lease	is	perpetuated	so	it	can	be	used	for	a	prolonged



period	of	time,	and	involves	its	own	message-exchange	procedure.	(The	other
way	that	a	client	can	leave	the	BOUND	state	is	when	it	terminates	the	lease
early,	as	described	in	the	next	section.)

If	DHCP's	automatic	allocation	is	used,	or	if	dynamic	allocation	is	used	with	an
infinite	lease	period,	the	client's	lease	will	never	expire,	so	it	never	needs	to	be
renewed.	Short	of	early	termination,	the	device	will	remain	in	the	BOUND	state
forever,	or	at	least	until	it	is	rebooted.	However,	most	leases	are	finite	in	nature.
A	client	must	take	action	to	ensure	that	its	lease	is	extended	and	normal
operation	continues.

To	manage	the	lease	extension	process,	two	timers	are	set	at	the	time	that	a	lease
is	allocated.	The	renewal	timer	(T1)	goes	off	to	tell	the	client	it	is	time	to	try	to
renew	the	lease	with	the	server	that	initially	granted	it.	The	rebinding	timer	(T2)
goes	off	if	the	client	is	not	successful	in	renewing	with	that	server,	and	tells	it	to
try	any	server	to	have	the	lease	extended.	If	the	lease	is	renewed	or	rebound,	the
client	goes	back	to	normal	operation.	If	it	cannot	be	rebound,	it	will	expire,	and
the	client	will	need	to	seek	a	new	lease.

The	following	steps	summarize	the	renewal/rebinding	process	(see	Figure	62-4).
Obviously,	the	exact	sequence	of	operations	taken	by	a	client	depends	on	what
happens	in	its	attempts	to	contact	a	server.	For	example,	if	it	is	successful	with
renewal,	it	will	never	need	to	attempt	rebinding.

1.	 Renewal	Timer	(T1)	Expires

The	renewal	timer,	T1,	is	set	by	default	to	50	percent	of	the	length	of	the
lease.	When	the	timer	goes	off,	the	client	transitions	from	the	BOUND
state	to	the	RENEWING	state.	Note	that	a	client	may	initiate	lease	renewal
prior	to	T1	timer	expiration,	if	it	desires.

2.	 Client	Sends	DHCPREQUEST	Renewal	Message

The	client	creates	a	DHCPREQUEST	message	that	identifies	itself	and	its
lease.	It	then	transmits	the	message	directly	to	the	server	that	initially
granted	the	lease,	unicast.	Note	that	this	is	different	from	the
DHCPREQUEST	messages	used	in	the	allocation/reallocation	processes,
where	the	DHCPREQUEST	is	broadcast.	The	client	may	request	a
particular	new	lease	length,	just	as	it	may	request	a	lease	length	in	its
requests	during	allocation,	but	as	always,	the	server	makes	the	final	call	on



requests	during	allocation,	but	as	always,	the	server	makes	the	final	call	on
lease	length.

3.	 Server	Receives	and	Processes	DHCPREQUEST	Message	and	Creates
Reply
Assuming	the	server	is	reachable,	it	will	receive	and	process	the	client's
renewal	request.	There	are	two	possible	responses:

The	server	decides	that	the	client's	lease	can	be	renewed.	It	prepares	to
send	to	the	client	a	DHCPACK	message	to	confirm	the	lease's	renewal,
indicating	the	new	lease	length	and	any	parameters	that	may	have
changed	since	the	lease	was	created	or	last	renewed.

The	server	decides,	for	whatever	reason,	not	to	renew	the	client's	lease.
It	will	create	a	DHCPNAK	message.

4.	 Server	Sends	Reply

The	server	sends	the	DHCPACK	or	DHCPNAK	message	back	to	the
client.

5.	 Client	Receives	and	Processes	Server	Reply

The	client	takes	the	appropriate	action	in	response	to	the	server's	reply:

If	the	client	receives	a	DHCPACK	message,	renewing	the	lease,	it	notes
the	new	lease	expiration	time	and	any	changed	parameters	sent	by	the
server,	resets	the	T1	and	T2	timers,	and	transitions	back	to	the	BOUND
state.	The	client	does	not	need	to	do	an	ARP	IP	address	check	when	it	is
renewing.

If	the	client	receives	a	DHCPNAK	message,	which	tells	it	its	lease
renewal	request	has	been	denied,	it	will	immediately	transition	to	the
INIT	state	to	get	a	new	lease	(step	1	in	the	allocation	process).

6.	 Rebinding	Timer	(T2)	Expires

If	the	client	receives	no	reply	from	the	server,	it	will	remain	in	the
RENEWING	state	and	will	regularly	retransmit	the	unicast
DHCPREQUEST	to	the	server.	During	this	period,	the	client	is	still
operating	normally,	from	the	perspective	of	its	user.	If	no	response	from
the	server	is	received,	eventually	the	rebinding	timer	(T2)	expires.	This
will	cause	the	client	to	transition	to	the	REBINDING	state.	Recall	that	by



will	cause	the	client	to	transition	to	the	REBINDING	state.	Recall	that	by
default,	the	T2	timer	is	set	to	87.5	percent	(seven-eighths)	of	the	length	of
the	lease.

7.	 Client	Sends	DHCPREQUEST	Rebinding	Message

Having	received	no	response	from	the	server	that	initially	granted	the	lease,
the	client	gives	up	on	that	server	and	tries	to	contact	any	server	that	may	be
able	to	extend	its	existing	lease.	It	creates	a	DHCPREQUEST	message	and
puts	its	IP	address	in	the	CIAddr	field,	indicating	clearly	that	it	presently
owns	that	address.	It	then	broadcasts	the	request	on	the	local	network.

8.	 Servers	Receive	and	Process	DHCPREQUEST	Message	and	Send
Reply
Each	server	receives	the	request	and	responds	according	to	the	information
it	has	for	the	client	(a	server	that	has	no	information	about	the	lease	or	may
have	outdated	information	does	not	respond):

A	server	may	agree	to	rebind	the	client's	lease.	This	happens	when	the
server	has	information	about	the	client's	lease	and	can	extend	it.	It
prepares	for	the	client	a	DHCPACK	message	to	confirm	the	lease's
renewal,	indicating	any	parameters	that	may	have	changed	since	the
lease	was	created	or	last	renewed.

A	server	may	decide	that	the	client	cannot	extend	its	current	lease.	This
occurs	when	the	server	determines	that,	for	whatever	reason,	this	client's
lease	should	not	be	extended.	It	gets	ready	to	send	back	to	the	client	a
DHCPNAK	message.

9.	 Server	Sends	Reply

Each	server	that	is	responding	to	the	client	sends	its	DHCPACK	or
DHCPNAK	message.

10.	 Client	Receives	Server	Reply

The	client	takes	the	appropriate	action	in	response	to	the	two	possibilities
in	the	preceding	step:

The	client	receives	a	DHCPACK	message,	rebinding	the	lease.	The
client	makes	note	of	the	server	that	is	now	in	charge	of	this	lease,	the



new	lease	expiration	time,	and	any	changed	parameters	sent	by	the
server.	It	resets	the	T1	and	T2	timers,	and	transitions	back	to	the
BOUND	state.	(It	may	also	probe	the	new	address	as	it	does	during
regular	lease	allocation.)

The	client	receives	a	DHCPNAK	message,	which	tells	it	that	some
server	has	determined	that	the	lease	should	not	be	extended.	The	client
immediately	transitions	to	the	INIT	state	to	get	a	new	lease	(step	1	in
the	allocation	process).

11.	 Lease	Expires

If	the	client	receives	no	response	to	its	broadcast	rebinding	request,	it	will,
as	in	the	RENEWING	state,	retransmit	the	request	regularly.	If	no	response
is	received	by	the	time	the	lease	expires,	it	transitions	to	the	INIT	state	to
get	a	new	lease.

So,	why	bother	with	a	two-step	process:	rebinding	and	renewal?	The	reason	is
that	this	provides	the	best	blend	of	efficiency	and	flexibility.	We	first	try	to
contact	the	server	that	granted	the	lease	using	a	unicast	request,	to	avoid	taking
up	the	time	of	other	DHCP	servers	and	disrupting	the	network	as	a	whole	with
broadcast	traffic.	Usually	this	will	work,	because	DHCP	servers	don't	change
that	often	and	are	usually	left	on	continuously.	If	that	fails,	we	then	fall	back	on
the	broadcast,	giving	other	servers	a	chance	to	take	over	the	client's	existing
lease.

TIP

KEY	CONCEPT	Each	client's	lease	has	associated	with	it	a	renewal	timer	(T1),	normally	set	to	50
percent	of	the	length	of	the	lease,	and	a	rebinding	timer	(T2),	usually	set	to	87.5	percent	of	the	lease
length.	When	the	T1	timer	goes	off,	the	client	will	try	to	renew	its	lease	by	contacting	the	server	that
originally	granted	it.	If	the	client	cannot	renew	the	lease	by	the	time	the	T2	timer	expires,	it	will
broadcast	a	rebinding	request	to	any	available	server.	If	the	lease	is	not	renewed	or	rebound	by	the	time
the	lease	expires,	the	client	must	start	the	lease	allocation	process	over	again.

DHCP	Early	Lease	Termination	(Release)
Process
A	TCP/IP	host	can't	really	do	much	without	an	IP	address;	it's	a	fundamental



component	of	the	Internet	Protocol	(IP),	on	which	all	TCP/IP	protocols	and
applications	run.	When	a	host	has	either	a	manual	IP	address	assignment	or	an
infinite	lease,	it	obviously	never	needs	to	worry	about	losing	its	IP	address.
When	a	host	has	a	finite	DHCP	lease,	it	will	use	the	renewal/rebinding	process	to
try	to	hang	on	to	its	existing	IP	address	as	long	as	possible.

Figure	62-4.	DHCP	lease	renewal	and	rebinding	processes	This	diagram	shows	the	example	of	a	client
presently	holding	a	lease	with	Server	2	attempting	to	contact	it	to	renew	the	lease.	However,	in	this	case,
Server	2	is	down	for	maintenance.	The	server	is	unable	to	respond,	and	the	client	remains	stuck	at	step	2
in	the	renewal/rebinding	process.	It	keeps	sending	DHCPREQUEST	messages	to	Server	2	until	its	T2
timer	expires.	It	then	enters	the	rebinding	state	and	broadcasts	a	DHCPREQUEST	message,	which	is

heard	by	Server	1,	which	agrees	to	extend	its	current	lease.

So,	under	normal	circumstances,	a	client	will	continue	trying	to	extend	its
existing	lease	indefinitely.	In	certain	cases,	however,	a	host	may	decide	to
terminate	its	lease.	This	usually	will	not	be	something	the	client	just	decides	to
do	spontaneously.	It	will	occur	in	response	to	a	specific	request	from	the	user	to
end	the	lease.	A	user	may	terminate	a	lease	for	a	number	of	reasons,	including
the	following:



the	following:

The	client	is	being	moved	to	a	different	network.

The	network	is	having	its	IP	addresses	renumbered.

The	user	wants	the	host	to	negotiate	a	new	lease	with	a	different	server.

The	user	wants	to	reset	the	lease	to	fix	some	sort	of	a	problem.

In	any	of	these	cases,	the	user	can	end	the	lease	through	a	process	called	early
lease	termination	or	lease	release.	This	is	a	very	simple,	unidirectional
communication.	The	client	sends	a	special	DHCPRELEASE	message	unicast	to
the	server	that	holds	its	current	lease,	to	tell	it	that	the	lease	is	no	longer	required.
The	server	then	records	the	lease	as	having	been	ended.	It	does	not	need	to	reply
back	to	the	client.

The	reason	that	the	client	can	just	assume	that	the	lease	termination	has	been
successful	is	that	this	is	not	a	mandatory	part	of	the	DHCP	protocol.	Having
clients	send	DHCPRELEASE	to	end	a	lease	is	considered	a	courtesy,	rather	than
a	requirement.	It	is	more	efficient	to	have	clients	inform	servers	when	they	no
longer	need	a	lease,	and	this	also	allows	the	IP	address	in	the	terminated	lease	to
be	reused	more	quickly.	However,	DHCP	servers	are	designed	to	handle	the	case
where	a	client	seemingly	disappears	without	formally	ending	an	existing	lease.



DHCP	Parameter	Configuration	Process	for
Clients	with	Non-DHCP	Addresses
The	majority	of	DHCP	clients	make	use	of	the	protocol	to	obtain	both	an	IP
address	and	other	configuration	parameters.	This	is	the	reason	why	so	much	of
DHCP	is	oriented	around	address	assignment	and	leasing.	A	conventional	DHCP
client	obtains	all	its	configuration	parameters	at	the	same	time	it	gets	an	IP
address,	using	the	message	exchanges	and	processes	described	in	the	preceding
sections	of	this	chapter.

There	are	cases	where	a	device	with	an	IP	address	assigned	using	a	method	other
than	DHCP	still	wants	to	use	DHCP	servers	to	obtain	other	configuration
parameters.	The	main	advantage	of	this	is	administrative	convenience;	it	allows
a	device	with	a	static	IP	address	to	still	be	able	to	automatically	get	other
parameters	the	same	way	that	regular	DHCP	clients	do.

Ironically,	one	common	case	where	this	capability	can	be	used	is	in	configuring
DHCP	servers	themselves!	Administrators	normally	do	not	use	DHCP	to	provide
an	IP	address	to	a	DHCP	server,	but	they	may	want	to	use	it	to	tell	the	server
other	parameters.	In	this	case,	the	server	requesting	the	parameters	actually	acts
as	a	client	for	the	purpose	of	the	exchange	with	another	server.

The	original	DHCP	standard	did	not	provide	any	mechanism	for	this	sort	of	non-
IP	configuration	to	take	place.	RFC	2131	revised	the	protocol,	adding	a	new
message	type	(DHCPINFORM)	that	allows	a	device	to	request	configuration
parameters	without	going	through	the	full	leasing	process.	This	message	is	used
as	part	of	a	simple	bidirectional	communication	that	is	separate	from	the	leasing
communications	we	have	looked	at	so	far.	Since	it	doesn't	involve	IP	address
assignment,	it	is	not	part	of	the	lease	life	cycle,	nor	is	it	part	of	the	DHCP	client
FSM.

The	following	steps	show	how	a	device	with	an	externally	configured	address
uses	DHCP	to	get	other	parameters	(see	Figure	62-5):

1.	 Client	Creates	DHCPINFORM	Message

The	client	(which	may	be	a	DHCP	server	acting	as	a	client)	creates	a
DHCPINFORM	message.	It	fills	in	its	own	IP	address	in	the	CIAddr	field,
since	that	IP	address	is	current	and	valid.	It	may	request	specific



since	that	IP	address	is	current	and	valid.	It	may	request	specific
parameters	using	the	Parameter	Request	List	option	or	simply	accept	the
defaults	provided	by	the	server.

2.	 Client	Sends	DHCPINFORM	Message

The	client	sends	the	DHCPINFORM	message	unicast,	if	it	knows	the
identity	and	address	of	a	DHCP	server;	otherwise,	it	broadcasts	it.

3.	 Server	Receives	and	Processes	DHCPINFORM	Message

The	message	is	received	and	processed	by	the	DHCP	server	or	servers	(if
there	are	multiple	servers	and	the	request	was	broadcast).	Each	server
checks	to	see	if	it	has	the	parameters	needed	by	the	client	in	its	database.

4.	 Server	Creates	DHCPACK	Message

Each	server	that	has	the	information	the	client	needs	creates	a	DHCPACK
message,	which	includes	the	needed	parameters	in	the	appropriate	DHCP
option	fields.	(Often,	this	will	be	only	a	single	server.)

5.	 Server	Sends	DHCPACK	Message

The	server	sends	the	message	unicast	back	to	the	client.

6.	 Client	Receives	and	Processes	DHCPACK	Message

The	client	receives	the	DHCPACK	message	sent	by	the	server,	processes
it,	and	sets	its	parameters	accordingly.

Figure	62-5.	DHCP	parameter	configuration	process	A	device	that	already	has	an	IP	address	can	use	the
simple	request/reply	exchange	shown	in	this	figure	to	get	other	configuration	parameters	from	a	DHCP

server.	In	this	case,	the	client	is	broadcasting	its	request.



If	a	client	receives	no	reply	to	its	DHCPINFORM	message,	it	will	retransmit	it
periodically.	After	a	retry	period,	it	will	give	up	and	use	default	configuration
values.	It	will	also	typically	generate	an	error	report	to	inform	an	administrator
or	user	of	the	problem.

TIP

KEY	CONCEPT	Devices	that	are	not	using	DHCP	to	acquire	IP	addresses	can	still	use	its	other
configuration	capabilities.	A	client	can	broadcast	a	DHCPINFORM	message	to	request	that	any
available	server	send	it	parameters	for	how	the	network	is	to	be	used.	DHCP	servers	respond	with	the
requested	parameters	and/or	default	parameters,	carried	in	DHCP	options	of	a	DHCPACK	message.



Chapter	63.	DHCP	MESSAGING,
MESSAGE	TYPES,	AND
FORMATS

The	preceding	chapter	on	DHCP	configuration	and	operation	demonstrated	how
DHCP	works	by	showing	the	various	leasing	and	information-exchange
processes.	All	of	these	procedures	rely	heavily	on	the	exchange	of	information
between	the	client	and	server,	which	is	accomplished	through	DHCP	messages.
Like	all	protocols,	DHCP	uses	a	special	message	format	and	a	set	of	rules	that
govern	how	messages	are	created,	addressed,	and	transported.

In	this	chapter,	I	provide	the	details	of	how	DHCP	creates	and	sends	messages,
and	show	the	formats	used	for	DHCP	messages	and	options.	I	begin	with	a
description	of	how	DHCP	creates,	addresses,	and	transports	messages,	and	how
it	deals	with	message	retransmission.	I	then	outline	the	DHCP	general	message
format,	showing	how	it	is	similar	to	the	BOOTP	message	format	on	which	it	is
based	and	also	where	it	differs.	I	describe	DHCP	options,	the	format	used	for
them,	and	the	special	option	overloading	feature	used	for	efficiency.	I	conclude
the	section	with	a	complete	list	of	DHCP	options.

TIP

RELATED	INFORMATION	DHCP	is	most	closely	related	to	BOOTP	in	the	area	of	messaging.
DHCP	options	are	based	closely	on	BOOTP	vendor	extensions	(see	Chapter	60),	and	many	of	the
specific	DHCP	option	types	are	the	same	as	BOOTP	vendor	information	fields.	To	avoid	duplication,	the
summary	table	in	this	chapter	lists	the	options/extensions	for	both	protocols,	indicating	which	ones	are
used	by	both	BOOTP	and	DHCP,	and	which	are	used	only	by	DHCP.

DHCP	Message	Generation,	Addressing,



Transport,	and	Retransmission
As	you've	learned,	nearly	every	aspect	of	DHCP's	operation	is	oriented	around
the	notion	of	a	client	device	exchanging	information	with	a	server.	You	can	also
see	this	reflected	in	all	of	the	major	characteristics	of	DHCP	messaging.	This
includes	the	format	of	DHCP	messages,	as	well	as	the	specifics	of	how	DHCP
messages	are	created,	addressed,	and	transmitted,	and	when	necessary,
retransmitted.

Message	Generation	and	General	Formatting
DHCP	messaging	is	similar	in	many	ways	to	that	of	BOOTP,	the	protocol	on
which	DHCP	was	based.	BOOTP	defined	only	two	message	types:	a	request	and
a	reply.	DHCP	is	much	more	complex.	It	uses	eight	different	types	of	messages,
but	these	are	still	categorized	as	either	request	or	reply	messages,	depending	on
who	sends	them	and	why.	DHCP	uses	a	special	DHCP	Message	Type	option	to
indicate	the	exact	DHCP	message	type,	but	still	treats	a	message	from	a	client
seeking	information	as	a	request,	and	a	response	from	a	server	containing
information	as	a	reply.

A	client	generates	a	message	using	the	general	DHCP	message	format,	which	is
very	similar	to	the	BOOTP	message	format.	When	a	server	replies	to	a	client
message,	it	does	not	generate	the	reply	as	a	completely	new	message,	but	rather
copies	the	client	request,	changes	fields	as	appropriate,	and	sends	the	reply	back
to	the	client.	A	special	transaction	identifier	(XID)	is	placed	in	the	request	and
maintained	in	the	reply,	which	allows	a	client	to	know	which	reply	goes	with	a
particular	request.

Message	Transport
DHCP	uses	the	User	Datagram	Protocol	(UDP)	for	transport,	just	as	BOOTP
does,	and	for	the	same	reasons:	simplicity	and	support	for	broadcasts.	It	also	has
many	of	the	same	addressing	concerns	as	BOOTP,	as	discussed	in	Chapter	60.
Clients	usually	will	send	requests	by	broadcast	on	the	local	network,	to	allow
them	to	contact	any	available	DHCP	server.	The	exception	to	this	is	when	a
client	is	trying	to	renew	a	lease	with	a	server	that	it	already	knows.	For
compatibility	with	BOOTP,	DHCP	uses	the	same	well-known	(reserved)	UDP



port	number,	67,	for	client	requests	to	servers.

Some	DHCP	message	exchanges	require	a	server	to	respond	back	to	a	client	that
has	a	valid	and	active	IP	address.	An	example	is	a	DHCPACK	message	sent	in
reply	to	a	DHCPINFORM	request.	In	this	situation,	the	server	can	always	send	a
reply	unicast	back	to	the	client.	Other	message	exchanges,	however,	present	the
same	chicken-and-egg	conundrum	that	we	saw	with	BOOTP:	If	a	client	is	using
DHCP	to	obtain	an	IP	address,	we	can't	assume	that	IP	address	is	available	for	us
to	use	to	send	a	reply.

In	BOOTP,	there	were	two	possible	solutions	to	this	situation:	The	server	could
send	back	its	reply	using	broadcast	addressing	as	well,	or	the	server	could	send
back	a	reply	directly	to	the	host	at	layer	2.	Due	to	the	performance	problems
associated	with	broadcasts,	DHCP	tries	to	make	the	latter	method	the	default	for
server	replies.	It	assumes	that	a	client's	TCP/IP	software	will	be	capable	of
accepting	and	processing	an	IP	datagram	delivered	at	layer	2,	even	before	the	IP
stack	is	initialized.

As	the	standard	itself	puts	it,	"DHCP	requires	creative	use	of	the	client's	TCP/IP
software	and	liberal	interpretation	of	RFC	1122."	RFC	1122	is	a	key	standard
describing	the	detailed	implementation	requirements	of	TCP/IP	hosts.	The
DHCP	standard,	however,	acknowledges	the	fact	that	not	all	devices	may
support	this	behavior.	It	allows	a	client	to	force	servers	to	send	back	replies
using	broadcasts	instead.	This	is	done	by	the	client	setting	the	special	Broadcast
(B)	flag	to	1	in	its	request.

Since	DHCP,	like	BOOTP,	must	use	either	layer	2	delivery	or	layer	3	broadcasts
for	server	replies,	it	requires	a	separate	well-known	port	number	for	servers	to
send	to.	Again,	for	compatibility	with	BOOTP,	the	same	port	number	is	used,
68.	This	port	number	is	used	whether	a	server	reply	is	sent	unicast	or	broadcast.

TIP

KEY	CONCEPT	Requests	from	BOOTP	clients	are	normally	sent	broadcast,	to	reach	any	available
DHCP	server.	However,	there	are	certain	exceptions,	such	as	in	lease	renewal,	when	a	request	is	sent
directly	to	a	known	server.	DHCP	servers	can	send	their	replies	either	broadcast	to	the	special	port
number	reserved	for	DHCP	clients	or	unicast	using	layer	2.	The	DHCP	standards	specify	that	layer	2
delivery	should	be	used	when	possible	to	avoid	unnecessary	broadcast	traffic.



Retransmission	of	Lost	Messages
Using	UDP	provides	benefits	such	as	simplicity	and	efficiency	to	DHCP,	but
since	UDP	is	unreliable,	there	is	no	guarantee	that	messages	will	get	to	their
destination.	This	can	lead	to	potential	confusion	on	the	part	of	a	client.	Consider,
for	example,	a	client	sending	a	DHCPDISCOVER	message	and	waiting	for
DHCPOFFER	messages	in	reply.	If	it	gets	no	response,	does	this	mean	that	there
is	no	DHCP	server	willing	to	offer	it	service	or	simply	that	its
DHCPDISCOVER	got	lost	somewhere	on	the	network?	The	same	applies	to
most	other	request/reply	sequences,	such	as	a	client	waiting	for	a	DHCPACK	or
DHCPNAK	message	in	reply	to	a	DHCPREQUEST	or	DHCPINFORM
message.

The	fact	that	messages	can	be	lost	means	that	DHCP	itself	must	keep	track	of
messages	sent,	and	if	there	is	no	response,	retransmit	them.	Since	there	are	so
many	message	exchanges	in	DHCP,	there	is	much	that	can	go	wrong.	As	in
BOOTP,	DHCP	puts	responsibility	for	this	squarely	on	the	shoulders	of	the
client.	This	makes	sense,	since	the	client	initiates	contact	and	can	most	easily
keep	track	of	messages	sent	and	retransmit	them	when	needed.	A	server	can't
know	when	a	client's	request	is	lost,	but	a	client	can	react	when	it	doesn't	receive
a	reply	from	the	server.

In	any	request/reply	message	exchange,	the	client	uses	a	retransmission	timer
that	is	set	to	a	period	of	time	that	represents	how	long	it	is	reasonable	for	it	to
wait	for	a	response.	If	no	reply	is	received	by	the	time	the	timer	expires,	the
client	assumes	that	either	its	request	or	the	response	coming	back	was	lost.	The
client	then	retransmits	the	request.	If	this	request	again	elicits	no	reply,	the	client
will	continue	retransmitting	for	a	period	of	time.

To	prevent	large	numbers	of	DHCP	clients	from	retransmitting	requests
simultaneously	(which	would	potentially	clog	the	network),	the	client	must	use	a
randomized	exponential	backoff	algorithm	to	determine	when	exactly	a
retransmission	is	made.	As	in	BOOTP,	this	is	similar	to	the	technique	used	to
recover	from	collisions	in	Ethernet.	The	DHCP	standard	specifies	that	the	delay
should	be	based	on	the	speed	of	the	underlying	network	between	the	client	and
the	server.	More	specifically,	it	says	that	in	a	standard	Ethernet	network,	the	first
retransmission	should	be	delayed	4	seconds	plus	or	minus	a	random	value	from	0
to	1	second;	in	other	words,	some	value	is	chosen	between	3	and	5	seconds.	The



to	1	second;	in	other	words,	some	value	is	chosen	between	3	and	5	seconds.	The
delay	is	then	doubled	with	each	subsequent	transmission	(7	to	9	seconds,	then	15
to	17	seconds,	and	so	forth)	up	to	a	maximum	of	64	+/–	1	second.

To	prevent	it	from	retrying	endlessly,	the	client	normally	has	logic	that	limits	the
number	of	retries.	The	amount	of	time	that	retransmissions	go	on	depends	on	the
type	of	request	being	sent;	that	is,	what	process	is	being	undertaken.	If	a	client	is
forced	to	give	up	due	to	too	many	retries,	it	will	generally	either	take	some	sort
of	default	action	or	generate	an	error	message.

TIP

KEY	CONCEPT	Like	BOOTP,	DHCP	uses	UDP	for	transport,	which	does	not	provide	any	reliability
features.	DHCP	clients	must	detect	when	requests	are	sent	and	no	response	is	received,	and	retransmit
requests	periodically.	Special	logic	is	used	to	prevent	clients	from	sending	excessive	numbers	of	requests
during	difficult	network	conditions.



DHCP	Message	Format
When	DHCP	was	created,	its	developers	had	a	bit	of	an	issue	related	to	how
exactly	they	should	structure	DHCP	messages.	BOOTP	was	already	widely
used,	and	maintaining	compatibility	between	DHCP	and	BOOTP	was	an
important	goal.	This	meant	that	DHCP's	designers	needed	to	continue	using	the
existing	BOOTP	message	format.	However,	DHCP	has	more	functionality	than
BOOTP,	and	this	means	that	it	can	hold	more	information	than	can	easily	fit	in
the	limited	BOOTP	message	format.

This	apparent	contradiction	was	resolved	in	two	ways:

The	existing	BOOTP	message	format	was	maintained	for	basic	functionality,
but	DHCP	clients	and	servers	were	programmed	to	use	the	BOOTP	message
fields	in	slightly	different	ways.

The	BOOTP	vendor	extensions	were	formalized	and	became	DHCP	options.
Despite	the	name	options,	some	of	these	additional	fields	are	for	basic	DHCP
functionality,	and	they	are	quite	mandatory!

With	this	dual	approach,	DHCP	devices	have	access	to	the	extra	information
they	need.	Meanwhile,	the	basic	field	format	is	unchanged,	allowing	DHCP
servers	to	communicate	with	older	BOOTP	clients,	which	ignore	the	extra
DHCP	information	that	doesn't	relate	to	them.	See	the	discussion	of
BOOTP/DHCP	interoperability	(in	Chapter	64)	for	more	information.

The	DHCP	message	format	is	illustrated	in	Figure	63-1	and	described	fully	in
Tables	Table	63-1	and	Table	63-2.	In	the	table,	I	have	specifically	indicated
which	fields	are	used	in	DHCP	in	a	manner	similar	to	how	they	are	used	in
BOOTP,	and	which	are	significantly	different.



Figure	63-1.	DHCP	message	format

Table	63-1.	DHCP	Message	Format

Field
Name

Size
(Bytes)

Description

Op 1 Operation	Code:	This	code	represents	the	general	category	of	the	DHCP
message.	A	client	sending	a	request	to	a	server	uses	an	opcode	of	1;	a
server	replying	uses	a	code	of	2.	So,	for	example,	a	DHCPREQUEST
would	be	a	request,	and	a	DHCPACK	or	DHCPNAK	is	a	reply.	The	actual
specific	type	of	DHCP	message	is	encoded	using	the	DHCP	Message	Type
option.

HType 1 Hardware	Type:	This	field	specifies	the	type	of	hardware	used	for	the	local
network,	and	it	is	used	in	exactly	the	same	way	as	the	equivalent	field
(HRD)	in	the	Address	Resolution	Protocol	(ARP)	message	format.	Some



(HRD)	in	the	Address	Resolution	Protocol	(ARP)	message	format.	Some
of	the	most	common	values	for	this	field	are	shown	in	Table	63-2.

Hlen 1 Hardware	Address	Length:	Specifies	how	long	hardware	addresses	are	in
this	message.	For	Ethernet	or	other	networks	using	IEEE	802	MAC
addresses,	the	value	is	6.	This	is	also	the	same	as	a	field	in	the	ARP	field
format,	HLN.

Hops 1 Hops:	Set	to	0	by	a	client	before	transmitting	a	request	and	used	by	relay
agents	to	control	the	forwarding	of	BOOTP	and/or	DHCP	messages.

XID 4 Transaction	Identifier:	A	32-bit	identification	field	generated	by	the	client,
to	allow	it	to	match	up	the	request	with	replies	received	from	DHCP
servers.

Secs 2 Seconds:	In	BOOTP,	this	field	was	vaguely	defined	and	not	always	used.
For	DHCP,	it	is	defined	as	the	number	of	seconds	elapsed	since	a	client
began	an	attempt	to	acquire	or	renew	a	lease.	This	may	be	used	by	a	busy
DHCP	server	to	prioritize	replies	when	multiple	client	requests	are
outstanding.

Flags 2 Flags:	This	corresponds	to	the	formerly	empty	2-byte	field	in	the	BOOTP
message	format	defined	by	RFC	951,	which	was	redefined	as	a	Flags	field
in	RFC	1542.	The	field	presently	contains	just	one	flag	subfield.	This	is	the
B	(Broadcast)	flag	subfield,	1	bit	in	size,	which	is	set	to	1	if	the	client
doesn't	know	its	own	IP	address	at	the	time	it	sends	its	request.	This	serves
as	an	immediate	indicator	to	the	DHCP	server	or	relay	agent	that	receives
the	request	that	it	should	send	its	reply	back	by	broadcast.	The	other
subfield,	which	is	15	bits,	is	reserved,	set	to	0,	and	not	used.

CIAddr 4 Client	IP	Address:	The	client	puts	its	own	current	IP	address	in	this	field	if
and	only	if	it	has	a	valid	IP	address	while	in	the	BOUND,	RENEWING,	or
REBINDING	states;	otherwise,	it	sets	the	field	to	0.	The	client	can	only
use	this	field	when	its	address	is	actually	valid	and	usable,	not	during	the
process	of	acquiring	an	address.	Specifically,	the	client	does	not	use	this
field	to	request	a	particular	IP	address	in	a	lease;	it	uses	the	Requested	IP
Address	DHCP	option.

YIAddr 4 Your	IP	Address:	The	IP	address	that	the	server	is	assigning	to	the	client.

SIAddr 4 Server	IP	Address:	The	meaning	of	this	field	is	slightly	changed	in	DHCP.
In	BOOTP,	it	is	the	IP	address	of	the	BOOTP	server	sending	a
BOOTREPLY	message.	In	DHCP,	it	is	the	address	of	the	server	that	the
client	should	use	for	the	next	step	in	the	bootstrap	process,	which	may	or
may	not	be	the	server	sending	this	reply.	The	sending	server	always
includes	its	own	IP	address	in	the	Server	Identifier	DHCP	option.

GIAddr 4 Gateway	IP	Address:	This	field	is	used	just	as	it	is	in	BOOTP,	to	route
BOOTP	messages	when	BOOTP	relay	agents	are	involved	to	facilitate	the



BOOTP	messages	when	BOOTP	relay	agents	are	involved	to	facilitate	the
communication	of	BOOTP	requests	and	replies	between	a	client	and	a
server	on	different	subnets	or	networks.	See	the	description	of	DHCP
relaying.	As	with	BOOTP,	this	field	is	not	used	by	clients	and	does	not
represent	the	server	giving	the	client	the	address	of	a	default	router	(that's
done	using	the	Router	DHCP	option).

CHAddr 16 Client	Hardware	Address:	The	hardware	(layer	2)	address	of	the	client,
which	is	used	for	identification	and	communication.

SName 64 Server	Name:	The	server	sending	a	DHCPOFFER	or	DHCPACK	message
may	optionally	put	its	name	in	this	field.	This	can	be	a	simple	text
nickname	or	a	fully	qualified	DNS	domain	name	(such	as
myserver.organization.org).	This	field	may	also	be	used	to	carry	DHCP
options,	using	the	option	overload	feature,	indicated	by	the	value	of	the
DHCP	Option	Overload	option.

File 128 Boot	Filename:	Optionally	used	by	a	client	to	request	a	particular	type	of
boot	file	in	a	DHCPDISCOVER	message.	Used	by	a	server	in	a
DHCPOFFER	to	fully	specify	a	boot	file	directory	path	and	filename.	This
field	may	also	be	used	to	carry	DHCP	options,	using	the	option	overload
feature,	indicated	by	the	value	of	the	DHCP	Option	Overload	option.

Options Variable Options:	Holds	DHCP	options,	including	several	parameters	required	for
basic	DHCP	operation.	Note	that	this	field	was	fixed	at	64	bytes	in	length
in	BOOTP	but	is	variable	in	length	in	DHCP.	See	the	next	section	for	more
information.	This	field	may	be	used	by	both	the	client	and	server.

Table	63-2.	DHCP	Message	HType	Values

HType	Value Hardware	Type

1 Ethernet	(10	Mb)

6 IEEE	802	Networks

7 ARCNet

11 LocalTalk

12 LocalNet	(IBM	PCNet	or	SYTEK	LocalNET)

14 Switched	Multimegabit	Data	Service	(SMDS)

15 Frame	Relay

16 Asynchronous	Transfer	Mode	(ATM)



17 High-Level	Data	Link	Control	(HDLC)

18 Fibre	Channel

19 ATM

20 Serial	Line

The	DHCP	standard	does	not	specify	the	details	of	how	DHCP	messages	are
encapsulated	within	UDP.	I	would	assume	that	due	to	the	other	similarities	to
BOOTP,	DHCP	maintains	BOOTP's	optional	use	of	message	checksums.	It	also
most	likely	assumes	that	messages	will	not	be	fragmented	(sent	with	the	Do	Not
Fragment	bit	set	to	1	in	the	IP	datagram).	This	is	to	allow	BOOTP	clients	to
avoid	the	complexity	of	reassembling	fragmented	messages.

Unlike	with	BOOTP,	which	has	a	fixed	message	size,	DHCP	messages	are
variable	in	length.	This	is	the	result	of	changing	BOOTP's	64-byte	Vend	field
into	the	variable-length	Options	field.	DHCP	relies	on	options	much	more	than
BOOTP	does,	and	a	device	must	be	capable	of	accepting	a	message	with	an
Options	field	at	least	312	bytes	in	length.	The	SName	and	File	fields	may	also	be
used	to	carry	options,	as	described	in	the	next	section.



DHCP	Options
When	BOOTP	was	first	developed,	its	message	format	included	a	64-byte	Vend
field,	called	the	Vendor-Specific	Area.	The	idea	behind	this	field	was	to	provide
flexibility	to	the	protocol.	The	BOOTP	standard	did	not	define	any	specific	way
of	using	this	field.	Instead,	the	field	was	left	open	for	the	creators	of	different
types	of	hardware	to	use	it	to	customize	BOOTP	to	meet	the	needs	of	their
clients	and/or	servers.

Including	this	sort	of	undefined	field	is	a	good	idea	because	it	makes	a	protocol
easily	extensible—allowing	the	protocol	to	be	easily	enhanced	in	the	future
through	the	definition	of	new	fields	while	not	disturbing	any	existing	fields.	The
problem	with	the	BOOTP	Vendor-Specific	Area,	however,	is	that	the
extensibility	was	vendor-specific.	It	was	useful	only	for	special	fields	that	were
particular	to	a	single	vendor.

What	was	really	needed	was	a	way	to	define	new	fields	for	general-purpose,
vendor-independent	parameter	communication,	but	there	was	no	field	in	the
BOOTP	message	format	that	would	let	this	happen.	The	solution	came	in	the
form	of	RFC	1048,	which	defined	a	technique	called	BOOTP	vendor
information	extensions.	This	method	redefines	the	Vendor-Specific	Area	to
allow	it	to	carry	general	parameters	between	a	client	and	server.	This	idea	was	so
successful	that	it	largely	replaced	the	older	vendor-specific	use	of	the	Vend	field.

DHCP	maintains,	formalizes,	and	further	extends	the	idea	of	using	the	Vend
field	to	carry	general-purpose	parameters.	Instead	of	being	called	vendor
information	extensions	or	vendor	information	fields,	these	fields	are	now	called
simply	DHCP	options.	Similarly,	the	Vend	field	has	been	renamed	the	Options
field,	reflecting	its	new	role	as	a	way	of	conveying	vendor-independent	options
between	a	client	and	server.

Options	and	Option	Format
Keeping	with	the	desire	to	maintain	compatibility	between	BOOTP	and	DHCP,
the	DHCP	Options	field	is,	in	most	ways,	the	same	as	the	vendor-independent
interpretation	of	the	BOOTP	Vend	field	introduced	by	RFC	1048.	The	first	four
bytes	of	the	field	still	carry	the	magic	cookie	value	99.130.83.99	to	identify	the



information	as	vendor-independent	option	fields.	The	rest	of	the	Option	field
consists	of	one	or	more	subfields,	each	of	which	has	a	type,	length,	value	(TLV-
encoded)	substructure,	as	in	BOOTP.

The	main	differences	between	BOOTP	vendor	information	fields	and	DHCP
options	are	the	field	names	and	the	fact	that	the	DHCP	Options	field	is	variable
in	length	(the	BOOTP	Vend	field	is	fixed	at	64	bytes).	The	structure	of	the
DHCP	Options	field	as	a	whole	is	shown	in	Figure	63-2,	and	the	subfield	names
of	each	option	are	described	in	Table	63-3.

Figure	63-2.	DHCP	Options	field	format	The	format	of	the	DHCP	Options	field	is,	unsurprisingly,	very
similar	to	that	of	the	BOOTP	Vendor-Specific	Area,	as	shown	in	Figure	60-4	in	Chapter	60.	The
Options	field	begins	with	the	same	four-byte	magic	cookie	and	then	contains	a	number	of	variable-

length	option	fields.	Each	option	has	the	format	described	in	Table	63-3.

All	of	the	DHCP	options	follow	the	format	shown	in	Table	63-3,	except	for	two
special	cases,	again	the	same	as	with	BOOTP.	A	Code	value	of	0	is	used	as	a
pad,	when	subfields	need	to	be	aligned	on	word	boundaries;	it	contains	no
information.	The	value	255	is	used	to	mark	the	end	of	the	vendor	information
fields.	Both	of	these	codes	contain	no	actual	data,	so	to	save	space,	when	either
is	used,	just	the	single	Code	value	is	included	and	the	Len	and	Data	fields	are
omitted.	A	device	seeing	a	Code	value	of	0	just	skips	it	as	filler.	A	device	seeing
a	Code	value	of	255	knows	it	has	reached	the	end	of	the	fields	in	this	Options
field.

Table	63-3.	DHCP	Option	Format

Subfield
Name

Size
(Bytes)

Description



Code 1 Option	Code:	A	single	octet	that	specifies	the	option	type.

Len 1 Option	Length:	The	number	of	bytes	in	this	particular	option.	This	does
not	include	the	two	bytes	for	the	Code	and	Len	subfields.

Data Variable Option	Data:	The	data	being	sent,	which	has	a	length	indicated	by	the	Len
subfield,	and	which	is	interpreted	based	on	the	Code	subfield.

Option	Categories
Before	DHCP	was	invented,	a	series	of	BOOTP	standards	was	published
defining	the	current	list	of	BOOTP	vendor	information	extensions.	When	DHCP
was	developed,	a	single	standard	was	created	that	merged	both	BOOTP	vendor
information	extensions	and	DHCP	options,	since	again,	they	are	basically	the
same.	The	most	recent	of	these	is	RFC	2132,	entitled	(ta-da!)	"DHCP	Options
and	BOOTP	Vendor	Extensions."

RFC	2132	lists	several	dozen	fields	that	can	be	used	either	as	DHCP	options	or
BOOTP	vendor	information	fields,	grouped	into	several	categories.	In	addition,
there	is	also	a	set	of	fields	that	are	used	only	in	DHCP,	not	in	BOOTP.	Despite
being	called	options,	only	some	really	are	optional;	others	are	necessary	for	the
basic	operation	of	DHCP.	They	are	carried	as	option	fields	for	only	one	reason:
to	allow	DHCP	to	keep	using	the	same	basic	message	format	as	BOOTP	for
compatibility.	Table	63-4	summarizes	the	categories	used	for	DHCP	options.

Table	63-4.	DHCP	Option	Categories

Option
Category

Description

RFC	1497
Vendor
Extensions

The	BOOTP	vendor	extensions	defined	in	RFC	1497,	the	last	RFC	describing
vendor	extension	fields	that	was	BOOTP-specific	(before	DHCP	was	created).
For	easier	reference,	these	were	kept	in	a	single	group	when	DHCP	options	were
created,	even	though	some	of	the	functions	they	represent	might	fit	better	in	other
categories.	(See	Table	63-5.)

IP	Layer
Parameters
per	Host

Parameters	that	control	the	operation	of	the	Internet	Protocol	(IP)	on	a	host,	which
affect	the	host	as	a	whole	and	are	not	interface-specific.	(See	Table	63-6.)

IP	Layer
Parameters

Parameters	that	affect	the	operation	of	IP	for	a	particular	interface	of	a	host.
(Some	devices	have	only	one	interface;	others	have	more.)	(See	Table	63-7.)



Parameters
per
Interface

(Some	devices	have	only	one	interface;	others	have	more.)	(See	Table	63-7.)

Link	Layer
Parameters
per
Interface

Parameters	that	affect	the	data	link	layer	operation	of	a	host,	on	a	per-interface
basis.	(See	Table	63-8.)

TCP
Parameters

Parameters	that	impact	the	operation	of	the	TCP	layer;	specified	on	a	per-interface
basis.	(See	Table	63-9.)

Application
and	Service
Parameters

Parameters	used	to	configure	or	control	the	operation	of	various	miscellaneous
applications	or	services.	(See	Table	63-10.)

DHCP
Extensions

Parameters	that	are	DHCP-specific	and	used	to	control	the	operation	of	the	DHCP
protocol	itself.	(See	Table	63-12.)

The	tables	at	the	end	of	this	chapter	provide	a	complete	list	of	the	DHCP	options
defined	in	RFC	2132.

Due	to	the	popularity	of	DHCP,	several	other	options	have	been	defined	since
that	standard	was	published.	Each	time	a	new	option	is	created,	documenting	it
would	have	required	a	new	successor	to	RFC	2132,	which	would	be	confusing
and	time-consuming.	Instead,	the	maintenance	of	these	options	and	extensions
has	been	moved	from	the	RFC	process	to	a	set	of	files	maintained	by	the	Internet
Assigned	Numbers	Authority	(IANA),	just	like	so	many	other	parameters.	There
is	also	a	process	by	which	a	developer	can	request	additional	standard	extensions
to	be	added	to	DHCP.	This	is	described	in	section	10	of	RFC	2132.

TIP

KEY	CONCEPT	DHCP	takes	BOOTP's	vendor	information	extensions	and	formalizes	them	into	an
official	feature	called	DHCP	options.	The	BOOTP	Vendor	Specific	Area	field	becomes	the	DHCP
Options	field,	and	it	can	contain	an	arbitrary	number	of	parameters	to	be	sent	from	the	server	to	the
client.	Some	of	these	include	pieces	of	data	that	are	actually	mandatory	for	the	successful	operation	of
DHCP.	There	are	several	dozen	DHCP	options,	which	are	divided	into	functional	categories.

Option	Overloading
Since	DHCP	relies	so	much	more	on	the	use	of	options	than	BOOTP	did,	the
size	of	the	Options	field	could	theoretically	grow	quite	large.	However,	since



DHCP	is	using	UDP	for	transport,	the	overall	size	of	a	message	is	limited.	This
theoretically	could	have	led	to	a	situation	where	a	message	might	run	out	of
room	and	be	unable	to	carry	all	its	options.	Meanwhile,	there	are	two	more
spacious	fields	in	the	message	format:	SName	and	File,	which	are	64	bytes	and
128	bytes,	respectively.	These	fields	might	not	even	be	needed	in	some	cases,
because	many	devices	use	DHCP	for	getting	a	lease	and	parameters,	not	to
download	a	boot	image.	Even	if	they	are	needed,	they	might	be	carrying	much
less	information	than	their	large	fixed	size	allows.
To	make	better	use	of	the	total	space	in	the	message	format,	DHCP	includes	a
special	feature	called	option	overloading,	which	allows	the	SName	and	File
fields	to	be	used	to	carry	more	option	fields	instead	of	their	conventional
information.	Use	of	this	option	is	itself	indicated	through	the	use	of	a	DHCP
option,	Option	Overload,	which	tells	a	device	receiving	a	message	how	to
interpret	the	two	fields.	If	option	overloading	is	used,	the	SName	and/or	File
fields	are	read	and	interpreted	in	the	same	way	as	the	Options	field,	after	all	of
the	options	in	the	Options	field	are	parsed.	If	the	message	actually	does	need	to
carry	a	server	name	or	boot	file,	these	are	included	as	separate	options	(number
66	and	number	67,	respectively),	which	are	variable	in	length	and	can	therefore
be	made	exactly	the	length	needed.

Incidentally,	the	creators	of	DHCP	did	recognize	that	even	though	vendor-
independent	options	are	important,	a	vendor	might	want	to	be	able	to	send
vendor-specific	information	just	as	the	original	BOOTP	defined.	To	this	end,
they	created	a	DHCP	option	called	Vendor	Specific	Information.	This	option
allows	a	vendor	to	encapsulate	a	set	of	vendor-specific	option	fields	within	the
normal	DHCP	option	structure.	In	essence,	you	can	think	of	this	as	a	way	of
nesting	a	conventional	BOOTP	Vend	field	(of	variable	length)	within	a	single
DHCP	option.	Other	DHCP	options	can	be	carried	simultaneously,	subject	to
overall	message-length	limits.	Note	that	this	supplements	an	already	existing
BOOTP	option	that	allows	reference	to	be	made	to	a	file	containing	vendor-
specific	information.

TIP

KEY	CONCEPT	Since	DHCP	messages	can	contain	so	many	options,	a	special	feature	called	option
overloading	was	created.	When	enabled,	overloading	allows	options	to	make	use	of	the	large	SName	and



File	fields	in	the	DHCP	message	format	for	options.



Summary	of	DHCP	Options/BOOTP	Vendor
Information	Fields
BOOTP	vendor	information	fields	are	used	to	carry	additional	vendor-
independent	configuration	parameters.	These	were	used	as	the	basis	for	DHCP
options,	which	extend	the	concept	to	include	parameters	used	to	manage	the
operation	of	DHCP	as	a	whole,	as	described	in	the	previous	section.	Since
BOOTP	vendor	information	fields	and	DHCP	options	are	essentially	the	same
(except	for	the	DHCP-specific	fields),	they	are	described	in	the	same	TCP/IP
standard,	and	hence,	in	this	single	part	of	the	book.

The	following	tables	list	each	of	the	DHCP	options/BOOTP	vendor	information
fields.	The	tables	show	each	option's	Code	value,	the	length	of	the	Data	subfield
for	the	option,	the	formal	name	of	the	option,	and	a	brief	description	of	how	it	is
used.	For	simplicity	in	the	tables,	where	I	say	option,	please	read	it	as
option/vendor	information	field,	since	they	are	the	same	(except,	for	the	DHCP-
specific	options).

NOTE

There	are	a	lot	of	options	in	these	tables,	and	some	of	them	define	parameters	that	are	used	by	somewhat
obscure	protocols	that	I	do	not	cover	in	this	book.	The	brief	descriptions	may	not	be	enough	for	you	to
completely	understand	how	each	and	every	option	is	used.	Note	in	particular	that	many	of	the	original
BOOTP	vendor	information	fields	that	are	used	to	communicate	the	addresses	of	certain	types	of	servers
are	now	archaic	and	may	no	longer	be	used.

RFC	1497	Vendor	Extensions
Table	63-5	shows	the	DHCP/BOOTP	options	that	were	originally	defined	in
RFC	1497.

Table	63-5.	DHCP/BOOTP	Options:	RFC	1497	Vendor	Extensions

Code
Value

Data
Length
(Bytes)

Name	and	Description

0 0 Pad:	A	single	byte	used	as	filler	to	align	a	subsequent	field	on	a	word	(2-
byte)	boundary.	It	contains	no	information.	One	of	two	options	that	is	a



byte)	boundary.	It	contains	no	information.	One	of	two	options	that	is	a
single	byte	in	length,	having	no	Data	subfield	(the	other	is	the	End	option).

1 4 Subnet	Mask:	A	32-bit	subnet	mask	being	supplied	for	the	client	to	use	on
the	current	network.	It	must	appear	in	the	option	list	before	the	Router
option	if	both	are	present.

2 4 Time	Offset:	Specifies	the	time	offset	of	the	client's	subnet	in	seconds	from
Coordinated	Universal	Time	(UTC,	formerly	Greenwich	Mean	Time	or
GMT).	Positive	values	represent	areas	east	of	the	prime	meridian	(in	the
United	Kingdom);	negative	values	represent	areas	west	of	the	prime
meridian.	Essentially,	this	is	used	to	indicate	the	time	zone	of	the	subnet.

3 Variable
(multiple
of	4)

Router:	Specifies	a	list	of	32-bit	router	addresses	for	the	client	to	use	on	the
local	network.	Routers	are	listed	in	the	order	of	preference	for	the	client	to
use.

4 Variable
(multiple
of	4)

Time	Server:	Specifies	a	list	of	time	server	addresses	(per	RFC	868,	see
Chapter	88)	for	the	client	to	use	on	the	local	network.	Servers	are	listed	in
the	order	of	preference	for	the	client	to	use.

5 Variable
(multiple
of	4)

IEN-116	Name	Server:	Specifies	a	list	of	IEN-116	name	server	addresses
for	the	client	to	use	on	the	local	network.	Servers	are	listed	in	the	order	of
preference	for	the	client	to	use.	Note	that	this	option	is	not	used	for	DNS
name	servers.

6 Variable
(multiple
of	4)

DNS	Name	Server:	Specifies	a	list	of	DNS	(see	Chapter	52)	name	server
addresses	for	the	client	to	use	on	the	local	network.	Servers	are	listed	in	the
order	of	preference	for	the	client	to	use.

7 Variable
(multiple
of	4)

Log	Server:	Specifies	a	list	of	MIT-LCS	UDP	log	server	addresses	for	the
client	to	use	on	the	local	network.	Servers	are	listed	in	the	order	of
preference	for	the	client	to	use.

8 Variable
(multiple
of	4)

Cookie	Server:	Specifies	a	list	of	RFC	865	cookie	server	addresses	for	the
client	to	use	on	the	local	network.	Servers	are	listed	in	the	order	of
preference	for	the	client	to	use.

9 Variable
(multiple
of	4)

LPR	Server:	Specifies	a	list	of	RFC	1179	line	printer	server	addresses	for
the	client	to	use	on	the	local	network.	Servers	are	listed	in	the	order	of
preference	for	the	client	to	use.

10 Variable
(multiple
of	4)

Impress	Server:	Specifies	a	list	of	Imagen	Impress	server	addresses	for	the
client	to	use	on	the	local	network.	Servers	are	listed	in	the	order	of
preference	for	the	client	to	use.

11 Variable
(multiple
of	4)

Resource	Location	Server:	Specifies	a	list	of	RFC	887	resource	location
server	addresses	for	the	client	to	use	on	the	local	network.	Servers	are	listed
in	the	order	of	preference	for	the	client	to	use.



of	4) in	the	order	of	preference	for	the	client	to	use.

12 Variable Host	Name:	Specifies	a	host	name	for	the	client.	This	may	or	may	not	be	a
DNS	host	name;	see	option15.

13 2 Boot	File	Size:	Specifies	the	size	of	the	default	boot	image	file	for	the	client,
expressed	in	units	of	512	bytes.

14 Variable Merit	Dump	File:	Specifies	the	path	and	filename	of	the	file	to	which	the
client	should	dump	its	core	image	in	the	event	that	it	crashes.

15 Variable Domain	Name:	Specifies	the	DNS	domain	name	for	the	client.	Compare	this
with	option	12.

16 4 Swap	Server:	Specifies	the	address	of	the	client's	swap	server.

17 Variable Root	Path:	Specifies	the	path	name	of	the	client's	root	disk.	This	allows	the
client	to	access	files	it	may	need,	using	a	protocol	such	as	the	Network	File
System	(NFS;	see	Chapter	58).

18 Variable Extensions	Path:	Specifies	the	name	of	a	file	that	contains	vendor-specific
fields	that	the	client	can	interpret	in	the	same	way	as	the	Options	or	Vend
field	in	a	DHCP/BOOTP	message.	This	was	defined	to	allow	a	client	and
server	to	still	exchange	vendor-specific	information	even	though	the
Option/Vend	field	is	now	used	for	the	general-purpose	fields	described	in
this	chapter.	Also	see	option	43.

255 0 End:	Placed	after	all	other	options	to	mark	the	end	of	the	option	list.	One	of
two	options	that	is	a	single	byte	in	length,	having	no	Data	subfield	(the	other
is	the	Pad	option).

IP	Layer	Parameters	per	Host
Table	63-6	shows	the	parameters	that	control	the	operation	of	IP	on	a	host	as	a
whole.	They	are	not	interface-specific.

Table	63-6.	DHCP/BOOTP	Options:	IP	Layer	Parameters	per	Host

Code
Value

Data
Length
(Bytes)

Name	and	Description

19 1 IP	Forwarding	Enable/Disable:	A	value	of	1	turns	on	IP	forwarding	(that	is,
routing)	on	a	client	that	is	capable	of	that	function;	a	value	of	0	turns	it	off.

20 1 Non-Local	Source	Routing	Enable/Disable	Option:	A	value	of	1	tells	a
client	capable	of	routing	to	allow	forwarding	of	IP	datagrams	with	nonlocal



client	capable	of	routing	to	allow	forwarding	of	IP	datagrams	with	nonlocal
source	routes.	A	value	of	0	tells	the	client	not	to	allow	this.	See	the	source
routing	IP	datagram	option	(see	Chapter	21)	for	a	bit	more	information	on
this	and	option	21.

21 Variable
(multiple
of	8)

Policy	Filter:	A	set	of	address/mask	pairs	used	to	filter	nonlocal	source-
routed	datagrams.

22 2 Maximum	Datagram	Reassembly	Size:	Tells	the	client	the	size	of	the	largest
datagram	that	the	client	should	be	prepared	to	reassemble.	The	minimum
value	is	576	bytes.

23 1 Default	IP	Time	to	Live:	Specifies	the	default	value	that	the	client	should
use	for	the	Time	to	Live	field	in	creating	IP	datagrams.

24 4 Path	MTU	Aging	Timeout:	Specifies	the	number	of	seconds	the	client
should	use	in	aging	path	maximum	transmission	unit	(MTU)	values
determined	using	path	MTU	discovery.

25 Variable
(multiple
of	2)

Path	MTU	Plateau	Table:	Specifies	a	table	of	values	to	be	used	in
performing	path	MTU	discovery.

IP	Layer	Parameters	per	Interface
Table	63-7	shows	the	parameters	that	are	specific	to	a	particular	host	interface	at
the	IP	level.

Table	63-7.	DHCP/BOOTP	Options:	IP	Layer	Parameters	per	Interface

Code
Value

Data
Length
(Bytes)

Name	and	Description

26 2 Interface	MTU:	Specifies	the	MTU	to	be	used	for	IP	datagrams	on	this
interface.	The	minimum	value	is	68.

27 1 All	Subnets	Are	Local:	When	set	to	1,	tells	the	client	that	it	may	assume	that
all	subnets	of	the	IP	network	it	is	on	have	the	same	MTU	as	its	own	subnet.
When	0,	the	client	must	assume	that	some	subnets	may	have	smaller	MTUs
than	the	client's	subnet.

28 4 Broadcast	Address:	Tells	the	client	what	address	it	should	use	for	broadcasts
on	this	interface.



29 1 Perform	Mask	Discovery:	A	value	of	1	tells	the	client	that	it	should	use
Internet	Control	Message	Protocol	(ICMP;	see	Chapter	31)	to	discover	a
subnet	mask	on	the	local	subnet.	A	value	of	0	tells	the	client	not	to	perform

this	discovery.

30 1 Mask	Supplier:	Set	to	1	to	tell	the	client	that	it	should	respond	to	ICMP
subnet	mask	requests	on	this	interface.

31 1 Perform	Router	Discovery:	A	value	of	1	tells	the	client	to	use	the	ICMP
router	discovery	process	to	solicit	a	local	router.	A	value	of	0	tells	the	client
to	not	do	so.	Note	that	DHCP	itself	can	be	used	to	specify	one	or	more	local
routers	using	option	3.

32 4 Router	Solicitation	Address:	Tells	the	client	the	address	to	use	as	the
destination	for	router	solicitations.

33 Variable
(multiple
of	8)

Static	Route:	Provides	the	client	with	a	list	of	static	routes	it	can	put	into	its
routing	cache.	The	list	consists	of	a	set	of	IP	address	pairs;	each	pair	defines
a	destination	and	a	router	to	be	used	to	reach	the	destination.

Link	Layer	Parameters	per	Interface
Table	63-8	lists	the	DHCP/BOOTP	options	that	are	specific	to	a	particular	link
layer	(layer	2)	interface.

Table	63-8.	DHCP/BOOTP	Options:	Link	Layer	Parameters	per	Interface

Code
Value

Data
Length
(Bytes)

Name	and	Description

34 1 Trailer	Encapsulation:	When	set	to	1,	tells	the	client	to	negotiate	the	use	of
trailers,	as	defined	in	RFC	893.	A	value	of	0	tells	the	client	not	to	use	this
feature.

35 4 ARP	Cache	Timeout:	Specifies	how	long,	in	seconds,	the	client	should	hold
entries	in	its	ARP	cache	(see	Chapter	13).

36 1 Ethernet	Encapsulation:	Tells	the	client	what	type	of	encapsulation	to	use
when	transmitting	over	Ethernet	at	layer	2.	If	the	option	value	is	0,	it
specifies	that	Ethernet	II	encapsulation	should	be	used,	per	RFC	894;	when
the	value	is	1,	it	tells	the	client	to	use	IEEE	802.3	encapsulation,	per	RFC
1042.



TCP	Parameters
The	options	impacting	the	operation	of	TCP	are	shown	in	Table	63-9.

Table	63-9.	DHCP/BOOTP	Options:	TCP	Parameters

Code
Value

Data
Length
(Bytes)

Name	and	Description

37 1 Default	TTL:	Specifies	the	default	TTL	the	client	should	use	when	sending
TCP	segments.

38 4 TCP	Keepalive	Interval:	Specifies	how	long	(in	seconds)	the	client	should
wait	on	an	idle	TCP	connection	before	sending	a	keepalive	message.	A	value
of	0	instructs	the	client	not	to	send	such	messages	unless	specifically
instructed	to	do	so	by	an	application.

39 1 TCP	Keepalive	Garbage:	When	set	to	1,	tells	a	client	it	should	send	TCP
keepalive	messages	that	include	an	octet	of	"garbage"	for	compatibility	with
implementations	that	require	this.

Application	and	Service	Parameters
Table	63-10	shows	the	miscellaneous	options	that	control	the	operation	of
various	applications	and	services.

Table	63-10.	DHCP/BOOTP	Options:	Application	and	Service	Parameters

Code
Value

Data
Length
(Bytes)

Name	and	Description

40 Variable Network	Information	Service	Domain:	Specifies	the	client's	Network
Information	Service	(NIS)	domain.	Contrast	this	with	option	64.

41 Variable
(multiple
of	4)

Network	Information	Servers:	Specifies	a	list	of	IP	addresses	of	NIS	servers
the	client	may	use.	Servers	are	listed	in	the	order	of	preference	for	the	client
to	use.	Contrast	this	with	option	65.

42 Variable
(multiple
of	4)

Network	Time	Protocol	Servers:	Specifies	a	list	of	IP	addresses	of	Network
Time	Protocol	(NTP)	servers	the	client	may	use.	Servers	are	listed	in	the
order	of	preference	for	the	client	to	use.

43 Variable Vendor	Specific	Information:	Allows	an	arbitrary	set	of	vendor-specific



43 Variable Vendor	Specific	Information:	Allows	an	arbitrary	set	of	vendor-specific
information	items	to	be	included	as	a	single	option	within	a	DHCP	or
BOOTP	message.	This	information	is	structured	using	the	same	format	as
the	Options	or	Vend	field	itself,	except	that	it	does	not	start	with	a	magic
cookie.	See	the	"DHCP	Options"	section	earlier	in	this	chapter	for	more
details.

44 Variable
(multiple
of	4)

NetBIOS	over	TCP/IP	Name	Servers:	Specifies	a	list	of	IP	addresses	of
NetBIOS	name	servers	(per	RFC	1001/1002)	that	the	client	may	use.
Servers	are	listed	in	the	order	of	preference	for	the	client	to	use.

45 Variable
(multiple
of	4)

NetBIOS	over	TCP/IP	Datagram	Distribution	Servers:	Specifies	a	list	of	IP
addresses	of	NetBIOS	datagram	distribution	servers	(per	RFC	1001/1002)
that	the	client	may	use.	Servers	are	listed	in	the	order	of	preference	for	the
client	to	use.

46 1 NetBIOS	over	TCP/IP	Node	Type:	Tells	the	client	what	sort	of	NetBIOS
node	type	it	should	use.	Four	different	bit	values	are	used	to	define	the
possible	node	type	combinations,	as	listed	in	Table	63-11.

47 Variable NetBIOS	over	TCP/IP	Scope:	Specifies	the	NetBIOS	over	TCP/IP	scope
parameter	for	the	client.

48 Variable
(multiple
of	4)

X	Window	System	Font	Servers:	Specifies	a	list	of	IP	addresses	of	X
Window	System	Font	servers	that	the	client	may	use.	Servers	are	listed	in
the	order	of	preference	for	the	client	to	use.

49 Variable
(multiple
of	4)

X	Window	System	Display	Manager:	Specifies	a	list	of	IP	addresses	of
systems	running	the	X	Window	System	Display	Manager	that	the	client	may
use.	Addresses	are	listed	in	the	order	of	preference	for	the	client	to	use.

64 Variable Network	Information	Service+	Domain:	Specifies	the	client's	NIS+	domain.
Contrast	this	with	option	40.

65 Variable
(multiple
of	4)

Network	Information	Service+	Servers:	Specifies	a	list	of	IP	addresses	of
NIS+	servers	the	client	may	use.	Servers	are	listed	in	the	order	of	preference
for	the	client	to	use.	Contrast	this	with	option	41.

68 Variable
(multiple
of	4)

Mobile	IP	Home	Agent:	Specifies	a	list	of	IP	addresses	of	home	agents	that
the	client	can	use	in	Mobile	IP	(see	Chapter	30).	Agents	are	listed	in	the
order	of	preference	for	the	client	to	use;	normally	a	single	agent	is	specified.

69 Variable
(multiple
of	4)

Simple	Mail	Transport	Protocol	(SMTP)	Servers:	Specifies	a	list	of	IP
addresses	of	SMTP	servers	the	client	may	use.	Servers	are	listed	in	the	order
of	preference	for	the	client	to	use.	See	Chapter	77	for	more	on	SMTP.

70 Variable
(multiple
of	4)

Post	Office	Protocol	(POP3)	Servers:	Specifies	a	list	of	IP	addresses	of
POP3	servers	the	client	may	use.	Servers	are	listed	in	the	order	of	preference



of	4) for	the	client	to	use.	See	Chapter	78.

71 Variable
(multiple
of	4)

Network	News	Transfer	Protocol	(NNTP)	Servers:	Specifies	a	list	of	IP
addresses	of	NNTP	servers	the	client	may	use.	Servers	are	listed	in	the	order

of	preference	for	the	client	to	use.	See	Chapter	85.

72 Variable
(multiple
of	4)

Default	World	Wide	Web	(WWW)	Servers:	Specifies	a	list	of	IP	addresses
of	World	Wide	Web	(HTTP)	servers	the	client	may	use.	Servers	are	listed	in
the	order	of	preference	for	the	client	to	use.	See	Chapter	79.

73 Variable
(multiple
of	4)

Default	Finger	Servers:	Specifies	a	list	of	IP	addresses	of	Finger	servers	the
client	may	use.	Servers	are	listed	in	the	order	of	preference	for	the	client	to
use.

74 Variable
(multiple
of	4)

Default	Internet	Relay	Chat	(IRC)	Servers:	Specifies	a	list	of	IP	addresses	of
Internet	Relay	Chat	(IRC)	servers	the	client	may	use.	Servers	are	listed	in
the	order	of	preference	for	the	client	to	use.

75 Variable
(multiple
of	4)

StreetTalk	Servers:	Specifies	a	list	of	IP	addresses	of	StreetTalk	servers	the
client	may	use.	Servers	are	listed	in	the	order	of	preference	for	the	client	to
use.

76 Variable
(multiple
of	4)

StreetTalk	Directory	Assistance	(STDA)	Servers:	Specifies	a	list	of	IP
addresses	of	STDA	servers	the	client	may	use.	Servers	are	listed	in	the	order
of	preference	for	the	client	to	use.

Table	63-11.	NetBIOS	Over	TCP/IP	Node	Type	(Option	46)	Values

Option	46	Subfield
Name

Size
(Bits)

Description

Reserved 4 Reserved:	Not	used.

H-Node 1 H-Node:	Set	to	1	to	tell	the	client	to	act	as	a	NetBIOS
H-node.

M-Node 1 M-Node:	Set	to	1	to	tell	the	client	to	act	as	a	NetBIOS
M-node.

P-Node 1 P-Node:	Set	to	1	to	tell	the	client	to	act	as	a	NetBIOS
P-node.

B-Node 1 B-Node:	Set	to	1	to	tell	the	client	to	act	as	a	NetBIOS
B-node.



DHCP	Extensions
Last,	but	certainly	not	least,	Table	63-12	describes	the	DHCP-only	options	that
control	the	operation	of	the	DHCP	protocol.

Table	63-12.	DHCP	Options:	DHCP	Extensions

Code
Value

Data
Length
(Bytes)

Name	and	Description

50 4 Requested	IP	Address:	Used	in	a	client's	DHCPDISCOVER	message	to
request	a	particular	IP	address	assignment.

51 4 IP	Address	Lease	Time:	Used	in	a	client	request	to	ask	a	server	for	a
particular	DHCP	lease	duration,	or	in	a	server	reply	to	tell	the	client	the
offered	lease	time.	It	is	specified	in	units	of	seconds.

52 1 Option	Overload:	Used	to	tell	the	recipient	of	a	DHCP	message	that	the
message's	SName	and/or	File	fields	are	being	used	to	carry	options,	instead
having	their	normal	meanings.	This	option	implements	the	option	overload
feature.	There	are	three	possible	values	for	this	single-byte	option:	1	means
the	File	field	is	carrying	the	option	data,	2	means	the	SName	field	has	the
option	data,	and	3	means	both	fields	have	the	option	data.

53 1 DHCP	Message	Type:	Indicates	the	specific	type	of	DHCP	message,	as
listed	in	Table	6-13.

54 4 Server	Identifier:	The	IP	address	of	a	particular	DHCP	server.	This	option	is
included	in	messages	sent	by	DHCP	servers	to	identify	themselves	as	the
source	of	the	message.	It	is	also	used	by	a	client	in	a	DHCPREQUEST
message	to	specify	which	server's	lease	it	is	accepting.

55 Variable Parameter	Request	List:	Used	by	a	DHCP	client	to	request	a	list	of	particular
configuration	parameter	values	from	a	DHCP	server.

56 Variable Message:	Used	by	a	server	or	client	to	indicate	an	error	or	other	message.

57 2 Maximum	DHCP	Message	Size:	Used	by	a	DHCP	client	or	server	to	specify
the	maximum	size	of	DHCP	message	it	is	willing	to	accept.	The	minimum
legal	value	is	576	bytes.

58 4 Renewal	(T1)	Time	Value:	Tells	the	client	the	value	to	use	for	its	renewal
timer.

59 4 Rebinding	(T2)	Time	Value:	Tells	the	client	the	value	to	use	for	its	rebinding



59 4 Rebinding	(T2)	Time	Value:	Tells	the	client	the	value	to	use	for	its	rebinding
timer.

60 Variable Vendor	Class	Identifier:	Included	in	a	message	sent	by	a	DHCP	client	to
specify	its	vendor	and	configuration.	This	may	be	used	to	prompt	a	server	to
send	the	correct	vendor-specific	information	using	option	43.

61 Variable Client	Identifier:	Used	optionally	by	a	client	to	specify	a	unique	client
identification	for	itself	that	differs	from	the	DHCP	default.	This	identifier	is
expected	by	servers	to	be	unique	among	all	DHCP	clients	and	is	used	to
index	the	DHCP	server's	configuration	parameter	database.

66 Variable TFTP	Server	Name:	When	the	DHCP	message's	SName	field	has	been	used
for	options	using	the	option	overload	feature,	this	option	may	be	included	to
specify	the	Trivial	File	Transfer	Protocol	(TFTP)	server	name	that	would
normally	appear	in	the	SName	field.

67 Variable Bootfile	Name:	When	the	DHCP	message's	File	field	has	been	used	for
options	using	the	option	overload	feature,	this	option	may	be	included	to
specify	the	boot	filename	that	would	normally	appear	in	the	File	field.

Table	63-13.	DHCP	Message	Type	(Option	53)	Values

Option	53	Value DHCP	Message	Type

1 DHCPDISCOVER

2 DHCPOFFER

3 DHCPREQUEST

4 DHCPDECLINE

5 DHCPACK

6 DHCPNAK

7 DHCPRELEASE

8 DHCPINFORM



Chapter	64.	DHCP
CLIENT/SERVER
IMPLEMENTATION,	FEATURES,
AND	IPV6	SUPPORT

The	preceding	chapters	in	this	part	describe	the	fundamentals	of	the	operation	of
DHCP:	the	address	leasing	system,	configuration	processes,	and	messaging.
With	this	foundation	in	place,	we	can	now	proceed	to	look	into	some	of	the	more
interesting	details	of	how	DHCP	is	implemented.	We	can	also	delve	into	some	of
the	extra	capabilities	and	special	features	that	change	the	basic	DHCP
mechanisms	we	have	already	studied.

In	this	chapter,	I	discuss	DHCP	client/server	implementation	issues,	special
features	that	enhance	the	protocol,	and	some	of	the	problems	and	issues	related
to	making	DHCP	work.	I	begin	with	a	discussion	of	DHCP	server	and	client
implementation	and	management	issues.	I	discuss	DHCP	message	relaying	and
how	it	is	related	to	the	relaying	feature	used	for	the	Boot	Protocol	(BOOTP).	I
describe	the	DHCP	feature	for	providing	automatic	default	addressing	when	a
client	cannot	contact	a	server,	and	the	conflict	detection	feature	for	multiple
servers.	I	then	cover	some	of	the	issues	related	to	interoperability	of	DHCP	and
BOOTP,	and	provide	an	outline	of	some	of	the	more	important	problems	and
issues	related	to	DHCP	security.	I	conclude	with	an	overview	of	DHCP	for	IP
version	6	(DHCPv6).

DHCP	Server	and	Client	Implementation	and
Management	Issues
DHCP	is	a	client/server	protocol,	relying	on	both	the	server	and	client	to	fulfill



DHCP	is	a	client/server	protocol,	relying	on	both	the	server	and	client	to	fulfill
certain	responsibilities.	Of	the	two	device	roles,	the	DHCP	server	is	arguably	the
more	important,	because	it	is	in	the	server	that	most	of	the	functionality	of
DHCP	is	actually	implemented.

DHCP	Server	Implementations
The	server	maintains	the	configuration	database,	keeps	track	of	address	ranges,
and	manages	leases.	For	this	reason,	DHCP	servers	are	typically	much	more
complex	than	DHCP	clients.	In	essence,	without	a	DHCP	server,	there	really	is
no	DHCP.	Thus,	deciding	how	to	implement	DHCP	servers	is	a	large	part	of
implementing	the	protocol.

A	classic	DHCP	server	consists	of	DHCP	server	software	running	on	a	server
hardware	platform	of	one	sort	or	another.	A	DHCP	server	usually	will	not	be	a
dedicated	computer,	except	on	very	large	networks.	It	is	more	common	for	a
hardware	server	to	provide	DHCP	services	along	with	performing	other
functions,	such	as	acting	as	an	application	server,	serving	as	a	general	database
server,	providing	DNS	services,	and	so	forth.	So,	a	DHCP	server	does	not	need
to	be	a	special	computer;	any	device	that	can	run	a	DHCP	server	implementation
can	act	as	a	server.

In	fact,	the	DHCP	server	may	not	even	need	to	be	a	host	computer	at	all.	Today,
many	routers	include	DHCP	functionality.	Programming	a	router	to	act	as	a
DHCP	server	allows	clients	that	connect	to	the	router	to	be	automatically
assigned	IP	addresses.	This	provides	numerous	potential	advantages	in	an
environment	where	a	limited	number	of	public	IP	addresses	is	shared	among
multiple	clients,	or	where	IP	Network	Address	Translation	(NAT;	see
Chapter	28)	is	used	to	dynamically	share	a	small	number	of	addresses.	Since
DHCP	requires	a	database,	a	router	that	acts	as	a	DHCP	server	requires	some
form	of	permanent	storage.	This	is	often	implemented	using	flash	memory	on
routers;	"true"	servers	use	hard	disk	storage.

Virtually	all	modern	operating	systems	include	support	for	DHCP,	including
most	variants	of	UNIX,	Linux,	newer	versions	of	Microsoft	Windows,	Novell
NetWare,	and	others.	In	some	cases,	you	may	need	to	run	the	server	version	of
the	operating	system	to	have	a	host	act	as	a	DHCP	server.	For	example,	while
Microsoft	Windows	XP	supports	DHCP,	I	don't	believe	that	a	DHCP	server



comes	in	the	Windows	XP	Home	Edition,	though	you	could	install	one	yourself.

DHCP	Server	Software	Features
In	most	networks,	you	will	choose	the	operating	system	based	on	a	large	number
of	factors.	The	choice	of	operating	system	will	then	dictate	what	options	you
have	for	selecting	DHCP	server	software.	Most	common	operating	systems	have
a	number	of	options	available	for	software.	While	all	will	implement	the	core
DHCP	protocol,	they	will	differ	in	terms	of	the	usual	software	attributes:	cost,
performance,	ease	of	use,	and	so	on.	They	may	also	differ	in	terms	of	their
features,	such	as	the	following:

How	they	allow	address	ranges	(scopes)	to	be	defined

How	clients	can	be	grouped	and	managed

The	level	of	control	an	administrator	has	over	parameters	returned	to	a	client

The	level	of	control	an	administrator	has	over	general	operation	of	the
protocol,	such	as	specification	of	the	T1	and	T2	timers	and	other	variables,
and	how	leases	are	allocated	and	renewals	handled

Security	features

Ability	to	interact	with	DNS	to	support	dynamic	device	naming

Optional	features	such	as	BOOTP	support,	conflict	detection,	and	Automatic
Private	IP	Addressing	(all	discussed	later	in	this	chapter)

Choosing	the	Number	of	Servers
In	setting	up	DHCP	for	a	network,	there	are	a	number	of	important	factors	to
consider	and	decisions	to	be	made.	One	of	the	most	critical	is	the	number	of
servers	you	want	to	have.	In	theory,	each	network	requires	only	one	DHCP
server;	in	practice,	this	is	often	not	a	great	idea.	Servers	sometimes	experience
hardware	or	software	failures,	or	they	must	be	taken	down	for	maintenance.	If
there	is	only	one	server	and	clients	can't	reach	it,	no	DHCP	clients	will	be	able	to
get	addresses.	For	this	reason,	two	or	more	servers	are	often	used.

If	you	do	use	more	than	one	server,	you	need	to	carefully	plan	how	you	will
configure	each	one.	One	of	the	first	decisions	you	will	need	to	make	is	which
servers	will	be	responsible	for	which	addresses	and	clients.	You	need	to



determine	whether	you	want	the	servers	to	have	distinct	or	overlapping	address
pools,	as	discussed	in	the	explanation	of	DHCP	address	ranges	in	Chapter	61.
Distinct	pools	ensure	that	addresses	remain	unique,	but	result	in	unallocatable
addresses	if	a	server	fails.	Overlapping	addresses	are	more	flexible,	but	risk
address	conflicts	unless	a	feature	like	conflict	detection	(described	later	in	this
chapter)	is	used.

Server	Placement,	Setup,	and	Maintenance
Once	you	know	how	many	servers	you	want,	you	need	to	determine	on	which
part	of	the	network	you	want	to	place	them.	If	you	have	many	physical	networks,
you	may	also	need	to	use	DHCP	relaying	to	allow	all	clients	to	reach	a	server.
Since	the	structure	of	the	network	may	affect	the	number	of	servers	you	use,
many	of	these	decisions	are	interrelated.

You	must	make	policy	decisions	related	to	all	the	DHCP	operating	parameters
discussed	in	the	previous	chapters.	The	two	big	decisions	are	the	size	and
structure	of	the	address	pool,	and	making	lease	policy	decisions	such	as	the	lease
length	and	the	settings	for	the	T1	and	T2	timers.	You	also	must	decide	which
clients	will	be	dynamically	allocated	addresses	and	how	manually	configured
clients	will	be	handled.

Finally,	it's	essential	for	the	administrator	to	remember	that	an	organization's
DHCP	server	is	a	database	server	and	must	be	treated	accordingly.	Like	any
database	server,	it	must	be	maintained	and	managed	carefully.	Administrative
policies	must	be	put	into	place	to	ensure	the	security	and	efficient	operation	of
the	server.	Also,	unlike	certain	other	types	of	database	systems,	the	DHCP
database	is	not	automatically	replicated;	the	server	database	should	therefore	be
routinely	backed	up,	and	using	RAID	storage	is	also	a	good	idea.

DHCP	Client	Implementations
Just	as	a	DHCP	server	consists	of	server	software	running	on	a	server	platform
or	hardware	acting	as	a	server,	a	DHCP	client	is	simply	DHCP	client	software
running	on	a	client	device.	Most	often,	a	client	device	is	a	host	computer
connected	to	a	TCP/IP	internetwork.	DHCP	is	so	widely	accepted	today	that
virtually	all	hosts	include	DHCP	client	software.	The	DHCP	client	is	usually
integrated	into	graphical	operating	systems	like	Windows,	or	is	implemented



using	a	specific	client	daemon	like	dhclient	or	dhcpd	on	UNIX/Linux.

Since	the	entire	idea	behind	DHCP	is	to	put	the	server	in	charge	of	parameter
storage,	configuration,	and	address	management,	DHCP	clients	are	relatively
simple.	The	client	implements	the	messaging	protocol	and	communicates
parameters	received	from	the	DHCP	server	to	the	rest	of	the	TCP/IP	software
components	as	needed.	It	doesn't	do	a	whole	lot	else.

In	fact,	there's	not	really	much	for	an	administrator	to	do	to	set	up	a	client	to	use
DHCP.	In	some	operating	systems,	it's	as	simple	as	"throwing	a	switch,"	by
enabling	DHCP	support	within	the	client	itself.	This	prompts	the	client	to	then
stop	using	any	manually	configured	parameters	and	start	searching	for	a	DHCP
server	instead.	The	server	then	becomes	responsible	for	the	client's	configuration
and	address	assignment.

Since	the	client	doesn't	do	a	great	deal	in	DHCP	other	than	communicate	with
the	server,	not	much	is	required	in	the	way	of	user	software	for	a	DHCP	client.
In	most	cases,	control	over	the	DHCP	client	software	is	accomplished	using	a
TCP/IP	configuration	utility,	as	described	in	Chapter	88.	Windows	clients	use
the	programs	ipconfig	or	winipcfg	to	display	the	status	of	their	current	DHCP
leases.	These	programs	also	allow	the	client	to	manually	release	the	current	lease
or	renew	it.

Releasing	the	lease	means	early	lease	termination	using	the	DHCPRELEASE
message.	This	is	usually	the	only	way	that	a	lease	is	terminated.	Renewing	the
lease	is	a	manual	version	of	the	automated	renewal	process.	Releasing	and
renewing	the	lease	may	be	done	in	sequence	to	reset	a	client	that	is	in	a	confused
state	or	is	having	some	other	type	of	DHCP	or	connectivity	problem.



DHCP	Message	Relaying	and	BOOTP	Relay
Agents
DHCP	is	the	third-generation	host	configuration	protocol	for	TCP/IP.	We've
already	discussed	extensively	how	it	was	based	directly	on	BOOTP,	which	was,
in	turn,	an	enhancement	of	the	earlier	Reverse	Address	Resolution	Protocol
(RARP).	Even	though	each	new	protocol	has	made	significant	improvements
over	its	predecessor,	each	iteration	has	retained	certain	limitations	that	are
actually	common	to	all	host	configuration	protocols.

One	of	the	most	important	limitations	with	host	configuration	protocols	is	the
reliance	on	broadcasts	for	communication.	Whenever	we	are	dealing	with	a
situation	where	a	client	needs	to	communicate	but	doesn't	know	its	IP	address
and	doesn't	know	the	address	of	a	server	that	will	provide	it,	the	client	needs	to
use	broadcast	addressing.	However,	for	performance	reasons,	broadcasts	are
normally	propagated	only	on	the	local	network.	This	means	that	the	client	and
server	would	always	need	to	be	on	the	same	physical	network	for	host
configuration	to	occur.	Of	course,	we	don't	want	this	to	be	the	case.	It	would
require	that	a	large	internetwork	have	a	different	server	on	every	network,
greatly	reducing	the	benefits	of	centralized	configuration	information	and
creating	numerous	administrative	hassles.

RARP	didn't	have	any	solution	to	this	problem,	which	is	one	reason	why	it	was
so	limited	in	usefulness.	BOOTP's	solution	is	to	allow	a	client	and	server	to	be
on	different	networks	through	the	use	of	BOOTP	relay	agents.

BOOTP	Relay	Agents	for	DHCP
A	relay	agent	is	a	device	that	is	not	a	BOOTP	server,	but	which	runs	a	special
software	module	that	allows	it	to	act	in	the	place	of	a	server.	A	relay	agent	can
be	placed	on	networks	where	there	are	BOOTP	clients	but	no	BOOTP	servers.
The	relay	agent	intercepts	requests	from	clients	and	relays	them	to	the	server.
The	server	then	responds	back	to	the	agent,	which	forwards	the	response	to	the
client.	A	full	rationale	and	description	of	operation	of	BOOTP	relay	agents	can
be	found	in	Chapter	60.

The	designers	of	DHCP	were	satisfied	with	the	basic	concepts	and	operation



The	designers	of	DHCP	were	satisfied	with	the	basic	concepts	and	operation
behind	BOOTP	relay	agents,	which	had	already	been	in	use	for	many	years.	For
this	reason,	they	made	the	specific	decision	to	continue	using	BOOTP	relay
agent	functionality	in	DHCP.	In	fact,	this	is	one	of	the	reasons	why	the	decision
was	made	to	retain	the	BOOTP	message	format	in	DHCP,	and	also	the	basic
two-message	request/reply	communication	protocol.	This	allows	BOOTP	relay
agents	to	handle	DHCP	messages	as	if	they	were	BOOTP	messages.	This	is	also
why	the	mention	of	BOOTP	in	the	title	of	this	topic	is	not	a	typo—DHCP	uses
BOOTP	relay	agents.	Even	the	DHCP	standard	says	that	a	"BOOTP	relay	agent
is	an	Internet	host	or	router	that	passes	DHCP	messages	between	DHCP	clients
and	DHCP	servers."

In	practice,	the	agents	are	indeed	sometimes	called	DHCP	relay	agents.	You	may
also	see	the	terms	BOOTP/DHCP	relay	agent	and	DHCP/BOOTP	relay	agent.

DHCP	Relaying	Process
Since	DHCP	was	designed	specifically	to	support	BOOTP	relay	agents,	the
agents	behave	in	DHCP	much	as	they	do	in	BOOTP.	Although	DHCP	has	much
more	complex	message	exchanges,	they	are	all	still	designed	around	the	notion
of	a	client	request	and	server	response.	There	are	just	more	requests	and
responses.

The	BOOTP	agent	looks	for	broadcasts	sent	by	the	client	and	then	forwards
them	to	the	server	(as	described	in	the	BOOTP	relay	agent	behavior	discussion
in	Chapter	60),	and	then	returns	replies	from	the	server.	The	additional
information	in	the	DHCP	protocol	is	implemented	using	additions	to	the	BOOTP
message	format	in	the	form	of	DHCP	options,	which	the	relay	agent	doesn't	look
at.	It	just	treats	them	as	it	does	BOOTP	requests	and	replies.

TIP

KEY	CONCEPT	To	permit	DHCP	clients	and	DHCP	servers	to	reside	on	different	physical	networks,
an	intermediary	device	is	required	to	facilitate	message	exchange	between	networks.	DHCP	uses	the
same	mechanism	for	this	as	BOOTP:	the	deployment	of	BOOTP	relay	agents.	The	relay	agent	captures
client	requests,	forwards	them	to	the	server,	and	then	returns	the	server's	responses	back	to	the	client.

In	summary,	when	a	relay	agent	is	used,	here's	what	the	various	client	requests
and	server	replies	in	the	DHCP	operation	section	become:



Client	Request	When	a	client	broadcasts	a	request,	the	relay	agent	intercepts	it
on	UDP	port	67.	It	checks	the	Hops	field	and	discards	the	request	if	the	value	is
greater	than	16;	otherwise,	it	increments	the	field.	The	agent	puts	its	own	address
into	the	GIAddr	field	unless	another	relay	agent	has	already	put	its	address	in	the
field.	It	then	forwards	the	client	request	to	a	DHCP	server,	either	unicast	or
broadcast	on	another	network.

Server	Reply	The	server	sees	a	nonzero	value	in	the	GIAddr	field	and	sends	the
reply	to	the	relay	agent	whose	IP	address	is	in	that	field.	The	relay	agent	then
sends	the	reply	back	to	the	client,	using	either	unicast	or	broadcast	(as	explained
in	the	discussion	of	DHCP	addressing	in	Chapter	61).

One	difference	between	BOOTP	and	DHCP	is	that	certain	communications	from
the	client	to	the	server	are	unicast.	The	most	noticeable	instance	of	this	is	when	a
client	tries	to	renew	its	lease	with	a	specific	DHCP	server.	Since	it	sends	this
request	unicast,	it	can	go	to	a	DHCP	server	on	a	different	network	using
conventional	IP	routing,	and	the	relay	agent	does	not	need	to	be	involved.



DHCP	Autoconfiguration/Automatic	Private	IP
Addressing	(APIPA)
The	IP	address	of	a	TCP/IP	host	is,	in	many	ways,	its	identity.	Every	TCP/IP
network	requires	that	all	hosts	have	unique	addresses	to	facilitate
communication.	When	a	network	is	manually	configured	with	a	distinct	IP
address	for	each	host,	the	hosts	permanently	know	who	they	are.	When	hosts	are
made	DHCP	clients,	they	no	longer	have	a	permanent	identity;	they	rely	on	a
DHCP	server	to	tell	them	who	they	are.

This	dependency	is	not	a	problem	as	long	as	DHCP	is	functioning	normally	and
a	host	can	get	a	lease,	and,	in	fact,	has	many	benefits	that	we	have	explored.
Unfortunately,	a	number	of	circumstances	can	arise	that	result	in	a	client	failing
to	get	a	lease.	The	client	may	not	be	able	to	obtain	a	lease,	reacquire	one	after
reboot,	or	renew	an	existing	lease.	There	are	several	possible	reasons	why	this
might	happen:

The	DHCP	server	may	have	experienced	a	failure	or	may	be	taken	down	for
maintenance.

The	relay	agent	on	the	client's	local	network	may	have	failed.

Another	hardware	malfunction	or	power	failure	may	make	communication
impossible.

The	network	may	have	run	out	of	allocatable	addresses.

Without	a	lease,	the	host	has	no	IP	address,	and	without	an	address,	the	host	is
effectively	dead	in	the	water.	The	base	DHCP	specification	doesn't	really	specify
any	recourse	for	the	host	in	the	event	that	it	cannot	successfully	obtain	a	lease.	It
is	left	up	to	the	implementor	to	decide	what	to	do,	and	when	DHCP	was	first
created,	many	host	implementations	would	simply	display	an	error	message	and
leave	the	host	unusable	until	an	administrator	or	user	took	action.

Clearly,	this	is	far	from	an	ideal	situation.	It	would	be	better	if	we	could	just
have	a	DHCP	client	that	is	unable	to	reach	a	server	automatically	configure
itself.	In	fact,	the	Internet	Engineering	Task	Force	(IETF)	reserved	a	special	IP
address	block	for	this	purpose	(see	Chapter	17).	This	block,	169.254.0.1	through



169.254.255.254	(or	169.254.0.0/16	in	classless	notation)	is	reserved	for
autoconfiguration,	as	mentioned	in	RFC	3330,	"Hosts	obtain	these	addresses	by
auto-configuration,	such	as	when	a	DHCP	server	may	not	be	found."

Strangely,	however,	no	TCP/IP	standard	was	defined	to	specify	how	such
autoconfiguration	works.	To	fill	the	void,	Microsoft	created	an	implementation
that	it	calls	Automatic	Private	IP	Addressing	(APIPA).	Due	to	Microsoft's
market	power,	APIPA	has	been	deployed	on	millions	of	machines,	and	has	thus
become	a	de	facto	standard	in	the	industry.	Many	years	later,	the	IETF	did	define
a	formal	standard	for	this	functionality,	in	RFC	3927,	"Dynamic	Configuration
of	IPv4	Link-Local	Addresses."

APIPA	Operation
APIPA	is	really	so	simple	that	it's	surprising	it	took	so	long	for	someone	to	come
up	with	the	idea.	It	takes	over	at	the	point	where	any	DHCP	lease	process	fails.
Instead	of	just	halting	with	an	error	message,	APIPA	randomly	chooses	an
address	within	the	aforementioned	private	addressing	block.	It	then	performs	a
test	very	similar	to	the	one	in	step	13	in	the	DHCP	allocation	process	(see
Chapter	62):	It	uses	ARP	to	generate	a	request	on	the	local	network	to	see	if	any
other	client	responds	using	the	address	it	has	chosen.	If	there	is	a	reply,	APIPA
tries	another	random	address	and	repeats	the	test.	When	the	APIPA	software
finds	an	address	that	is	not	in	use,	it	is	given	to	the	client	as	a	default	address.
The	client	will	then	use	default	values	for	other	configuration	parameters	that	it
would	normally	receive	from	the	DHCP	server.	This	process	is	illustrated	in
Figure	64-1.

A	client	using	an	autoconfigured	address	will	continue	to	try	to	contact	a	DHCP
server	periodically.	By	default,	this	check	is	performed	every	five	minutes.	If
and	when	it	finds	one,	it	will	obtain	a	lease	and	replace	the	autoconfigured
address	with	the	proper	leased	address.

APIPA	is	ideally	suited	to	small	networks,	where	all	devices	are	on	a	single
physical	link.	Conceivably,	with	20	APIPA-enabled	DHCP	clients	on	a	network
with	a	single	DHCP	server,	you	could	take	the	server	down	for	maintenance	and
still	have	all	the	clients	work	properly,	using	169.254.x.x	addresses.

Bear	in	mind,	however,	that	APIPA	is	not	a	proper	replacement	for	full	DHCP.



Figure	64-1.	DHCP	Automatic	Private	IP	Addressing	(APIPA)	In	this	example,	Client	1	is	trying	to	get
an	IP	address	from	its	DHCP	server,	but	the	server	is	out	of	addresses,	so	it	does	not	respond	to	the
client's	requests.	The	client	is	configured	to	use	APIPA,	so	it	randomly	selects	an	address	from	the

APIPA	address	block.	It	sends	an	ARP	request	on	the	local	network	to	see	if	any	other	device	is	using
that	address.	Usually,	there	will	be	no	conflict,	but	here	Client	2	is	using	the	address,	so	it	responds.
Client	1	chooses	a	different	address,	and	this	time	gets	no	reply.	It	begins	using	that	address,	while

continuing	to	check	regularly	for	a	DHCP	server	to	come	online.

APIPA	Limitations
The	169.254.0.0/16	block	is	a	private	IP	range	and	comes	with	all	the	limitations
of	private	IP	addresses,	including	inability	to	use	these	addresses	on	the	Internet.
Also,	APIPA	cannot	provide	the	other	configuration	parameters	that	a	client	may
need	to	get	from	a	DHCP	server.	Finally,	APIPA	will	not	work	properly	in
conjunction	with	proxy	ARP,	because	the	proxy	will	respond	for	any	of	the
private	addresses,	so	they	will	all	appear	to	be	used.

Since	it	uses	ARP	to	check	for	address	conflicts,	APIPA	is	not	well	suited	for
large	internetworks.	To	use	it	on	an	internetwork	with	multiple	subnets	would



large	internetworks.	To	use	it	on	an	internetwork	with	multiple	subnets	would
require	software	that	allows	each	subnet	to	use	a	different	portion	of	the	full
169.254.0.0/16	blocks,	to	avoid	conflicts.

In	practice,	APIPA	is	a	solution	for	small	networks.	Large	internetworks	deal
with	the	problem	of	not	being	able	to	contact	a	DHCP	server	by	taking	steps	to
ensure	that	a	client	can	always	contact	a	DHCP	server.

TIP

KEY	CONCEPT	An	optional	DHCP	feature	called	Automatic	Private	IP	Addressing	(APIPA)	was
developed	to	allow	clients	to	still	be	able	to	communicate	in	the	event	that	they	are	unable	to	obtain	an	IP
address	from	a	DHCP	server.	When	enabled,	the	client	chooses	a	random	address	from	a	special	reserved
block	of	private	IP	addresses	and	checks	to	make	sure	the	address	is	not	already	in	use	by	another	device.
It	continues	to	check	for	a	DHCP	server	periodically	until	it	is	able	to	find	one.



DHCP	Server	Conflict	Detection
One	of	the	primary	decisions	any	TCP/IP	administrator	using	DHCP	must	make
is	how	many	DHCP	servers	to	deploy.	A	single	server	has	the	advantage	of
simplicity,	but	provides	no	redundancy	in	the	event	of	failure.	It	also	means	that
whenever	the	DHCP	server	is	down,	clients	can't	get	addresses.	For	these
reasons,	most	larger	networks	use	two	or	more	servers.

When	you	have	two	servers	or	more—let's	say	two	for	sake	of	this	discussion—
you	then	have	another	decision	to	make:	How	do	you	divide	the	address	pool
between	the	servers?	As	I	explored	in	detail	in	the	discussion	of	DHCP	address
pools	in	Chapter	61,	there	are	two	options:	give	the	servers	overlapping
addresses	or	making	them	non-overlapping.	Unfortunately,	in	classic	DHCP,
neither	is	really	a	great	solution.	Overlapping	ranges	mean	both	servers	might	try
to	assign	the	same	address,	since	DHCP	includes	no	provision	for
communication	between	servers.	Non-overlapping	ranges	avoid	this	problem,
but	make	only	some	of	the	addresses	available	to	each	server.

It's	strange	that	the	DHCP	standard	didn't	provide	better	support	for	cross-server
coordination,	even	though	there	clearly	was	a	need	for	it.	However,	certain
DHCP	implementations	include	an	optional	feature	to	allow	two	servers	to	have
overlapping	scopes	without	address	clashes	occurring.	This	is	a	feature
commonly	found	on	Microsoft	DHCP	servers	and	may	also	be	present	in	other
implementations.	It	is	called	DHCP	server	conflict	detection.

The	idea	behind	conflict	detection	is	very	simple.	Suppose	a	DHCP	server
receives	a	DHCPDISCOVER	message	from	a	client	and	decides	to	offer	it	a
lease.	Before	sending	the	DHCPOFFER	message,	the	server	conducts	a	probe	by
sending	ICMP	Echo	(ping)	messages	(see	Chapter	33)	out	to	the	address	it	plans
to	offer.	It	then	waits	a	short	period	of	time	to	hear	if	it	receives	any	ICMP	Echo
Reply	messages	back.	If	it	does,	it	knows	the	IP	address	is	in	use	and	chooses	a
different	one.

If	all	DHCP	servers	are	configured	to	do	this	before	offering	an	address,	then	it
is	possible	to	give	all	of	them	the	same,	overlapping	addresses	for	assignment.
They	won't	have	any	way	of	coordinating	with	each	other,	but	as	long	as	they
ask	first	by	doing	an	ICMP	check,	there	won't	be	any	problems.	This	provides	an
administrator	with	the	advantages	of	overlapping	address	ranges—simplicity	and



administrator	with	the	advantages	of	overlapping	address	ranges—simplicity	and
access	to	all	addresses	by	all	servers—without	risk	of	address	conflicts.	The	only
small	drawback	is	a	little	extra	network	traffic	to	perform	the	check,	and
possibly	a	few	milliseconds	of	server	CPU	time	if	a	new	address	needs	to	be
chosen.

If	you	were	paying	attention	when	you	read	about	the	DHCP	allocation	process
in	Chapter	62,	you	may	have	noticed	that	what	I	am	describing	here	sounds
familiar.	In	fact,	it's	true	that	this	feature	isn't	anything	new.	The	use	of	ICMP	to
check	an	address	before	offering	it	is	actually	mentioned	in	RFC	2131	as	part	of
the	standard	DHCP	allocation	process,	and	you	can	find	it	mentioned	as	step	5	in
the	allocation	process	description.

So	why	was	conflict	detection	required	to	be	an	extra	feature?	The	reason	is	that
the	use	of	ICMP	wasn't	mandatory	because	the	standard	says	servers	should	do
it,	not	that	they	must	do	it.	This	choice	was	made	to	provide	flexibility	in
implementing	DHCP,	but	that	flexibility	comes	at	a	cost.	So,	if	you	want	to	use
this	feature,	you	need	to	look	for	support	for	it	in	your	server	software.

TIP

KEY	CONCEPT	Some	DHCP	implementations	include	a	feature	called	server	conflict	detection.	When
this	feature	is	activated,	it	causes	each	server	to	always	check	to	make	sure	an	address	is	not	in	use
before	granting	it	to	a	client.	When	conflict	detection	is	used	by	all	DHCP	servers	on	a	network,	the
servers	can	be	given	overlapping	scopes,	so	each	can	assign	any	of	the	organization's	IP	addresses,	while
at	the	same	time	not	needing	to	be	concerned	about	two	clients	being	assigned	the	same	address	by
different	servers.



DHCP	and	BOOTP	Interoperability
I've	talked	extensively	about	how	DHCP	was	designed	based	on	BOOTP	and
how	they	use	the	same	basic	communication	method	and	message	format.	This
was	done	for	several	reasons,	one	of	the	most	important	of	which	was	ensuring
interoperability	of	the	two	protocols.	Given	this,	you	might	expect	that	we	could
simply	say	that	BOOTP	and	DHCP	are	compatible	with	each	other,	and	that's
that.

It	is	true	that	DHCP	was	intended	to	be	compatible	with	BOOTP.	RFC	2131	lists
the	following	as	one	of	DHCP's	design	goals:	"DHCP	must	provide	service	to
existing	BOOTP	clients."	This	seems	pretty	clear.	The	reuse	of	the	BOOTP
message	format	is	one	of	the	keys	to	DHCP	and	BOOTP	compatibility.	DHCP
functionality	is	implemented	not	through	new	fields,	but	rather	through	DHCP-
specific	options,	such	as	the	DHCP	Message	Type	option	that	specifies	the	all-
important	type	of	DHCP	messages.	DHCP	devices	can	look	for	this	extra
information,	while	BOOTP	devices	can	ignore	it.

However,	while	DHCP	and	BOOTP	are	similar,	they	are	not	the	same,	and	so
there	are	some	interoperability	concerns	that	crop	up	when	they	are	used
together.	The	DHCP	message	format	is	structurally	the	same	as	the	BOOTP
format,	but	the	interpretation	of	certain	fields	is	slightly	different.	BOOTP
clients	don't	understand	DHCP,	so	when	BOOTP	and	DHCP	are	used	together,
the	DHCP	client	or	server	must	sometimes	behave	slightly	differently	to
compensate.	Further	complicating	matters	are	the	facts	that	not	all
implementations	of	DHCP	and	BOOTP	are	necessarily	exactly	the	same	and	that
certain	specifications	in	the	DHCP	standard	are	not	mandatory.

For	these	reasons,	we	cannot	just	assume	that	DHCP	and	BOOTP	will	work
together.	To	address	some	of	these	issues,	the	IETF	published	RFC	1534,
"Interoperation	Between	DHCP	and	BOOTP,"	at	the	same	time	that	DHCP	was
originally	created.	This	document	looks	at	how	the	protocols	work	together,
focusing	on	the	two	distinct	client/server	interoperating	combinations:	a	BOOTP
client	connecting	to	a	DHCP	server,	and	a	DHCP	client	connecting	to	a	BOOTP
server.	Let's	consider	each	case.



BOOTP	Clients	Connecting	to	a	DHCP	Server
As	indicated	by	the	preceding	quote	from	RFC	2131,	DHCP	was	specifically
intended	to	allow	a	DHCP	server	to	handle	requests	from	BOOTP	clients.	The
protocol	itself	is	set	up	to	enable	this,	but	it	does	require	that	the	DHCP	server	be
given	certain	intelligence	to	know	how	to	deal	with	BOOTP	clients.

One	of	the	most	important	issues	is	that	BOOTP	clients	will	follow	the	BOOTP
configuration	process	and	not	the	DHCP	leasing	processes.	The	DHCP	server
must	use	BOOTP	messages	with	the	BOOTP	meanings	for	fields	when	dealing
with	BOOTP	clients.	A	server	determines	that	a	client	is	using	BOOTP	instead
of	DHCP	by	looking	for	the	presence	of	the	DHCP	Message	Type	option,	which
must	be	present	in	all	DHCP	messages	but	is	not	used	for	BOOTP.

If	a	DHCP	server	detects	that	it	is	dealing	with	a	BOOTP	client,	it	can	respond
with	configuration	information	for	the	client.	The	server	can	use	either	manual	or
automatic	allocation	for	the	client.	Automatic	allocation	means	the	server
chooses	an	address	from	its	pool	of	unused	addresses,	but	assigns	it	permanently.
BOOTP	clients	are	not	capable	of	dynamic	allocation,	since	BOOTP	is	static	in
nature.

A	DHCP	server	may	include	BOOTP	vendor	information	fields	in	its	response	to
a	BOOTP	client,	including	ones	defined	since	BOOTP	was	created.	However,	it
obviously	must	not	send	any	DHCP-specific	options.

DHCP	Clients	Connecting	to	a	BOOTP	Server
A	DHCP	client	can	obtain	configuration	information	from	a	BOOTP	server,
because	the	server	will	respond	to	the	client's	initial	DHCPDISCOVER	message
as	if	it	were	a	BOOTP	BOOTREQUEST	message.	The	DHCP	client	can	tell	that
a	BOOTP	reply	has	been	received	because	there	will	be	no	DHCP	Message	Type
option.

A	response	from	a	BOOTP	server	should	be	treated	as	an	infinite	lease,	since
again,	that's	all	that	BOOTP	supports.	Note	that	if	a	DHCP	client	receives	a
response	from	both	a	BOOTP	server	and	a	DHCP	server,	it	should	use	the
DHCP	response	and	not	the	BOOTP	response	(even	if	this	means	it	gets	a
shorter	lease).



DHCP	Security	Issues
DHCP	was	designed	in	the	early	1990s,	when	the	number	of	organizations	on
the	Internet	was	relatively	small.	Furthermore,	it	was	based	on	BOOTP,	which
was	created	in	the	1980s,	when	the	Internet	as	we	know	it	today	barely	even
existed.	In	those	days,	Internet	security	wasn't	a	big	issue,	because	it	was	mostly
a	small	group	of	research	and	educational	organizations	using	TCP/IP	on	the
Internet.	As	a	result,	DHCP,	like	many	protocols	of	that	era,	doesn't	do	much	to
address	security	concerns.

Actually,	this	is	a	bit	understated.	Not	only	does	DHCP	run	over	the	Internet
Protocol	(IP)	and	the	User	Datagram	Protocol	(UDP),	which	are	inherently
insecure,	but	the	DHCP	protocol	itself	has	no	security	provisions	whatsoever.
This	is	a	fairly	serious	issue	in	modern	networks,	because	of	the	sheer	power	of
DHCP,	which	deals	with	critical	configuration	information.

DHCP	Security	Concerns
There	are	two	different	classes	of	potential	security	problems	related	to	DHCP:

Unauthorized	DHCP	Servers	If	a	malicious	person	plants	a	rogue	DHCP
server,	it	is	possible	that	this	device	could	respond	to	client	requests	and	supply
them	with	spurious	configuration	information.	This	could	be	used	to	make
clients	unusable	on	the	network,	or	worse,	set	them	up	for	further	abuse	later	on.
For	example,	a	hacker	could	exploit	a	bogus	DHCP	server	to	direct	a	DHCP
client	to	use	a	router	under	the	hacker's	control,	rather	than	the	one	the	client	is
supposed	to	use.

Unauthorized	DHCP	Clients	A	client	could	be	set	up	that	masquerades	as	a
legitimate	DHCP	client	and	thereby	obtain	configuration	information	intended
for	that	client.	This	information	could	then	be	used	to	compromise	the	network
later	on.	Alternatively,	a	malicious	person	could	use	software	to	generate	a	lot	of
bogus	DHCP	client	requests	to	use	up	all	the	IP	addresses	in	a	DHCP	server's
pool.	More	simply,	this	could	be	used	by	a	thief	to	steal	an	IP	address	from	an
organization	for	his	own	use.

These	are	obviously	serious	concerns.	The	normal	recommended	solutions	to



these	risks	generally	involve	providing	security	at	lower	layers.	For	example,
one	of	the	most	important	techniques	for	preventing	unauthorized	servers	and
clients	is	careful	control	over	physical	access	to	the	network:	layer	1	security.
Security	techniques	implemented	at	layer	2	may	also	be	of	use—for	example,	in
the	case	of	wireless	LANs.	Since	DHCP	runs	over	UDP	and	IP,	one	could	use
IPSec	at	layer	3	to	provide	authentication.

DHCP	Authentication
To	try	to	address	some	of	the	more	specific	security	concerns	within	DHCP
itself,	in	June	2001,	the	IETF	published	RFC	3118,	"Authentication	for	DHCP
Messages."	This	standard	describes	an	enhancement	that	replaces	the	normal
DHCP	messages	with	authenticated	ones.	Clients	and	servers	check	the
authentication	information	and	reject	messages	that	come	from	invalid	sources.
The	technology	involves	the	use	of	a	new	DHCP	option	type,	the	Authentication
option,	and	operating	changes	to	several	of	the	leasing	processes	to	use	this
option.

Unfortunately,	2001	was	pretty	late	in	the	DHCP	game,	and	there	are	millions	of
DHCP	clients	and	servers	around	that	don't	support	this	new	standard.	Both	the
client	and	server	must	be	programmed	to	use	authentication	for	this	method	to
have	value.	A	DHCP	server	that	supports	authentication	could	use	it	for	clients
that	support	the	feature	and	skip	it	for	those	that	do	not.	However,	the	fact	that
this	option	is	not	universal	means	that	it	is	not	widely	deployed,	and	most
networks	must	rely	on	more	conventional	security	measures.



DHCP	for	IP	Version	6	(DHCPv6)
DHCP	is	currently	the	standard	host	configuration	protocol	for	the	TCP/IP
protocol	suite.	TCP/IP	is	built	on	version	4	of	IP	(IPv4).	However,	development
work	has	been	under	way	since	the	early	1990s	on	a	successor	to	IPv4:	version	6
of	the	Internet	Protocol	(IPv6;	see	Part	II-4	for	more	information).	This	new	IP
standard	will	be	the	future	of	TCP/IP.

While	most	of	the	changes	that	IPv6	brings	impact	technologies	at	the	lower
layers	of	the	TCP/IP	architectural	model,	the	significance	of	the	modifications
means	that	many	other	TCP/IP	protocols	are	also	affected.	This	is	particularly
true	of	protocols	that	work	with	addresses	or	configuration	information,
including	DHCP.	For	this	reason,	a	new	version	of	DHCP	is	required	for	IPv6.
Development	has	been	under	way	for	quite	some	time	on	DHCP	for	IPv6,	also
sometimes	called	DHCPv6.	At	the	time	of	writing,	DHCPv6	has	not	yet	been
formally	published—it	is	still	an	Internet	draft	under	discussion.

NOTE

In	discussions	purely	oriented	around	IPv6,	DHCPv6	is	sometimes	just	called	DHCP,	and	the	original
DHCP	is	called	DHCPv4.

Two	Methods	for	Autoconfiguration	in	IPv6
One	of	the	many	enhancements	introduced	in	IPv6	is	an	overall	strategy	for
easier	administration	of	IP	devices,	including	host	configuration.	There	are	two
basic	methods	defined	for	autoconfiguration	of	IPv6	hosts:

Stateless	Autoconfiguration	A	method	defined	to	allow	a	host	to	configure
itself	without	help	from	any	other	device.

Stateful	Autoconfiguration	A	technique	where	configuration	information	is
provided	to	a	host	by	a	server.

Which	of	these	methods	is	used	depends	on	the	characteristics	of	the	network.
Stateless	autoconfiguration	is	described	in	RFC	2462	and	discussed	in
Chapter	24.	Stateful	autoconfiguration	for	IPv6	is	provided	by	DHCPv6.	As	with
regular	DHCP,	DHCPv6	may	be	used	to	obtain	an	IP	address	and	other



configuration	parameters,	or	just	to	get	configuration	parameters	when	the	client
already	has	an	IP	address.

DHCPv6	Operation	Overview
The	operation	of	DHCPv6	is	similar	to	that	of	DHCPv4,	but	the	protocol	itself
has	been	completely	rewritten.	It	is	not	based	on	the	older	DHCP	or	on	BOOTP,
except	in	conceptual	terms.	It	still	uses	UDP,	but	it	uses	new	port	numbers,	a
new	message	format,	and	restructured	options.	All	of	this	means	that	the	new
protocol	is	not	strictly	compatible	with	DHCPv4	or	BOOTP,	though	I	believe
work	is	under	way	on	a	method	to	allow	DHCPv6	servers	to	work	with	IPv4
devices.

TIP

KEY	CONCEPT	Since	DHCP	works	with	IP	addresses	and	other	configuration	parameters,	the	change
from	IPv4	to	IPv6	requires	a	new	version	of	DHCP	commonly	called	DHCPv6.	This	new	DHCP
represents	a	significant	change	from	the	original	DHCP	and	is	still	under	development.	DHCPv6	is	used
for	IPv6	stateful	autoconfiguration.	The	alternative	is	stateless	autoconfiguration,	a	feature	of	IPv6	that
allows	a	client	to	determine	its	IP	address	without	need	for	a	server.

DHCPv6	is	also	oriented	around	IPv6	methods	of	addressing,	especially	the	use
of	link-local	scoped	multicast	addresses	(see	Chapter	25).	This	allows	efficient
communication	even	before	a	client	has	been	assigned	an	IP	address.	Once	a
client	has	an	address	and	knows	the	identity	of	a	server,	it	may	communicate
with	the	server	directly	using	unicast	addressing.

DHCPv6	Message	Exchanges
There	are	two	basic	client/server	message	exchanges	that	are	used	in	DHCPv6:
the	four-message	exchange	and	the	two-message	exchange.	The	former	is	used
when	a	client	needs	to	obtain	an	IPv6	address	and	other	parameters.	This	process
is	similar	to	the	regular	DHCP	address	allocation	process.	Highly	simplified,	it
involves	these	steps:

1.	 The	client	sends	a	multicast	Solicit	message	to	find	a	DHCPv6	server	and
ask	for	a	lease.

2.	 Any	server	that	can	fulfill	the	client's	request	responds	to	it	with	an



Advertise	message.

3.	 The	client	chooses	one	of	the	servers	and	sends	a	Request	message	to	it,
asking	to	confirm	the	offered	address	and	other	parameters.

4.	 The	server	responds	with	a	Reply	message	to	finalize	the	process.

There	is	also	a	shorter	variation	of	the	four-message	process	above,	where	a
client	sends	a	Solicit	message	and	indicates	that	a	server	should	respond	back
immediately	with	a	Reply	message.

If	the	client	already	has	an	IP	address,	either	assigned	manually	or	obtained	in
some	other	way,	a	simpler	process	can	be	undertaken,	similar	to	how	in	regular
DHCP	the	DHCPINFORM	message	is	used:

1.	 The	client	multicasts	an	Information-Request	message.

2.	 A	server	with	configuration	information	for	the	client	sends	back	a	Reply
message.

3.	 As	in	regular	DHCP,	a	DHCPv6	client	renews	its	lease	after	a	period	of
time	by	sending	a	Renew	message.	DHCPv6	also	supports	relay	agent
functionality,	as	in	DHCPv4.



Part	III-4.	TCP/IP	NETWORK	MANAGEMENT
FRAMEWORK	AND	PROTOCOLS
Chapter	65

Chapter	66

Chapter	67

Chapter	68

Chapter	69

Modern	networks	and	internetworks	are	larger,	faster,	and	more	capable	than
their	predecessors	of	years	gone	by.	As	we	expand,	speed	up,	and	enhance	our
networks,	they	become	more	complex,	and	as	a	result,	more	difficult	to	manage.
Years	ago,	an	administrator	could	get	by	with	very	simple	tools	to	keep	a
network	running,	but	today,	more	sophisticated	network	management
technologies	are	required	to	match	the	sophistication	of	our	networks.

Some	of	the	most	important	tools	in	the	network	manager's	toolbox	are	now	in
the	form	of	software,	not	hardware.	To	manage	a	sprawling,	heterogeneous,	and
complex	internetwork,	we	can	employ	software	applications	to	gather
information	and	control	devices	using	the	internetwork	itself.	TCP/IP,	being	the
most	popular	internetworking	suite,	has	such	software	tools.	One	of	the	most
important	is	a	pair	of	protocols	that	have	been	implemented	as	part	of	an	overall
method	of	network	management	called	the	TCP/IP	Internet	Standard
Management	Framework.

This	part	describes	the	TCP/IP	Internet	Standard	Management	Framework,
looking	at	each	of	its	architectural	and	protocol	components	and	how	they
interoperate.	The	first	chapter	provides	an	overview	of	the	network	management
framework	itself	and	serves	as	an	introduction	to	the	chapters	that	follow.	The
second	chapter	discusses	the	way	that	network	management	information	is
structured	and	arranged	into	information	stores	called	management	information
bases	(MIBs).	The	third	chapter	describes	the	concepts	behind	and	operation	of
the	key	protocol	in	TCP/IP	network	management:	the	Simple	Network
Management	Protocol	(SNMP).	The	fourth	chapter	provides	details	on	SNMP's



messaging	and	message	formats.	Finally,	the	fifth	chapter	takes	a	brief	look	at
Remote	Network	Monitoring	(RMON),	an	enhancement	of	SNMP—sometimes
called	a	protocol,	even	though	it	really	isn't—that	provides	administrators	with
greater	management	and	monitoring	abilities	on	a	TCP/IP	internetwork.

Note	that	while	you	may	be	tempted	to	jump	straight	to	the	chapter	on	SNMP,
what	is	written	there	will	make	a	lot	more	sense	if	you	read	the	chapters	of	this
part	in	order.



Chapter	65.	TCP/IP	INTERNET
STANDARD	MANAGEMENT
FRAMEWORK	OVERVIEW

TCP/IP	network	management	functions	are	most	commonly	associated	with	the
key	protocol	responsible	for	implementing	those	functions:	the	Simple	Network
Management	Protocol	(SNMP).	Many	people	have	heard	of	SNMP,	and	it	is
common	for	SNMP	to	be	considered	"the"	way	that	network	management	is
performed	in	TCP/IP.	This	is	true	to	an	extent,	but	is	really	an
oversimplification.	The	actual	SNMP	protocol	is	only	one	part	of	a	higher-level
network	management	strategy	called	the	Internet	Standard	Management
Framework.	In	order	to	really	understand	how	SNMP	works,	you	need	to	first
have	some	background	on	the	way	this	network	management	is	structured	as	a
whole.

In	this	chapter,	I	provide	an	introduction	to	TCP/IP	network	management	by
describing	the	concepts	and	components	of	the	TCP/IP	Internet	Standard
Management	Framework.	I	begin	with	an	overview	and	history	of	the
framework,	and	discuss	how	it	is	related	to	SNMP.	I	describe	the	TCP/IP
network	management	model	and	the	key	components	that	compose	a	network
management	system.	I	provide	a	summary	of	the	architecture	of	the	Internet
Standard	Management	Framework.	I	then	describe	the	three	main	versions	of	the
Framework	and	SNMP	and	how	they	compare.	I	conclude	with	a	discussion	of
the	many	standards	used	to	describe	this	technology.

Overview	and	History	of	the	TCP/IP	Internet
Standard	Management	Framework	and	Simple



Network	Management	Protocol	(SNMP)
An	adage	from	the	world	of	professional	sports	says	that	a	baseball	umpire	is
doing	a	good	job	when	you	forget	that	he	is	there.	In	many	ways,	the	same	could
be	said	of	a	network	administrator.	The	administrator	is	doing	a	good	job	when
the	network	is	running	so	smoothly	and	efficiently	that	users	forget	that	the
administrator	exists.	Because,	as	the	administrator	knows	all	too	well,	the	second
there	is	a	problem,	the	users	will	all	remember	very	quickly	that	he	or	she	is
there.

A	primary	job	of	a	network	administrator	is	to	keep	tabs	on	the	network	and
ensure	that	it	is	operating	normally.	Information	about	the	hardware	and
software	on	the	network	is	a	key	to	performing	this	task	properly.

When	networks	were	small,	an	administrator	could	stay	informed	about	the
status	of	hardware	and	software	using	simple	means,	such	as	physically	walking
over	to	a	computer	and	using	it,	or	using	a	low-level	link	layer	management
protocol.	This	is	simply	not	possible	with	modern	internetworks,	which	are
large,	geographically	diverse,	and	often	consist	of	many	different	lower-layer
technologies.	Usually,	the	only	thing	all	the	devices	on	the	network	have	in
common	is	an	implementation	of	a	particular	internetworking	protocol	suite,
such	as	TCP/IP.	This	makes	the	internetwork	itself	a	logical	way	to	facilitate	the
communication	of	network	management	information	between	devices	and	a
network	administrator.

Early	Development	of	SNMP
Many	people	recognized	during	the	early	days	of	the	Internet	that	some	sort	of
network	management	technology	would	be	needed	for	TCP/IP.	Unfortunately,	at
first	there	was	no	single	standard.	In	the	1980s,	several	different	technologies
were	developed	by	different	working	groups.	There	were	three	main	contestants:
the	High-level	Entity	Management	System	(HEMS)/High-level	Entity
Management	Protocol	(HEMP)	as	defined	by	RFCs	1021	through	1024;	the
Simple	Gateway	Monitoring	Protocol	(SGMP),	defined	by	RFC	1028;	and	the
Common	Management	Information	Protocol	(CMIP),	which	is	actually	part	of
the	OSI	protocol	suite.



The	Internet	Engineering	Task	Force	(IETF)	recognized	the	importance	of
having	a	unifying	management	standard	for	TCP/IP,	and	in	1988,	published	RFC
1052,	"IAB	Recommendations	for	the	Development	of	Internet	Network
Management	Standards."	This	memo	is	not	a	standard,	but	more	a	statement	of
intention	and	documentation	of	a	meeting	held	on	this	subject.	The	conclusion	of
RFC	1052	was	that	SGMP	be	used	as	the	basis	of	a	new	Internet	standard	to	be
called	the	Simple	Network	Management	Protocol	(SNMP).	This	development
was	to	be	carried	out	by	the	SNMP	Working	Group.

The	Two	Meanings	of	SNMP
The	rationale	of	the	middle	two	words	in	the	name	Simple	Network
Management	Protocol	is	obvious,	but	the	other	two	words	are	slightly	more
problematic.	The	word	Protocol	implies	that	SNMP	is	just	a	TCP/IP
communication	protocol,	like	other	protocols,	such	as	the	Dynamic	Host
Configuration	Protocol	(DHCP)	and	the	File	Transfer	Protocol	(FTP).
Unfortunately,	this	is	both	true	and	untrue:	the	name	is	ambiguous.

At	a	lower	level,	SNMP	does	indeed	refer	specifically	to	the	actual	protocol	that
carries	network	management	information	between	devices.	This	is	what	most
people	think	of	when	they	talk	about	SNMP.	However,	as	defined	by	the	SNMP
working	group,	the	TCP/IP	network	management	solution	as	a	whole	consists	of
a	number	of	different	elements	arranged	in	an	architecture.	This	architecture
originally	had	no	specific	name,	but	is	now	called	the	Internet	Standard
Management	Framework.	Oddly,	this	higher-level	framework	is	not	abbreviated
ISMF,	but	is	also	called	SNMP,	which	means	that	context	is	important	in
understanding	that	term.

NOTE

To	avoid	confusion,	I	will	often	use	the	phrases	SNMP	Framework	and	SNMP	protocol	to	differentiate
these	two	uses	of	the	term	SNMP.

Design	Goals	of	SNMP
The	word	Simple	in	the	protocol's	name	is	another	problem.	Even	in	its	first
iteration,	it	was	only	somewhat	simple.	The	most	current	version	of	SNMP	is



fairly	complicated	indeed,	with	many	different	standards	defining	the	SNMP
Framework,	the	SNMP	protocol	itself,	and	a	number	of	supporting	elements.

So	why	is	it	called	Simple?	Well,	as	they	say,	everything	is	relative.	SNMP	is
simple	when	compared	to	other	protocols	that	are	even	more	complex.	Some	of
this	can	be	seen	by	looking	at	the	basic	goals	of	the	Internet	Standard
Management	Framework	and	the	SNMP	protocol	as	a	whole:

SNMP	defines	a	universal	way	that	management	information	can	be	easily
defined	for	any	object,	and	then	exchanged	between	that	object	and	a	device
designed	to	facilitate	network	management.

SNMP	separates	the	functions	of	defining	and	communicating	management
information	from	the	applications	that	are	used	for	network	management.

The	actual	SNMP	protocol	is	fairly	simple,	consisting	of	only	a	few	easy-to-
understand	protocol	operations.

The	implementation	of	SNMP	is	relatively	simple	for	the	designers	and
manufacturers	of	products.

TIP

KEY	CONCEPT	The	Simple	Network	Management	Protocol	(SNMP)	defines	a	set	of	technologies	that
allow	network	administrators	to	remotely	monitor	and	manage	TCP/IP	network	devices.	The	term	SNMP
refers	both	to	a	specific	communication	protocol	(sometimes	called	the	SNMP	protocol)	and	an	overall
framework	for	Internet	management	(the	SNMP	Framework).

Since	SNMP	is	a	TCP/IP	application	layer	protocol,	it	can	theoretically	run	over
a	variety	of	transport	mechanisms.	It	is	most	commonly	implemented	over	the
Internet	Protocol	(IP),	but	the	most	recent	versions	also	define	transport
mappings	that	can	allow	SNMP	information	to	be	carried	over	other
internetworking	technologies.

Further	Development	of	SNMP	and	the	Problem
of	SNMP	Variations
The	first	Internet	Standard	Management	Framework	developed	(in	1988)	is	now
called	SNMP	version	1	(SNMPv1).	This	initial	version	of	SNMP	achieved
widespread	acceptance,	and	it	is	still	probably	the	most	common	version	of



SNMP.

Much	of	the	history	of	SNMP	since	that	time	has	been	a	rather	confusing
standards	nightmare.	SNMPv1	had	a	number	of	weaknesses,	particularly	in	the
area	of	security.	For	this	reason,	shortly	after	SNMPv1	was	done,	work	began	on
a	new	version	of	SNMP.	Unfortunately,	this	effort	became	a	quagmire,	with
many	competing	variations	of	SNMPv2	being	created.	After	many	years	of
confusion,	none	of	the	SNMPv2	variants	achieved	significant	success.

Recently,	a	third	version	of	the	SNMP	Framework	and	protocol	has	been
published,	which	adds	new	features	and	reunites	SNMP	under	a	single,	universal
protocol	again.	The	discussions	of	SNMP	versions	and	SNMP	standards	later	in
this	chapter	further	explore	the	history	of	SNMP	since	1988.	They	can	be
considered	a	continuation	of	this	historical	overview,	as	they	help	clarify	the
very	confusing	story	behind	SNMP	versions	over	the	last	decade	and	a	half.

TIP

RELATED	INFORMATION	More	background	on	the	SNMP	protocol	proper	can	be	found	in	the
overview	of	the	actual	protocol	itself,	in	Chapter	67.



TCP/IP	SNMP	Operational	Model,	Components,
and	Terminology
So,	it	seems	the	Simple	Network	Management	Protocol	isn't	quite	so	simple	after
all.	There	are	many	versions	and	standards	and	uses	of	SNMP,	and	so	a	lot	to
learn.	I	think	a	good	place	to	start	in	understanding	what	SNMP	does	is	to	look
at	its	model	of	operation.	Then	we	can	examine	the	components	that	compose	a
TCP/IP	network	management	system	and	define	the	terminology	used	to
describe	them.

SNMP	Device	Types
The	overall	idea	behind	SNMP	is	to	allow	the	information	needed	for	network
management	to	be	exchanged	using	TCP/IP.	More	specifically,	the	protocol
allows	a	network	administrator	to	make	use	of	a	special	network	device	that
interacts	with	other	network	devices	to	collect	information	from	them	and
modify	how	they	operate.	In	the	simplest	sense,	two	different	basic	types	of
hardware	devices	are	defined:

Managed	Nodes	Regular	nodes	on	a	network	that	have	been	equipped	with
software	to	allow	them	to	be	managed	using	SNMP.	These	are,	generally
speaking,	conventional	TCP/IP	devices.	They	are	also	sometimes	called
managed	devices.

Network	Management	Station	(NMS)	A	designated	network	device	that	runs
special	software	to	allow	it	to	manage	the	regular	managed	nodes	mentioned	just
above.	One	or	more	NMSs	must	be	present	on	the	network,	as	these	devices	are
the	ones	that	really	run	SNMP.

SNMP	Entities
Each	device	that	participates	in	network	management	using	SNMP	runs	a	piece
of	software,	generically	called	an	SNMP	entity.	The	SNMP	entity	is	responsible
for	implementing	all	of	the	various	functions	of	the	SNMP	protocol.	Each	entity
consists	of	two	primary	software	components.	Which	components	make	up	the
SNMP	entity	on	a	device	depends	on	whether	the	device	is	a	managed	node	or
an	NMS.



Managed	Node	Entities
The	SNMP	entity	on	a	managed	node	consists	of	the	following	software
elements	and	constructs:

SNMP	Agent	A	software	program	that	implements	the	SNMP	protocol	and
allows	a	managed	node	to	provide	information	to	an	NMS	and	accept
instructions	from	it.

SNMP	Management	Information	Base	(MIB)	An	MIB	defines	the	types	of
information	stored	about	the	node	that	can	be	collected	and	used	to	control	the
managed	node.	Information	exchanged	using	SNMP	takes	the	form	of	objects
from	the	MIB.

Network	Management	Station	Entities
The	SNMP	entity	on	an	NMS	consists	of	the	following:

SNMP	Manager	A	software	program	that	implements	the	SNMP	protocol,
allowing	the	NMS	to	collect	information	from	managed	nodes	and	to	send
instructions	to	them.

SNMP	Applications	One	or	more	software	applications	that	allow	a	human
network	administrator	to	use	SNMP	to	manage	a	network.

SNMP	Operational	Model	Summary
So,	to	integrate	and	reiterate	all	of	this,	let's	summarize.	SNMP	consists	of	a
small	number	of	network	management	stations	(NMSs)	that	interact	with	regular
TCP/IP	devices	that	are	called	managed	nodes.	The	SNMP	manager	on	the	NMS
and	the	SNMP	agents	on	the	managed	nodes	implement	the	SNMP	protocol	and
allow	network	management	information	to	be	exchanged.	SNMP	applications
run	on	the	NMS	and	provide	the	interface	to	the	human	administrator,	and	allow
information	to	be	collected	from	the	management	information	bases	(MIBs)	at
each	SNMP	agent.	Figure	65-1	illustrates	the	SNMP	operational	model.

An	SNMP	managed	node	can	be	pretty	much	any	network	device	that	can
communicate	using	TCP/IP,	as	long	as	it	is	programmed	with	the	proper	SNMP
entity	software.	SNMP	is	designed	to	allow	regular	hosts	to	be	managed,	as	well
as	intelligent	network	interconnection	devices,	such	as	routers,	bridges,	hubs,
and	switches.	Other	devices—printers,	scanners,	consumer	electronic	devices,



and	switches.	Other	devices—printers,	scanners,	consumer	electronic	devices,
specialized	medical	devices,	and	so	on—can	also	be	managed,	as	long	as	they
connect	to	a	TCP/IP	internetwork.

On	a	larger	network,	an	NMS	may	be	a	separate,	high-powered	TCP/IP
computer	dedicated	to	network	management.	However,	it	is	really	software	that
makes	a	device	into	an	NMS,	so	the	NMS	may	not	be	a	separate	hardware
device.	It	may	act	as	an	NMS	and	also	perform	other	functions	on	the	network.

Figure	65-1.	SNMP	operational	model	This	diagram	shows	a	simplified	implementation	of	SNMP,	with
one	network	management	station	(NMS)	used	to	maintain	three	managed	nodes.	Each	device	has	an

SNMP	entity,	and	they	communicate	using	SNMP	messages.	The	SNMP	entity	of	the	NMS	consists	of
the	SNMP	manager	and	one	or	more	SNMP	applications.	The	managed	nodes	each	run	an	SNMP	agent

and	maintain	a	management	information	base	(MIB).

TIP

KEY	CONCEPT	SNMP	allows	a	network	administrator	using	a	network	management	station	(NMS)	to
control	a	set	of	managed	nodes.	Each	device	incorporates	an	SNMP	entity	that	implements	the
technology.	In	an	NMS,	the	entity	consists	of	an	SNMP	manager	module	and	a	set	of	SNMP
applications.	In	a	managed	node,	the	entity	consists	of	an	SNMP	agent	and	management	information



base	(MIB).



TCP/IP	Internet	Standard	Management
Framework	Architecture	and	Protocol
Components
The	Internet	Standard	Management	Framework	encompasses	all	of	the
technologies	that	compose	the	TCP/IP	network	management	solution.	The
SNMP	Framework	consists	of	a	number	of	architectural	components	that	define
how	management	information	is	structured,	how	it	is	stored,	and	how	it	is
exchanged	using	the	SNMP	protocol.	The	Framework	also	describes	how	the
different	components	fit	together,	how	SNMP	is	to	be	implemented	in	network
devices,	and	how	the	devices	interact.

SNMP	Framework	Components
As	we	will	explore	in	more	detail	in	the	next	chapter,	the	Internet	Standard
Management	Framework	is	entirely	information-oriented.	It	includes	four
primary	components	(see	Figure	65-2):

Structure	of	Management	Information	(SMI)	To	ensure	interoperability	of
various	devices,	we	want	to	have	a	consistent	way	of	describing	the
characteristics	of	devices	to	be	managed	using	SNMP.	In	computer	science,	a
data	description	language	(DDL)	is	the	tool	for	this	job.	The	SMI	is	a	standard
that	defines	the	structure,	syntax,	and	characteristics	of	management	information
in	SNMP.

Management	Information	Bases	(MIBs)	Each	managed	device	contains	a	set
of	variables	that	is	used	to	manage	it.	These	variables	represent	information
about	the	operation	of	the	device	that	is	sent	to	an	NMS,	and/or	parameters	sent
to	the	managed	device	to	control	it.	The	MIB	is	the	full	set	of	these	variables	that
describe	the	management	characteristics	of	a	particular	type	of	device.	Each
variable	in	a	MIB	is	called	a	MIB	object,	and	it	is	defined	using	the	SMI	data
description	language.	A	device	may	have	many	objects,	corresponding	to	the
different	hardware	and	software	elements	it	contains.

NOTE

Initially,	a	single	document	defined	the	MIB	for	SNMP,	but	this	model	was	inflexible.	To	allow	new



MIB	objects	to	be	more	easily	defined,	groups	of	related	MIB	objects	are	now	defined	in	separate	RFC
standards	called	MIB	modules.	More	than	100	such	MIB	modules	have	been	defined	so	far.

Simple	Network	Management	Protocol	(SNMP)	This	is	the	actual	SNMP
protocol	itself.	It	defines	how	information	is	exchanged	between	SNMP	agents
and	NMSs.	The	SNMP	protocol	operations	define	the	various	SNMP	messages
and	how	they	are	created	and	used.	SNMP	transport	mappings	describe	how
SNMP	can	be	used	over	various	underlying	internetworks,	such	as	TCP/IP,	IPX,
and	others.

Security	and	Administration	To	the	previous	three	main	architectural
components,	the	SNMP	Framework	adds	a	number	of	supporting	elements.
These	provide	enhancements	to	the	operation	of	the	SNMP	protocol	for	security
and	address	issues	related	to	SNMP	implementation,	version	transition,	and
other	administrative	issues.

Figure	65-2.	Components	of	the	TCP/IP	Internet	Standard	Management	Framework

TIP

KEY	CONCEPT	The	three	main	components	of	the	Internet	Standard	Management	Framework	(SNMP
Framework)	are	the	Structure	of	Management	Information	(SMI),	management	information	bases
(MIBs),	and	the	SNMP	protocol	itself.	These	are	supported	by	SNMP	security	and	administration
elements.

SNMP	Framework	Architecture
The	creators	of	SNMP	specifically	designed	the	Framework	to	be	modular,
because	when	SNMP	was	originally	created,	it	was	seen	as	only	a	temporary



solution	until	a	transition	could	be	made	to	another	network	management
protocol	from	the	OSI	protocol	suite.	The	modular	architecture	separated
definitional,	data,	and	functional	(protocol)	elements,	to	allow	the	SNMP
protocol	itself	to	be	replaced	without	changing	how	network	management
information	was	defined	and	described.

This	transition	to	the	OSI	protocol	never	occurred,	but	the	architecture	has	still
proven	valuable	in	defining	the	entire	scope	of	SNMP	and	in	making	its
implementation	much	simpler.	Each	of	the	major	components	discussed	in	the
previous	section—the	SMI,	MIBs,	and	SNMP	itself—are	described	in	different
standards.	The	modularity	of	the	SNMP	Framework	has	also	allowed	changes	to
be	made	to	these	components	relatively	independently	of	each	other,	making	the
transition	between	SNMP	versions	easier	than	it	would	have	been	if	one	huge
document	defined	everything.



TCP/IP	Internet	Standard	Management
Framework	and	SNMP	Versions	(SNMPv1,
SNMPv2	Variants,	and	SNMPv3)
In	Chapter	3,	I	explained	the	differences	between	proprietary,	de	facto,	and	open
standards,	and	described	the	many	benefits	of	open	standards.	History	is	replete
with	examples	of	technologies	that	have	succeeded	because	they	used	an	open
standard	when	a	competing	standard	was	proprietary.

TCP/IP	and	the	Internet	are	often	held	up	as	a	model	for	proper	open-standards
development.	Thousands	of	TCP/IP	standards	have	been	developed	and
published	using	the	well-known	Request	for	Comments	(RFC)	standardization
process.	The	result	has	been	the	most	successful	set	of	internetworking	protocols
in	computing	history,	accepted	and	used	worldwide.

Nobody	is	perfect,	however,	and	no	process	is	perfect	either.	Some	problems
occurred	in	the	introduction	of	SNMP	version	2,	leading	to	a	virtual	breakdown
in	the	normally	smooth	protocol	standardization	method,	and	a	proliferation	of
incompatible	variants	that	we	aren't	used	to	seeing	in	TCP/IP.	The	story	behind
this	is	a	continuation	of	the	general	SNMP	overview	and	history	from	earlier	in
this	chapter,	and	it	explains	the	many	SNMP	standard	names	and	numbers,	so
you	can	make	sense	of	them.	At	the	same	time,	the	discussion	serves	as	a	vivid
reminder	of	how	important	proper	standard	development	is,	and	what	the
consequences	are	when	there	isn't	universal	agreement	on	how	a	standard	should
evolve.

SNMPv1
The	first	version	of	SNMP	was	developed	in	early	1988	and	published	in	the
form	of	three	RFC	standards	in	August	1988.	This	first	version	is	now	known	as
SNMP	version	1	or	SNMPv1.	The	three	SNMPv1	standards	provided	the	initial
description	of	the	three	main	Internet	Standard	Management	Framework
components:	the	SMI,	MIB,	and	SNMP	protocol	itself.	However,	the	term
Internet	Standard	Management	Framework	was	not	actually	used	at	that	time.

SNMPv1	was	generally	accepted	and	widely	deployed	in	many	networks.
SNMPv1	got	the	job	done	and	became	the	standard	for	TCP/IP	network



SNMPv1	got	the	job	done	and	became	the	standard	for	TCP/IP	network
management.	It	is	still	widely	used	today.	It	is	the	Old	Faithful	of	SNMP
versions.	Slight	revisions	were	made	to	the	initial	standards,	and	more	and	more
MIB	modules	were	defined	over	time,	but	the	technology	remained	the	same	for
a	number	of	years.

As	with	any	technology,	users	of	SNMPv1	identified	weaknesses	in	it	and
opportunities	for	improvement.	One	of	the	areas	in	which	SNMPv1	was	most
criticized	was	the	area	of	security.	SNMPv1	used	only	a	"trivial"	(as	RFC	3410
puts	it)	authentication	scheme,	employing	a	password-like	construct	called	a
community	string.

The	issue	of	security	turned	out	to	be	the	bone	of	contention	that	eventually	led
to	serious	problems	in	the	development	of	SNMP.	Some	people	felt	that
community	strings	were	sufficient	security,	but	many	others	felt	it	was	important
that	better	security	be	put	into	SNMP.	There	were	many	different	ways	proposed
to	add	security	to	SNMP,	but	no	universal	agreement	on	how	to	do	it.	The	points
raised	about	the	security	weaknesses	in	the	original	SNMPv1	had	some	validity,
as	I	explore	in	the	discussion	of	SNMP	protocol	operations	in	Chapter	67.

SNMPsec
The	first	attempt	to	add	security	came	in	the	form	of	three	standards	published	in
July	1992	that	defined	a	new	security	mechanism	using	logical	identifiers	called
parties.	This	is	sometimes	called	SNMP	Security	or	SNMPsec.	This	method	was
more	secure	than	the	original	SNMPv1,	but	SNMPsec	was	never	widely
accepted,	and	it	is	now	considered	historical.

SNMPv2
The	idea	of	party-based	security	never	went	away,	however.	It	was	used	as	the
basis	of	the	definition	of	the	first	full	revision	of	SNMP,	when	SNMP	version	2
(SNMPv2)	was	published	in	RFCs	1441	through	1452	in	April	1993.	This	new
version	incorporated	the	new	security	model,	as	well	as	making	changes	to	the
actual	SNMP	protocol	operations,	changes	to	the	SMI	standard	(defining	version
2	of	SMI,	SMIv2),	and	formalizing	the	concept	of	the	Internet	Standard
Management	Framework.

Unfortunately,	this	new	standard	also	was	never	universally	accepted.	Some
people	thought	the	whole	new	version	was	a	great	advance,	but	others	took	issue



people	thought	the	whole	new	version	was	a	great	advance,	but	others	took	issue
with	the	party-based	security,	claiming	it	was	too	complex.	A	great	deal	of
debate	and	discussion	took	place	over	the	next	couple	of	years,	as	an	attempt	was
made	to	get	everyone	on	board	with	the	new	version.

SNMPv2	Variants
Acceptance	of	SNMPv2	never	happened.	Instead,	different	splinter	groups	broke
off	and	began	work	on	variants	of	SNMPv2.	To	prevent	confusion,	the	original
SNMPv2	became	known	as	either	SNMPv2	classic	(reminiscent	of	the	name	a
particular	soft	drink)	or	SNMPv2p,	with	the	p	referring	to	party-based	security.
Things	got	very	interesting	(and	confusing)	when	the	following	were	proposed
and/or	developed:

SNMPv1.5	You	can	tell	immediately	that	an	idea	is	probably	going	to	be	a
problem	when	it	proposes	a	version	number	lower	than	a	number	already
standardized.	SNMPv1.5	was	an	attempt	to	retain	the	uncontroversial	elements
in	SNMPv2p—the	enhancements	to	the	SNMP	protocol	and	SMI—while	going
back	to	community-based	security	as	in	SNMPv1.	It	never	became	a	standard
itself,	but	became	the	basis	of	the	next	variant.

Community-Based	SNMPv2	(SNMPv2c)	This	is	SNMPv2p	modified	to	use
community	strings	instead	of	party-based	security;	in	essence,	the	same	idea	as
SNMPv1.5,	but	with	a	more	official-sounding	name	and	a	few	changes.
Interestingly,	the	standard	that	defines	this,	RFC	1901,	still	has	an	experimental
status,	despite	the	fact	that	SNMPv2c	actually	achieved	some	degree	of
commercial	success,	where	the	standard	SNMPv2p	did	not.	SNMPv2c	was
defined	by	standards	RFC	1902	through	1908,	which	incorporate	other	changes,
including	a	new	version	of	SMI	(SMIv2).

User-Based	SNMPv2	(SNMPv2u)	This	is	an	alternative	security	method	for
SNMPv2c,	which	is	based	on	users	rather	than	community	strings.	It	is
considered	simpler	than	party-based	but	more	secure	than	community-string
security.	It	is	defined	by	RFC	1909	and	RFC	1910.	It,	too,	is	formally	considered
experimental.

SNMPv2*	As	if	all	of	the	other	variants	were	not	enough,	a	well-known	vendor
decided	to	define	another	variant	called	SNMPv2*	that	combined	elements	of



SNMPv2p	and	SNMPv2u.	This	was	never	formally	standardized.	(Yes,	that's	an
asterisk	in	the	name.	No,	there's	no	footnote	at	the	bottom	of	the	page,	so	don't
bother	looking	for	one.	Yes,	putting	an	asterisk	in	a	name	is	extremely
confusing.	No,	I	don't	know	how	it	is	that	marketing	people	get	paid	good	money
to	come	up	with	names	like	this.)

Now,	imagine	that	you	were	a	network	administrator	in	the	mid-1990s	and	were
faced	with	SNMPv2p,	SNMPv2c,	SNMPv2u,	and	SNMPv2*.	Which	one	would
you	choose?	Well,	if	you	are	like	most	people,	you	would	choose	none	of	the
above,	saying,	"I	think	I'll	stick	with	SNMPv1	until	these	version	2	folks	get
their	act	together!"	And	that's	basically	what	happened.	Some	proponents	of
these	variations	promoted	them,	but	there	was	never	any	agreement,	and	the
result	was	that	the	success	of	all	of	the	various	and	sundry	SNMPv2s	was
limited.	As	I	said,	this	is	a	classic	illustration	of	how	important	universal
standardization	is.

SNMPv3
I	would	imagine	that,	at	some	point,	everyone	realized	that	the	situation	was	a
mess	and	decided	enough	is	enough.	In	1996,	work	began	on	a	new	approach	to
resolve	the	outstanding	issues	and	return	universality	to	SNMP.	In	1998,	SNMP
version	3	(SNMPv3)	was	developed,	which	includes	additional	enhancements	to
SNMP	and	finally	gets	all	the	players	back	on	the	same	team.

SNMPv3	is	the	most	current	version	of	SNMP	and	is	still	being	actively	revised.
One	of	the	important	changes	in	SNMPv3	is	a	more	formalized	way	of	handing
different	security	approaches	to	SNMP—obviously,	a	lesson	learned	from	the
SNMPv2	experience.

SNMPv3	uses	SNMPv2	protocol	operations	and	its	protocol	data	unit	(PDU)
message	format,	and	the	SMIv2	standard	from	SNMPv2	as	well.	SNMPv3
allows	a	number	of	different	security	methods	to	be	incorporated	into	its
architecture,	and	includes	standards	describing	user-based	security	as	defined	in
SNMPv2u	and	SNMPv2*,	as	well	as	a	new	view-based	access	control	model.	It
also	includes	additional	tools	to	aid	in	the	administration	of	SNMP.



TCP/IP	Internet	Standard	Management
Framework	and	SNMP	Standards
You've	now	seen	that	there	are	three	different	versions	of	the	Internet	Standard
Management	Framework.	Some	of	these	versions	have	different	variants.	Each
version	or	variant	of	the	Framework	includes	multiple	modular	components.
Each	component	has	one	or	more	documents	that	define	it.	Some	of	these	have
multiple	revisions.	Add	to	that	dozens	of	individual	MIBs	defined	for	SNMP	and
other	support	documents,	and	what	do	you	have?	A	boatload	of	TCP/IP
standards,	that's	what.	There	are	probably	more	RFCs	defining	parts	of	SNMP
than	any	other	single	TCP/IP	protocol	or	technology.

It	is	specifically	because	there	are	so	many	versions	and	components	and
documents	associated	with	SNMP	that	I	feel	it	is	important	to	keep	all	the
standards	straight.	To	that	end,	Tables	Table	65-1	through	Table	65-6	show	the
major	SNMP	standards	for	each	of	the	versions	and	variants	of	the	SNMP
Framework:	SNMPv1,	SNMPsec,	SNMPv2p,	SNMPv2c,	SNMPv2u,	and
SNMPv3.	(SNMPv2*	was	not	standardized	using	the	regular	RFC	process.)
Each	individual	RFC	defines	one	component	of	one	version	of	the	Framework.

The	usual	way	that	RFCs	work	is	that	when	new	versions	of	a	standard	are
released	that	are	direct	replacements	for	older	ones,	the	older	ones	are	obsoleted
by	the	new	ones.	With	SNMP,	due	to	the	many	versions	and	the	controversy
over	the	variants,	this	is	a	bit	unclear.	For	example,	the	standards	defining
SNMPv2p	are	not	considered	by	the	IETF	to	obsolete	the	standards	for
SNMPv1,	but	the	IETF	says	the	standards	for	SNMPv2c	and	SNMPv2u	do
obsolete	those	of	SNMPv2p.

To	keep	all	of	this	distinct,	I	decided	to	show	the	standards	for	each	version	or
variant	separately.	I	put	the	RFC	numbers	for	obsolete	RFCs	only	where	those
RFCs	are	for	the	same	SNMP	version	or	variant.	For	example,	RFC	3410
obsoletes	2570	because	they	both	deal	with	SNMPv3	and	3410	is	a	direct
replacement	for	2570.	Also,	there	are	a	few	cases	where	the	name	of	a	standard
changed	slightly	between	RFC	numbers;	I	have	shown	the	current	name.	A	full,
hyperlinked	list	of	RFCs	can	be	found	at	http://www.rfc-editor.org/rfc-
index.html.

http://www.rfc-editor.org/rfc-index.html


Table	65-1.	SNMP	Version	1	(SNMPv1)	Standards

Obsolete
RFCs

Most
Recent
RFC

Date	of	Most
Recent	RFC

Standard	Name

1065 1155 May	1990 Structure	and	Identification	of	Management
Information	for	TCP/IP-Based	Internets

1066 1156 May	1990 Management	Information	Base	for	Network
Management	of	TCP/IP-Based	Internets

1067,
1098

1157 May	1990 Simple	Network	Management	Protocol	(SNMP)

1158 1213 March	1991 Management	Information	Base	for	Network
Management	of	TCP/IP-Based	Internets:	MIB-II

Table	65-2.	SNMP	Security	(SNMPsec)	Standards

Obsolete
RFCs

Most
Recent
RFC

Date	of	Most
Recent	RFC

Standard	Name

— 1351 July	1992 SNMP	Administrative	Model

— 1352 July	1992 SNMP	Security	Protocols

— 1353 July	1992 Definitions	of	Managed	Objects	for
Administration	of	SNMP	Parties

Table	65-3.	Party-Based	SNMP	Version	2	(SNMPv2p)	Standards

Obsolete
RFCs

Most
Recent
RFC

Date	of
Most
Recent	RFC

Standard	Name

— 1441 April	1993 Introduction	to	Version	2	of	the	Internet-Standard
Network	Management	Framework

— 1442 April	1993 Structure	of	Management	Information	for	Version	2	of
the	Simple	Network	Management	Protocol	(SNMPv2)

— 1443 April	1993 Textual	Conventions	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)



Network	Management	Protocol	(SNMPv2)

— 1444 April	1993 Conformance	Statements	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1445 April	1993 Administrative	Model	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1446 April	1993 Security	Protocols	for	Version	2	of	the	Simple	Network
Management	Protocol	(SNMPv2)

— 1447 April	1993 Party	MIB	for	Version	2	of	the	Simple	Network
Management	Protocol	(SNMPv2)

— 1448 April	1993 Protocol	Operations	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1449 April	1993 Transport	Mappings	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1450 April	1993 Management	Information	Base	for	Version	2	of	the
Simple	Network	Management	Protocol	(SNMPv2)

— 1451 April	1993 Manager-to-Manager	Management	Information	Base

— 1452 April	1993 Coexistence	Between	Version	1	and	Version	2	of	the
Internet-Standard	Network	Management	Framework

Table	65-4.	Community-Based	SNMP	Version	2	(SNMPv2c)	Standards

Obsolete
RFCs

Most
Recent
RFC

Date	of
Most
Recent	RFC

Standard	Name

— 1901 January	1996 Introduction	to	Community-Based	SNMPv2

— 1902 January	1996 Structure	of	Management	Information	for	Version	2	of
the	Simple	Network	Management	Protocol	(SNMPv2)

— 1903 January	1996 Textual	Conventions	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1904 January	1996 Conformance	Statements	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1905 January	1996 Protocol	Operations	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)



— 1906 January	1996 Transport	Mappings	for	Version	2	of	the	Simple
Network	Management	Protocol	(SNMPv2)

— 1907 January	1996 Management	Information	Base	for	Version	2	of	the
Simple	Network	Management	Protocol	(SNMPv2)

— 1908 January	1996 Coexistence	between	Version	1	and	Version	2	of	the
Internet-Standard	Network	Management	Framework

Table	65-5.	User-Based	SNMP	Version	2	(SNMPv2u)	Standards

Obsolete
RFCs

Most	Recent
RFC

Date	of	Most
Recent	RFC

Standard	Name

— 1909 February	1996 An	Administrative	Infrastructure	for
SNMPv2

— 1910 February	1996 User-Based	Security	Model	for
SNMPv2

Table	65-6.	SNMP	Version	3	(SNMPv3)	Standards

Obsolete
RFCs

Most
Recent
RFC

Date	of
Most
Recent
RFC

Standard	Name

— 2576 March	2000 Coexistence	between	Version	1,	Version	2,	and	Version
3	of	the	Internet-Standard	Network	Management
Framework

— 2578 April	1999 Structure	of	Management	Information	Version	2
(SMIv2)

— 2579 April	1999 Textual	Conventions	for	SMIv2

— 2580 April	1999 Conformance	Statements	for	SMIv2

2570 3410 December
2002

Introduction	and	Applicability	Statements	for	Internet-
Standard	Management	Framework

2261,
2271,
2571

3411 December
2002

An	Architecture	for	Describing	Simple	Network
Management	Protocol	(SNMP)	Management
Frameworks



2262,
2272,
2572

3412 December
2002

Message	Processing	and	Dispatching	for	the	Simple
Network	Management	Protocol	(SNMP)

2263,
2273,
2573

3413 December
2002

Simple	Network	Management	Protocol	(SNMP)
Applications

2264,
2274,
2574

3414 December
2002

User-Based	Security	Model	(USM)	for	Version	3	of	the
Simple	Network	Management	Protocol	(SNMPv3)

2265,
2275,
2575

3415 December
2002

View-Based	Access	Control	Model	(VACM)	for	the
Simple	Network	Management	Protocol	(SNMP)

— 3416 December
2002

Version	2	of	the	Protocol	Operations	for	the	Simple
Network	Management	Protocol	(SNMP)

— 3417 December
2002

Transport	Mappings	for	the	Simple	Network
Management	Protocol	(SNMP)

— 3418 December
2002

Management	Information	Base	(MIB)	for	the	Simple
Network	Management	Protocol	(SNMP)

In	addition	to	all	of	the	standards	listed	in	these	tables,	there	are	dozens	of
supplemental	RFCs	that	describe	MIB	modules	and	also	clarify	various	fine
points	of	operation	related	to	SNMP.	You	can	find	all	the	MIBs	in	an	online	list
of	RFCs	by	searching	for	"MIB"	or	"SNMP."



Chapter	66.	TCP/IP	STRUCTURE
OF	MANAGEMENT
INFORMATION	(SMI)	AND
MANAGEMENT	INFORMATION
BASES	(MIBS)

The	Internet	Standard	Management	Framework	defines	three	major	components
that	describe	how	devices	can	be	managed	on	a	TCP/IP	internetwork.	One	of
these,	the	actual	Simple	Network	Management	Protocol	(SNMP)	is	relatively
well	known,	but	is	only	part	of	the	overall	picture.	SNMP	describes	how
information	is	exchanged	between	SNMP	entities,	but	two	other	components	are
equally	important,	because	they	describe	the	information	itself.

In	this	chapter,	I	describe	these	two	important	supporting	elements	of	the	TCP/IP
Internet	Standard	Management	Framework:	the	Management	Information	Base
(MIB)	standard	that	describes	types	of	information	that	SNMP	works	with,	and
the	Structure	of	Management	Information	(SMI)	standard	that	specifies	how
MIB	information	is	defined.	Understanding	these	two	parts	of	the	SNMP
Framework	is	an	important	initial	step	before	we	examine	the	actual	SNMP
protocol	itself.

I	begin	with	an	overview	description	of	the	SMI	data	description	language	and
how	MIBs	work.	I	discuss	the	MIB	object	name	hierarchy	and	the	notation	used
to	refer	to	names.	I	also	describe	how	MIB	objects	work,	discussing	the	different
object	types	and	MIB	object	groups.	I	describe	MIB	concepts	common	to	all	of
the	versions	of	SNMP,	and	discuss	both	of	the	specific	versions	of	SMI	(SMIv1



and	SMIv2)	used	in	those	SNMP	versions.

TIP

BACKGROUND	INFORMATION	If	you	have	not	yet	already	read	the	preceding	chapter	describing
the	SNMP	Internet	Standard	Management	Framework,	you	should	do	so	before	proceeding	here.

TCP/IP	SMI	and	MIBs	Overview
The	key	to	really	understanding	TCP/IP	network	management	is	to	comprehend
the	information-oriented	nature	of	the	entire	Internet	Standard	Management
Framework	(SNMP	Framework).	To	see	what	I	mean	by	this,	let's	step	back	for
a	moment	and	consider	in	general	terms	the	problem	of	network	management,
and	more	specifically,	the	problem	of	managing	devices	on	a	network.

SNMP's	Information-Oriented	Design
A	network	administrator	needs	to	perform	two	basic	types	of	actions:	gather	data
about	devices	to	learn	how	they	are	functioning	and	give	commands	to	devices
to	change	how	they	are	functioning.	In	the	simplest	terms,	the	first	category	can
be	considered	as	a	read	operation,	and	the	second	is	comparable	to	a	write
operation.

A	classic	way	of	implementing	this	functionality	is	to	define	a	communication
protocol.	Most	such	protocols	are	command-oriented—they	consist	of	a	specific
set	of	commands	to	perform	the	read	and	write	operations.	For	example,	a
network	management	protocol	might	have	a	read	command	such	as	"report	on
number	of	hours	device	has	been	in	use,"	and	a	write	command	might	be
something	like	"put	this	device	into	test	mode."	The	network	manager	would
control	the	device	by	giving	the	appropriate	commands.

A	command-oriented	management	protocol	has	the	advantage	of	simplicity,
since	it's	clear	what	the	commands	are	for	and	how	they	are	to	be	used.	It	can	be
reasonably	well	suited	for	use	in	certain	environments,	but	it	doesn't	work	well
on	a	large,	heterogeneous	TCP/IP	internetwork.	The	main	reason	for	this	is	that
command-orientation	inextricably	ties	the	protocol	to	the	devices	being
managed.	Consider	the	following	problems:



Every	type	of	device	might	require	a	distinct	set	of	commands.	For	example,
the	commands	given	to	a	router	might	need	to	be	different	than	those	given	to
a	host.	This	would	lead	either	to	a	proliferation	of	commands	in	the	protocol
or	to	inflexibility	in	allowing	proper	management	of	different	device	types.

Every	time	a	company	created	a	new	type	of	device,	or	made	a	unique
version	of	a	type	of	device,	the	network	management	protocol	would	need	to
be	changed.

Whenever	the	operation	of	a	kind	of	device	changed,	due	perhaps	to	a	change
in	another	protocol,	the	management	protocol	would	need	to	be	updated.

The	protocol	itself	could	not	be	easily	changed	without	affecting	a	lot	of
hardware.

The	solution	to	the	problems	of	command-oriented	management	protocols	is	to
use	an	information-oriented	model.	Instead	of	defining	specific	commands	that
interrogate	or	control	devices,	the	devices	are	defined	in	terms	of	units	of
information	that	are	to	be	exchanged	between	the	devices	and	a	management
station.

Instead	of	read	commands	and	write	commands,	we	have	variables	that	can	be
read	or	written.	Take	the	two	examples	mentioned	earlier.	Instead	of	a	command
like	"report	on	a	number	of	hours	device	has	been	in	use,"	the	device	keeps	a
variable	called	"number	of	hours	in	use,"	and	the	network	management	station
can	read	this	as	one	of	many	variables,	with	no	need	for	a	specific	protocol
command.	Instead	of	a	write	command	called	"put	this	device	into	test	mode,"
the	device	has	a	variable	called	"current	mode."	The	network	manager	can
change	the	mode	of	the	device	to	test	mode	by	changing	the	value	of	the
variable.

This	difference	may	seem	subtle,	but	it	underlies	every	aspect	of	how	SNMP
works.	I	believe	part	of	why	the	SNMP	Framework	is	hard	to	understand	is
because	insufficient	emphasis	is	placed	on	looking	at	things	in	the	"SNMP	way,"
which	means	thinking	about	information	objects	and	not	commands.

TIP

KEY	CONCEPT	Unlike	most	protocols,	which	are	command-oriented,	SNMP	is	information-oriented.
SNMP	operations	are	implemented	using	objects	called	variables	that	are	maintained	in	managed



devices.	Rather	than	issuing	commands,	a	network	management	station	checks	the	status	of	a	device	by
reading	variables,	and	controls	the	operation	of	the	device	by	changing	(writing)	variables.

MIB	and	MIB	Objects
Given	this	backdrop,	we	can	look	at	the	SNMP	Framework	in	a	new	light.	The
actual	SNMP	protocol	itself,	which	we'll	examine	in	the	next	couple	of	chapters,
has	only	a	few,	generic	commands	to	accomplish	read	and	write	tasks.	It	deals
with	only	the	methods	by	which	network	management	information	is	exchanged
between	SNMP	agents	and	SNMP	network	management	stations	(NMSs),	which
were	described	in	the	previous	chapter.	The	network	management	information	is
really	the	heart	of	TCP/IP	network	management.

So,	instead	of	SNMP	being	defined	in	terms	of	commands	used	to	control
particular	devices,	it	is	defined	in	terms	of	management	information	variables,
generally	called	objects.	Each	object	describes	a	particular	characteristic	of	a
device.	Some	objects	are	fairly	generic	and	are	meaningful	for	any	device	on	a
TCP/IP	network;	for	example,	an	object	describing	something	related	to	the
Internet	Protocol	(IP)	itself,	such	as	the	device's	IP	address.	Other	objects	might
be	particular	to	a	specific	type	of	device;	for	example,	a	router	will	have	objects
that	a	regular	host's	Ethernet	network	interface	card	would	not.

A	collection	of	objects	used	in	SNMP	is	called	a	management	information	base,
or	MIB.	(In	fact,	SNMP	objects	are	often	called	MIB	objects.)	The	first	version
of	SNMP,	SNMPv1,	had	a	single	standard	that	defined	the	entire	MIB	for
SNMP.	Newer	versions	provide	more	flexibility	by	using	different	MIB	modules
that	define	sets	of	variables	particular	to	the	hardware	or	software	used	by	a
device.

TIP

KEY	CONCEPT	The	management	data	variables	in	a	managed	device	are	maintained	in	a	logical
collection	called	a	management	information	base	(MIB).	The	objects	in	the	MIB	are	often	called	MIB
objects,	and	they	are	typically	collected	into	sets	called	MIB	modules.

Defining	objects	using	modules	allows	for	significant	flexibility	in	defining	the
variables	that	allow	management	of	different	types	of	devices.	A	device	can
incorporate	all	the	MIB	modules	appropriate	to	the	hardware	and	software	it
uses.	For	example,	if	you	had	a	device	using	Ethernet,	it	would	incorporate



uses.	For	example,	if	you	had	a	device	using	Ethernet,	it	would	incorporate
variables	from	the	Ethernet	MIB.	A	device	using	Token	Ring	would	use	the
Token	Ring	MIB.	Both	devices	would	also	use	the	common	SNMP	MIB	that	is
used	by	all	TCP/IP	devices.	Other	modules	might	also	be	included	as	needed.

NOTE

Due	to	its	name,	the	MIB	is	often	called	a	database.	This	is,	strictly	speaking,	inaccurate.	The	MIB	is	a
description	of	objects.	The	actual	MIB	in	a	device	may	be	implemented	as	a	software	database,	but	that
is	not	required.

Defining	MIB	Objects:	SMI
The	use	of	MIB	objects	solves	the	problem	of	the	network	management	protocol
being	tied	to	the	network	management	information.	However,	we	must	be	very
particular	about	how	we	define	these	objects.	Again,	the	reason	is	the	wide
variety	of	devices	that	TCP/IP	allows	to	be	connected	together.	Each	device	may
represent	information	in	a	different	way.	For	all	of	them	to	communicate	with
each	other,	we	need	to	ensure	that	management	information	is	represented	in	a
consistent	manner.

The	part	of	the	SNMP	Framework	that	ensures	the	universality	of	MIB	objects	is
the	Structure	of	Management	Information	(SMI)	standard.	SMI	defines	the	rules
for	how	MIB	objects	and	MIB	modules	are	constructed.	In	SMI,	MIB	objects	are
described	using	a	precise	set	of	definitions	based	on	a	data	description	language
called	the	ISO	Abstract	Syntax	Notation	1	(ASN.1)	standard.

In	essence,	we	really	have	three	levels	of	abstraction	in	SNMP.	The	actual
SNMP	protocol	moves	values	that	represent	the	state	of	management	devices.
The	MIB	defines	what	these	variables	are.	And	the	SMI	defines	how	the
variables	in	the	MIB	are	themselves	defined.

There	are	two	main	SMI	standards.	The	original,	SMIv1,	was	part	of	the	first
SNMP	Framework,	SNMPv1,	defined	in	RFC	1155.	It	sets	out	the	basic	rules	for
MIBs	and	MIB	variables.	The	second,	SMIv2,	was	defined	as	part	of	SNMPv2p
in	RFC	1442	and	further	updated	in	RFC	2578,	part	of	SNMPv3.	It	is	similar	to
the	earlier	version,	but	defines	more	object	types,	as	well	as	the	structure	of	MIB
modules.

These	SMI	standards	are	responsible	for	defining	the	following	important



These	SMI	standards	are	responsible	for	defining	the	following	important
information	elements	in	SNMP:

The	general	characteristics	associated	with	all	MIB	objects—the	standard
way	by	which	all	MIB	objects	are	described

The	different	types	of	MIB	objects	that	can	be	created,	such	as	integers,
strings,	and	more	complex	data	types

A	hierarchical	structure	for	naming	MIB	objects,	so	they	can	be	addressed	in
a	consistent	manner	without	names	overlapping

The	information	associated	with	each	MIB	module

TIP

KEY	CONCEPT	The	Structure	of	Management	Information	(SMI)	standard	is	responsible	for	defining
the	rules	for	how	MIB	objects	are	structured,	described,	and	organized.	SMI	allows	dissimilar	devices	to
communicate	by	ensuring	that	they	use	a	universal	data	representation	for	all	management	information.



TCP/IP	MIB	Objects,	Object	Characteristics,	and
Object	Types
As	explained	in	the	previous	sections,	the	SNMP	Framework	is	designed	to
facilitate	the	exchange	of	management	information.	The	MIB	defines	a	device's
management	information	and	contains	a	number	of	variables	called	MIB	objects,
also	called	managed	objects.	These	objects	are	defined	according	to	the	rules	set
out	in	the	SMI	standard.

The	best	place	to	begin	looking	at	MIB	objects	is	by	examining	the	SMI	rules
that	define	them.	As	I	mentioned	earlier	in	this	chapter,	two	different	versions	of
SMI	have	been	created:	SMIv1	as	part	of	the	original	SNMP,	and	SMIv2	as	part
of	SNMPv2	and	SNMPv3.	The	two	are	similar	in	terms	of	how	MIB	objects	are
described,	but	SMIv2	allows	more	information	to	be	associated	with	each	object.

MIB	Object	Characteristics
Just	as	a	typical	protocol	uses	a	field	format	for	specifying	the	content	of
messages	sent	between	devices	using	the	protocol,	SMI	uses	a	format	that
specifies	the	fundamental	characteristics	of	each	MIB	object.	The	most	basic	of
these	are	five	mandatory	characteristics	defined	in	SMIv1.	These	are	also	used	in
SMIv2,	but	a	couple	of	names	were	changed,	and	the	possible	values	for	some	of
the	fields	were	modified	as	well.	An	MIB	object	may	have	the	following
characteristics	(see	Figure	66-1):

Object	Name	Each	object	has	a	name	that	serves	to	uniquely	identify	it.
Actually,	that's	not	entirely	true.	Each	object	has	two	names:	a	textual	name
called	an	object	descriptor	and	a	numeric	object	identifier,	which	indicates	the
object's	place	in	the	MIB	object	name	hierarchy.	We'll	explore	these	names	and
how	they	are	used	shortly.

Syntax	Defines	the	object's	data	type	and	the	structure	that	describes	it.	This
attribute	is	very	important	because	it	defines	the	data	type	of	information	that	the
object	contains.	There	are	two	basic	categories	of	data	types	allowed:

Regular	data	types	are	single	pieces	of	information,	of	the	type	we	are	used	to
dealing	with	on	a	regular	basis,	such	as	integers	and	strings.	These	are	called



base	types	in	SMIv2.	SMIv1	differentiates	between	primitive	types	like
integers	defined	in	ASN.1,	and	defined	types	that	are	special	forms	of
primitive	types	that	are	still	single	pieces	of	information	but	with	certain
special	meaning	attached	to	how	they	are	used.	SMIv2	doesn't	use	those	two
terms.

Tabular	data	types	are	collections	of	multiple	data	elements.	They	may	take
the	form	of	a	list	of	base	types	or	a	table	of	base	types.	For	example,	a	table
of	integers	could	be	constructed	to	represent	a	set	of	values.	In	SMIv1,	these
are	called	constructor	types;	in	SMIv2	they	are	conceptual	tables.	They	can
be	accessed	using	special	SNMP	mechanisms	designed	for	reading	tables.
See	the	topic	on	SNMP	table	traversal	for	more	on	tables.

Access	(Max-Access	in	SMIv2)	This	field	defines	the	ways	that	an	SNMP
application	will	normally	use	the	object.	In	SMIv1,	there	are	four	different
possible	values:	read-only,	read-write,	write-only,	and	not-accessible.	In	SMIv2
there	are	five	values,	which	are	described	as	a	hierarchy	of	sorts.	SMIv2	calls
this	characteristic	Max-Access	(maximum	access)	to	make	it	explicit	that	higher
access	levels	include	the	lower	levels	as	well.	For	example,	an	object	with	read-
create	access	can	also	be	used	in	any	of	the	modes	below	it,	such	as	read-write,
but	not	vice	versa.	The	following	are	the	five	SMIv2	access	values,	in	decreasing
order	of	access	(note	that	write-only	has	been	removed	in	SMIv2):

read-create	(object	can	be	read,	written,	or	created)

read-write	(object	can	be	read	or	written)

read-only	(object	can	only	be	read)

accessible-for-notify	(object	can	be	used	only	using	SNMP	notification	or
SNMP	traps)

not-accessible	(used	for	special	purposes)

Status	Indicates	the	currency	of	the	object	definition.	In	SMIv1	there	are	three
values:	mandatory,	optional,	and	obsolete.	In	SMIv2,	the	first	two	are	combined
into	simply	current,	meaning	a	current	definition.	The	value	obsolete	is	retained,
and	deprecated	is	added,	meaning	the	definition	is	obsolete	but	maintained	for
compatibility.



Definition	(Description	in	SMIv2)	A	textual	description	of	the	object.

Optional	Characteristics	SMIv2	adds	the	following	optional	characteristics	that
may	appear	in	the	definition	of	an	object:

Units	is	a	textual	description	of	the	units	associated	with	the	object.

Reference	is	a	text	cross-reference	to	a	related	document	or	other	information
relevant	to	the	object.

Index	is	a	value	used	to	define	objects	that	are	actually	more	complex	rows	of
other	objects.

Augments	is	an	alternative	to	the	Index	field.

DefVal	defines	an	acceptable	default	value	for	the	object.

TIP

KEY	CONCEPT	Each	management	information	variable,	called	an	MIB	object,	has	associated	with	it
five	key	attributes:	its	name,	syntax,	maximum	access,	status,	and	definition.	It	may	also	have	a	number
of	optional	characteristics.

Figure	66-1.	SNMP	management	information	base	(MIB)	This	diagram	shows	an	SNMP	MIB
containing	N	MIB	objects.	Each	object	has	five	mandatory	characteristics	and	a	variable	number	of

optional	characteristics.



SMI	Data	Types
Table	66-1	shows	the	regular	data	types	supported	for	objects	in	both	SMIv1	and
SMIv2.	(The	names	with	32	in	them	are	the	ones	used	in	SMIv2;	they	were
changed	to	make	the	type's	bit	size	explicit.)	The	first	five	entries	in	the	table	are
primitive	types;	the	rest	are	defined	types,	using	the	SMIv1	terminology.

Table	66-1.	SNMP	SMI	Regular	Data	Types

Data	Type	Code Description In
SMIv1?

In
SMIv2?

Integer/Integer32 A	32-bit	signed	integer	in	two's	complement	notation,
capable	of	holding	a	value	from	-2,147,483,648	to
+2,147,483,647.	Can	also	be	used	to	represent	an
enumerated	type;	for	example,	where	1	represents	a
particular	constant,	2	represents	a	different	one,	and
so	on.

Yes Yes

Octet	String A	variable-length	string	of	binary	or	text	data. Yes Yes

Null Nothing. Yes No

Bits An	enumeration	of	named	bits.	Used	to	allow	a	set	of
bit	flags	to	be	treated	as	a	single	data	type.

No Yes

Unsigned A	32-bit	unsigned	integer,	from	0	to	4,294,967,295. No Yes

Network
Address/IpAddress

An	IP	address,	encoded	as	a	4-byte	octet	string. Yes Yes

Counter/Counter32 A	32-bit	unsigned	integer	that	begins	at	0	and
increases	up	to	4,294,967,295,	then	wraps	back	to	0.

Yes Yes

Gauge/Gauge32 A	32-bit	unsigned	integer	that	may	have	a	value	from
0	to	4,294,967,295	and	may	increase	or	decrease,	like
a	gauge.	A	minimum	and	maximum	value	are
associated	with	the	gauge,	indicating	its	normal
range.

Yes Yes

TimeTicks A	32-bit	unsigned	integer	that	indicates	the	number	of
hundredths	of	seconds	since	some	arbitrary	start	date.
Used	for	timestamping	and	to	compute	elapsed	time.

Yes Yes

Opaque Data	using	arbitrary	ASN.1	syntax	that	is	to	be	passed
between	devices	without	being	interpreted.	As	in	the

Yes Yes



between	devices	without	being	interpreted.	As	in	the
Network	File	System's	(NFS)	XDR	(see	Chapter	58),
the	term	opaque	means	that	the	data	is	treated	like	a

black	box,	whose	internal	details	cannot	be	seen.

Counter64 A	counter	like	Counter32	but	64	bits	wide,	allowing	a
value	from	0	to	18,446,744,073,709,551,615.

No Yes

In	addition	to	the	types	shown	in	Table	66-1,	other	defined	types	are	also	created
to	indicate	more	specific	semantics	for	a	particular	data	type.	These	are	called
textual	conventions	and	are	described	in	RFC	2579	for	SMIv2.	For	example,	a
type	called	TimeStamp	is	the	same	as	TimeTicks.	However,	seeing	an	object
using	the	former	rather	than	the	latter	makes	it	more	clear	that	the	variable	is
representing	a	particular	timestamp	value.	Another	is	called	TimeInterval,	which
is	also	just	an	integer	underneath	its	name,	but	conveys	a	different	interpreted
meaning.

If	all	of	this	seems	very	confusing	to	you,	note	that	this	description	is	actually	a
significant	simplification	of	SMI's	object	definitions.	Check	out	Example	66-1,
which	shows	an	object	definition	from	RFC	3418,	using	SMIv2.

Example	66-1.	Example	SNMP	SMIv2	object	definition
sysLocation OBJECT-TYPE
     SYNTAX DisplayString (SIZE (0..255))
     MAX-ACCESS read-write
     STATUS current
     DESCRIPTION "The physical location of this node
      (e.g., 'telephone closet, 3rd floor'). If the location
      is unknown, the value is the zero-length string."
              ::= { system 6 }

Note	that	DisplayString	is	a	textual	convention	for	a	displayed	text	string.	The
last	part,	{ system 6 },	will	be	explained	in	the	next	section.



TCP/IP	MIB	Object	Descriptors	and	Identifiers
and	the	Object	Name	Hierarchy
Of	the	many	MIB	object	characteristics,	only	one	is	sufficiently	interesting	that	it
really	deserves	its	own	exposition.	Or	perhaps	I	should	say	that	only	one	is
sufficiently	complicated	to	require	further	explanation.	This	is	the	object	name,
part	of	the	larger	naming	system	used	for	MIB	objects.

Each	MIB	object	actually	has	two	names:	an	object	descriptor	and	an	object
identifier.

Object	Descriptors
The	object	descriptor	is	a	conventional	text	name	that	provides	a	user-friendly
handle	to	refer	to	the	object.	The	name	is	assigned	based	on	the	particular	MIB
object	group	in	which	the	object	is	located.	In	the	previous	example,
sysLocation	is	the	object	descriptor	for	that	MIB	object.	I	describe	these	names
in	greater	detail	later	in	this	chapter,	when	I	discuss	MIB	modules	and	object
groups.

Object	Identifiers
Text	names	are	convenient,	but	they	are	generally	unstructured.	There	are	at
present	more	than	10,000	different	MIB	objects,	and	even	if	each	has	a	distinct
text	name,	a	huge	collection	of	such	names	doesn't	help	us	to	manage	these
objects	and	see	how	they	are	related.	For	this,	we	need	a	more	structured
approach	to	categorizing	and	naming	objects.

This	problem	is	similar	to	another	problem	that	you	may	recall	reading	about:
the	problem	of	how	to	assign	names	on	the	Internet.	Originally,	names	for	hosts
were	simple,	flat	names,	but	this	quickly	grew	unwieldy.	The	DNS	hierarchical
name	space	(see	Chapter	53)	allows	every	device	to	be	arranged	into	a	single
hierarchical	tree	structure.	The	name	of	the	device	can	be	formed	by	traversing
the	tree	from	the	top	down	to	the	location	of	the	device,	listing	the	labels
traversed	separated	by	dots.	For	example,	the	web	server	of	The	PC	Guide	is	at
http://www.pcguide.com.

This	same	concept	is	used	to	organize	MIB	objects	in	SNMP.	A	single,	universal

http://www.pcguide.com


This	same	concept	is	used	to	organize	MIB	objects	in	SNMP.	A	single,	universal
hierarchy	that	contains	all	MIB	objects	is	used.	It	is	hierarchical	in	nature,	and	it
is	split	into	levels	from	the	most	general	to	the	most	specific.	Each	object	has	a
particular	place	in	the	hierarchy.

There	is	an	important	difference	between	the	MIB	name	hierarchy	and	the	DNS
one:	the	MIB	name	hierarchy	is	even	more	universal	than	the	one	for	DNS.	The
entire	subtree	of	all	MIB	objects	is	just	one	branch	of	the	full,	international
object	hierarchy	maintained	by	the	International	Organization	for
Standardization	(ISO)	and	the	International	Telecommunication	Union	(ITU).
This	object	identification	hierarchy	is	so	general	that	it	can	contain	a	name	for
every	object	or	variable	in	use	by	any	technology	in	the	entire	world	(and
possibly	other	planets	or	solar	systems).

The	reason	for	my	jocularity	will	become	apparent	in	a	moment.	Suffice	it	to	say
that	this	object	tree	is	enormous.	Each	node	in	this	tree	is	identified	with	both	a
label	and	an	integer.	The	labels	are	for	descriptive	purposes.	Object	(or	subtree)
identifiers	are	formed	by	listing	the	numbers	in	sequence	from	the	top	of	the	tree
down	to	the	node,	separated	by	dots.	SNMP	doesn't	reverse	the	order	of	the
labels	the	way	DNS	does,	however.	They	are	listed	top-down	from	left	to	right.
(The	text	labels	can	be	used	for	names,	too,	but	they	are	not	because	they	would
get	very	long	due	to	how	deep	the	tree	structure	is.)

TIP

KEY	CONCEPT	SNMP	MIB	objects	have	two	names.	The	first	is	a	text	object	descriptor,	which
provides	a	means	of	addressing	the	object	in	a	way	that	is	familiar	and	easy	for	humans.	The	second	is
the	object	identifier,	which	consists	of	a	sequence	of	integers	that	specifies	the	location	of	the	object	in
the	global	object	hierarchy	maintained	by	the	international	standards	bodies	ISO	and	ITU.

Structure	of	the	MIB	Object	Name	Hierarchy
Let's	explore	how	the	MIB	object	tree	is	structured,	and	more	important,	how
SNMP	MIB	objects	fit	into	it.	Figure	66-2	illustrates	the	global	object	name
hierarchy	and	SNMP	MIB	hierarchies.



Figure	66-2.	Global	object	name	hierarchy	and	SNMP	MIB	hierarchies	This	diagram	shows	the	object
name	hierarchy	defined	by	ISO	and	CCITT	(ITU)	to	allow	all	types	of	objects	to	be	universally

represented.	The	path	within	this	larger	tree	to	the	tree	branches	relevant	to	SNMP	can	be	found	by
following	the	shaded	boxes.	The	two	subtrees	used	for	SNMP	are	shown	as	the	hatched	boxes	under

internet(1).	Each	contains	its	own	substructure	(some	of	which	is	illustrated	here)	defining	thousands	of
different	MIB	objects.	The	branch	on	the	left	side	is	used	for	generic	MIB	objects	and	the	one	on	the

right	for	private	ones.	A	separate	hierarchy	is	also	defined	for	SNMPv2.

The	tree's	root	has	no	label,	and	has	three	children:

ccitt(0)	for	ITU	(formerly	the	CCITT)	standards	(also	seen	as	itu(0)).

iso(1)	for	ISO	standards.

joint-iso-ccitt(2)	for	joint	standards	(also	seen	as	joint-iso-itu(2)).

Following	the	iso(1)	node,	we	see	the	following	at	the	next	several	levels:

Within	iso(1),	the	ISO	has	created	a	subtree	for	use	by	other	organizations,
called	org(3).

Within	org(3),	there	is	a	subtree	for	the	United	States	Department	of	Defense



(which,	as	you	may	recall,	was	the	originator	of	the	Internet):	dod(6).

Within	dod(6),	there	is	a	subtree	called	internet(1).

Everything	we	work	with	in	SNMP	is	under	this	one	very	specific	subtree:
1.3.6.1,	which	if	we	used	the	text	labels	would	be	iso.org.dod.internet.	Within
this	part	of	the	name	space,	there	are	six	subtrees	below:

directory(1)	is	reserved	for	future	use	by	ISO.

mgmt(2)	is	the	primary	subtree	where	MIB	objects	are	located.	This	is
1.3.6.1.2.	It	contains	a	subtree	called	mib(1),	which	is	1.3.6.1.2.1.	When
MIB-II	was	created,	a	subtree	called	mib-2(1)	was	created	using	the	same
number,	1.3.6.1.2.1.

experimental(3)	contains	objects	used	for	standards	under	development.	This
is	1.3.6.1.3.

private(4)	is	used	for	objects	defined	by	private	companies.	This	node,
1.3.6.1.4,	has	a	subtree	called	enterprise(1),	which	is	1.3.6.1.4.1.

security(5)	is	reserved	for	security	use.

snmpV2(6)	defines	objects	used	specifically	for	SNMP	version	2.

So,	what's	the	bottom	line	of	all	this?	Well,	basically	all	MIB	module	objects	are
named	within	one	of	these	two	branches	of	the	overall	object	tree:

Regular	MIB	Objects	These	are	in	the	mib(1)	subtree	under	mgmt(2):
1.3.6.1.2.1.

Private	MIB	Objects	These	are	in	the	enterprise(1)	subtree	under	private(4),
which	is	1.3.6.1.4.1.	For	example,	within	enterprise(1),	there	is	an	entry	cisco(9)
for	Cisco	Systems.	So	all	Cisco-specific	MIB	objects	start	with	1.3.6.1.4.1.9.

Clear	as	mud,	right?	Why	didn't	they	just	make	a	separate	hierarchy	where	"mib"
was	at	the	top	instead	of	six	levels	deep?	How	dare	you	even	suggest	such	a
thing?	Don't	you	understand	the	importance	of	global	standards?

All	facetiousness	aside,	this	name	hierarchy	is	a	bit	cumbersome	to	deal	with
(okay,	more	than	a	bit),	but	it	does	allow	us	to	keep	MIB	objects	organized	in	a
sensible	way.	Within	the	1.3.6.1.2.1	subtree,	we	find	most	of	the	regular	MIB
objects	used	in	SNMP.	Each	subtree	within	1.3.6.1.2.1	corresponds	to	one	of	the
regular	SNMP	object	groups	or	a	particular	MIB	module.



regular	SNMP	object	groups	or	a	particular	MIB	module.

TIP

KEY	CONCEPT	All	MIB	objects	have	object	identifiers	that	fit	within	two	branches	of	the	global
object	hierarchy.	Regular	MIB	objects	(which	are	not	vendor-specific)	fit	in	the	mib(1)	subtree	under
mgmt(2):	1.3.6.1.2.1.	Private	objects,	which	can	be	created	by	a	hardware	vendor	to	assist	in	managing
that	vendor's	products,	are	in	the	enterprise(1)	subtree	under	private(4),	which	is	1.3.6.1.4.1.

Recursive	Definition	of	MIB	Object	Identifiers
An	object	is	given	a	text	object	descriptor	by	putting	its	name	at	the	start	of	the
object,	as	shown	in	Example	66-1,	but	the	definition	of	numeric	object
identifiers	is,	again,	more	complex.	It	is	done	by	defining	only	the	number	of	the
object	within	its	particular	subtree.	This	means	the	object	identifiers	are	defined
recursively	(one	based	on	another)	and	are	not	explicitly	stated	for	each	object.
This	is	syntactically	precise,	but	makes	it	hard	to	see	at	a	glance	what	the
number	is	for	any	particular	object.

Consider	again	the	example	in	Example	66-1.	For	this	object,	sysLocation	is
the	object	descriptor	and	{ system 6 }	is	the	object	identifier.	This	means	it	is
object	number	6	within	the	node	system,	which	is	in	turn	defined	as	{ mib-2 1
}—it	is	the	first	node	within	the	mib-2	subtree.	Since	mib-2	is	1.3.6.1.2.1,	as
noted	in	the	previous	section,	this	means	system	is	1.3.6.1.2.1.1	and
sysLocation	is	1.3.6.1.2.1.1.6.



TCP/IP	MIB	Modules	and	Object	Groups
The	MIB	contains	the	collection	of	MIB	objects	that	describe	the	characteristics
of	a	device	using	the	SNMP	Framework.	When	SNMP	was	first	created,	there
were	not	that	many	objects	in	the	MIB.	Furthermore,	they	were	mostly	generic
objects	that	applied	fairly	universally	to	TCP/IP	devices	as	a	whole.	In	fact,	most
of	the	MIB	objects	were	variables	related	to	the	operation	of	TCP/IP	protocols
such	as	IP,	the	Transmission	Control	Protocol	(TCP),	and	the	Internet	Control
Message	Protocol	(ICMP).

For	this	reason,	at	first,	a	single	document	defined	"the"	MIB	for	SNMP.	The
first	of	these	documents	was	RFC	1066,	part	of	the	initial	SNMPv1
specification.	It	was	then	revised	in	RFC	1156.	In	RFC	1158,	a	second	version	of
the	MIB,	MIB	II,	was	defined,	which	was	essentially	the	same	but	made	a	few
changes.

The	Organization	of	MIB	Objects	into	Object
Groups
The	number	of	MIB	objects	defined	in	the	early	MIB	standards	was	relatively
small.	However,	there	were	still	several	dozen	of	them,	and	it	was	recognized
from	the	start	that	more	would	be	created	in	time.	To	help	organize	the	objects	in
a	logical	way,	they	were	arranged	into	object	groups.	These	groups	serve	the
purpose	of	separating	the	objects	and	defining	how	they	should	be	given	object
identifiers	in	the	overall	object	name	hierarchy.

Each	group	has	associated	with	it	three	important	pieces	of	information:

Group	Name	This	is	a	name	that	is	used	as	a	text	label	in	the	object
identification	tree	described	earlier	in	this	chapter	(see	Figure	66-2).	These
objects	are	all	located	within	the	iso.org.dod.internet.mgmt.mib	subtree.	So,	for
example,	the	group	system	would	be	iso.org.dod.internet.mgmt.mib.system.

Group	Number	This	number	corresponds	to	the	group	name	used	for	making
numeric	identifiers	from	the	object	name	tree.	For	example,	the	group	system
has	the	number	1,	and	so	the	group's	object	identifier	is	1.3.6.1.2.1.1.	All	objects
in	that	group	will	be	under	that	tree;	for	example,	sysUpTime	is	1.3.6.1.2.1.1.3.



Group	Code	This	is	a	text	label	that	may	be	the	same	as	the	group	name	or	may
be	an	abbreviation.	It	is	used	as	a	prefix	in	making	object	descriptors	(the	text
names	of	objects).	For	example,	for	the	group	system,	the	code	is	sys,	and	so	an
object	in	this	group	is	sysUpTime.

Table	66-2	shows	the	eight	generic	SNMP	groups	defined	in	RFC	1158,	along
with	their	codes,	names,	and	numbers.

Table	66-2.	SNMP	Generic	MIB	Object	Groups

Group
Name

Group
Code

Group
Number

Full	Group
Identifier

Description

system sys 1 1.3.6.1.2.1.1 General	objects	of	relevance	to	all	or	most
devices.	For	example,	a	general	description
of	the	device	is	an	object	in	this	group,	as	is
the	identifier	of	the	object.	Later	MIB
versions	greatly	expanded	the	number	of
variables	in	this	group.

interfaces if 2 1.3.6.1.2.1.2 Objects	related	to	the	IP	interfaces	between
this	device	and	the	internetwork.	(Recall	that
a	regular	host	normally	has	one	interface,
while	a	router	has	two	or	more.)

at	(address
translation)

at 3 1.3.6.1.2.1.3 Objects	used	for	IP	address	translation.	(No
longer	used.)

ip ip 4 1.3.6.1.2.1.4 Objects	related	to	the	IP	layer	of	the	device
as	a	whole	(as	opposed	to	interface-specific
information	in	the	if	group).

icmp icmp 5 1.3.6.1.2.1.5 Objects	related	to	the	operation	of	ICMP.

tcp tcp 6 1.3.6.1.2.1.6 Objects	related	to	the	operation	of	the	TCP.

udp udp 7 1.3.6.1.2.1.7 Objects	related	to	the	operation	of	the	User
Datagram	Protocol	(UDP).

egp egp 8 1.3.6.1.2.1.8 Objects	related	to	the	operation	of	the
Exterior	Gateway	Protocol	(EGP).

cmot cmot 9 1.3.6.1.2.1.9 Objects	related	to	running	the	CMIP	protocol
over	TCP	(historical,	not	used).

transmission trans 10 1.3.6.1.2.1.10 Objects	related	to	the	specific	method	of



transmission trans 10 1.3.6.1.2.1.10 Objects	related	to	the	specific	method	of
information	transmission	used	by	each
interface	on	the	system.

snmp snmp 11 1.3.6.1.2.1.11 Objects	used	to	manage	SNMP	itself.

All	of	the	groups	in	this	table	are	fairly	generic,	and	with	the	exception	of	the
one	about	EGP,	apply	to	pretty	much	every	TCP/IP	system	using	SNMP.	(The
mention	of	EGP,	a	routing	protocol	now	considered	obsolete,	shows	the	age	of
this	list.)	The	first	five	groups	and	the	last	one	are	mandatory	for	all	systems.
The	others	are	used	only	by	devices	that	use	the	indicated	protocols	or	functions.

MIB	Modules
What's	most	conspicuous	about	the	object	groups	listed	in	Table	66-2	is	the
groups	that	are	not	included.	There	are	no	groups	for	most	of	the	other	TCP/IP
protocols,	nor	any	for	variables	that	might	be	needed	for	specific	hardware	types.
For	example,	most	hosts	will	have	a	network	card	in	them	using	a	layer	2
protocol	like	Ethernet	or	Token	Ring.	How	does	a	manager	check	or	control	the
operation	of	this	hardware?	What	about	newer	routing	protocols	like	Open
Shortest	Path	First	(OSPF)	or	Border	Gateway	Protocol	(BGP)?	How	about
objects	related	to	running	the	Domain	Name	System	(DNS)?

Updating	the	MIB	document	constantly	would	have	been	impractical.	Instead,	in
SNMPv2,	the	MIB	was	changed	from	a	single	document	to	a	group	of
documents.	The	basic	organization	into	groups	of	objects	was	retained,	but
instead	of	all	groups	being	in	the	same	standard,	they	are	divided	into	multiple
standards.	A	method	was	also	defined	for	how	to	create	MIB	modules	that
describe	new	groups	of	objects	specific	to	a	particular	technology.	A	list	of	these
modules	is	maintained	by	the	Internet	Assigned	Numbers	Authority	(IANA),	the
organization	that	maintains	all	of	these	sorts	of	numbers.	The	current	list	of
SNMP	MIB	modules	can	be	found	at	http://www.iana.org/assignments/smi-
numbers.

The	use	of	MIB	modules	makes	putting	SNMP	support	into	a	device	somewhat
like	going	shopping.	The	basic	groups	common	to	all	devices	are	incorporated
into	each	device,	and	then	other	modules/groups	are	used	as	needed.	Table	66-3
provides	a	brief	selection	of	MIB	modules	to	give	you	an	idea	of	what	is	out

http://www.iana.org/assignments/smi-numbers


there,	also	showing	the	module's	group	number	(within	the	1.3.6.1.2.1	name
subtree).	There	are	many,	many	more	modules	than	listed	in	this	table.

Table	66-3.	Some	Common	SNMP	MIB	Modules

MIB	Module
Name

Group
Number

Description

ospf 14 Objects	related	to	OSPF

bgp 15 Objects	related	to	BGP

rmon 16 Objects	used	as	part	of	Remote	Network	Monitoring
(RMON)

snmpDot3
RptrMgt

22 Objects	related	to	IEEE	802.3	(Ethernet)	repeaters

rip-2 23 Objects	used	as	part	of	version	2	of	the	Routing	Information
Protocol	(RIP)

snmpDot3
MauMgt

26 Objects	related	to	IEEE	802.3	(Ethernet)	medium	attachment
units

etherMIB 35 Ethernet-like	generic	objects

mipMIB 44 Mobile	IP	objects

ipMIB 48 IP	objects	for	SNMPv2

tcpMIB 49 TCP	objects	for	SNMPv2

udpMIB 50 UDP	objects	for	SNMPv2

The	last	three	entries	in	Table	66-3	might	seem	a	bit	confusing,	since	there	were
already	groups	for	IP,	TCP,	and	UDP,	as	shown	in	Table	66-2.	The	reason	for
these	is	that	when	the	new	modular	architecture	for	MIB	objects	was	created	in
SNMPv2,	the	definition	of	objects	for	the	individual	protocols	that	was	part	of
the	one	document	in	SNMPv1	was	separated	out	into	individual	MIB	documents
for	consistency	and	to	allow	them	to	be	updated	independently.	In	fact,	the	base
SNMPv2	and	SNMPv3	MIB	documents	now	define	only	objects	in	the	system
and	snmp	groups.



TIP

KEY	CONCEPT	MIB	objects	created	early	in	SNMP's	history	were	organized	into	MIB	object	groups
that	reside	within	the	mib(1)	subtree,	starting	with	identifier	code	1.3.6.1.2.1.	As	the	popularity	of
TCP/IP	grew,	it	became	impractical	to	centrally	define	all	MIB	objects,	so	sets	of	objects	particular	to
different	hardware	devices	are	now	specified	in	MIB	modules.

MIB	Module	Format
The	format	for	MIB	modules	is	described	in	the	SMI	standard,	version	2
(SMIv2).	This	document	specifies	how	modules	are	to	be	defined	in	a	way
similar	to	how	objects	themselves	are	defined:	by	listing	a	set	of	characteristics
that	must	be	included	in	each	module	description.	The	module	fields	are	as
follows:

Module	Name	The	name	of	the	module.	Remember	that	modules	are	really
objects,	syntactically,	so	like	regular	objects,	they	have	a	textual	object
descriptor	(like	tcpMIB)	and	an	object	identifier	(in	the	case	of	tcpMIB,	the
number	50).

Last	Updated	The	date	and	time	that	the	module	was	last	revised.

Organization	The	name	of	the	organization	that	is	managing	the	development	of
the	module.

Contact	Information	The	name,	address,	telephone	number,	and	email	address
of	the	point	person	for	this	module.

Description	A	description	of	the	module.

Revision	and	Revision	Description	One	Revision	entry	is	placed	for	each
revision	of	the	module	to	show	its	history.	Each	entry	has	a	description
associated	with	it.

After	the	definition	of	the	module	itself,	the	objects	in	the	module	are	described.
For	an	example,	see	RFC	2012,	which	defines	the	SNMPv2	TCP	MIB.



Chapter	67.	TCP/IP	SIMPLE
NETWORK	MANAGEMENT
PROTOCOL	(SNMP)	CONCEPTS
AND	OPERATION

The	overall	network	management	solution	for	TCP/IP	networks	is	the	Internet
Standard	Management	Framework.	In	the	previous	two	chapters,	we	have	taken
a	look	at	the	Framework	as	a	whole,	and	also	discussed	the	two	components	that
define	the	management	information	transmitted	between	TCP/IP	devices	to
accomplish	network	management.	The	third	major	part	of	the	SNMP	Framework
is	the	actual	Simple	Network	Management	Protocol	(SNMP),	which	is
responsible	for	moving	management	information	between	devices.

The	core	of	the	protocol	consists	of	a	set	of	protocol	operations	that	allow
management	information	to	be	exchanged	between	SNMP	agents	and	managers.
Having	previously	examined	the	generalities	of	SNMP	and	what	management
information	base	(MIB)	objects	are,	we	can	now	get	down	to	the	nitty	gritty	of
how	management	information	is	actually	communicated	using	SNMP.

In	this	chapter,	I	provide	a	detailed	description	of	the	operations	performed	by
the	SNMP	protocol.	I	begin	with	a	brief	overview	and	history	of	the	protocol.	I
then	provide	a	general	description	of	how	SNMP	operates	and	the	two	basic
methods	that	devices	use	to	communicate.	I	also	describe	SNMP's	message
classes	and	the	basic	operations	performed	in	SNMP:	basic	request/response,
table	traversal,	object	modification,	and	notification.	I	conclude	with	a
discussion	of	SNMP	security	issues	and	a	summary	of	the	security	methods	in
each	of	the	SNMP	versions.



NOTE

The	number	and	types	of	protocol	operations	in	SNMP	changed	between	SNMPv1	and	SNMPv2.	The
operations	defined	in	SNMPv2	have	been	carried	forward	into	the	newest	version,	SNMPv3.	Most	of	the
discussion	focuses	on	SNMPv3	as	the	newest	implementation,	noting	the	differences	between	it	and	the
original	and	still	widely	used	SNMPv1.

SNMP	Protocol	Overview
As	explained	in	the	previous	chapters,	the	SNMP	Framework	is	often	described
as	being	information-oriented.	A	specific	decision	was	made	in	the	design	of	the
SNMP	Framework	to	decouple	the	management	information	conveyed	between
SNMP	agents	and	SNMP	managers	from	the	protocol	used	to	carry	that
information.	This	provides	numerous	benefits	to	the	technology	as	a	whole,	chief
among	them	flexibility	and	modularity.

In	this	model,	the	operation	of	the	management	protocol	is	not	defined	in	terms
of	specific	commands	made	to	check	the	status	of	a	device	or	change	how	it
operates.	Instead,	the	protocol	is	defined	in	terms	of	management	information
variables	called	objects,	and	a	communication	protocol	that	allows	these	objects
to	be	either	examined	or	changed	by	a	network	administrator.	I	describe	this
concept	thoroughly	in	the	previous	chapter.

The	MIB	and	Structure	of	Management	Information	(SMI)	spell	out	the	rules	for
how	MIB	objects	are	created	and	described.	These	MIB	objects	describe	the
types	of	information	that	can	be	read	from	the	device	or	written	to	the	device.
The	last	piece	of	the	puzzle	is	the	actual	protocol	that	is	responsible	for	these
read-	and	write-type	operations.	This	is	SNMP	itself,	which	I	give	the	somewhat
redundant	name	SNMP	protocol	to	differentiate	it	from	the	SNMP	Framework.

The	result	of	the	separation	of	the	protocol	from	the	management	information	it
carries	is	that	the	protocol	itself	becomes	significantly	reduced	in	complexity.
Instead	of	the	SNMP	protocol	needing	to	define	dozens	or	even	hundreds	of
operations	that	specify	particular	network	management	functions,	it	needs	to	deal
with	only	the	transmission	of	MIB	object	information	between	SNMP	agents	and
managers.	The	SNMP	protocol	itself	does	not	pay	attention	to	what	is	in	these
objects;	it	is	merely	concerned	with	moving	them	around.	In	some	ways,	the
SNMP	protocol	is	the	only	really	simple	part	of	SNMP!



Early	Development	of	SNMPv1
The	history	of	the	SNMP	protocol	goes	back	to	the	predecessor	of	the	SNMP
Framework,	the	Simple	Gateway	Monitoring	Protocol	(SGMP),	which	was
defined	in	RFC	1028	in	1987.	SGMP	was	designed	as	an	interim	solution	for
network	management	while	larger	issues	were	being	explored,	as	I	explained	in
Chapter	65.	However,	this	standard	is	where	many	of	the	basic	design	concepts
underlying	the	modern	SNMP	protocol	can	be	found.

The	SGMP	standard	specified	the	basic	design	model	used	in	SNMP	by
describing	SGMP	in	terms	of	only	retrievals	of,	or	alterations	to,	variables	stored
on	an	Internet	gateway	(router).	The	standard	also	outlines	the	small	number	of
protocol	operations	that	are	still	the	basis	for	SNMP's	operation	today.

The	first	version	of	the	SNMP	Framework,	SNMPv1,	included	the	first	formal
definition	of	the	SNMP	protocol	in	RFC	1067	(later	revised	by	RFCs	1098	and
1157).	This	standard	refines	the	protocol	operations	given	in	the	SGMP
document.	It	makes	the	operation	of	the	SNMP	protocol	fit	into	the	overall
SNMP	Framework,	working	with	formally	defined	MIB	objects.

SNMPv2	and	the	Division	of	SNMP	into	Protocol
Operations	and	Transport	Mappings
When	SNMPv2	was	created,	the	single	document	describing	the	SNMP	protocol
was	split	into	two	standards,	to	make	the	protocol	more	modular	and	better
reflective	of	the	layers	used	in	internetworks:

Protocol	Operations	The	first	document	of	the	pair	describes	the	actual
mechanics	by	which	MIB	objects	are	moved	between	SNMP	devices	using
particular	SNMP	message	types.	In	SNMPv3,	it	is	RFC	3416,	"Version	2	of	the
Protocol	Operations	for	the	Simple	Network	Management	Protocol	(SNMP)."
When	people	talk	about	just	"the	SNMP	standard,"	this	is	the	document	they
usually	mean.

Transport	Mappings	The	second	document	details	how	the	SNMP	protocol
operations	described	in	the	first	standard	can	be	transported	over	a	variety	of
different	protocol	suites.	By	using	the	correct	mapping,	SNMP	operations	can	be
carried	out	using	lower-layer	technologies	other	than	the	Internet	Protocol	(IP).



This	standard	is	represented	in	SNMPv3	by	RFC	3417,	"Transport	Mappings	for
the	Simple	Network	Management	Protocol	(SNMP)."

TIP

KEY	CONCEPT	The	actual	mechanism	used	to	communicate	management	information	between
network	management	stations	(NMSs)	and	managed	devices	is	called	the	Simple	Network	Management
Protocol,	which	may	be	called	the	SNMP	protocol	to	differentiate	it	from	the	SNMP	Framework.	It
consists	of	a	number	of	protocol	operations	that	describe	the	actual	message	exchanges	that	take	place
between	devices,	and	a	set	of	transport	mappings	that	define	how	these	messages	are	carried	over	various
types	of	internetworks.	The	Internet	Protocol	(IP)	is	the	most	common	transport	mapping	used	for
SNMP.

I	discuss	transport	mappings	in	a	little	more	detail	in	the	description	of	SNMP
messaging	later	in	this	chapter,	but	since	the	IP/User	Datagram	Protocol	(UDP)
method	is	by	far	the	most	common	transport	mechanism,	there	isn't	a	great	deal
to	say	about	that	aspect	of	the	SNMP	protocol.

SNMP	Communication	Methods
For	SNMP	to	be	useful	in	enabling	the	management	of	a	network,	it	must	allow
a	network	administrator	using	a	network	management	station	(NMS)	to	easily
check	the	status	of	SNMP	agents	in	managed	devices.	In	data	communications,
there	are	two	general	techniques	that	are	used	in	a	situation	where	one	entity
needs	to	be	kept	informed	about	activity	or	occurrences	on	another:

Poll-Driven	Communication	This	term	refers	to	the	general	technique	of
having	the	one	who	wants	the	information	ask	for	it—just	like	someone	might
conduct	a	political	poll.	In	SNMP,	the	NMS	would	poll	SNMP	agents	for
information.	A	common	real-life	example	of	polling	is	the	model	used	by	the
regular	mail	service;	every	day	you	go	to	check	your	mailbox	to	see	if	you	have
any	mail.

Interrupt-Driven	Communication	This	term	refers	to	having	a	device	with
information	that	another	needs	to	know	decide	to	send	the	information	of	its	own
volition.	In	SNMP,	this	would	refer	to	an	SNMP	agent	sending	information	to	an
NMS	without	being	asked.	This	is	the	model	used	by	that	most	famous	of
interrupters—the	telephone.

Which	communication	method	is	better?	The	usual	answer	applies	here:	Neither



is	better	or	worse	universally,	which	is	why	both	options	exist.	Due	to	the
obvious	strengths	and	weaknesses	of	these	models,	the	SNMP	protocol	is
designed	to	use	both.	Polling	is	used	for	the	periodic	gathering	of	routine
information,	such	as	checking	the	usage	statistics	and	general	status	of	a	device.
Interrupts	are	used	in	the	form	of	traps	that	a	network	administrator	can	set	on	a
managed	device.	These	traps	cause	an	SNMP	agent	to	interrupt	an	NMS	when
an	event	of	importance	occurs.

TIP

KEY	CONCEPT	SNMP	uses	two	basic	methods	for	exchanging	management	information.	Routine
communication	uses	a	poll-driven	technique,	where	the	network	management	station	(NMS)	requests
information	from	managed	nodes.	An	interrupt-driven	model	is	also	supported.	In	situations	where	a
managed	device	needs	to	tell	an	NMS	about	an	occurrence	immediately,	it	can	send	a	trap	message
without	waiting	for	a	request	from	the	NMS.

The	focus	of	most	of	our	look	at	SNMP	in	this	chapter	will	concentrate	on
SNMP	protocol	operations:	what	messages	are	used,	how	they	are	structured,
and	how	they	are	exchanged.	In	examining	these	messages,	we	will	see	the	two
main	ways	that	information	exchanges	occur	in	SNMP—by	polling	and	by
interrupt—and	also	discover	how	the	SNMP	protocol	works	with	MIB	objects.



SNMP	Protocol	Operations
The	actual	communication	of	information	in	the	SNMP	protocol	is	performed	in
a	manner	similar	to	most	other	protocols,	through	the	exchange	of	SNMP
messages.	These	messages	are	sometimes	called	protocol	data	units	or	PDUs.
This	is	a	term	you	may	have	heard	used	in	other	protocols,	and	it	is	part	of	the
formal	definition	of	data	encapsulation	in	the	OSI	Reference	Model,	as
explained	in	Chapter	5.	A	message	is,	of	course,	a	data	unit	used	by	the	protocol.
SNMP	messages	all	have	-PDU	at	the	ends	of	their	names	to	identify	them.

Some	consider	protocol	data	unit	to	be	analogous	to	the	military	using	oblong,
metallic-headed,	manually	operated,	fastener-acceleration	device	to	refer	to	a
hammer.	To	be	fair	though,	strictly	speaking,	in	SNMP,	a	PDU	and	a	message
are	not	exactly	the	same.	The	PDU	is	the	higher-layer	data	that	SNMP
encapsulates,	as	described	by	the	OSI	model.	The	SNMP	message	format	is	a
wrapper	that	encapsulates	a	PDU	along	with	header	fields,	as	I	describe	in	the
next	chapter	on	SNMP	messaging.	However,	the	point	of	a	message	is	to	send	a
PDU,	so	the	two	are	close	enough,	and	the	terms	are	sometimes	used
interchangeably.

SNMP	PDU	Classes
SNMPv1	originally	defined	six	PDUs.	The	number	of	PDUs	was	expanded,	and
some	changes	were	made	to	their	names	and	uses	in	SNMPv2	and	SNMPv3.	The
current	SNMP	Framework	categorizes	the	PDUs	into	different	classes.	These
classes	describe	both	the	function	of	each	message	type	and	the	kind	of
communication	they	use	to	perform	their	task	(polling	versus	interrupting).

TIP

KEY	CONCEPT	SNMP	messages	consist	of	a	set	of	fields	wrapped	around	a	data	element	called	a
protocol	data	unit	or	PDU.	In	some	cases,	the	terms	message	and	PDU	are	used	interchangeably,
although	they	are	technically	not	the	same.	SNMP	PDUs	are	arranged	into	classes	based	on	their
function.

Table	67-1	lists	the	main	SNMPv2/SNMPv3	PDU	classes,	describes	them,	and
shows	which	PDUs	are	in	each	class	in	SNMPv2/SNMPv3.	These	classes	were



not	used	in	SNMPv1,	but	for	clarity,	I	also	show	which	messages	from	SNMPv1
fall	into	the	classes	conceptually.

Table	67-1.	SNMP	PDU	(Message)	Classes

SNMPv3
PDU
Class

Description SNMPv1
PDUs

SNMPv2/SNMPv3
PDUs

Read Messages	that	read	management
information	from	a	managed	device
using	a	polling	mechanism.

GetRequest-
PDU,
GetNextRequest-
PDU

GetRequest-PDU,
GetNextRequest-
PDU,
GetBulkRequest-PDU

Write Messages	that	change	management
information	on	a	managed	device	to
affect	the	device's	operation.

SetRequest-PDU SetRequest-PDU

Response Messages	sent	in	response	to	a
previous	request.

GetResponse-
PDU

Response-PDU

Notification Messages	used	by	a	device	to	send	an
interrupt-like	notification	to	an	SNMP
manager.

Trap-PDU Trapv2-PDU,
InformRequest-PDU

The	GetBulkRequest-PDU	and	InformRequest-PDU	messages	are	new	in
SNMPv2/v3.	The	GetResponse-PDU	message	was	renamed	Response-PDU
(since	it	is	a	response	and	not	a	message	that	gets	anything),	and	the	new
Trapv2-PDU	replaces	Trap-PDU.

There	are	three	other	special	classes	defined	by	the	current	SNMP	Framework
that	are	of	less	interest	to	us	because	they	don't	define	actively	used	messages,
but	which	I	should	mention	for	completeness.	The	Internal	class	contains	a
special	message	called	Report-PDU	defined	for	internal	SNMP	communication.
The	SNMP	standards	also	provide	two	classes	called	Confirmed	and
Unconfirmed,	which	are	used	to	categorize	the	messages	listed	in	Table	67-1
based	on	whether	or	not	they	are	acknowledged.	The	Report-PDU,	Trapv2-PDU,
and	Response-PDU	messages	are	considered	Unconfirmed,	and	the	rest	are
Confirmed.

Now	we	will	look	at	how	the	major	message	types	in	the	four	main	classes	are



used.	Note	that	in	general	terms,	all	protocol	exchanges	in	SNMP	are	described
in	terms	of	one	SNMP	entity	sending	messages	to	another.	Most	commonly,	the
entity	sending	requests	is	an	SNMP	manager,	and	the	one	responding	is	an
SNMP	agent,	except	for	traps,	which	are	sent	by	agents.	For	greater	clarity,	I	try
to	use	these	more	specific	terms	(manager	or	agent)	when	possible,	rather	than
just	entity.

Basic	Request/Response	Information	Poll	Using
GetRequest	and	(Get)Response	Messages
The	obvious	place	to	begin	our	detailed	look	at	SNMP	protocol	operations	is
with	the	simplest	type	of	information	exchange.	This	would	be	a	simple	poll
operation	to	read	one	or	more	management	information	variables,	used	by	one
SNMP	entity	(typically	an	SNMP	manager)	to	request	or	read	information	from
another	entity	(normally	an	SNMP	agent	on	a	managed	device).	SNMP
implements	this	as	a	simple,	two-message	request/response	protocol	exchange,
similar	to	the	request/reply	processes	found	in	so	many	TCP/IP	protocols.

This	information	request	process	typically	begins	with	the	user	of	an	application
wanting	to	check	the	status	of	a	device	or	look	at	information	about	it.	As	we've
seen,	all	this	information	is	stored	on	the	device	in	the	form	of	MIB	objects.	The
communication,	therefore,	takes	the	form	of	a	request	for	particular	MIB	objects
and	a	reply	from	the	device	containing	those	objects'	values.	In	simplified	form,
the	steps	in	the	process	are	as	follows	(see	Figure	67-1):

1.	 SNMP	Manager	Creates	GetRequest-PDU	Based	on	the	information
required	by	the	application	and	user,	the	SNMP	software	on	the	NMS
creates	a	GetRequest-PDU	message.	It	contains	the	names	of	the	MIB
objects	whose	values	the	application	wants	to	retrieve.

2.	 SNMP	Manager	Sends	GetRequest-PDU	The	SNMP	manager	sends	the
PDU	to	the	device	that	is	being	polled.

3.	 SNMP	Agent	Receives	and	Processes	GetRequest-PDU	The	SNMP
agent	receives	and	processes	the	request.	It	looks	at	the	list	of	MIB	object
names	contained	in	the	message	and	checks	to	see	if	they	are	valid	(ones
the	agent	actually	implements).	It	looks	up	the	value	of	each	variable	that



was	correctly	specified.

4.	 SNMP	Agent	Creates	Response-PDU	The	agent	creates	a	Response-PDU
to	send	back	to	the	SNMP	manager.	This	message	contains	the	values	of
the	MIB	objects	requested	and/or	error	codes	to	indicate	any	problems	with
the	request,	such	as	an	invalid	object	name.

5.	 SNMP	Agent	Sends	Response-PDU	The	agent	sends	the	response	back	to
the	SNMP	manager.

6.	 SNMP	Manager	Processes	Response-PDU	The	manager	processes	the
information	in	the	Response-PDU	received	from	the	agent.

Figure	67-1.	SNMP	information	poll	process	The	basic	SNMP	information	polling	process	involves	a
simple	exchange	of	a	GetRequest-PDU	sent	by	an	SNMP	manager	and	a	Response-PDU	returned	by	an

SNMP	agent.

TIP

KEY	CONCEPT	The	most	basic	type	of	communication	in	SNMP	is	an	information	poll,	which	allows
an	NMS	to	read	one	or	more	MIB	objects	from	a	managed	node	using	a	simple	request/reply	message
exchange.

The	Response-PDU	message	is	called	GetResponse-PDU	in	SNMPv1.
Presumably,	this	name	was	chosen	based	on	the	fact	that	it	was	a	response	to	a
get	operation,	to	make	the	names	GetRequest-PDU	and	GetResponse-PDU
somewhat	symmetric.	The	problem	is	that	this	name	is	confusing,	for	two
reasons.	First,	it	sounds	to	some	people	like	the	purpose	of	the	PDU	is	to	"get	a
response."	Second,	the	GetResponse-PDU	was	also	defined	as	the	response
message	for	operations	other	than	get	operations,	including	the	reply	message	for



message	for	operations	other	than	get	operations,	including	the	reply	message	for
SetRequest-PDU.	Having	a	GetResponse	message	be	sent	in	reply	to	a
SetRequest	message	is	disconcerting.	The	new	name	is	more	generic	and	avoids
these	problems.

Table	Traversal	Using	GetNextRequest	and
GetBulkRequest	Messages
The	GetRequest-PDU	message	is	used	by	applications	to	request	values	for
regular,	single	variables	in	an	SNMP	managed	object's	MIB.	As	I	mentioned	in
Chapter	66,	however,	the	SMI	also	allows	an	MIB	to	contain	tabular	data.

MIB	tables	are	a	useful	way	for	a	device	to	store	and	organize	a	set	of	related
data	items.	It	would	be	far	from	ideal	to	try	to	structure	these	items	just	as
collections	of	regular	objects.	For	example,	a	device	may	have	multiple	IP
addresses.	It	would	be	inefficient	to	define	one	MIB	object	called	ipAddr1,
another	called	ipAddr2,	and	so	on	to	store	IP	address	information.	Instead,	an
object	called	ipAddrTable	is	defined	in	the	original	SNMPv1	MIB,	which
specifies	a	table	containing	one	or	more	entries	called	ipAddrEntry.	Each	entry
contains	the	IP	address	and	subnet	mask	for	one	of	the	interfaces	of	the	device.

SNMPv1	Table	Traversal	Using	GetNextRequest
There	needs	to	be	a	way	to	let	an	SNMP	manager	read	the	contents	of	these
tables	from	a	device.	This	can	be	done	using	the	regular	GetRequest-PDU
message,	by	specifying	each	entry	in	the	table,	one	after	the	other.	However,	this
is	somewhat	crude,	and	it	leaves	a	problem:	the	SNMP	manager	may	not	know
how	many	entries	are	in	the	table,	and	therefore,	how	many	entries	it	should
request.

The	problem	of	table	traversal	was	addressed	in	SNMPv1	through	the	creation	of
a	new	message	type	called	GetNextRequest-PDU.	You	can	think	of	this	as	a
relative	of	the	regular	GetRequest-PDU.	The	GetNextRequest-PDU	contains	the
name	of	a	tabular	variable,	as	well	as	a	particular	entry	in	the	table.	The	device
receiving	the	GetNextRequest-PDU	uses	this	to	look	up	the	next	value	in	the
table	and	return	it	in	a	GetResponse-PDU	message.

The	actual	protocol	exchange	is	about	the	same	as	that	described	in	the	previous
section:	a	request	is	sent	by	the	SNMP	manager,	and	a	reply	is	returned	by	the



SNMP	agent.	The	difference	is	that	instead	of	the	SNMP	agent	returning	the
value	for	the	variable	specified,	it	returns	the	value	of	the	next	variable	in	the
table.	This	is	then	used	as	the	value	for	the	next	request,	and	so	on,	until	the	last
entry	in	the	table	is	reached.	Once	this	happens	and	a	GetNextRequest-PDU	is
sent	that	contains	this	last	entry,	the	responding	device	indicates	this	by	returning
the	MIB	object	that	conceptually	follows	the	table	in	the	implementation	of	the
MIB.	This	signals	to	the	SNMP	manager	that	the	table	has	been	fully	traversed.

TIP

KEY	CONCEPT	The	SNMP	GetNextRequest-PDU	message	allows	an	NMS	to	request	a	series	of
consecutive	variables	in	an	MIB.	This	is	most	commonly	used	to	allow	tabular	data	to	be	more	easily
retrieved,	without	requiring	that	each	variable	in	the	table	be	individually	specified.

SNMPv2/v3	Table	Traversal	Using	GetBulkRequest
The	GetNextRequest-PDU	message	is	functional,	but	while	it	is	more	elegant
than	using	regular	GetRequest-PDU	messages,	it	is	not	any	more	efficient—each
entry	in	the	table	must	still	be	requested	one	at	a	time.	This	means	that	retrieving
the	information	in	a	table	takes	a	long	time	and	also	results	in	a	great	deal	of
traffic	being	generated,	due	to	the	number	of	requests	and	replies	that	must	be
sent.

To	make	table	traversal	easier	and	more	conservative	in	its	use	of	network
resources,	SNMPv2	introduced	a	new	message	type	called	GetBulkRequest-
PDU.	You	can	probably	surmise	the	idea	here	from	the	name.	Instead	of
specifying	a	particular	MIB	object	to	get	or	to	get	next,	a	GetBulkRequest-PDU
allows	an	SNMP	manager	to	send	a	single	request	that	results	in	a	number	of
entries	in	a	table	being	returned	in	a	Response-PDU	message.

The	GetBulkRequest-PDU	is	designed	to	allow	both	regular	variables	and	tables
to	be	retrieved	in	a	single	request.	The	PDU	includes	a	list	of	objects,	just	as	in	a
GetRequest-PDU	or	GetNextRequest-PDU.	The	list	is	organized	so	that	regular
objects	appear	first	and	table	objects	come	afterwards.	Two	special	parameters
are	included	in	the	request:

Non	Repeaters	Specifies	the	number	of	nonrepeating,	regular	objects	to	be
retrieved.	This	is	the	number	of	regular	objects	at	the	start	of	the	object	list.



Max	Repetitions	Specifies	the	number	of	iterations,	or	entries,	to	read	for	the
remaining	tabular	objects.

For	example,	suppose	an	SNMP	manager	wanted	to	request	four	regular
variables	and	three	entries	from	a	table.	The	GetNextRequest-PDU	would
contain	five	MIB	object	specifications,	with	the	table	last.	The	Non	Repeaters
field	would	be	set	to	4,	and	the	Max	Repetitions	field	set	to	3.

TIP

KEY	CONCEPT	To	improve	the	efficiency	of	table	traversal,	SNMPv2	introduced	the
GetBulkRequest-PDU	message,	which	allows	an	NMS	to	request	a	sequence	of	MIB	objects	from	a	table
using	a	single	request	to	a	managed	node.

The	original	method	of	traversing	tables	using	GetRequest-PDU	and
GetNextRequest-PDU	from	SNMPv1	was	retained	in	SNMPv2	and	SNMPv3
when	they	were	developed.	However,	the	introduction	of	the	more	efficient
GetBulkRequest-PDU	means	that	GetNextRequest-PDU	is	not	as	important	as	it
was	in	SNMPv1.	Bear	in	mind,	however,	that	using	GetBulkRequest-PDU	does
require	that	the	requesting	entity	know	how	many	entries	to	ask	for.	So,	some
trial	and	error,	or	multiple	requests,	may	be	required	to	get	a	whole	table	if	the
number	of	entries	is	not	known.

Object	Modification	Using	SetRequest	Messages
The	GetRequest-PDU,	GetNextRequest-PDU,	and	GetBulkRequest-PDU
messages	are	the	three	members	of	the	SNMP	Read	class	of	PDUs—they	are
used	to	let	an	SNMP	manager	read	MIB	objects	from	an	SNMP	agent.	The
opposite	function	is	represented	by	the	SNMP	Write	class,	which	contains	a
single	member:	the	SNMP	SetRequest-PDU	message.

The	use	of	this	PDU	is	fairly	obvious;	where	one	of	the	three	Get	PDUs	specifies
a	variable	whose	value	is	to	be	retrieved,	the	SetRequest-PDU	message	contains
a	specification	for	variables	whose	values	are	to	be	modified	by	the	network
administrator.	Remember	that	SNMP	does	not	include	specific	commands	to	let
a	network	administrator	control	a	managed	device.	This	is	the	control	method,
which	works	by	setting	variables	that	affect	the	operation	of	the	managed	device.

The	set	process	is	the	complement	of	the	get	process,	using	the	same	basic	idea,



but	a	reversal	in	how	the	object	values	travel	and	what	is	done	with	them.	The
process	follows	these	steps	(see	Figure	67-2):

1.	 SNMP	Manager	Creates	SetRequest-PDU	Based	on	the	information
changes	specified	by	the	user	through	the	SNMP	application,	the	SNMP
software	on	the	NMS	creates	a	SetRequest-PDU	message.	It	contains	a	set
of	MIB	object	names	and	the	values	to	which	they	are	to	be	set.

2.	 SNMP	Manager	Sends	SetRequest-PDU	The	SNMP	manager	sends	the
PDU	to	the	device	being	controlled.

3.	 SNMP	Agent	Receives	and	Processes	SetRequest-PDU	The	SNMP
agent	receives	and	processes	the	set	request.	It	examines	each	object	in	the
request,	along	with	the	value	to	which	the	object	is	to	be	set,	and
determines	if	the	request	should	or	should	not	be	honored.

4.	 SNMP	Agent	Makes	Changes	and	Creates	Response-PDU	Assuming
that	the	information	in	the	request	was	correct	(and	any	security	provisions
have	been	satisfied),	the	SNMP	agent	makes	changes	to	its	internal
variables.	The	agent	creates	a	Response-PDU	to	send	back	to	the	SNMP
manager,	which	either	indicates	that	the	request	succeeded	or	contains
error	codes	to	indicate	any	problems	with	the	request	found	during
processing.

5.	 SNMP	Agent	Sends	Response-PDU	The	agent	sends	the	response	back	to
the	SNMP	manager.

6.	 SNMP	Manager	Processes	Response-PDU	The	manager	processes	the
information	in	the	Response-PDU	to	see	the	results	of	the	set.



Figure	67-2.	SNMP	object	modification	process	The	communication	process	for	setting	a	MIB	object
value	is	very	similar	to	that	used	for	reading	one.	The	main	difference	is	that	the	object	values	are	sent

from	the	SNMP	manager	to	the	SNMP	agent,	carried	in	the	SetRequest-PDU	message.

Obviously,	telling	a	device	to	change	a	variable's	value	is	a	more	significant
request	than	just	asking	the	device	to	read	the	value.	For	this	reason,	the
managed	device	must	very	carefully	analyze	and	verify	the	information	in	the
request	to	ensure	that	the	request	is	valid.	The	checks	performed	include	the
following:

Verifying	the	names	of	the	objects	to	be	changed

Verifying	that	the	objects	are	allowed	to	be	modified	(based	on	their	Access
or	Max-Access	object	characteristic,	as	described	in	Chapter	66)

Checking	the	value	included	in	the	request	to	ensure	that	its	type	and	size	are
valid	for	the	object	to	be	changed

This	is	also	a	place	where	general	protocol	security	issues	become	more
important,	as	I'll	discuss	near	the	end	of	this	chapter.

TIP

KEY	CONCEPT	SNMP	NMSs	control	the	operation	of	managed	devices	by	changing	MIB	objects	on
those	devices.	This	is	done	using	the	SetRequest-PDU	message,	which	specifies	the	objects	to	be
modified	and	their	values.

Information	Notification	Using	Trap	and
InformRequest	Messages
Earlier	in	this	chapter,	I	introduced	the	two	basic	methods	of	communicating
information	between	SNMP	devices:	using	polls	or	interrupts.	All	of	the
message	types	and	exchanges	we	have	examined	thus	far	in	this	section	have
been	poll-driven.	They	consist	of	an	SNMP	manager	making	a	specific	request
that	results	in	action	being	taken,	and	a	response	being	generated	by	an	SNMP
agent.

Polling	is	ideal	for	the	exchange	of	routine	information	that	needs	to	be	gathered
on	a	regular	basis.	For	example,	the	regular	get	requests	could	be	used	to	verify
the	settings	on	a	device,	examine	error	counts	over	a	period	of	time,	or	check	its
uptime	or	use	statistics.	And,	obviously,	polling	is	the	only	real	method	for



uptime	or	use	statistics.	And,	obviously,	polling	is	the	only	real	method	for
performing	a	set	operation,	where	data	is	changed.

But	polling	is	not	well	suited	for	important	information	that	needs	to	be
communicated	quickly.	The	reason	is	that	poll-driven	communication	is	always
initiated	by	the	recipient	of	the	information:	the	SNMP	manager.	If	something
significant	occurs	on	a	managed	device	that	the	manager	wasn't	expecting,	the
manager	won't	find	out	about	it	unless	it	specifically	asks	to	see	the	variable	that
has	changed.	This	means	that	important	variables	would	need	to	be	checked	all
the	time	by	the	SNMP	manager,	which	is	highly	efficient.

In	the	real	world,	using	polling	to	implement	situations	where	critical
information	needs	to	be	sent	would	be	like	having	the	emergency	response
service	in	your	town	call	everyone	every	hour	to	find	out	if	they	needed	an
ambulance	or	fire	truck.	Similarly,	in	SNMP,	a	mechanism	was	needed	to	let	an
SNMP	agent	initiate	the	communication	of	information.	This	capability	was
originally	made	part	of	the	SNMPv1	protocol	through	the	inclusion	of	the	Trap-
PDU	message	type.

In	computer	science,	a	trap	is	simply	a	set	of	conditions	that	a	device	monitors
continuously.	If	the	appropriate	conditions	occur,	the	trap	is	triggered	and	causes
some	sort	of	action	to	be	taken.	In	SNMP,	traps	are	programmed	into	SNMP
agents,	and	when	they	are	triggered,	an	SNMP	Trap-PDU	message	is	sent	to	an
SNMP	manager	to	inform	it	of	the	occurrence.	Examples	of	traps	in	the
SNMPv1	specification	include	ones	that	trigger	in	the	event	of	a	communication
link	failure,	restart	of	the	device,	or	an	authentication	problem.

Use	of	SNMP	Trap	and	Trapv2	Messages
The	communication	in	the	case	of	a	trap	is	trivial.	The	SNMP	agent	sends	the
trap,	and	the	SNMP	manager	is	thereby	considered	informed	of	what	happened.
That's	pretty	much	it.	These	are	Unconfirmed	messages,	and	no	reply	is	made
back	to	the	SNMP	agent.	The	triggering	of	the	trap	may	lead	the	network
administrator	to	take	follow-up	action	at	the	device	that	sent	the	trap.

The	designer	of	a	particular	MIB	must	determine	which	traps	to	create	for	a
particular	group	of	objects.	The	implementation	must	specify	the	conditions
under	which	the	traps	will	trigger	and	also	the	destination	to	which	the	Trap-
PDU	message	will	be	sent	when	this	occurs.	In	SNMPv2,	the	trap	notification
message	was	retained	in	the	form	of	the	Trapv2-PDU	message.



message	was	retained	in	the	form	of	the	Trapv2-PDU	message.

Use	of	the	SNMPv2	InformRequest	Message
SNMPv2	also	incorporates	a	second	notification	message	type:	the
InformRequest-PDU	message.	This	type	of	message	is	not	the	same	as	a	trap,	but
it	is	related	to	traps	for	two	reasons:	Both	message	types	are	used	to
communicate	information	without	the	recipient	initiating	the	process,	and	the
two	messages	are	sometimes	used	in	conjunction.

The	purpose	of	the	InformRequest-PDU	is	actually	to	facilitate	the
communication	of	information	between	NMSs.	The	SNMP	manager	on	one
NMS	can	choose	to	inform	another	of	some	piece	of	information	by	sending	an
InformRequest-PDU	to	that	other	SNMP	manager.	The	receiving	manager	then
replies	back	with	a	Response-PDU	to	the	one	that	sent	the	InformRequest-PDU,
confirming	receipt	of	the	inform	message.

A	common	way	that	this	message	is	used	is	to	spread	the	news	when	a	trap
occurs.	Suppose	a	device	experiences	a	power	failure,	which	results	in	a	Trapv2-
PDU	being	sent	to	NMS	1.	The	network	administrator	may	want	to	set	up	NMS
1	so	that	receipt	of	particular	traps	causes	the	information	in	the	trap	to	be
forwarded	to	another	NMS.	The	InformRequest-PDU	would	be	used	to	carry
that	information	from	NMS	1	to,	say,	NMS	2.

TIP

KEY	CONCEPT	SNMP	managed	devices	can	inform	an	NMS	of	an	important	occurrence	by	sending	it
a	Trap-PDU	or	Trapv2-PDU	message.	Network	administrators	determine	the	circumstances	under	which
one	of	these	messages	should	be	transmitted.	SNMPv2	adds	to	this	capability	the	InformRequest-PDU
message,	which	can	be	used	to	propagate	information	about	an	event	between	management	stations.



SNMP	Protocol	Security	Issues	and	Methods
In	my	description	of	the	various	SNMP	versions	in	Chapter	65,	it's	possible	that
I	may	have	been	a	bit	harsh	on	those	who	worked	on	SNMP	during	the	1990s.
The	proliferation	of	many	SNMP	version	2	variants	really	was	unfortunate,	and
not	something	we	often	see	in	the	world	of	TCP/IP.	However,	now	that	we've
seen	the	sort	of	work	that	SNMP	does,	the	desire	for	security	in	the	protocol
would	seem	to	be	clear.	Given	that,	and	given	the	very	low	level	of	security	in
the	initial	SNMPv1	protocol,	it's	understandable	to	some	extent	why	a	conflict
over	security	issues	arose.

The	need	for	security	in	SNMP	is	obvious	because	the	MIB	objects	being
communicated	contain	critical	information	about	network	devices.	We	don't
want	just	anyone	snooping	into	our	network	to	find	out	our	IP	addresses,	how
long	our	machines	have	been	running,	whether	our	links	are	down,	or	pretty
much	anything	else.	When	it	comes	to	object	write	operations	using	a
SetRequest-PDU,	the	concerns	are	magnified	even	more,	because	we	definitely
don't	want	strangers	being	able	to	control	or	interfere	with	our	managed	devices
by	issuing	bogus	commands	to	change	MIB	objects	that	control	device
operation!

Problems	with	SNMPv1	Security
Unfortunately,	the	security	incorporated	into	SNMPv1	was	extremely	limited.	It
really	took	the	form	of	only	one	policy	and	one	simple	technology.

SNMP	was	created	with	the	mindset	that	the	MIB	objects	used	in	the	protocol
would	be	relatively	weak.	This	means	that	the	objects	are	designed	so	that	any
problems	in	working	with	them	result	in	minimal	damage.	The	policy	of	the
designers	of	SNMP	was	that	MIB	objects	that	are	normally	read	should	not
contain	critical	information,	and	objects	that	are	written	should	not	control
critical	functions.

So,	a	read-only	MIB	object	containing	a	description	of	a	machine	is	fine,	but	one
containing	the	administrative	password	is	not.	Similarly,	a	read-write	MIB	object
that	controls	when	the	computer	next	reboots	is	acceptable,	but	one	that	tells	the
object	to	reformat	its	hard	disk	is	definitely	not!



All	the	devices	in	an	SNMP	network	managed	by	a	particular	set	of	NMSs	are
considered	to	be	in	a	community.	Each	SNMPv1	message	sent	between
members	of	the	community	is	identified	by	a	community	string	that	appears	in	a
field	in	the	message	header.	This	string	is	like	a	simple	password.	Any	messages
received	with	the	wrong	string	will	be	rejected	by	the	recipient.

These	security	features	are	better	than	nothing,	but	not	much.	The	use	of	weak
objects	is	comparable	to	a	policy	that	says	not	to	leave	your	car	in	front	of	the
convenience	store	with	the	doors	unlocked	and	the	key	in	the	ignition—it	is
basically	saying,	"Don't	ask	for	trouble."	This	is	wise,	but	it's	not	a	complete
security	solution.

The	community	strings	protect	against	obvious	tampering	in	the	form	of
unauthorized	messages.	However,	the	strings	are	sent	in	plain	text,	and	they	can
easily	be	discovered	and	then	used	to	compromise	the	community.	So,	this	is	like
locking	your	doors	when	parking	your	car—it	protects	against	the	casual	thief
but	not	a	pro.

Of	course,	for	some	people,	not	leaving	their	car	running	and	locking	the	doors
when	they	park	provide	enough	security,	and	SNMPv1's	security	was	also
sufficient	for	some	users	of	SNMP.	But	in	newer,	larger	internetworks,
especially	ones	spanning	large	distances	or	using	public	carriers,	SNMPv1
wasn't	up	to	the	task.	This	is	why	all	that	fun	stuff	occurred	with	SNMPv2.

SNMPv2/v3	Security	Methods
During	the	evolution	of	SNMPv2	variants,	and	eventually	the	creation	of
SNMPv3,	several	new	security	models	were	created	to	improve	SNMPv1's
security:

Party-Based	Security	Model	Party-based	security	was	the	model	for	the
original	SNMPv2	standard,	now	called	SNMPv2p.	A	logical	entity	called	a	party
is	defined	for	communication	that	specifies	a	particular	authentication	protocol
and	a	privacy	(encryption)	protocol.	The	information	is	used	to	verify	that	a
particular	request	is	authentic,	and	to	ensure	that	the	sender	and	receiver	agree
on	how	to	encrypt	and	decrypt	data.

User-Based	Security	Model	(USM)	USM	was	developed	in	the	SNMPv2u



variant	and	used	in	SNMPv2*	(SNMPv2	asterisk).	It	eventually	was	adopted	in
SNMPv3.	The	idea	here	is	to	move	away	from	tying	security	to	the	machines
and	instead	use	more	traditional	security	based	on	access	rights	of	a	user	of	a
machine.	A	variety	of	authentication	and	encryption	protocols	can	be	used	to
ensure	access	rights	are	respected	and	to	protect	message	privacy.	The	method
relies	on	timestamps,	clock	synchronization,	and	other	techniques	to	protect
against	certain	types	of	attacks.

View-Based	Access	Control	Model	(VACM)	VACM	is	part	of	SNMPv3,	and	it
defines	a	method	where	more	fine	control	can	be	placed	on	access	to	objects	on	a
device.	A	view	specifies	a	particular	set	of	MIB	objects	that	can	be	accessed	by	a
particular	group	in	a	particular	context.	By	controlling	these	views,	an
administrator	can	manage	what	information	is	accessed	by	whom.

Party-based	security	pretty	much	died	with	SNMPv2p.	USM	and	VACM	are
part	of	SNMPv3	and	provide	enhanced	security	for	those	who	need	it.	Again,	it's
interesting	to	note	how	many	networks	continue	to	use	SNMPv1,	security	warts
and	all.

SNMPv3	took	another	important	security-related	step	in	redefining	the	SNMP
architecture	to	seamlessly	support	multiple	security	models.	This	enables
different	implementations	to	choose	the	security	model	that	is	best	for	them.
USM	is	the	default	model	in	SNMPv3.



Chapter	68.	SNMP	PROTOCOL
MESSAGING	AND	MESSAGE
FORMATS

As	we	saw	extensively	in	the	previous	chapter,	the	communication	of
management	information	is	accomplished	through	the	exchange	of	Simple
Network	Management	Protocol	(SNMP)	messages	that	contain	protocol	data
units	(PDUs).	Like	the	messages	of	most	TCP/IP	protocols,	these	PDUs	are
designed	to	use	a	particular	field	format,	and	are	created,	addressed,	and
transported	according	to	specific	protocol	rules.	SNMP	messages	include	fields
that	control	the	operation	of	the	protocol,	and	they	carry	a	payload	of
management	information	in	the	form	of	management	information	base	(MIB)
objects.

In	this	chapter,	I	describe	the	details	of	how	messaging	is	accomplished	in	the
SNMP	protocol.	I	begin	with	a	general	discussion	of	issues	related	to	message
generation,	addressing,	and	transport,	and	a	description	of	how	retransmission	of
messages	is	handled	when	necessary.	I	discuss	the	way	fields	are	defined	in
SNMP	messages	and	describe	their	general	format,	explaining	the	difference
between	the	overall	message	and	the	PDU	it	contains.	I	then	examine	the
message	format	used	in	all	of	the	important	SNMP	versions,	showing	the
structure	of	each	message	type	and	the	fields	used.

SNMP	Protocol	Message	Generation
Message	generation	in	SNMP	is	a	bit	different	than	the	typical	TCP/IP
client/server	model	used	for	most	other	protocols.	There	aren't	really	any	formal
clients	and	servers	in	SNMP,	since	management	information	can	be	obtained



from	any	device;	it	is	distributed.	Most	of	the	message	exchanges	use	a	matched
pair	of	request	and	reply	messages.	The	network	management	station	(NMS)
usually	acts	as	the	client	in	these	exchanges,	sending	a	particular	get	or	set
request	to	an	SNMP	agent,	which	plays	the	role	of	server	for	the	information	it
contains.	However,	SNMP	agents	aren't	usually	considered	servers	in	the
conventional	sense.

SNMP	traps	deviate	from	the	normal	request/reply	model	of	message	generation
entirely.	When	a	trap	is	triggered,	an	SNMP	agent	sends	a	trap	message	to	an
NMS	on	its	own,	not	in	reaction	to	receiving	a	request.	Since	trap	messages	are
unconfirmed,	there	is	no	reply.	Note,	however,	that	the	SNMP	versions	2	and	3
(SNMPv2	and	SNMPv3)	InformRequest-PDU	message	(discussed	later	in	this
chapter)	is	confirmed,	and	a	response	message	is	thus	sent	back	to	the	NMS	that
generates	it.



SNMP	Transport	Mappings
Once	a	message	has	been	generated,	it	is	sent	using	the	protocols	at	the	levels
below	the	application	layer	where	SNMP	resides.	As	you	saw	in	the	overview	of
the	SNMP	protocol	in	the	previous	chapter,	the	current	SNMP	standard	set
separates	the	description	of	protocol	operations	and	PDUs	from	the	methods
used	to	actually	send	them.

Starting	with	version	2,	SNMP	has	defined	several	transport	mappings	that
describe	how	SNMP	PDUs	can	be	sent	over	a	variety	of	internetworking
protocol	suites,	including	TCP/IP,	OSI,	IPX/SPX	(Novell),	and	AppleTalk.
Many	of	the	specific	details	of	SNMP	messaging	depend	on	the	transport
mapping	that	is	used	in	a	particular	implementation.	SNMP	is	primarily	used	on
TCP/IP	internetworks,	and	TCP/IP	is	where	our	interest	lies	here,	so	the	rest	of
this	discussion	will	deal	with	transport	issues	when	SNMP	is	used	over	the
Internet	Protocol	(IP).

The	standard	IP	transport	mapping	for	SNMP	calls	for	it	to	be	carried	using	the
User	Datagram	Protocol	(UDP).	This	decision	goes	back	to	the	initial
implementation	of	SNMPv1	(before	there	were	distinct	transport	mappings).
UDP	was	likely	chosen	because	it	is	more	efficient	for	the	simple	request/reply
messaging	scheme	SNMP	uses.	The	many	Transmission	Control	Protocol	(TCP)
features	were	not	considered	necessary	and	add	overhead	that	SNMP's	designers
wanted	to	avoid.	It	is	possible	that	TCP	could	be	used	to	carry	SNMP,	defined	as
a	different	transport	mapping,	but	I	don't	believe	this	is	actually	done.

Two	well-known	UDP	port	numbers	are	reserved	for	SNMP.	The	first	is	port
161,	which	is	the	general-purpose	SNMP	number.	All	devices	that	are	set	up	to
listen	for	SNMP	requests—both	agents	and	managers—listen	on	port	161.	Each
device	receives	any	messages	sent	and	replies	back	to	the	client,	the	SNMP
entity	that	issued	the	request,	which	uses	an	ephemeral	port	number	to	identify
the	requesting	process.	The	second	UDP	port	number	is	162,	which	is	reserved
for	SNMP	traps.	Having	two	numbers	allows	regular	messages	and	traps	to	be
kept	separate.	Normally,	only	NMSs	would	listen	on	port	162,	since	agents	are
not	recipients	of	traps.

The	use	of	UDP	allows	SNMP	information	communication	to	be	streamlined,
since	there	is	no	need	to	establish	a	TCP	connection,	and	since	message	headers



since	there	is	no	need	to	establish	a	TCP	connection,	and	since	message	headers
are	shorter	and	processing	time	slightly	reduced.	But	the	use	of	UDP	introduces
a	couple	of	issues	that	SNMP	implementations	must	be	concerned	with,
including	message	size	and	lost	messages.

UDP	Message	Size	Issues
The	first	issue	is	that	of	message	length.	SNMP	PDUs	can	carry	many	MIB
objects,	which	means	they	could	potentially	be	rather	large.	However,	UDP	is
limited	in	the	size	of	message	it	can	carry	(where	TCP	is	not).	The	standards
specify	that	SNMP	entities	must	accept	messages	up	to	at	least	484	bytes	in	size.
They	also	recommend	that	SNMP	implementations	be	able	to	accept	even	larger
messages,	up	to	1,472	bytes,	which	would	correspond	to	the	largest	size	message
that	can	be	encapsulated	in	an	Ethernet	frame	(1,500	bytes,	allowing	20	bytes	for
the	IP	header	and	8	for	the	UDP	header).

The	use	of	the	GetBulkRequest-PDU	message	type	in	SNMPv2	and	SNMPv3
requires	particular	care,	since	it	allows	a	single	request	to	result	in	many	MIB
objects	being	sent	back	in	a	response.	The	Max	Repetitions	parameter	must	be
chosen	conservatively	so	the	SNMP	agent	doesn't	try	to	send	an	enormous
message	that	won't	fit.

Lost	Transmission	Issues
The	second	issue	with	UDP	is	the	price	we	pay	for	its	efficiency	and	simplicity:
a	lack	of	transport	features.	UDP	doesn't	guarantee	data	delivery	or	handle
retransmissions,	which	means	a	request	or	reply	could,	in	theory,	be	lost	in
transit.	Only	the	device	that	initially	sends	a	request	can	know	if	there	was	a
problem	with	transport.	It	sends	the	request,	and	if	it	receives	no	reply,	it	knows
either	the	request	or	response	got	lost.	This	puts	the	responsibility	for
retransmission	on	the	device	that	sends	the	request	message.

NMSs	sending	requests	to	SNMP	agents	generally	use	a	timer	to	keep	track	of
how	much	time	has	elapsed	since	a	request	was	sent.	If	the	response	doesn't
arrive	within	a	certain	time	interval,	the	request	is	sent	again.	Because	of	how
SNMP	works,	having	a	request	be	received	more	than	once	accidentally	will
normally	not	cause	any	problems	(a	property	known	as	idempotence).	The	NMS



does	need	to	employ	an	algorithm	to	ensure	that	it	does	not	generate	too	many
retransmissions	and	clog	the	network	(especially	since	congestion	might	be
causing	the	loss	of	its	messages	in	the	first	place).

Since	traps	are	unconfirmed,	there	is	no	way	for	the	intended	recipient	of	a	trap
PDU	to	know	if	did	not	arrive,	nor	is	there	any	way	for	the	sender	of	the	trap
PDU	to	know.	This	is	just	a	weakness	in	the	protocol;	the	overall	reliability	of
TCP/IP	(and	the	underlying	networks)	ensures	that	these	messages	are	not	lost
very	often.

TIP

KEY	CONCEPT	SNMP	is	designed	with	a	separately	defined	set	of	protocol	operations	and	transport
mappings,	so	it	can	be	carried	over	many	different	internetworking	technologies.	The	most	common	of
these	transport	mechanisms	is	TCP/IP,	where	SNMP	makes	use	of	UDP	running	over	IP,	for	its	efficient
and	simple	communication.	The	lack	of	reliability	features	in	UDP	means	that	requests	must	be	tracked
by	the	device	sending	them	and	retransmitted	if	no	reply	is	received.	The	limited	size	of	UDP	messages
restricts	the	amount	of	information	that	can	be	sent	in	any	SNMP	PDU.



SNMP	General	Message	Format
To	structure	its	messages	for	transport,	SNMP	uses	a	special	field	format,	like
most	protocols.	What's	interesting	about	SNMP,	however,	is	that	its	standards	do
not	describe	the	SNMP	message	format	using	a	simple	list	of	fields	the	way	most
TCP/IP	standards	do.	Instead,	SNMP	messages	are	defined	using	the	same	data
description	language	(Abstract	Syntax	Notation	1	or	ASN.1)	that	is	used	to
describe	MIB	objects.

The	reason	for	this	is	that	SNMP	messages	implement	the	various	SNMP
protocol	operations	with	the	ultimate	goal	of	allowing	MIB	objects	to	be
conveyed	between	SNMP	entities.	These	MIB	objects	become	fields	within	the
messages	to	be	sent.	The	MIB	objects	carried	in	SNMP	messages	are	defined
using	ASN.1	as	described	in	the	Structure	of	Management	Information	(SMI)
standard.	So,	it	makes	sense	to	define	SNMP	messages	and	all	their	fields	using
the	same	syntax.

Since	all	SNMP	fields	are	defined	like	MIB	objects,	they	are	like	objects	in	that
they	have	certain	characteristics.	Specifically,	each	field	has	a	name,	and	its
contents	are	described	using	one	of	the	standard	SMI	data	types.	So,	unlike
normal	message	formats	where	each	field	has	just	a	name	and	a	length,	an
SNMP	message	format	field	has	a	name	and	a	syntax,	such	as	Integer,	Octet
String,	or	IpAddress.	The	syntax	of	the	field	defines	its	length	and	how	it	is
formatted	and	used.

Just	as	regular	message	formats	use	integers	to	represent	specific	values	(for
example,	the	numeric	Opcode	field	in	the	DNS	message	header,	which	indicates
the	DNS	message	type),	this	can	be	done	in	SNMP	using	an	enumerated	integer
type.	An	example	would	be	the	Error	Status	field,	where	a	range	of	integer
values	represents	different	error	conditions.

The	decision	to	define	SNMP	messages	using	ASN.1	allows	the	message	format
description	to	be	consistent	with	how	the	objects	in	the	format	are	described,
which	is	nice.	Unfortunately,	it	means	that	the	field	formats	are	very	hard	to
determine	from	the	standards,	because	they	are	not	described	in	one	place.
Instead,	the	overall	message	format	is	defined	as	a	set	of	components,	and	those
components	contain	subcomponents	that	may	be	defined	elsewhere,	and	so	on.
In	fact,	the	full	message	format	isn't	even	defined	in	one	standard;	parts	are



In	fact,	the	full	message	format	isn't	even	defined	in	one	standard;	parts	are
spread	across	several	standards.	So,	you	can't	look	in	one	place	and	see	the
whole	message	format.	Well,	I	should	say	that	you	can't	if	you	use	the	standards,
but	you	can	if	you	look	here.

To	make	things	easier	for	you,	I	have	converted	these	distributed	syntax
descriptions	into	the	same	tabular	field	formats	I	use	throughout	the	rest	of	this
book.	I	will	begin	here	by	describing	the	general	format	used	for	SNMP
messages,	and	in	the	remainder	of	the	chapter,	explore	the	specific	formats	used
in	each	version	of	SNMP.

The	Difference	Between	SNMP	Messages	and
PDUs
To	understand	SNMP	messages,	it	is	important	that	you	first	grasp	the	difference
between	SNMP	messages	and	SNMP	PDUs.	We've	seen	in	looking	at	SNMP
protocol	operations	that	the	two	terms	are	often	used	interchangeably.	This	is
because	each	message	carries	one	PDU,	and	the	PDU	is	the	most	important	part
of	the	message.

However,	strictly	speaking,	an	SNMP	PDU	and	an	SNMP	message	are	not
exactly	the	same.	The	PDU	is	the	actual	piece	of	information	that	is	being
communicated	between	SNMP	entities.	It	is	carried	within	the	SNMP	message
along	with	a	number	of	header	fields,	which	are	used	to	carry	identification	and
security	information.	Thus,	conceptually,	the	SNMP	message	format	can	be
considered	to	have	two	overall	sections:

Message	Header	Contains	fields	used	to	control	how	the	message	is	processed,
including	fields	for	implementing	SNMP	security.

Message	Body	(PDU)	Contains	the	main	portion	of	the	message.	In	this	case,
the	message	body	is	the	PDU	being	transmitted.

The	overall	SNMP	message	is	sometimes	called	a	wrapper	for	the	PDU,	since	it
encapsulates	the	PDU	and	precedes	it	with	additional	fields.	The	distinction
between	the	PDU	and	the	message	format	as	a	whole	began	as	a	formality	in
SNMPv1,	but	it	became	quite	important	in	later	versions.	The	reason	is	that	it
allows	the	fields	used	for	basic	protocol	operations	(which	are	in	the	PDU)	to	be



kept	separate	from	fields	used	to	implement	security	features.	In	SNMPv2,	the
implementation	of	security	became	a	very	big	deal	indeed,	so	this	flexibility	was
quite	important.

General	PDU	Format
The	fields	in	each	PDU	depend	on	the	PDU	type,	but	can	be	divided	into	the
following	general	substructure:

PDU	Control	Fields	A	set	of	fields	that	describe	the	PDU	and	communicate
information	from	one	SNMP	entity	to	another.

PDU	Variable	Bindings	A	set	of	descriptions	of	the	MIB	objects	in	the	PDU.
Each	object	is	described	as	a	binding	of	a	name	to	a	value.

Each	PDU	will	follow	this	general	structure,	which	is	shown	in	Figure	68-1,
differing	only	in	the	number	of	control	fields	and	variable	bindings	and	how	they
are	used.	In	theory,	each	PDU	could	have	a	different	message	format	using	a
distinct	set	of	control	fields,	but	in	practice,	most	PDUs	for	a	given	SNMP
version	use	the	same	control	fields	(with	some	exceptions).

Figure	68-1.	SNMP	general	message	format

Each	variable	binding	describes	one	MIB	object.	The	binding	consists	of	a	pair
of	subfields,	one	specifying	the	name	of	the	object	in	standard	SNMP	object
identifier	notation	and	one	its	value,	formatted	to	match	the	object's	SMI	syntax.



For	example,	if	the	object	were	of	type	Integer,	the	value	field	would	be	four
bytes	wide	and	contain	a	numeric	integer	value.	Table	68-1	describes	the
subfield	format	for	each	PDU	variable	binding.

Table	68-1.	SNMP	Variable	Binding	Format

Subfield
Name

Syntax Size
(Bytes)

Description

Object
Name

Sequence
of
Integer

Variable The	numeric	object	identifier	of	the	MIB	object,	specified	as	a
sequence	of	integers.	For	example,	the	object	sysLocation
has	the	object	identifier	1.3.6.1.2.1.1.6,	so	it	would	be
specified	as	1	3	6	1	2	1	1	6	using	ASN.1.

Object
Value

Variable Variable In	any	type	of	get	request,	this	subfield	is	a	placeholder;	it	is
structured	using	the	appropriate	syntax	for	the	object	but	has
no	value	(since	the	get	request	is	asking	for	that	value!).	In	a
set	request	(SetRequest-PDU)	or	in	a	reply	message	carrying
requested	data	(GetResponse-PDU	or	Response-PDU),	the
value	of	the	object	is	placed	here.

TIP

KEY	CONCEPT	The	general	format	of	SNMP	messages	consists	of	a	message	header	and	a	message
body.	The	body	of	the	message	is	also	called	the	protocol	data	unit,	or	PDU,	and	contains	a	set	of	PDU
control	fields	and	a	number	of	variable	bindings.	Each	variable	binding	describes	one	MIB	object	and
consists	of	the	object's	name	and	value.



SNMP	Version	1	(SNMPv1)	Message	Format
The	SNMP	general	message	format	was	first	used	to	define	the	format	of
messages	in	the	original	SNMP	protocol,	SNMPv1.	This	first	version	of	SNMP
is	probably	best	known	for	its	relative	simplicity	compared	to	the	versions	that
followed	it.	This	is	reflected	in	its	message	format,	which	is	quite
straightforward.

SNMPv1	General	Message	Format
The	general	message	format	in	SNMPv1	is	a	wrapper	consisting	of	a	small
header	and	an	encapsulated	PDU.	Not	very	many	header	fields	were	needed	in
SNMPv1	because	the	community-based	security	method	in	SNMPv1	is	very
rudimentary.	The	overall	format	for	SNMPv1	messages	is	described	in	Table	68-
2	and	illustrated	in	Figure	68-2.

Table	68-2.	SNMP	Version	1	(SNMPv1)	General	Message	Format

Field
Name

Syntax Size
(Bytes)

Description

Version Integer 4 Version	Number:	Describes	the	SNMP	version	number	of	this
message;	used	for	ensuring	compatibility	between	versions.
For	SNMPv1,	this	value	is	actually	0,	not	1.

Community Octet
String

Variable Community	String:	Identifies	the	SNMP	community	in	which
the	sender	and	recipient	of	this	message	are	located.	This	is
used	to	implement	the	simple	SNMP	community-based
security	mechanism,	described	in	the	previous	chapter.

PDU — Variable Protocol	Data	Unit:	The	PDU	being	communicated	as	the
body	of	the	message.



Figure	68-2.	SNMPv1	general	message	format

SNMPv1	PDU	Formats
All	of	the	PDUs	in	SNMPv1	have	the	same	format,	with	one	exception:	Trap-
PDU.	The	exact	semantics	of	each	field	in	the	PDU	depend	on	the	particular
message.	For	example,	the	ErrorStatus	field	only	has	meaning	in	a	reply	and	not
a	request,	and	object	values	are	used	differently	in	requests	and	replies	as	well.

Table	68-3	shows	the	common	format	for	most	of	the	SNMPv1	PDUs:
GetRequest-PDU,	GetNextRequest-PDU,	SetRequest-PDU,	and	GetResponse-
PDU.

Table	68-3.	SNMPv1	Common	PDU	Format

Field
Name

Syntax Size
(Bytes)

Description

PDU
Type

Integer
(Enumerated)

4 PDU	Type:	An	integer	value	that	indicates	the	PDU	type:

0	=	GetRequest-PDU

1	=	GetNextRequest-PDU

2	=	GetNextRequest-PDU

3	=	SetRequest-PDU

Request
ID

Integer 4 Request	Identifier:	A	number	used	to	match	requests	with
replies.	It	is	generated	by	the	device	that	sends	a	request
and	copied	into	this	field	in	a	GetResponse-PDU	by	the
responding	SNMP	entity.



Error
Status

Integer
(Enumerated)

4 Error	Status:	An	integer	value	that	is	used	in	a
GetResponse-PDU	to	tell	the	requesting	SNMP	entity	the

result	of	its	request.	A	value	of	zero	indicates	that	no	error
occurred;	the	other	values	indicate	what	sort	of	error
happened,	as	listed	in	Table	68-4.

Error
Index

Integer 4 Error	Index:	When	Error	Status	is	nonzero,	this	field
contains	a	pointer	that	specifies	which	object	generated	the
error.	Always	zero	in	a	request.

Variable
Bindings

Variable Variable Variable	Bindings:	A	set	of	name/value	pairs	identifying
the	MIB	objects	in	the	PDU,	and	in	the	case	of	a
SetRequest-PDU	or	GetResponse-PDU,	containing	their
values.	See	the	discussion	of	the	general	SNMP	general
PDU	format	earlier	in	this	chapter	for	more	on	these
bindings.

Table	68-4.	SNMPv1	Error	Status	Field	Values

Error
Status
Value

Error	Code Description

0 noError No	error	occurred.	This	code	is	also	used	in	all	request	PDUs,	since
they	have	no	error	status	to	report.

1 tooBig The	size	of	the	GetResponse-PDU	would	be	too	large	to	transport.

2 noSuchName The	name	of	a	requested	object	was	not	found.

3 badValue A	value	in	the	request	didn't	match	the	structure	that	the	recipient	of
the	request	had	for	the	object.	For	example,	an	object	in	the	request
was	specified	with	an	incorrect	length	or	type.

4 readOnly An	attempt	was	made	to	set	a	variable	that	has	an	Access	value
indicating	that	it	is	read-only.

5 genErr An	error	other	than	one	of	the	preceding	four	specific	types	occurred.



Figure	68-3.	SNMPv1	common	PDU	format

Table	68-5	describes	the	special	format	for	the	SNMPv1	Trap-PDU,	and	it	is
illustrated	in	Figure	68-4.

Table	68-5.	SNMPv1	Trap-PDU	Format

Field
Name

Syntax Size
(Bytes)

Description

PDU
Type

Integer
(Enumerated)

4 PDU	Type:	An	integer	value	that	indicates	the	PDU
type,	which	is	4	for	a	Trap-PDU	message.

Enterprise Sequence	of
Integer

Variable Enterprise:	An	object	identifier	for	a	group,	which
indicates	the	type	of	object	that	generated	the	trap.

Agent
Addr

NetworkAddress 4 Agent	Address:	The	IP	address	of	the	SNMP	agent
that	generated	the	trap.	This	is	also	in	the	IP	header	at
lower	levels	but	inclusion	in	the	SNMP	message
format	allows	for	easier	trap	logging	within	SNMP.
Also,	in	the	case	of	a	multihomed	host,	this	specifies
the	preferred	address.

Generic
Trap

Integer
(Enumerated)

4 Generic	Trap	Code:	A	code	value	specifying	one	of	a
number	of	predefined	generic	trap	types.

Specific
Trap

Integer 4 Specific	Trap	Code:	A	code	value	indicating	an
implementation-specific	trap	type.

Time
Stamp

TimeTicks 4 Time	Stamp:	The	amount	of	time	since	the	SNMP
entity	sending	this	message	last	initialized	or
reinitialized.	Used	to	time	stamp	traps	for	logging
purposes.



Variable
Bindings

Variable Variable Variable	Bindings:	A	set	of	name/value	pairs
identifying	the	MIB	objects	in	the	PDU.	See	the
discussion	of	the	general	SNMP	general	PDU	format
earlier	in	this	chapter	for	more	on	these	bindings.

Figure	68-4.	SNMPv1	Trap-PDU	format



SNMP	Version	2	(SNMPv2)	Message	Formats
After	SMNPv1	had	been	in	use	for	several	years,	certain	issues	with	it	were
noticed	and	areas	for	improvement	identified.	This	led	to	the	development	of	the
original	SNMPv2,	which	was	intended	to	enhance	SNMPv1	in	many	areas,
including	MIB	object	definitions,	protocol	operations,	and	security.	This	last
area,	security,	led	to	the	proliferation	of	SNMPv2	version	variants	that	I
described	in	Chapter	65.

Since	there	are	several	different	SNMPv2s,	there	are	also	several	message
formats	for	SNMPv2.	This	is	confusing,	but	it	would	be	even	worse	without	the
modular	nature	of	SNMP	messages	coming	to	the	rescue.	The	protocol
operations	in	SNMPv2	were	changed	from	SNMPv1,	which	necessitated	some
modifications	to	the	format	of	SNMPv2	PDUs.	However,	the	protocol	operations
are	the	same	for	all	the	SNMPv2	variations.	The	differences	between	SNMPv2
variants	are	in	the	areas	of	security	implementation.	Thus,	the	result	of	this	is
that	the	PDU	format	is	the	same	for	all	the	SNMPv2	types,	while	the	overall
message	format	differs	for	each	variant.	(This	is	why	the	distinction	between	a
PDU	and	a	message	is	not	just	an	academic	one!)

During	the	SNMPv2	divergence,	four	variations	were	defined:	the	original
SNMPv2	(SNMPv2p),	community-based	SNMPv2	(SNMPv2c),	user-based
SNMPv2	(SNMPv2u),	and	SNMPv2	asterisk	(SNMPv2*).	Of	these,	the	first
three	were	documented	in	sets	of	SNMP	RFC	standards,	as	discussed	in
Chapter	65;	the	fourth	was	not.	The	structure	of	the	overall	message	format	for
each	variant	is	discussed	in	an	administrative	or	security	standard	for	the
variation	in	question,	which	makes	reference	to	the	shared	SNMPv2	standard	for
the	PDU	format	(RFC	1905).

SNMP	Version	2	(SNMPv2p)	Message	Format
The	party-based	security	model	is	quite	complex,	but	the	basic	messaging	in	this
version	is	described	through	the	definition	of	a	management	communication,
which	describes	the	source	and	destination	party	and	makes	reference	to	a
context	for	the	communication.	The	overall	message	format	is	described	in	detail
in	RFC	1445.	This	information	is	summarized	in	Table	68-6	and	shown



graphically	in	Figure	68-5.

Table	68-6.	SNMP	Version	2	(SNMPv2p)	General	Message	Format

Field
Name

Syntax Size
(Bytes)

Description

Version Integer 4 Version	Number:	Describes	the	SNMP	version	number	of	this
message;	used	for	ensuring	compatibility	between	versions.	For
SNMPv2p,	this	value	is	2.

Dst
Party

Sequence
of
Integer

Variable Destination	Party:	An	object	identifier	that	specifies	the	party
that	is	the	intended	recipient	of	the	message.

Src
Party

Sequence
of
Integer

Variable Source	Party:	An	object	identifier	that	specifies	the	party	that	is
the	sender	of	the	message.

Context Sequence
of
Integer

Variable Context:	Defines	a	set	of	MIB	object	resources	that	is	accessible
by	a	particular	entity.

PDU — Variable PDU:	The	protocol	data	unit	of	the	message.

Figure	68-5.	SNMPv2p	general	message	format



Community-Based	SNMP	Version	2	(SNMPv2c)
Message	Format
The	community-based	version	of	SNMPv2	was	intended	to	keep	the	new
protocol	enhancements	introduced	by	SNMPv2p	but	go	back	to	the	simple
SNMPv1	security	model.	As	such,	the	defining	document	for	SNMPv2c,	RFC
1901,	specifies	that	its	overall	message	format	is	the	same	as	that	of	SNMPv1,
except	that	the	version	number	is	changed.	This	is	shown	in	Table	68-7	and
illustrated	in	Figure	68-6.

Table	68-7.	Community-Based	SNMP	Version	2	(SNMPv2c)	General
Message	Format

Field
Name

Syntax Size
(Bytes)

Description

Version Integer 4 Version	Number:	Describes	the	SNMP	version	number	of	this
message;	used	for	ensuring	compatibility	between	versions.
For	SNMPv2c,	this	value	is	1.

Community Octet
String

Variable Community	String:	Identifies	the	SNMP	community	in	which
the	sender	and	recipient	of	this	message	are	located.

PDU — Variable Protocol	Data	Unit:	The	PDU	being	communicated	as	the
body	of	the	message.

Figure	68-6.	SNMPv2c	general	message	format



User-Based	SNMP	Version	2	(SNMPv2u)
Message	Format
The	user-based	version	of	SNMPv2	was	defined	as	an	optional	security	model	at
the	time	that	SNMPv2c	was	standardized.	RFC	1910	defines	the	user-based
security	model	and	the	message	format	described	in	Table	68-8	and	illustrated	in
Figure	68-7.

Table	68-8.	User-Based	SNMP	Version	2	(SNMPv2u)	General	Message
Format

Field
Name

Syntax Size
(Bytes)

Description

Version Integer 4 Version	Number:	Describes	the	SNMP	version	number	of	this
message;	used	for	ensuring	compatibility	between	versions.
For	SNMPv2u,	this	value	is	2.	Note	that	this	is	the	same	value
as	used	for	SNMPv2p.

Parameters Octet
String

Variable Parameters:	A	string	of	parameters	used	to	implement	the
user-based	security	model,	which	are	briefly	described	in
Table	68-9.

PDU — Variable Protocol	Data	Unit:	The	PDU	being	communicated	as	the
body	of	the	message.	This	may	be	in	either	encrypted	or
unencrypted	form.



Figure	68-7.	SNMPv2u	general	message	format

Table	68-9.	SNMPv2u	Parameter	Field	Subfields

Subfield
Name

Size
(Bytes)

Description

Model 1 Model	Number:	Set	to	1	to	identify	the	user-based	model.

QoS 1 Quality	of	Service:	Indicates	whether	authentication	and/or	privacy
(encryption)	have	been	used	and	whether	generation	of	a	Report-PDU	is
allowed.

Agent	ID 12 Agent	Identifier:	The	identifier	of	the	agent	sending	the	message.	Used	to
defeat	replay	attacks	and	certain	other	types	of	security	attacks.

Agent
Boots

4 Agent	Number	of	Boots:	The	number	of	times	the	agent	has	been	booted
or	rebooted	since	its	Agent	ID	was	set;	used	to	defeat	certain	security



Boots or	rebooted	since	its	Agent	ID	was	set;	used	to	defeat	certain	security
attacks.

Agent
Time

4 Agent	Time	Since	Last	Boot:	The	number	of	seconds	since	the	last	boot
of	this	agent.	Again,	used	to	defeat	replay	and	other	security	attacks.

Max	Size 2 Maximum	Message	Size:	The	maximum	size	of	message	that	the	sender
of	this	message	can	receive.

User	Len 1 User	Length:	The	length	of	the	User	Name	field	below.

User
Name

Variable
(1	to
16)

User	Name:	The	name	of	the	user	on	whose	behalf	the	message	is	being
sent.

Auth	Len 1 Authentication	Digest	Length:	The	length	of	the	Auth	Digest	field.

Auth
Digest

Variable
(0	to
255)

Authentication	Digest:	An	authentication	value	used	to	verify	the	identity
and	genuineness	of	this	message,	when	authentication	is	used.

Context
Selector

Variable
(0	to
40)

Context	Selector:	A	string	that	is	combined	with	the	Agent	ID	to	specify
a	particular	context	that	contains	the	management	information	referenced
by	this	message.

SNMPv2	PDU	Formats
The	format	of	protocol	data	units	in	SNMPv2	is	described	in	RFC	1905,	and	it	is
similar	to	that	of	SNMPv1.	The	format	for	all	PDUs	in	SNMPv2	is	the	same,
except	for	the	GetBulkRequest-PDU	message.	(Oddly,	this	includes	the	Trapv2-
PDU	message,	even	though	the	Trap-PDU	message	in	SNMPv1	used	a	distinct
format.)

Table	68-10	shows	the	common	SNMPv2	PDU	format.	Table	68-11	contains	a
listing	of	the	different	values	for	the	Error	Status	field	and	how	they	are
interpreted.	Figure	68-8	illustrates	the	SNMPv2	common	PDU	format.

Table	68-10.	SNMPv2	Common	PDU	Format

Field
Name

Syntax Size
(Bytes)

Description

PDU
Type

Integer
(Enumerated)

4 PDU	Type:	An	integer	value	that	indicates	the	PDU	type:

0	=	GetRequest-PDU



1	=	GetNextRequest-PDU

2	=	Response-PDU

3	=	SetRequest-PDU

4	=	Obsolete,	not	used	(this	was	the	old	Trap-PDU	in
SNMPv1)

5	=	GetBulkRequest-PDU	(has	its	own	format;	see
Table	68-12)

6	=	InformRequest-PDU

7	=	Trapv2-PDU

8	=	Report-PDU

Request
ID

Integer 4 Request	Identifier:	A	number	used	to	match	requests	with
replies.	It	is	generated	by	the	device	that	sends	a	request
and	copied	into	this	field	in	a	Response-PDU	by	the
responding	SNMP	entity.

Error
Status

Integer
(Enumerated)

4 Error	Status:	An	integer	value	that	is	used	in	a	Response-
PDU	to	tell	the	requesting	SNMP	entity	the	result	of	its
request.	A	value	of	zero	indicates	that	no	error	occurred;
the	other	values	indicate	what	sort	of	error	happened	(see
Table	68-11).

Error
Index

Integer 4 Error	Index:	When	Error	Status	is	nonzero,	this	field
contains	a	pointer	that	specifies	which	object	generated	the
error.	Always	zero	in	a	request.

Variable
Bindings

Variable Variable Variable	Bindings:	A	set	of	name/value	pairs	identifying
the	MIB	objects	in	the	PDU,	and	in	the	case	of	messages
other	than	requests,	containing	their	values.	See	the
discussion	of	the	general	SNMP	general	PDU	format
earlier	in	this	chapter	for	more	on	these	bindings.

NOTE

The	first	six	Error	Status	field	values	(0	to	5)	are	maintained	as	used	in	SNMPv1	for	compatibility,	but
SNMPv2	adds	many	new	error	codes	that	provide	more	specific	indication	of	the	exact	nature	of	an	error
in	a	request.	The	genErr	code	is	still	used	only	when	none	of	the	specific	error	types	(either	the	old	codes
or	the	new	ones)	apply.

Table	68-11.	SNMPv2	PDU	Error	Status	Field	Values

Error
Status

Error	Code Description



Status
Value

0 noError No	error	occurred.	This	code	is	also	used	in	all	request	PDUs,
since	they	have	no	error	status	to	report.

1 tooBig The	size	of	the	Response-PDU	would	be	too	large	to	transport.

2 noSuchName The	name	of	a	requested	object	was	not	found.

3 badValue A	value	in	the	request	didn't	match	the	structure	that	the
recipient	of	the	request	had	for	the	object.	For	example,	an
object	in	the	request	was	specified	with	an	incorrect	length	or
type.

4 readOnly An	attempt	was	made	to	set	a	variable	that	has	an	Access	value
indicating	that	it	is	read-only.

5 genErr An	error	occurred	other	than	one	indicated	by	a	more	specific
error	code	in	this	table.

6 noAccess Access	was	denied	to	the	object	for	security	reasons.

7 wrongType The	object	type	in	a	variable	binding	is	incorrect	for	the	object.

8 wrongLength A	variable	binding	specifies	a	length	incorrect	for	the	object.

9 wrongEncoding A	variable	binding	specifies	an	encoding	incorrect	for	the
object.

10 wrongValue The	value	given	in	a	variable	binding	is	not	possible	for	the
object.

11 noCreation A	specified	variable	does	not	exist	and	cannot	be	created.

12 inconsistentValue A	variable	binding	specifies	a	value	that	could	be	held	by	the
variable	but	cannot	be	assigned	to	it	at	this	time.

13 resourceUnavailable An	attempt	to	set	a	variable	required	a	resource	that	is	not
available.

14 commitFailed An	attempt	to	set	a	particular	variable	failed.

15 undoFailed An	attempt	to	set	a	particular	variable	as	part	of	a	group	of
variables	failed,	and	the	attempt	to	then	undo	the	setting	of
other	variables	was	not	successful.

16 authorizationError A	problem	occurred	in	authorization.



17 notWritable The	variable	cannot	be	written	or	created.

18 inconsistentName The	name	in	a	variable	binding	specifies	a	variable	that	does
not	exist.

Figure	68-8.	SNMPv2	common	PDU	format

The	special	format	of	the	SNMPv2	GetBulkRequest-PDU	message	is	shown	in
Table	68-12	and	illustrated	in	Figure	68-9.

Figure	68-9.	SNMPv2	GetBulkRequest-PDU	format

Table	68-12.	SNMPv2	GetBulkRequest-PDU	Format

Field
Name

Syntax Size
(Bytes)

Description

PDU	Type Integer
(Enumerated)

4 PDU	Type:	An	integer	value	that	indicates	the	PDU
type,	which	is	5	for	a	GetBulkRequest-PDU	message.

Request	ID Integer 4 Request	Identifier:	A	number	used	to	match	requests



Request	ID Integer 4 Request	Identifier:	A	number	used	to	match	requests
with	replies.	It	is	generated	by	the	device	that	sends	a
request	and	copied	into	this	field	in	a	Response-PDU	by
the	responding	SNMP	entity.

Non
Repeaters

Integer 4 Non	Repeaters:	Specifies	the	number	of	nonrepeating,
regular	objects	at	the	start	of	the	variable	list	in	the
request.

Max
Repetitions

Integer 4 Maximum	Repetitions:	The	number	of	iterations	in	the
table	to	be	read	for	the	repeating	objects	that	follow	the
nonrepeating	objects.

Variable
Bindings

Variable Variable Variable	Bindings:	A	set	of	name/value	pairs	identifying
the	MIB	objects	in	the	PDU.	See	the	discussion	of	the
general	SNMP	general	PDU	format	earlier	in	this
chapter	for	more	on	these	bindings.

Chapter	67	contains	full	details	on	how	the	Non	Repeaters	and	Max	Repetitions
fields	are	used.



SNMP	Version	3	(SNMPv3)	Message	Format
In	the	late	1990s,	SNMPv3	was	created	to	resolve	the	problems	that	occurred
with	the	many	different	variations	of	SNMPv2.	The	SNMPv3	Framework	adopts
many	components	that	were	created	in	SNMPv2,	including	the	SNMPv2
protocol	operations,	PDU	types,	and	PDU	format.	The	significant	changes	made
in	SNMPv3	include	a	more	flexible	way	of	defining	security	methods	and
parameters	to	allow	the	coexistence	of	multiple	security	techniques.

The	general	message	format	for	SNMPv3	still	follows	the	same	idea	of	an
overall	message	wrapper	that	contains	a	header	and	an	encapsulated	PDU,	but	it
is	further	refined.	The	fields	in	the	header	have	themselves	been	divided	into
those	dealing	with	security	and	those	that	do	not	deal	with	security	matters.	The
fields	not	related	to	security	are	common	to	all	SNMPv3	implementations.	The
use	of	the	security	fields	can	be	tailored	by	each	SNMPv3	security	model,	and
processed	by	the	module	in	an	SNMP	entity	that	deals	with	security.	This
solution	provides	considerable	flexibility	while	avoiding	the	problems	that
plagued	SNMPv2.

The	overall	SNMPv3	message	format	is	described	in	RFC	3412,	which	specifies
its	message	processing	and	dispatching.	Table	68-13	describes	the	SNMPv3
message	format,	and	it	is	illustrated	in	Figure	68-10.



Figure	68-10.	SNMPv3	general	message	format

Table	68-13.	SNMP	Version	3	(SNMPv3)	General	Message	Format

Field
Name

Syntax Size
(Bytes)

Description

Msg
Version

Integer 4 Message	Version	Number:	Describes	the	SNMP	version
number	of	this	message;	used	for	ensuring	compatibility
between	versions.	For	SNMPv3,	this	value	is	3.

Msg	ID Integer 4 Message	Identifier:	A	number	used	to	identify	an	SNMPv3
message	and	to	match	response	messages	to	request	messages.
The	use	of	this	field	is	similar	to	that	of	the	Request	ID	field	in
the	SNMPv2	PDU	format	(see	Table	68-10),	but	they	are	not
identical.	This	field	was	created	to	allow	matching	at	the
message-processing	level,	regardless	of	the	contents	of	the



PDU,	to	protect	against	certain	security	attacks.	Thus,	Msg	ID
and	Request	ID	are	used	independently.

Msg	Max
Size

Integer 4 Maximum	Message	Size:	The	maximum	size	of	message	that
the	sender	of	this	message	can	receive.	Minimum	value	of	this
field	is	484.

Msg	Flags Octet
String

1 Message	Flags:	A	set	of	flags	that	controls	processing	of	the
message.	The	current	substructure	of	this	field	is	shown	in
Table	68-14.

Msg
Security
Model

Integer 4 Message	Security	Model:	An	integer	value	indicating	which
security	model	was	used	for	this	message.	For	the	user-based
security	model	(the	default	in	SNMPv3),	this	value	is	3.

Msg
Security
Parameters

— Variable Message	Security	Parameters:	A	set	of	fields	that	contain
parameters	required	to	implement	the	particular	security	model
used	for	this	message.	The	contents	of	this	field	are	specified
in	each	document	describing	an	SNMPv3	security	model.	For
example,	the	parameters	for	the	user-based	model	are	in	RFC
3414.

Scoped
PDU

— Variable Scoped	PDU:	Contains	the	PDU	to	be	transmitted,	along	with
parameters	that	identify	an	SNMP	context,	which	describes	a
set	of	management	information	accessible	by	a	particular
entity.	The	PDU	is	said	to	be	scoped	because	it	is	applied
within	the	scope	of	this	context.	(Yes,	security	stuff	is
confusing,	sorry;	it	would	take	pages	and	pages	to	properly
explain	contexts;	see	RFC	3411.)	The	field	may	be	encrypted
or	unencrypted	depending	on	the	value	of	Priv	Flag.	Its
structure	is	shown	in	Table	68-15.

Table	68-14.	SNMPv3	Msg	Flags	Subfields

Subfield
Name

Size
(Bits)

Description

Reserved 5 Reserved:	Reserved	for	future	use.

Reportable
Flag

1 Reportable	Flag:	When	set	to	1,	a	device	receiving	this	message	must	send
back	a	Report-PDU	whenever	conditions	arise	where	such	a	PDU	should
be	generated.

Priv	Flag 1 Privacy	Flag:	When	set	to	1,	indicates	that	encryption	was	used	to	protect
the	privacy	of	the	message.	May	not	be	set	to	1	unless	Auth	Flag	is	also	set
to	1.



Auth	Flag 1 Authentication	Flag:	When	set	to	1,	indicates	that	authentication	was	used
to	protect	the	authenticity	of	this	message.

Table	68-15.	SNMPv3	Scoped	PDU	Subfields

Subfield
Name

Syntax Size Description

Context
Engine	ID

Octet
String

Variable Used	to	identify	to	which	application	the	PDU	will	be	sent
for	processing.

Context
Name

Octet
String

Variable An	object	identifier	specifying	the	particular	context
associated	with	this	PDU.

PDU — Variable The	protocol	data	unit	being	transmitted.

Fortunately,	SNMPv3	uses	the	protocol	operations	from	SNMPv2,	as	described
in	RFC	3416,	which	is	just	an	update	of	RFC	1904.	Thus,	the	PDU	formats	for
SNMPv3	are	the	same	as	those	of	SNMPv2	(see	Tables	Table	68-10	through
Table	68-12	and	Figures	Figure	68-8	and	Figure	68-9).



Chapter	69.	TCP/IP	REMOTE
NETWORK	MONITORING	(RMON)

We've	seen	in	the	preceding	chapters	of	this	part	that	the	Simple	Network
Management	Protocol	(SNMP)	defines	both	a	framework	and	a	specific	protocol
for	exchanging	network	information	on	a	TCP/IP	internetwork.	The	general
model	used	by	SNMP	is	that	of	a	network	management	station	(NMS)	that	sends
requests	to	SNMP	agents	running	on	managed	devices.	The	SNMP	agents	may
also	initiate	certain	types	of	communication	by	sending	trap	messages	to	tell	the
NMS	when	particular	events	occur.

This	model	works	well,	which	is	why	SNMP	has	become	so	popular.	However,
one	fundamental	limitation	of	the	protocol	and	the	model	it	uses	is	that	it	is
oriented	around	the	communication	of	network	information	from	SNMP	agents
that	are	normally	part	of	regular	TCP/IP	devices,	such	as	hosts	and	routers.	The
amount	of	information	gathered	by	these	devices	is	usually	somewhat	limited,
because	obviously	hosts	and	routers	have	real	work	to	do—that	is,	doing	the	jobs
of	being	hosts	and	routers.	They	can't	devote	themselves	to	network	management
tasks.

Thus,	in	situations	where	more	information	is	needed	about	a	network	than	is
gathered	by	traditional	devices,	administrators	often	use	special	hardware	units
called	network	analyzers,	monitors,	or	probes.	These	are	dedicated	pieces	of
equipment	that	are	connected	to	a	network	and	used	strictly	for	the	purpose	of
gathering	statistics	and	watching	for	events	of	interest	or	concern	to	the
administrator.	It	would	obviously	be	very	useful	if	these	devices	could	use
SNMP	to	allow	the	information	they	gather	to	be	retrieved,	and	to	let	them
generate	traps	when	they	notice	something	important.	To	enable	this,	the	Remote
Network	Monitoring	(RMON)	specification	was	created.



RMON	Standards
RMON	is	often	called	a	protocol,	and	you	will	sometimes	see	SNMP	and
RMON	referred	to	as	the	TCP/IP	network	management	protocols.	However,
RMON	really	isn't	a	separate	protocol	at	all—it	defines	no	protocol	operations.
RMON	is	actually	part	of	SNMP,	and	the	RMON	specification	is	simply	a
management	information	base	(MIB)	module	that	defines	a	particular	set	of	MIB
objects	for	use	by	network	monitoring	probes.	Architecturally,	it	is	just	one	of
the	many	MIB	modules	that	compose	the	SNMP	Framework.

TIP

KEY	CONCEPT	SNMP	Remote	Network	Monitoring	(RMON)	was	created	to	enable	the	efficient
management	of	networks	using	dedicated	management	devices	such	as	network	analyzers,	monitors,	or
probes.	RMON	is	often	called	a	protocol,	but	it	does	not	define	any	new	protocol	operations.	It	is
actually	an	MIB	module	for	SNMP	that	describes	objects	that	permit	advanced	network	management
capabilities.

The	first	standard	documenting	RMON	was	RFC	1271,	"Remote	Network
Monitoring	Management	Information	Base,"	published	in	1991.	RFC	1271	was
replaced	by	RFC	1757	in	1995,	which	made	a	couple	of	changes	to	the
specification.	RFC	2819,	published	in	May	2000,	updates	RMON	to	use	the	new
Structure	of	Management	Information	version	2	(SMIv2)	specification	that	is
part	of	SNMPv2	but	is	functionally	the	same	as	RFC	1757.



RMON	MIB	Hierarchy	and	Object	Groups
Since	RMON	is	a	MIB	module,	it	consists	almost	entirely	of	descriptions	for
MIB	objects,	each	with	the	standard	characteristics	belonging	to	all	such	objects.
All	the	objects	within	RMON	are	arranged	into	the	SNMP	object	name	hierarchy
within	the	rmon	group,	which	is	group	number	16	within	the	SNMP	mib	(mib-2)
object	tree,	1.3.6.1.2.1.	So,	all	RMON	objects	have	identifiers	starting	with
1.3.6.1.2.1.16.	This	single	RMON	group	is	broken	down	into	several	lower-level
groups	that	provide	more	structure	for	the	RMON	objects	defined	by	the
specification.	Figure	69-1	shows	this	structure.

Table	69-1	describes	each	of	the	RMON	groups,	showing	its	name,	group	code
(which	is	used	as	the	prefix	for	object	descriptors	in	the	group),	and	RMON
group	number	and	SNMP	object	hierarchy	identifier.

Figure	69-1.	SNMP	Remote	Network	Monitoring	(RMON)	MIB	hierarchy	RMON	uses	a	special	MIB
module,	rmon(16),	which	fits	into	the	overall	SNMP	object	hierarchy	tree	under	mib/mib-2(1)	within
mgmt(2)—just	like	other	MIB	object	groups	such	as	sys(1)	and	if(2);	see	Figure	66-2	in	Chapter	66.
Within	this	group,	which	has	the	group	identifier	1.3.6.1.2.1.16,	are	nine	subgroups	of	RMON	objects.

Table	69-1.	SNMP	RMON	MIB	Object	Groups

RMON
Group
Name

RMON
Group
Code

RMON
Group
Number

Full	Group
Identifier

Description

statistics etherStats 1 1.3.6.1.2.1.16.1 This	group	contains	objects	that	keep
track	of	network	statistics	measured	by
the	device.	Statistics	may	include
network	traffic	load,	average	packet



network	traffic	load,	average	packet
size,	number	of	broadcasts	observed,
counts	of	errors	that	have	occurred,	the
number	of	packets	in	various	size

ranges,	and	so	forth.

history history,
etherHistory

2 1.3.6.1.2.1.16.2 The	history	group	contains	a	single	table
object	that	controls	how	often	statistical
data	is	sampled	by	the	probe.	The
additional	etherHistory	group	is	optional
and	contains	extra	Ethernet-specific
information;	it	is	contained	logically
within	the	history	group.

alarm alarm 3 1.3.6.1.2.1.16.3 This	group	defines	the	parameters	under
which	an	alarm	may	be	generated	to
inform	an	administrator	of	an
occurrence	of	import.	The	alarm	group
contains	a	table	that	describes	the
thresholds	that	will	cause	an	event	to	be
triggered	(see	the	event	group
description	in	this	table).

hosts host 4 1.3.6.1.2.1.16.4 This	group	contains	objects	that	keep
track	of	information	for	each	host	on	a
network.

hostsTopN hostTopN 5 1.3.6.1.2.1.16.5 This	group	contains	objects	that
facilitate	reporting	of	hosts	sorted	in	a
particular	way.	The	administrator
determines	how	these	ordered	statistics
are	tracked.	For	example,	an
administrator	could	generate	a	report
listing	hosts	sorted	by	the	number	of
packets	transmitted,	showing	the	most
active	devices.

matrix matrix 6 1.3.6.1.2.1.16.6 This	group	keeps	track	of	statistics	for
data	exchanges	between	particular	pairs
of	hosts.	The	amount	of	data	sent
between	any	two	devices	on	the	network
could	be	tracked	here.	Since	a	large
network	could	have	thousands	of	such
device	pairs,	to	conserve	resources	on
the	probe,	often	only	the	most	recent
conversations	between	device	pairs	are
kept	in	the	MIB.



filter filter 7 1.3.6.1.2.1.16.7 This	group	allows	an	administrator	to
set	up	filters	that	control	what	sorts	of
network	packets	the	probe	will	capture.

capture buffer,
capture

8 1.3.6.1.2.1.16.8 This	group	is	used	to	allow	a	probe	to
capture	packets	based	on	particular
parameters	set	up	in	the	filter	group.

event event 9 1.3.6.1.2.1.16.9 When	a	particular	alarm	is	triggered
based	on	the	parameters	in	the	objects	in
the	alarm	group,	an	event	is	generated.
This	group	controls	how	these	events
are	processed,	including	creating	and
sending	an	SNMP	trap	message	to	an
NMS.

The	original	RMON	standard	was	heavily	oriented	around	Ethernet	local	area
networks	(LANs),	and	you	can	see	some	of	that	in	Table	69-1.	Probes	can	also
gather	and	report	information	related	to	other	networking	technologies	by	using
other	RMON	groups	created	for	that	purpose.	The	best	example	of	this	was	the
definition	of	a	set	of	groups	specifically	for	Token	Ring,	which	was	defined	in
RFC	1513	in	1993.



RMON	Alarms,	Events,	and	Statistics
Alarms	and	events	are	particularly	useful	constructs	in	RMON,	as	they	allow	the
immediate	communication	of	important	information	to	an	NMS.	The
administrator	has	full	control	over	what	conditions	will	cause	an	alarm	to	be
sounded	and	how	an	event	is	generated.	This	includes	specifying	which	variables
or	statistics	to	monitor,	how	often	to	check	them,	and	what	values	will	trigger	an
alarm.	A	log	entry	may	also	be	recorded	when	an	event	occurs.	If	an	event
results	in	transmission	of	a	trap	message,	the	administrator	will	thus	be	notified
and	can	decide	how	to	respond,	depending	on	the	severity	of	the	event.

Like	all	MIB	modules	and	groups,	a	particular	manufacturer	may	decide	which
RMON	groups	to	implement.	However,	certain	groups—such	as	alarm	and	event
—are	related,	and	some	groups—such	as	statistics—are	usually	implemented	in
all	RMON	probes.	Obviously,	when	RMON	is	used,	the	NMS	must	be	aware	of
RMON	groups	and	must	allow	a	network	management	application	to	be	run	that
will	exploit	the	capabilities	of	the	RMON	MIB	objects.



Part	III-5.	TCP/IP	APPLICATION	LAYER
ADDRESSING	AND	APPLICATION	CATEGORIES
Chapter	70

Chapter	71

The	TCP/IP	protocol	suite	is	the	foundation	of	modern	internetworking,	and	for
this	reason,	has	been	used	as	the	primary	platform	for	the	development	and
implementation	of	networking	applications.	Over	the	past	few	decades,	as	the
global	TCP/IP	Internet	has	grown,	hundreds	of	new	applications	have	been
created.	These	programs	support	a	myriad	of	different	tasks	and	functions,
ranging	from	implementing	essential	business	tasks	to	providing	pure
entertainment.	Users	may	be	in	the	same	room	or	on	different	continents.

Of	the	many	TCP/IP	applications,	a	small	number	are	widely	considered	to	be
key	applications	of	TCP/IP.	Most	have	been	around	for	a	very	long	time—in
some	cases,	longer	than	even	the	modern	Internet	Protocol	(IP)	itself.	Many	of
these	protocols	deal	specifically	with	the	sending	of	information	that	has	been
arranged	into	discrete	units	called	files	or	messages.	For	this	reason,	one	of	the
most	important	groups	of	TCP/IP	applications	is	the	one	that	describes	the	basic
mechanisms	for	moving	these	files	between	internetworked	devices:	file	and
message	transfer	applications.

The	rest	of	this	book	deals	with	the	most	common	definitive	TCP/IP	applications
and	application	layer	protocols.	Before	describing	the	applications	themselves,
however,	I	need	to	lay	some	groundwork	related	to	application	protocols	as	a
whole.	To	that	end,	this	part	contains	two	chapters.	In	the	first,	I	explain	the
universal	system	set	up	for	TCP/IP	applications	to	use	for	addressing	Internet
resources:	Uniform	Resource	Identifiers	(URIs),	which	include	Uniform
Resource	Locators	(URLs)	and	Uniform	Resource	Names	(URNs).	In	the	second
chapter,	I	provide	an	overview	of	file	and	message	transfer	applications,
including	a	description	of	the	differences	between	them.



Chapter	70.	TCP/IP	APPLICATION
LAYER	ADDRESSING:	UNIFORM
RESOURCE	IDENTIFIERS,
LOCATORS,	AND	NAMES	(URIS,
URLS,	AND	URNS)

The	Internet	consists	of	millions	of	interconnected	servers,	each	of	which	is
capable	of	providing	useful	information	to	Internet	users	who	request	it.	The
more	information	a	network	has,	the	richer	it	is,	but	the	more	difficult	it	becomes
to	locate.	In	order	to	use	information,	we	need	to	be	able	to	find	it,	and	that
requires,	at	a	minimum,	that	we	employ	some	means	for	labeling	each	file	or
object.

For	this	purpose,	TCP/IP	has	defined	a	system	of	Uniform	Resource	Identifiers
(URIs)	that	can	be	used	both	on	the	Internet	and	on	private	TCP/IP	networks.
Each	URI	uniquely	specifies	how	a	client	can	locate	a	particular	resource	and
access	it	so	it	can	be	used.	URIs	are	subdivided	into	Uniform	Resource	Locators
(URLs)	and	Uniform	Resource	Names	(URNs),	which	serve	a	similar	purpose
but	work	in	different	ways.

In	this	chapter,	I	describe	the	system	of	addressing	used	on	the	Internet	to
identify	files,	objects,	and	resources.	I	begin	with	an	overview,	which	introduces
the	concept	of	URIs	and	explains	the	differences	between	URIs,	URLs,	and
URNs.	I	then	provide	a	detailed	explanation	of	URLs	and	how	they	are	used.
This	includes	an	overview	of	the	general	syntax	used	for	URLs,	a	description	of
the	URL	schemes	used	for	the	most	common	applications,	a	discussion	of
relative	URLs	and	how	they	work,	and	a	comprehensive	look	at	real-world



relative	URLs	and	how	they	work,	and	a	comprehensive	look	at	real-world
issues	associated	with	URLs,	including	the	intentional	obfuscation	games	being
played	by	some	unscrupulous	people.	Finally,	I	discuss	URNs,	including	how
they	solve	a	major	problem	with	URLs	and	the	impediments	to	their	use.

URI	Overview	and	Standards
If	you've	been	working	your	way	up	the	OSI	Reference	Model	layers	in	reading
this	book,	you	might	have	expected	that	you	would	be	done	with	addressing	by
this	point.	After	all,	we	have	already	discussed	MAC	addresses	at	layer	2,	IP
addresses	at	layer	3,	and	mechanisms	for	converting	between	them	(see	Chapters
Chapter	13	and	Chapter	14).	We	even	have	ports	and	sockets	that	provide
transport	layer	addressing	capabilities	to	let	each	device	run	multiple	software
applications	(see	Chapter	43).	Given	all	this,	the	idea	of	application	layer
addressing	may	seem	a	bit	strange,	and	I	am	aware	that	using	the	term	to	refer	to
the	subject	of	this	chapter	may	be	a	bit	unorthodox.

The	concept	isn't	really	as	odd	as	it	might	seem	at	first,	however.	It's	true	that
with	an	IP	address	and	a	port	number,	we	can	theoretically	access	any	resource
on	a	TCP/IP	internetwork;	the	problem	is	finding	it.

Application	layer	addressing	is	not	something	that	is	required	by	the	computer
software.	It	is	something	that	makes	it	easier	for	humans	to	identify	and	locate
resources.	This	is	very	much	the	same	rationale	that	is	used	to	justify	the	creation
of	name	systems,	such	as	the	Domain	Name	System	(DNS;	see	Part	III-1).	DNS
is	a	form	of	high-level	addressing	that	allows	names	to	be	used	instead	of	IP
addresses.	It	is	helpful	to	people,	who	find	it	easier	to	understand	www.intel.com
than	198.175.96.33.

The	idea	behind	a	comprehensive	application	layer	addressing	scheme	is	to
extend	to	the	next	level	what	DNS	has	already	accomplished.	DNS	names
provide	essential	high-level	abstract	addressing,	but	only	of	whole	devices
(whether	real	or	virtual).	These	names	can	be	used	as	the	basis	for	a	more
complete	labeling	scheme	that	points	not	just	to	a	site	or	device,	but	to	a	specific
file,	object,	or	other	resource.	In	TCP/IP,	these	labels	are	called	Uniform
Resource	Identifiers	(URIs).

URIs	were	one	of	the	key	technologies	developed	as	part	of	the	World	Wide



Web	(WWW),	and	they	are	still	most	often	associated	with	the	Web	and	the
protocol	that	implements	it,	the	Hypertext	Transfer	Protocol	(HTTP;	see	Part	III-
8).	You	have	likely	used	URIs	thousands	of	times	in	the	past;	whenever	you
enter	something	like	http://www.myfavoritewebsite.com	into	a	web
browser,	you	are	using	a	URI.

The	reason	why	URIs	are	so	important	to	the	Web	is	that	they	combine	into	one
string	all	of	the	information	necessary	to	refer	to	a	resource.	This	compactness	of
expression	is	essential	to	the	entire	concept	of	hypertext	resource	linking.	If	we
want	to	be	able	to	have	an	object	in	one	document	point	to	another,	we	need	to
have	a	simple	way	of	describing	that	object	without	requiring	a	whole	set	of
instructions.	URIs	allow	us	to	do	exactly	that.

In	fact,	URIs	are	so	associated	with	the	Web	that	they	are	usually	described	as
being	part	of	Web	technology	specifically.	They	are	not,	however,	unique	to	the
Web,	which	is	why	this	chapter	is	separate	from	the	discussion	of	WWW	and
HTTP.

URI	Categories:	URLs	and	URNs
URIs	are	a	general-purpose	method	for	referring	to	many	kinds	of	TCP/IP
resources.	They	are	currently	divided	into	two	primary	categories	based	on	how
they	describe	a	resource:

Uniform	Resource	Locators	(URLs)	A	URL	is	a	URI	that	refers	to	a	resource
through	the	combination	of	a	protocol	or	access	mechanism	and	a	specific
resource	location.	A	URL	begins	with	the	name	of	the	protocol	to	be	used	for
accessing	the	resource,	and	then	contains	sufficient	information	to	point	to	how
it	can	be	obtained.

Uniform	Resource	Names	(URNs)	A	URN	is	a	URI	that	provides	a	way	of
uniquely	naming	a	resource	without	specifying	an	access	protocol	or	mechanism,
and	without	specifying	a	particular	location.

The	difference	between	a	URL	and	a	URN	is	that	the	former	is	much	more
specific	and	oriented	around	how	to	access	a	resource,	while	the	latter	is	more
abstract	and	designed	more	to	identify	what	the	resource	is	than	describe	how	to
get	it.

Giving	someone	a	URL	is	like	giving	them	directions	to	find	a	book,	as	follows:



Giving	someone	a	URL	is	like	giving	them	directions	to	find	a	book,	as	follows:
"Take	the	train	to	Albuquerque,	then	Bus	#11	to	41	Albert	Street,	a	red	brick
house	owned	by	Joanne	Johnson.	The	book	you	want	is	the	third	from	the	right
on	the	bottom	of	the	bookshelf	on	the	second	floor."

A	URN	is	more	like	referring	to	a	book	using	its	International	Standard	Book
Number	(ISBN);	it	uniquely	identifies	the	book,	regardless	of	where	the	book
may	be	located,	and	doesn't	tell	you	how	to	access	it.	(In	fact,	ISBNs	are	one	of
the	identification	systems	used	with	URNs,	as	you	will	see	in	the	section	about
URNs	at	the	end	of	this	chapter.)

While	URLs	and	URNs	are	theoretical	peers,	in	practice,	URLs	are	used	far
more	often	than	URNs.	In	fact,	URLs	are	so	dominant	that	most	people	have
never	even	heard	of	URIs	or	URNs.	The	reason	is	that	even	though	the	example
of	how	to	find	a	book	suggests	that	URNs	are	more	natural	than	URLs,	URLs
are	easier	to	use	in	practice.	URLs	provide	the	information	needed	to	access	a
resource,	and	without	being	able	to	access	a	resource,	simply	knowing	how	to
identify	it	is	of	limited	value.

URNs	are	an	attractive	concept	because	they	identify	a	resource	without	tying	it
to	a	specific	access	mechanism	or	location.	However,	the	implementation	of
URNs	requires	some	means	of	tying	the	permanent	identifier	of	a	resource	to
where	it	is	at	any	given	moment,	which	is	not	a	simple	task.	For	this	reason,
URNs	and	the	methods	for	using	them	have	been	in	development	for	a	number
of	years,	while	URLs	have	been	in	active	use	all	that	time.

TIP

KEY	CONCEPT	Some	sort	of	mechanism	is	needed	on	any	internetwork	to	allow	resources	such	as
files,	directories,	and	programs	to	be	identified	and	accessed.	In	TCP/IP,	Uniform	Resource	Identifiers
(URIs)	are	used	for	this	sort	of	"application	layer	addressing."	The	two	types	of	URIs	are	Uniform
Resource	Locators	(URLs),	which	specify	how	to	access	an	object	using	a	combination	of	an	access
method	and	location,	and	Uniform	Resource	Names	(URNs),	which	identify	an	object	by	name	but	do
not	indicate	how	to	access	it.

While	URLs	began	with	the	Web	and	most	URLs	are	still	used	with	HTTP,	they
can	and	do	refer	to	resources	that	are	accessed	using	many	other	protocols,	such
as	the	File	Transfer	Protocol	(FTP)	and	Telnet.	The	compactness	of	URIs	makes
them	very	powerful	for	such	uses.	With	a	URL,	we	can	use	one	string	to	tell	a
program	to	retrieve	a	file	using	FTP.	This	replaces	the	complete	FTP	process	of



program	to	retrieve	a	file	using	FTP.	This	replaces	the	complete	FTP	process	of
starting	an	FTP	client,	establishing	a	session,	logging	in,	and	issuing	commands.

URI	Standards
A	number	of	Internet	standards	published	in	the	1990s	describe	the	syntax	and
basic	use	of	URIs,	URLs,	and	URNs.	The	first	was	RFC	1630,	"Universal
Resource	Identifiers	in	WWW,"	which	was	published	in	1994	and	is	still	a	good
overview	of	the	topic.	In	December	1994,	a	pair	of	documents,	RFCs	1737	and
1738,	provided	more	specific	information	about	URNs	and	URLs,	respectively.
RFC	1808	describes	how	to	define	and	use	relative	URLs.	RFC	2141	provides
more	information	about	the	URN	syntax.

RFC	2396,	"Uniform	Resource	Identifiers	(URI):	Generic	Syntax,"	was
published	in	August	1998	to	revise	and	replace	some	of	the	information	in	many
of	the	previous	RFCs	just	mentioned.	It	is	probably	the	definitive	standard	on
URIs	at	the	present	time,	although	RFCs	continue	to	be	published	discussing
issues	related	to	URIs.	This	is	especially	true	of	URNs,	which	as	I	noted	earlier,
are	still	in	active	development.

The	base	documents	such	as	RFC	2396	describe	how	URLs	can	be	specified	for
a	number	of	common	protocols	(called	schemes	in	URL-speak,	as	we	will	see
when	we	look	at	URLs	more	closely).	To	provide	flexibility,	a	mechanism	was
also	defined	to	allow	new	URL	schemes	to	be	registered.	This	is	described	in
RFC	2717,	"Registration	Procedures	for	URL	Scheme	Names,"	and	RFC	2718,
"Guidelines	for	new	URL	Schemes."	There	are	also	a	few	RFCs	that	describe
specific	URL	schemes	for	different	protocols,	including	RFCs	2192	(IMAP),
2224	(NFS),	2368	(email),	and	2384	(POP).



URL	General	Syntax
URLs	are	text	strings	that	allow	a	resource	such	as	a	file	or	other	object	to	be
labeled	based	on	its	location	on	an	internetwork	and	the	primary	method	or
protocol	by	which	it	may	be	accessed.	URLs	have	become	the	most	common
type	of	URI	used	for	application	layer	addressing	in	TCP/IP	because	of	their
simplicity.

URLs	consist	of	two	components	that	identify	how	to	access	a	resource	on	a
TCP/IP	internetwork:	the	location	of	the	resource	and	the	method	to	be	used	to
access	it.	These	two	pieces	of	information,	taken	together,	allow	a	user	with	the
appropriate	software	to	obtain,	read,	or	otherwise	work	with	many	different
kinds	of	resources,	such	as	files,	objects,	programs,	and	much	more.

The	most	general	form	of	syntax	for	a	URL	contains	only	two	elements,	which
correspond	to	the	two	pieces	of	information	just	described:	<scheme>:<scheme-
specific-part>.	The	term	scheme	refers	to	a	type	of	access	method,	which
describes	the	way	that	the	resource	is	to	be	used.	It	usually	refers	to	either	an
application	protocol,	such	as	http	or	ftp,	or	a	resource	type,	such	as	file.	A
scheme	name	must	contain	only	letters,	plus	signs	(+),	periods	(.),	and	hyphens	(-
).	In	practice,	scheme	names	usually	contain	only	letters.	Schemes	are	case-
insensitive	but	usually	expressed	in	lowercase.

The	rest	of	the	URL	after	the	scheme	(and	the	required	colon	separator)	is
scheme-specific.	This	is	necessary	because	various	protocols	and	access	methods
require	different	types	and	quantities	of	information	to	identify	a	particular
resource.	When	a	URL	is	read,	the	scheme	name	tells	the	program	parsing	it	how
to	interpret	the	syntax	of	the	rest	of	the	URL.

Common	Internet	Scheme	Syntax
In	theory,	each	scheme	may	use	a	completely	different	syntax	for	the	<scheme-
specific-part>	of	a	URL.	However,	many	of	these	schemes	share	a	common
syntax	for	this	part,	by	virtue	of	the	similarities	in	how	they	refer	to	internetwork
devices	and	resources	on	those	devices.	For	example,	both	HTTP	and	FTP	are
used	to	point	to	specific	TCP/IP	devices	using	a	DNS	name	or	IP	address,	and
then	access	resources	stored	in	a	hierarchical	directory	structure.	It	makes	sense



that	their	URLs	would	be	at	least	somewhat	similar.

TIP

KEY	CONCEPT	URLs	are	the	most	widely	used	type	of	URI.	In	its	most	basic	form,	a	URL	consists	of
two	elements:	a	scheme	that	defines	the	protocol	or	other	mechanism	for	accessing	the	resource,	and	a
scheme-specific	part	that	contains	information	that	identifies	the	specific	resource	and	indicates	how	it
should	be	used.	Some	schemes	use	a	common	syntax	for	their	scheme-specific	parts;	others	use	a	syntax
unique	to	the	scheme.

The	most	general	form	of	this	common	Internet	scheme	syntax	is	as	follows:
<scheme>://<user>:<password>@<host>:<port>/<url-path>;<params>?<query>#<fragment>

The	syntax	elements	are	as	follows:

<scheme>	The	URL	scheme,	which	refers	to	a	type	of	access	method.

<user>	and	<password>	Authentication	information	for	schemes	requiring	a
login,	in	the	form	of	a	user	name	and	password.

<host>	An	Internet	host,	usually	specified	either	as	a	fully	qualified	DNS
domain	name	or	an	IP	address	in	dotted	decimal	notation.

<port>	A	Transmission	Control	Protocol	(TCP)	or	User	Datagram	Protocol
(UDP)	port	number	to	use	when	invoking	the	protocol	appropriate	to	the	scheme.

<url-path>	A	resource	location	path.	This	is	usually	a	full	directory	path
expressing	the	sequence	of	directories	to	be	traversed	from	the	root	directory	to
the	place	where	the	resource	is	located,	and	then	the	resource's	name.	For
example,	if	on	a	device	there	is	a	directory	called	project1	and	within	it	a
subdirectory	called	memos	containing	a	text	file	called	June11th-minutes.txt,	the
URL	path	project1/memos/June11th-minutes.txt	would	refer	to	that
resource.	Note	that	the	slash	before	the	<url-path>	is	required,	and	while	it	is
technically	not	considered	part	of	the	path,	it	serves	the	purpose	of	acting	like	the
slash	denoting	the	root	directory	in	many	file	systems.	Also,	the	<url-path>
may	end	in	a	slash,	which	means	that	the	path	refers	specifically	to	a	directory.
However,	this	is	often	not	required,	as	the	server	will	treat	the	URL	as	a
directory	reference	by	context	when	needed.	A	path	may	also	refer	to	a	virtual
file,	program,	or	another	type	of	resource.

<params>	Scheme-specific	parameters	included	to	control	how	the	scheme	is



used	to	access	the	resource.	Each	parameter	is	generally	of	the	form
<parameter>=<value>,	with	each	parameter	specification	separated	from	the
next	using	a	semicolon.

<query>	An	optional	query	or	other	information	to	be	passed	to	the	server	when
the	resource	is	accessed.

<fragment>	Identifies	a	particular	place	within	a	resource	that	the	user	of	the
URL	is	interested	in.

Figure	70-1	illustrates	this	common	syntax	and	its	elements	using	an	example	of
an	HTTP	URL.

Figure	70-1.	Example	of	a	Uniform	Resource	Locator	(URL)	This	diagram	shows	a	sample	URL	that
includes	almost	all	of	the	possible	elements	in	the	general	scheme	syntax,	each	of	them	highlighted
using	shaded	boxes.	This	URL	identifies	a	Web	(HTTP)	resource	that	must	be	accessed	using	a

particular	password	at	the	site	www.mysite.org	using	port	8080.	The	resource	in	this	case	is	a	PHP
program	in	the	site's	cgi-bin	directory	that	causes	a	particular	page	of	photographs	to	be	displayed.	The
<fragment>	specifier	will	cause	the	picture	Reception07	on	the	retrieved	page	of	wedding	photos	to	be

displayed	to	the	user.

Omission	of	URL	Syntax	Elements
The	full	URL	syntax	may	seem	very	complicated,	but	bear	in	mind	that	this	is	a
formal	definition	and	shows	all	of	the	possible	elements	in	a	URL	at	once.	Most
schemes	do	not	use	every	one	of	these	elements,	and	furthermore,	many	of	them
are	optional,	even	when	they	are	valid	in	a	particular	scheme.	For	example,	the
<login>	and	<password>	elements	are	officially	supported	for	HTTP	URLs,	but
they	are	very	rarely	used.	Similarly,	port	numbers	are	often	omitted,	telling	the
client	software	to	just	use	the	default	port	number	for	the	scheme.	The	"URL
Schemes	and	Scheme-Specific	Syntaxes"	section	of	this	chapter	describes	some
of	the	most	common	URL	schemes	and	the	specific	syntaxes	used	for	them,
including	how	and	when	these	elements	are	employed.

Even	though	the	richness	of	the	URL	syntax	isn't	often	needed,	it	can	be	useful



for	supplying	a	wide	variety	of	information	in	special	cases.	URLs	are	also	very
flexible	in	terms	of	how	they	may	be	expressed.	For	example,	while	a	<host>
element	is	usually	a	DNS	name,	it	can	also	be	an	IP	address	expressed	in	many
forms,	including	dotted	decimal,	regular	decimal,	hexadecimal,	octal,	and	even	a
combination	of	these.	Unfortunately,	the	lack	of	familiarity	that	most	people
have	with	some	of	these	refinements	has	led	to	URLs	being	abused	through
deliberate	obscuration,	to	get	people	to	visit	"resources"	they	would	normally
want	to	avoid.	We'll	explore	this	later	in	this	chapter,	in	the	"URL	Obscuration,
Obfuscation,	and	General	Trickery"	section.

URL	Fragments
It's	worth	noting	that,	technically,	a	<fragment>	element	is	not	considered	a
formal	part	of	the	URL	by	the	standards	that	describe	resource	naming.	The
reason	is	that	it	identifies	only	a	portion	of	a	resource,	and	it	is	not	part	of	the
information	required	to	identify	the	resource	itself.	It	is	not	sent	to	the	server	but
retained	by	the	client	software,	to	guide	it	in	how	to	display	or	use	the	resource.
Some	would	make	a	valid	argument,	however,	that	this	distinction	is	somewhat
arbitrary.	Consider,	for	example,	that	the	scheme	itself	is	also	used	only	by	the
client,	as	is	the	host	itself.

The	most	common	example	of	a	URL	fragment	is	specifying	a	particular
bookmark	to	scroll	to	in	displaying	a	web	page.	In	practice,	a	fragment	identifier
is	often	treated	as	if	it	were	part	of	a	URL,	since	it	is	part	of	the	string	that
specifies	a	URL.

Unsafe	Characters	and	Special	Encodings
URLs	are	normally	expressed	in	the	standard	US	ASCII	character	set,	which	is
the	default	used	by	most	TCP/IP	application	protocols.	Certain	characters	in	the
set	are	called	unsafe,	because	they	have	special	meaning	in	different	contexts,
and	including	them	in	a	URL	would	lead	to	ambiguity	or	problems	in	of	how
they	should	be	interpreted.	The	space	character	is	the	classic	unsafe	character,
because	spaces	are	normally	used	to	separate	URLs,	so	including	one	in	a	URL
would	break	the	URL	into	pieces.	Other	characters	are	unsafe	because	they	have
special	significance	in	a	URL,	such	as	the	colon	(:).



The	safe	characters	in	a	URL	are	alphanumerics	(A	to	Z,	a	to	z,	and	0	to	9)	and
the	following	special	characters:	the	dollar	sign	($),	hyphen	(-),	underscore	(_),
period	(.),	plus	sign	(+),	exclamation	point	(!),	asterisk	(*),	apostrophe	('),	left
parenthesis	((),	and	right	parenthesis	()).	All	other	unsafe	characters	can	be
represented	in	a	URL	using	an	encoding	scheme	consisting	of	a	percent	sign	(%)
followed	by	the	hexadecimal	ASCII	value	of	the	character.	The	most	common
examples	are	given	in	Table	70-1.

Table	70-1.	URL	Special	Character	Encodings

Character Encoding Character Encoding Character Encoding

<space> %20 < %3C > %3E

# %23 % %25 { %7B

} %7D | %7C \ %5C

^ %5E ~ %7E [ %5B

] %5D `%60 ; %3B

/ %2F ? %3F : %3A

@ %40 = %3D % %26

When	these	sequences	are	encountered,	they	are	interpreted	as	the	literal
character	they	represent,	without	any	significance.	So,	the	URL
http://www.myfavesite.com/are%20you%20there%3F	points	to	a	file	called
"are	you	there?"	on	www.myfavesite.com.	The	%20	codes	prevent	the	spaces
from	breaking	up	the	URL,	and	the	3F	prevents	the	question	mark	in	the
filename	from	being	interpreted	as	a	special	URL	character.

NOTE

Since	the	percent	sign	is	used	for	this	encoding	mechanism,	it	itself	is	special.	When	it	is	encountered,
the	next	values	are	interpreted	as	character	encodings.	So,	to	embed	a	literal	percent	sign,	it	must	be
encoded	as	%25.

Again,	these	encodings	are	sometimes	abused	for	nefarious	purposes,
unfortunately,	such	as	using	them	for	regular	ASCII	characters	to	obscure	URLs.

http://www.myfavesite.com


URL	Schemes	and	Scheme-Specific	Syntaxes
As	explained	in	the	previous	sections,	URLs	use	a	general	syntax	that	describes
the	location	and	method	for	accessing	a	TCP/IP	resource:

<scheme>://<user>:<password>@<host>:<port>/<urlpath>;<params>?<query>#<fragment>

Each	access	method,	called	a	scheme,	has	its	own	specific	URL	syntax,
including	the	various	pieces	of	information	required	by	the	method	to	identify	a
resource.	RFC	1738	includes	a	description	of	the	specific	syntaxes	used	by
several	popular	URL	schemes.	Others	have	been	defined	in	subsequent	RFCs
using	the	procedure	established	for	URL	scheme	registration.

Several	of	the	URL	schemes	use	the	common	Internet	pattern	shown	in
Figure	70-1	earlier	in	the	chapter.	Other	schemes	use	entirely	different	(usually
simpler)	structures	based	on	their	needs.

The	following	sections	describe	the	most	common	URL	schemes	and	the
scheme-specific	syntaxes	they	use.

World	Wide	Web/Hypertext	Transfer	Protocol
Syntax	(http)
The	Web	potentially	uses	most	of	the	elements	of	the	common	Internet	scheme
syntax,	as	follows:

http://<user>:<password>@<host>:<port>/<url-path>?<query>#<bookmark>

As	discussed	in	the	overview	of	resource	identifiers,	the	Web	is	the	primary
application	using	URLs	today.	A	URL	can	theoretically	contain	most	of	the
common	URL	syntax	elements,	but	in	practice,	most	are	omitted.	Most	URLs
contain	only	a	host	and	a	path	to	a	resource.	The	port	number	is	usually	omitted,
implying	that	the	default	value	of	80	should	be	used.	The	<query>	construct	is
often	used	to	pass	arguments	or	information	from	the	client	to	the	web	server.

I	have	provided	full	details	on	how	Web	URLs	are	used	in	Chapter	79.

File	Transfer	Protocol	Syntax	(ftp)
The	syntax	for	FTP	URLs	is:

ftp://<user>:<password>@<host>:<port>/<url-path>;type=<typecode>



FTP	(see	Chapter	72)	is	an	interactive	command-based	protocol,	so	it	may	seem
odd	to	use	a	URL	for	FTP.	However,	one	of	the	most	common	uses	of	FTP	is	to
access	and	read	a	single	file,	and	this	is	what	an	FTP	URL	allows	a	client	to	do,
quickly	and	easily.	The	<user>	and	<password>	elements	are	used	for	login	and
may	be	omitted	for	anonymous	FTP	access.	The	port	number	is	usually	omitted
and	defaults	to	the	standard	FTP	control	channel	port,	21.

The	<url-path>	is	interpreted	as	a	directory	structure	and	filename.	The
appropriate	CWD	(change	working	directory)	commands	are	issued	to	go	to	the
specified	directory,	and	then	a	RETR	(retrieve)	command	is	issued	for	the	named
file.	The	optional	type	parameter	can	be	used	to	indicate	the	file	type:	a	to
specify	an	ASCII	file	retrieval	or	i	for	an	image	(binary)	file.	The	type
parameter	is	often	omitted	from	the	URL,	with	the	correct	mode	being	set
automatically	by	the	client	based	on	the	name	of	the	file.

For	example,	consider	this	URL:
ftp://ftp.hardwarecompanyx.com/drivers/widgetdriver.zip

This	is	equivalent	to	starting	an	FTP	client,	making	an	anonymous	FTP
connection	to	ftp.hardwarecompanyx.com,	then	changing	to	the	drivers	directory
and	retrieving	the	file	widgetdriver.zip.	The	client	will	retrieve	the	file	in	binary
mode	because	it	is	a	compressed	ZIP	file.

It	is	also	possible	to	use	an	FTP	URL	to	get	a	listing	of	the	files	within	a
particular	directory.	This	allows	users	to	navigate	an	FTP	server's	directory
structure	using	URL	links	to	find	the	file	they	want,	and	then	retrieve	it.	This	is
done	by	specifying	a	directory	name	for	the	<url-path>	and	using	the	type
parameter	with	a	<typecode>	of	d	to	request	a	directory	listing.	Again,	the	type
parameter	is	usually	omitted,	and	the	software	figures	out	to	send	a	LIST
command	to	the	server	when	a	directory	name	is	given	in	a	URL.

Electronic	Mail	Syntax	(mailto)
A	special	syntax	is	defined	to	allow	a	URL	to	represent	the	command	to	send
mail	to	a	user:

mailto:<email-address>

The	email	address	(see	Chapter	75)	is	in	standard	Internet	form:

http://ftp.hardwarecompanyx.com


<username>@<domainname>.	This	is	really	an	unusual	type	of	URL	because	it
does	not	really	represent	an	object	at	all,	though	a	person	can	be	considered	a
type	of	resource.	Note	that	optional	parameters,	such	as	the	subject	of	the	email,
can	also	be	included	in	a	mailto	URL.	This	facility	is	not	often	used,	however.

Gopher	Protocol	Syntax	(gopher)
The	syntax	for	the	Gopher	protocol	is	similar	to	that	of	HTTP	and	FTP:

gopher://<host>:<port>/<gopher-path>

See	Chapter	86	for	more	information	about	the	Gopher	protocol.

Network	News/Usenet	Syntax	(news)
Two	syntaxes	are	defined	for	Usenet	newsgroup	access:

news://<newsgroup-name>
news://<message-id>

Both	of	these	URLs	are	used	to	access	a	Usenet	newsgroup	(see	Chapter	85)	or	a
specific	message,	referenced	by	message	ID.	Like	the	mailto	scheme,	this	is	a
special	type	of	URL	because	it	defines	an	access	method	but	does	not	provide
the	detailed	information	to	describe	how	to	locate	a	newsgroup	or	message.

By	definition,	the	first	form	of	this	URL	is	interpreted	as	being	local.	So,	for
example,	news://alt.food.sushi	means,	"Access	the	newsgroup
alt.food.sushi	on	the	local	news	server,	using	the	default	news	protocol."	The
default	news	protocol	is	normally	the	Network	News	Transfer	Protocol	(NNTP).
The	second	URL	form	is	global,	because	message	IDs	are	unique	on	Usenet	(or
at	least,	they	are	supposed	to	be!).

Network	News	Transfer	Protocol	Syntax	(nttp)
The	nntp	form	is	a	different	URL	type	for	news	access:

nntp://<host>:<port>/<newsgroup-name>/<article-number>

Unlike	news,	this	URL	form	specifically	requests	the	use	of	NNTP	(see
Chapter	85)	and	identifies	a	particular	NNTP	server.	Then	it	tells	the	server
which	newsgroup	to	access	and	which	article	number	within	that	newsgroup.
Note	that	articles	are	numbered	using	a	different	sequence	by	each	server,	so	this
is	still	a	local	form	of	news	addressing.	The	port	number	defaults	to	119.



Even	though	the	nntp	form	seems	to	provide	a	more	complete	resource
specification,	the	news	URL	is	more	often	used,	because	it	is	simpler.	It's	easier
just	to	set	up	the	appropriate	NNTP	server	in	the	client	software	once	than	to
specify	it	each	time,	since	clients	usually	use	only	one	NNTP	server.

Telnet	Syntax	(telnet)
This	syntax	is	used	to	open	a	Telnet	connection	to	a	server	(see	Chapter	87):

telnet://<user>:<password>@<host>:<port>

In	practice,	the	user	name	and	password	are	often	omitted,	which	causes	the
Telnet	server	to	prompt	for	this	information.	Alternatively,	the	<user>	can	be
supplied	and	the	password	left	out	(to	prevent	it	being	seen),	and	the	server	will
prompt	for	just	the	password.	The	port	number	defaults	to	the	standard	port	for
Telnet,	23,	and	is	also	often	omitted.

This	type	of	URL	is	interesting	in	that	it	identifies	a	resource	that	is	not	an	object
but	rather	a	service.

Local	File	Syntax	(file)
A	special	URL	type	is	used	for	referring	to	files	on	a	particular	host	computer.
The	standard	syntax	is:

file://<host>:<url-path>

This	type	of	URL	is	also	somewhat	interesting,	in	that	it	describes	the	location	of
an	object	but	not	an	access	method.	It	is	not	sufficiently	general	to	allow	access
to	a	file	anywhere	on	an	internetwork,	but	is	often	used	for	referencing	files	on
computers	on	a	local	area	network	(LAN)	where	names	have	been	assigned	to
different	devices.

A	special	syntax	is	also	defined	to	refer	specifically	to	files	on	the	local
computer:

file:///<url-path>

Here,	the	entire	//<host>:	element	has	been	replaced	by	a	set	of	three	slashes,
meaning	to	look	on	the	local	host.

Special	Syntax	Rules



Additional	syntax	rules	are	often	used	by	browsers	to	support	the	quirks	of
Microsoft	operating	systems,	especially	for	the	file	scheme.	First,	the
backslashes	used	by	Microsoft	Windows	are	expressed	as	forward	slashes	as
required	by	TCP/IP.	Second,	since	colons	are	used	in	drive	letters	specifications
in	Microsoft	operating	systems,	these	are	replaced	by	the	vertical	pipe	character
(|).

So,	to	refer	to	the	file	C:\WINDOWS\SYSTEM32\DRIVERS\ETC\HOSTS,	the
following	URL	could	be	used:

file:///C|/WINDOWS/SYSTEM32/DRIVERS/ETC/HOSTS

Note,	however,	that	some	browsers	actually	do	allow	the	colon	in	the	drive
specification.



URL	Relative	Syntax	and	Base	URLs
The	URL	syntax	described	so	far	is	sometimes	said	to	specify	an	absolute	URL.
This	is	because	the	information	in	the	URL	is	sufficient	to	completely	identify
the	resource.	Absolute	URLs	thus	have	the	property	of	being	context-
independent,	meaning	that	users	can	access	and	retrieve	the	resource	using	the
URL	without	any	additional	information	required.

Since	the	entire	point	of	a	URL	is	to	provide	the	information	needed	to	locate
and	access	a	resource,	it	makes	sense	that	we	would	want	them	to	be	absolute	in
definition	most	of	the	time.	The	problem	with	absolute	URLs	is	that	they	can	be
long	and	cumbersome.	There	are	cases	where	many	different	resources	need	to
be	identified	that	have	a	relationship	to	each	other;	the	URLs	for	these	resources
often	have	many	common	elements.	Using	absolute	URLs	in	such	situations
leads	to	a	lot	of	excess	and	redundant	verbiage.

In	the	overview	of	URIs	at	the	beginning	of	this	chapter,	I	gave	a	real-world
analogy	to	a	URL	in	the	form	of	a	description	of	an	access	method	and	location
for	a	person	retrieving	a	book:	"Take	the	train	to	Albuquerque,	then	Bus	#11	to
41	Albert	Street,	a	red	brick	house	owned	by	Joanne	Johnson.	The	book	you
want	is	the	third	from	the	right	on	the	bottom	of	the	bookshelf	on	the	second
floor."

What	if	I	also	wanted	the	same	person	to	get	a	second	book	located	in	the	same
house	on	the	ground	floor	after	getting	the	first	one?	Should	I	start	by	saying
again,	"Take	the	train	to	Albuquerque,	then	Bus	#11	to	41	Albert	Street,	a	red
brick	house	owned	by	Joanne	Johnson?"	Why	bother,	when	they	are	already
there	at	that	house?	No,	I	would	give	a	second	instruction	in	relative	terms:	"Go
downstairs,	and	also	get	the	blue	book	on	the	wood	table."	This	instruction	only
makes	sense	in	the	context	of	the	original	one.

The	same	need	arises	in	URLs.	Consider	a	web	page	located	at
http://www.longdomainnamesareirritating.com/index.htm	that	has	37
embedded	graphic	images	in	it.	The	poor	guy	stuck	with	maintaining	this	site
doesn't	want	to	have	to	put
http://www.longdomainnamesareirritating.com/	in	front	of	the	URL	of
every	image.



Similarly,	if	we	have	just	taken	a	directory	listing	at
ftp://ftp.somesitesomewhere.org/very/deep/directory/structures/also/stink/

and	we	want	to	explore	the	parent	directory,	we	would	like	to	just	say	"go	up	one
level,"	without	having	to	say
ftp://ftp.somesitesomewhere.org/very/deep/directory/structures/also/

It	is	for	these	reasons	that	URL	syntax	was	extended	to	include	a	relative	form.
In	simplest	terms,	a	relative	URL	is	the	same	as	an	absolute	URL,	but	with
pieces	of	information	omitted	that	are	implied	by	context.	Like	our	"Go
downstairs"	instruction,	a	relative	URL	does	not	by	itself	contain	enough
information	to	specify	a	resource.	A	relative	URL	must	be	interpreted	within	a
context	that	provides	the	missing	information.

Interpretation	Rules	for	Relative	URLs
The	context	needed	to	find	a	resource	from	a	relative	URL	is	provided	in	the
form	of	a	base	URL	that	provides	the	missing	information.	A	base	URL	must	be
either	a	specific	absolute	URL	or	itself	a	relative	URL	that	refers	to	some	other
absolute	base.	The	base	URL	may	be	either	explicitly	stated	or	may	be	inferred
from	use.	The	RFCs	dealing	with	URLs	define	the	following	three	methods	for
determining	the	base	URL,	in	the	precedence	in	which	they	are	listed	here:

Base	URL	Within	Document	Some	documents	allow	the	base	URL	to	be
explicitly	stated.	If	present,	this	specification	is	used	for	any	relative	URLs	in	the
document.

Base	URL	from	Encapsulating	Entity	In	cases	where	no	explicit	base	URL	is
specified	in	a	document,	but	the	document	is	part	of	a	higher-level	entity
enclosing	it,	the	base	URL	is	the	URL	of	the	parent	document.	For	example,	a
document	within	a	body	part	of	a	MIME	multipart	message	(see	Chapter	76)	can
use	the	URL	of	the	message	as	a	whole	as	the	base	URL	for	relative	references.

Base	URL	from	Retrieval	URL	If	neither	of	those	two	methods	are	feasible,
the	base	URL	is	inferred	from	the	URL	used	to	retrieve	the	document	containing
the	relative	URL.

Of	these	three	methods,	the	first	and	third	are	the	most	common.	HTML,	the
language	used	for	the	Web,	allows	a	base	URL	to	be	explicitly	stated,	which
removes	any	doubt	about	how	relative	URLs	are	to	be	interpreted.	Failing	this,



removes	any	doubt	about	how	relative	URLs	are	to	be	interpreted.	Failing	this,
the	third	method	is	commonly	used	for	images	and	other	links	in	HTML
documents	that	are	specified	in	relative	terms.

TIP

KEY	CONCEPT	Regular	URLs	are	absolute,	meaning	that	they	include	all	of	the	information	needed	to
fully	specify	how	to	access	a	resource.	In	situations	where	many	resources	need	to	be	accessed	that	are
approximately	in	the	same	place	or	are	related	in	some	way,	completely	specifying	a	URL	can	be
inefficient.	Instead,	relative	URLs	can	be	used,	which	specify	how	to	access	a	resource	relative	to	the
location	of	another	one.	A	relative	URL	can	be	interpreted	only	within	the	context	of	a	base	URL	that
provides	any	information	missing	from	the	relative	reference.

For	example,	let's	go	back	to	the	poor	slob	maintaining
http://www.longdomainnamesareirritating.com/index.htm.	By	default,
any	images	referenced	from	that	index.htm	HTML	document	can	use	relative
URLs—the	base	URL	will	be	assumed	from	the	name	of	the	document	itself.	So
he	can	just	say	companylogo.gif	instead	of
http://www.longdomainnamesareirritating.com/companylogo.gif,	as
long	as	that	file	is	in	the	same	directory	on	the	same	server	as	index.htm.

If	all	three	of	these	methods	fail	for	whatever	reason,	then	no	base	URL	can	be
determined.	Relative	URLs	in	such	a	document	will	be	interpreted	as	absolute
URLs,	and	since	they	do	not	contain	complete	information,	they	will	not	work
properly.

Practical	Interpretation	of	Relative	URLs
This	probably	seems	confusing,	but	relative	URLs	are	actually	fairly	easy	to
understand,	because	they	are	interpreted	in	a	rather	common-sense	way.	You
simply	take	the	base	URL	and	the	relative	URL,	and	you	substitute	whatever
information	is	in	the	relative	URL	for	the	appropriate	information	in	the	base
URL	to	get	the	resulting	equivalent	absolute	reference.	In	so	doing,	you	must
drop	any	elements	that	are	more	specific	than	the	ones	being	replaced.

What	do	I	mean	by	"more	specific?"	Well,	most	URLs	can	be	considered	to
move	from	most	general	to	most	specific	in	terms	of	the	location	they	specify.
As	you	go	from	left	to	right,	you	go	through	the	host	name,	then	high-level
directories,	subdirectories,	the	filename,	and	optionally,	the	parameters,	query,
and	fragment	applied	to	the	filename.	If	a	relative	URL	specifies	a	new	file
name,	it	replaces	the	file	name	in	the	base	URL,	and	any	parameters,	query,	and



name,	it	replaces	the	file	name	in	the	base	URL,	and	any	parameters,	query,	and
fragment	elements	are	dropped,	as	they	no	longer	have	meaning	given	that	the
file	name	has	changed.	If	the	relative	URL	changes	the	host	name,	the	entire
directory	structure,	filename,	and	everything	else	to	the	right	of	the	host	name
goes	away,	replaced	with	any	that	might	have	been	included	in	the	new	host
name	specification.

This	is	hard	to	explain	in	words	but	easy	to	understand	with	a	few	examples.
Let's	assume	we	start	with	the	following	explicit	base	URL:

http://site.net/dir1/subdir1/file1?query1#bookmark1

Table	70-2	shows	some	examples	of	relative	URLs	and	how	they	would	be
interpreted.

Table	70-2.	Relative	URL	Specifications	and	Absolute	Equivalents

Relative	URL Equivalent	Absolute	URL Explanation

#bookmark2 http://site.net/dir1/subdir1/file1?
query1#bookmark2

The	URL	is	the	same
as	the	base	URL,
except	that	the
bookmark	is	different.
This	can	be	used	to
reference	different
places	in	the	same
document	in	HTML.
Technically,	the	URL
has	not	changed	here,
since	the	fragment
(bookmark)	is	not	part
of	the	actual	URL.	A
web	browser	given	a
new	bookmark	name
will	usually	not	try	to
reaccess	the	resource.

?query2 http://site.net/dir1/subdir1/file1?
query2

The	same	file	as	given
by	the	base	URL,	but
with	a	different	query
string.	Note	that	the
bookmark	reference
from	the	base	URL	is
stripped	off.



file2 http://site.net/dir1/subdir1/file2 This	refers	to	a	file
using	the	name	file2,
which	replaces	file1	in
the	base	URL.	Here,
both	the	query	and
bookmark	are
removed.

/file2 http://site.net/file2 Since	a	single	slash
was	included,	this
means	file2	is	in	the
root	directory.	This
relative	URL	replaces
the	entire	<url-path>
of	the	base	URL.

.. http://site.net/dir1/ The	pair	of	dots	refers
to	the	parent	directory
of	the	one	in	the	base
URL.	Since	the
directory	in	the	base
URL	is	dir1/subdir1.
This	refers	to	dir1/.

../file2 http://site.net/dir1/file2 This	specifies	that	we
should	go	up	to	the
parent	directory	to	find
the	file	file2	in	dir1.

../subdir2/file2 http://site.net/dir1/subdir2/file2 This	says	go	up	one
directory	with	..,	then
enter	the	subdirectory
subdir2	to	find	file2.

../../dir2/subdir2/file2 http://site.net/dir2/subdir2/file2 This	is	the	same	as	the
previous	example,	but
going	up	two	directory
levels,	then	down
through	dir2	and
subdir2	to	find	file2.

//file2 http://file2 Two	slashes	means
that	file2	replaces	the
host	name,	causing
everything	to	the	right
of	the	host	name	to	be
stripped.	This	is
probably	not	what	was



probably	not	what	was
intended,	and	it	shows
how	important	it	is	to
watch	those	slashes.

//www.newsite.net/otherfile.htm http://www.newsite.net/otherfile.htm In	this	example,
everything	but	the
scheme	has	been
replaced.	In	practice,
this	form	of	relative
URL	is	not	that
common—the	scheme
is	usually	included	if
the	site	name	is
specified,	for
completeness.

file2?query2#bookmark2 http://site.net/dir1/subdir1/file2?
query2#bookmark2

This	replaces	the
filename,	query	name,
and	bookmark	name.

ftp://differentsite.net/whatever ftp://differentsite.net/whatever Using	a	new	scheme
forces	the	URL	to	be
interpreted	as	absolute.

Relative	URLs	have	meaning	only	for	certain	URL	schemes.	For	others,	they
make	no	sense	and	cannot	be	used.	In	particular,	relative	URLs	are	never	used
for	the	telnet,	mailto,	and	news	schemes.	They	are	very	commonly	used	for
HTTP	documents,	and	may	also	be	used	for	FTP	and	file	URLs.

Incidentally,	there	is	one	other	very	important	benefit	of	using	relative	URLs:
Avoiding	absolute	URLs	in	a	document	allows	it	to	be	more	portable	by
eliminating	hard-coded	references	to	names	that	might	change.	Going	back	to
our	previous	example,	if	the	guy	maintaining	the	site
http://www.longdomainnamesareirritating.com	uses	only	relative	links	to
refer	to	graphics	and	other	embedded	objects,	then	if	the	site	is	migrated	to
www.muchshortername.com,	he	will	not	need	to	edit	all	of	his	links	to	the	new
name.	The	significance	of	this	in	Web	URLs	is	explored	further	in	the	detailed
discussion	of	HTTP	URLs	in	Chapter	79.

TIP

KEY	CONCEPT	In	addition	to	being	more	efficient	than	absolute	URLs,	relative	URLs	have	the
advantage	that	they	allow	a	resource	designer	to	avoid	the	specific	mention	of	names.	This	increases	the

http://www.muchshortername.com


portability	of	documents	between	locations	within	a	site	or	between	sites.



URL	Length	and	Complexity	Issues
URLs	are	the	most	ubiquitous	form	of	resource	addressing	for	some	very	good
reasons:	They	represent	a	simple,	convenient,	and	easy-to-understand	way	of
finding	documents.	Popularized	by	their	use	on	the	Web,	URLs	can	now	be	seen
in	everything	from	electronic	document	lists	to	television	commercials—a
testament	to	their	universality	and	ease	of	use.

At	least,	this	is	true	most	of	the	time.

When	URLs	work,	they	work	very	well.	Unfortunately,	there	are	also	some
concerns	that	arise	with	respect	to	how	URLs	are	used.	Both	accidental	and
intentional	misuse	of	URLs	occurs	on	a	regular	basis.	Part	of	why	I	have	devoted
so	much	effort	to	describing	URLs	is	that	most	people	don't	really	understand
how	they	work,	and	this	is	part	of	why	problems	occur.

Many	of	the	issues	with	URLs	are	directly	due	to	the	related	matters	of	length
and	complexity.	URLs	work	best	when	they	are	short	and	simple,	so	it	is	clear
what	they	are	about	and	so	they	are	easy	to	manipulate.	For	example,
http://www.ibm.com	is	recognizable	to	almost	everyone	as	the	website	of	the
International	Business	Machines	Corporation	(IBM).	Similarly,	you	can
probably	figure	out	what	this	URL	does	without	any	explanation:
ftp://www.somecomputercompany.com/drivers/videodrivers.zip.

However,	as	you	have	seen	earlier	in	this	chapter,	URLs	can	be	much	more
complex.	In	particular,	the	common	Internet	syntax	used	by	protocols	such	as
HTTP	and	FTP	is	extremely	flexible,	containing	a	large	number	of	optional
elements	that	can	be	used	when	required	to	provide	the	information	necessary
for	a	particular	resource	access.

The	point	that	many	elements	in	URL	syntax	are	optional	is	important.	The
majority	of	the	time,	most	of	these	optional	parts	are	omitted,	which	makes
URLs	much	simpler	in	practical	use	than	they	are	in	their	descriptions.	For
example,	even	though	an	HTTP	URL	theoretically	contains	a	user	name,
password,	host,	port,	path,	query,	and	bookmark,	most	URLs	use	only	a	host
name	and	a	path.	This	is	what	helps	keep	URLs	short	and	easy	to	use.

Despite	this,	you	will	still	find	some	rather	long	URLs	used	on	the	Internet,	for	a
variety	of	reasons:



variety	of	reasons:

Long	DNS	Domain	and	Host	Names	Some	people	don't	realize	that	long	host
names	are	hard	to	remember.	If	you	run	the	Super	Auto	Body	Shop	&	Pizza
Parlor,	having	a	website	called	www.superauto.com	will	make	it	easier	for	your
customers	to	find	you	than	trying	to	register
www.superautobodyshopandpizza.com.	Yet	DNS	names	of	15,	20,	or	even	more
characters	are	surprisingly	common.

Long	Document	or	Directory	Names	Similarly,	short	filenames	are	better	than
long	ones,	and	again,	many	people	don't	think	about	this	before	putting	files	on
the	Internet,	which	makes	things	more	difficult	for	those	who	must	access	them.

Use	of	Unsafe	Characters	As	discussed	saw	earlier	in	this	chapter,	URLs	have
a	mechanism	for	dealing	with	unsafe	characters,	but	it	makes	them	longer	and
harder	to	decipher.	If	you	have	a	file	called	"{ABC	Corp}	budget;	draft	#3;	third
quarter	2004.htm,"	the	URL	for	it	will	have	to	be
%7BABC%20Corp%7D%20budget%3B%20draft%20%233%3B%20third%20quarter%202004.htm

The	original	long	filename	was	readable,	but	the	URL	is	a	mess.	Naming	the	file
"ABC	budget	draft	3,	3Q2004.htm"	would	be	a	better	choice,	and	still	includes
enough	information	to	be	understandable.	Even	better,	you	could	replace	the
spaces	with	underscores,	to	avoid	the	need	for	the	%20	encoding	entirely:
"ABC_budget_draft	3,_3Q2004.htm."

Parameter	Strings	In	HTTP	URLs,	the	syntax	for	specifying	a	query	(following
a	question	mark	character)	is	often	used	to	allow	a	web	browser	to	send	various
types	of	information	to	a	web	server,	especially	parameters	for	interactive
queries.	These	parameter	strings	can	get	quite	lengthy.	For	example,	I	typed	in	a
query	to	the	great	web	search	engine	Google	to	find	recipes	for	potato	salad.
This	is	what	the	URL	for	one	of	the	recipe	files	looks	like:

http://groups.google.com/groups?q=%22potato+salad%22&hl=en&lr=&ie=
UTF-8&safe=off&selm=B826FB57.89C0%25sbrooks%40ev1.net&rnum=2

Almost	all	of	that	consists	of	parameters	that	tell	the	Google	server	exactly	what
document	I	want	based	on	my	query.	It	is	necessary,	but	still	cumbersome.

URL	Wrapping	and	Delimiting
For	humans,	long	and	complex	URLs	are	hard	to	remember	and	use.	In	addition



to	the	sheer	difficulty	of	remembering	all	those	characters,	there	is	the	issue	of
URL	wrapping,	which	occurs	when	they	are	presented	in	certain	forms.	Most
programs	can	display	only	78	or	80	characters	in	a	single	line.	If	a	URL	is	longer
than	this,	the	characters	of	the	URL	will	wrap	onto	multiple	lines;	when	you	read
that	Google	example	of	parameter	strings,	you	probably	noticed	that.

URL	wrapping	can	lead	to	mistakes	when	copying	a	URL	from	one	form	to
another,	such	as	if	you	copied	it	from	this	document	into	your	web	browser.	If	a
URL	is	81	characters	long,	and	80	are	on	the	first	line	and	the	last	character	is	on
the	second	line,	many	users	may	not	realize	that	the	URL	has	wrapped.	I	have
seen	URLs	that	are	hundreds	of	characters	long,	requiring	several	manual	copy-
and-paste	operations	to	get	the	URL	to	work.

Perhaps	surprisingly,	some	software	may	not	handle	this	wrapping	properly
either.	While	this	is	not	a	problem	when	a	hyperlink	is	used	in	something	like	an
HTML	document,	it	can	be	troublesome	when	links	are	included	in	an	email
message	or	Usenet	article.

Another	issue	is	delimiting	where	a	URL	starts	and	ends	when	it	appears.	A
URL	begins	with	a	scheme	name	that	could,	in	theory,	be	used	in	other	contexts
that	are	not	URLs.	Without	a	clear	way	of	labeling	a	URL	as	being	a	URL,	a
software	program	might	not	recognize	it.	Consider	discussion	of	a	URL	in	a
document	like	this	one.	If	I	say,	"Please	visit	http://www.thissite.com;	you	will
see	the	information	you	need	there,"	we	all	know	the	semicolon	is	part	of	the
sentence	and	not	part	of	the	URL,	but	a	computer	program	might	not	be	so	sure.
And	again,	this	problem	is	worse	when	a	URL	is	long	and	complex,	and	wraps
on	to	multiple	lines	of	text.	How	does	the	program	recognize	the	end	of	the
URL?

Explicit	URL	Delimiting	and	Redirectors
To	resolve	both	the	wrapping	and	delimiting	problems,	a	special	URL	super-
syntax	is	sometimes	employed,	especially	when	URLs	are	used	in	other	text.
This	is	done	by	surrounding	the	URL	in	angle	brackets,	possibly	including	the
label	URL:.	before	the	scheme	name.	For	example,	all	of	the	following	are
equivalent:

http://www.networkingistoodarnedcomplicated.com
<http://www.networkingistoodarnedcomplicated.com>

http://www.thissite.com


<http://www.networkingistoodarnedcomplicated.com>
<URL:http://www.networkingistoodarnedcomplicated.com>

The	angle	brackets	indicate	clearly	where	the	URL	begins	and	ends,	making	it
easier	for	both	programs	and	humans	to	deal	with	long	URLs.

Another	solution	sometimes	used	for	long	URLs	are	redirection	services,
provided	by	many	websites.	For	example,	http://www.tinyurl.com	is	a	free
service	that	allows	someone	to	create	a	short	URL	that	automatically	loads	a
resource	at	a	much	longer	URL.

URL	Abbreviation
One	final	issue	I	want	to	discuss	isn't	related	directly	to	long	or	complex	URLs,
but	is	related	indirectly	to	the	matter	of	length:	URL	abbreviation.	Many	people
use	URLs	so	often	that	they	become	lazy	when	it	comes	to	specifying	URLs.
They	tend	to	leave	off	portions	of	the	full	URL	syntax	to	save	time	and	energy.	I
don't	mean	by	this	that	they	specify	relative	URLs,	but	rather,	they	specify
absolute	URLs	with	missing	pieces.

For	example,	rather	than	type	http://www.sitename.com,	they	might	type
http:www.sitename.com,	leaving	off	the	two	slashes.	More	commonly,	people
omit	the	scheme	name	entirely,	just	entering	www.sitename.com.	Technically,
this	is	not	a	URL—it	is	just	a	domain	name.	However,	most	web	browsers	can
handle	this,	assuming	by	default	that	the	scheme	is	http://	if	none	is	provided.

http://www.tinyurl.com


URL	Obscuration,	Obfuscation,	and	General
Trickery
Most	of	the	time,	the	owner	of	a	resource	wants	the	URL	that	refers	to	the
resource	to	be	short,	simple	and	easily	understood.	Thus,	long	and	complex
URLs	are	usually	the	result	of	necessity,	accident,	or	ignorance.	Some	resources
need	to	have	long	names	for	a	specific	reason,	such	as	the	use	of	the	long	query
string	in	the	Google	example	earlier;	other	times,	URLs	are	made	long	because
the	owner	of	the	resource	doesn't	realize	that	using	a	long	DNS	host	name	or	file
name	will	make	for	a	long	and	unwieldy	URL.

Whatever	the	reasons	for	these	situations,	they	are	not	deliberate.	Recent	years,
however,	have	seen	a	dramatic	rise	in	the	use	of	intentionally	long,	complex,
confusing	and	deliberately	deceptive	URLs.	These	URLs	are	either	structured	so
that	it	is	impossible	to	tell	what	they	are,	or	worse,	they	are	made	to	appear	as	if
they	point	to	one	resource	when	they	really	go	to	another.

Why	would	people	do	this?	Because	they	do	not	want	to	be	open	and	honest
about	their	"resources."	And	who	would	these	people	be?	Why,	they	would	be
the	spammers	and	con	artists	who	overload	our	Internet	email	boxes	with	offers
of	every	sort	imaginable,	from	making	you	rich	beyond	your	wildest	dreams	to
inflating	the	dimensions	of	certain	body	parts	to	unnatural	sizes.

They	are	afraid	that	if	the	URL	indicated	clearly	what	the	"resource"	was,	you
might	not	click	the	link,	or	that	if	you	identify	them	as	spammers	you	might
filter	out	their	email.	They	also	figure	that	if	they	can	make	the	URL	appear	to
be	something	interesting,	you'll	load	it.	Even	if	it	turns	out	to	be	something	you
didn't	expect,	maybe	you'll	pay	attention	anyway.

You	may	be	thinking	that	you	are	too	smart	to	be	tricked	into	buying	a	product
through	a	deceptive	URL.	And	you	would	never	support	a	spammer	anyway.
What	a	coincidence—same	with	me!	Yet	the	spam	keeps	coming.	It	must	work,
or	they	wouldn't	keep	doing	it	…	would	they?

It	is	a	cruel	irony	that	the	complex	syntax	that	was	built	into	URLs	to	allow	them
to	be	so	flexible	has	been	subject	to	exploitation.	Tricksters	know	that	most
people	are	used	to	seeing	simple	URLs	like	http://www.myfavoritesite.com



and	do	not	realize	that	the	full	URL	syntax	allows	the	same	resource	to	be
specified	in	literally	millions	of	different	ways.	So,	desperate	for	hits	to	their
websites	at	any	cost,	they	keep	coming	up	with	new	tricks	for	manipulating
URLs.	These	are	focused	on	HTTP	scheme	URLs,	though	in	theory,	the	tricks
can	be	applied	to	several	other	types	as	well	(though	they	won't	work	with	some
schemes).

Here	are	some	of	the	more	common	gimmicks	that	have	been	used	(note	that	if
you	are	trying	these	out	as	you	read,	some	examples	may	not	work	on	certain
browsers):

Excessive	Length	In	some	cases,	a	URL	is	just	made	really	long	by	the	addition
of	a	lot	of	gibberish	as	a	query	string,	so	that	the	user's	eyes	glaze	over	just
looking	at	it.	This	is	a	relatively	unsophisticated	technique,	however,	since	you
can	easily	tell	what	the	real	host	name	is	by	looking	at	the	start	of	the	URL.	Most
of	the	better	scammers	have	moved	beyond	such	simple	tricks	today.

Regular	IP	Address	Hosts	Internet	users	are	so	accustomed	to	using	DNS
names	that	they	don't	realize	that	you	can	access	a	URL	using	an	IP	address.	So
most	people	don't	realize	that	The	PC	Guide	can	be	accessed	as	easily	using
<http://209.68.14.80>	as	<http://www.PCGuide.com>.	(Note	that	this	is	not
true	of	all	Internet	hosts;	those	that	use	virtual	names	cannot	be	accessed	using
just	an	IP	address.)	This	is	not	really	trickery	per	se.	It	is	quite	legitimate,	and	in
some	ways,	even	necessary;	for	example,	for	accessing	a	site	that	is	having	DNS
problems.	The	problem	here	is	that	usually	you	cannot	tell	what	a	site	is	from	the
IP	address	alone,	and	many	people	will	just	click	an	IP	address	link	without
bothering	to	find	out	what	it	is.

Numeric	Domain	Names	It	is	possible	to	register	a	DNS	domain	name
consisting	of	just	a	single	number.	For	example,	one	could	register	114.com.
And	then	you	could	create	subdomains	within	it	such	as	42.12.205.114.com.	At
first	glance,	this	appears	to	be	an	IP	address	specification,	so	someone	might
think	it	would	resolve	to	the	address	42.12.205.114,	but	it's	actually	some	other
address.	I	believe	that	DNS	name	registrars	have	been	cracking	down	on	this	sort
of	trickery,	so	it	may	not	be	as	prevalent	now	as	it	once	was.

Bogus	Authentication	Information	HTTP	URLs	theoretically	support	the
inclusion	of	authentication	information,	by	including	<user>:<password>@



before	the	host	in	the	URL.	Yet	the	vast	majority	of	websites	are	open,	and
neither	require	nor	use	this	type	of	information.	If	you	specify	an	authentication
string	and	it	is	not	needed,	it	is	ignored.	One	way	to	abuse	this	is	by	including
"authentication	information"	that	looks	like	a	benign	host,	to	make	the	user	think
the	URL	is	for	that	host.	For	example,	if	I	wanted	to	trick	you	into	visiting	The
PC	Guide,	I	might	use	this	URL	to	make	it	look	like	clicking	it	would	go	to
CNN:	<http://www.cnn.com@www.PCGuide.com>.	This	is	still	too	obvious,
however,	so	this	method	is	often	combined	with	some	of	the	following
techniques.

Deceptive	Character	Encoding	The	use	of	the	percent	sign	to	encode	special
characters	such	as	spaces	and	punctuation	can	also	be	abused	to	obscure	the
name	of	a	domain.	For	example,	the	following	is	another	way	of	expressing	the
DNS	name	for	The	PC	Guide:
<http://%57%57%57.%50%43%47%55%49%44%45.%43%4F%4D>.	Try	it!

IP	Address	Math	Trickery	Okay,	this	is	where	things	get	really	bizarre.	Most
of	the	time,	we	express	an	IP	address	as	a	dotted	decimal	number.	Remember,
however,	that	to	computers,	the	IP	address	is	just	a	32-bit	binary	number.	Most
browsers	support	a	rather	shocking	number	of	methods	for	expressing	these
numbers.	This	is	unfortunate,	because	this	flexibility	is	really	not	needed	and
almost	never	used	for	legitimate	purposes.	It	can	lead	to	some	really	bizarre
URLs	that	are	unrecognizable	or	that	look	like	regular	IP	addresses	but	are	not.
Here	are	some	examples,	all	of	which	are	the	same	as	the	IP	address	form	of	The
PC	Guide	(<http://209.68.14.80>):

An	IP	address	in	dotted	octal	uses	a	leading	zero	to	signify	where	each	byte	is
in	octal,	as	in	<http://0321.0104.016.0120>.

An	IP	address	in	dotted	hexadecimal	uses	a	leading	zero	followed	by	an	x	to
signify	where	each	byte	is	in	hexadecimal,	as	in
<http://0xD1.0x44.0x0E.0x50>.

We	can	even	take	the	entire	32-bit	number	and	express	it	as	a	single	number,
and	that	will	work	too.	In	decimal,	this	would	look	like
<http://3510898256/>;	in	octal,	<http://032121007120/>;	and	in
hexadecimal,	<http://0xd1440e50/>.

As	if	these	tricks	weren't	bad	enough	taken	individually,	we	can	have	some	real



As	if	these	tricks	weren't	bad	enough	taken	individually,	we	can	have	some	real
fun	by	combining	them!	For	example,	start	with	the	regular	PC	Guide	URL:

<http://www.PCGuide.com>

And	convert	it	to	IP:
<http://209.68.14.80>

Then	add	some	bogus	authentication	gibberish:
<http://www.cnn.com@209.68.14.80>

And	convert	the	real	URL	into	a	single	number,	so	it	looks	like	a	document	on
the	CNN	website:

<http://www.cnn.com@3510898256>

Alternatively,	we	can	use	the	octal	form,	and	even	include	a	lot	of	extra	leading
zeros	just	for	fun:

<http://www.cnn.com@0000000000000321.00000000104.00000000000016.00000120>

Believe	it	or	not,	this	is	just	the	tip	of	the	iceberg.	In	some	browsers,	even	the	IP
address	numbers	can	be	expressed	using	percent	sign	ASCII	encoding!

While	quite	irritating,	I	must	give	these	people	points	for	creativity	at	least—
some	of	the	tricks	are	quite	ingenious.	At	the	same	time,	their	inventiveness	is
potentially	hazardous.	While	these	false	URLs	are	usually	more	a	waste	of	time
than	anything	harmful,	there	are	sometimes	good	reasons	a	person	would	go	to
great	lengths	to	hide	the	identity	of	a	resource.	Deceptive	URLs	are	just	one
more	danger	that	network	administrators	must	deal	with	today.

TIP

KEY	CONCEPT	The	syntax	of	Internet	URLs	includes	many	elements	that	provide	great	flexibility	in
how	URLs	can	be	constructed.	Unfortunately,	these	capabilities	of	expression	are	now	often	abused	by
people	who	create	intentionally	obfuscated	URLs	to	trick	users	into	accessing	their	websites	and	other
resources.	Some	of	these	can	be	potentially	hazardous,	which	means	that	care	is	required	before	clicking
unknown	links	or	accessing	strange	URLs.



URNs
"HTTP	404	-	NOT	FOUND"

Have	you	ever	tried	to	access	a	website	or	other	Internet	resource,	only	to	see
those	dreaded	words	appear?	You	probably	have,	and	in	seeing	them,	you	have
experienced	firsthand	one	of	the	most	common	problems	with	URLs.

URLs	specify	a	resource	using	two	key	pieces	of	information:	the	resource's
location	and	a	method	by	which	the	resource	may	be	accessed	or	retrieved.	This
focus	on	the	means	of	access	for	the	resource	makes	URLs	very	practical,	in	that
the	URL	usually	contains	all	the	data	we	need	to	use	the	resource.	This	is	why
URLs	are	so	widely	used	today.	However,	this	access	orientation	also	means	that
URLs	have	a	number	of	serious	limitations.

The	Problem	with	URLs
The	main	difficulty	with	URLs	is	that	since	they	describe	a	resource	based	on	its
location,	they	tie	the	resource	and	its	location	together	inextricably.	While	this
may	not	seem	to	be	a	big	deal,	it	is	actually	a	fairly	serious	matter	in	a	number	of
ways,	because	a	resource	and	its	location	are	not	the	same	thing.	It	is	only
because	most	Internet	resources	rarely	change	location	that	we	don't	notice	this
issue	more	often	with	URLs.

Suppose	that	your	name	is	Joe	Xavier	Zachariah	and	you	live	at	44	Glendale
Crescent	in	Sydney,	Australia.	If	someone	asked	you	who	you	were,	would	you
say,	"Joe	Xavier	Zachariah,"	or	"the	man	living	at	44	Glendale	Crescent	in
Sydney,	Australia"?	Almost	certainly,	you	would	supply	the	former	answer.	But
a	URL	would	be	like	describing	yourself	as	a	"resource"	using	the	latter
description.

Since	we	realize	that	Mr.	Zachariah	is	obviously	not	always	going	to	be	at	44
Glendale	Crescent,	we	know	that	describing	him	using	just	a	location	is	not
sufficient.	The	same	thing	occurs	with	Internet	resources	when	they	are
identified	using	only	location.

However,	the	problem	with	Internet	resources	and	URLs	goes	beyond	just	the
matter	of	movement.	Consider	a	situation	where	a	particular	resource	is	very
popular	and	we	want	to	duplicate	the	same	resource	in	multiple	locations.	Using



popular	and	we	want	to	duplicate	the	same	resource	in	multiple	locations.	Using
URLs,	we	would	need	a	different	identifier	for	each	copy	of	the	resource,	even
though	each	copy	is	the	same.	Again,	the	problem	is	that	we	are	not	identifying
the	resource	itself,	but	rather	the	place	where	it	can	be	found.

In	recognition	of	this	issue	with	URLs,	an	alternative	identification	mechanism
for	Internet	resources	was	developed,	called	Uniform	Resource	Names	(URNs).

Overview	of	URNs
The	basic	standard	describing	URNs	is	RFC	1737,	"Functional	Requirements	for
Uniform	Resource	Names,"	which	was	published	in	1994.	In	1997,	RFC	2141
was	published,	which	specifies	the	syntax	of	URNs.

As	you	can	probably	tell	from	that	term,	a	URN	is	intended	to	label	a	resource
based	on	its	actual	identity,	rather	than	where	it	can	be	found.	So,	where	a	URL
is	like	Joe	Zachariah's	address,	a	URN	would	be	his	name.	Or,	as	I	gave	as	an
example	in	the	overview	of	URIs	at	the	beginning	of	this	chapter,	a	URN	would
be	identifying	a	book	based	on	its	ISBN	number	rather	than	specifying	which
bookshelf	it	is	on	in	a	building.

To	be	useful	in	identifying	a	particular	resource,	it	is	necessary	that	a	URN	be
globally	unique,	and	that's	not	always	as	simple	as	it	may	at	first	appear.
Consider	human	names,	for	example.	Even	though	there	is	probably	only	one
Charles	Marlin	Kozierok	in	the	entire	world,	if	your	name	is	John	Paul	Smith	or
José	Garcia,	you	likely	share	that	name	with	thousands	of	others.	This	means
using	common	names	may	not	be	sufficient	for	identifying	human	"resources,"
and	some	other	method	might	need	to	be	devised.

URN	Namespaces	and	Syntax
There	are	many	types	of	resources	that	URNs	are	intended	to	identify	on	the
Internet,	each	of	which	may	require	a	different	form	of	naming.	To	allow	URNs
to	represent	many	kinds	of	resources,	numerous	URN	namespaces	are	defined.

A	namespace	is	referenced	using	a	unique	string	that	tells	the	person	or	computer
interpreting	the	URN	what	type	of	resource	the	URN	identifies.	The	namespace
also	ensures	the	uniqueness	of	URNs,	when	a	particular	identifier	might	exist	in
more	than	one	context.	For	example,	both	North	American	telephone	numbers



and	ISBN	numbers	consist	of	ten	digits,	so	a	particular	number	such	as
4167819249	could	represent	both	a	telephone	number	and	a	book	number.	The
namespace	identifier	tells	us	what	the	number	means	when	it	is	encountered	in	a
URN.

The	general	syntax	of	a	URN	is	as	follows:
URN:<namespace-ID>:<resource-identifier>

For	example,	a	book	with	the	ISBN	number	0-679-73669-7	could	be	represented
as	URN:isbn:0-679-73669-7.	This	string	identifies	that	particular	book
uniquely,	wherever	it	might	happen	to	be	in	the	world.	Many	other	namespaces
have	also	been	defined	to	specify	the	URNs	for	other	types	of	resources,	such	as
documents	on	the	Internet.

TIP

KEY	CONCEPT	Where	URLs	specify	a	resource	based	on	an	access	method	and	location,	Uniform
Resource	Names	(URNs)	identify	a	resource	by	name.	A	URN	consists	of	a	namespace	identifier	that
indicates	what	type	of	name	it	contains,	and	a	resource	identifier	that	specifies	the	individual	resource
within	the	context	of	that	namespace.

URN	Resolution	and	Implementation	Difficulties
URNs	are	a	more	natural	way	of	identifying	resources,	which	gives	them
intuitive	appeal.	Despite	this,	URNs	are	still	not	widely	used,	even	though	they
have	been	in	development	for	more	than	a	decade.	The	main	reason	for	this	is
somewhat	ironic:	It	is	because	URNs	are	independent	of	location!	The	very
characteristic	that	provides	URNs	with	identification	advantages	over	URLs	also
makes	URNs	much	harder	to	use	practically,	which	has	led	to	long	delays	in
workable	URN	systems.

To	understand	the	problem,	consider	the	example	URN:isbn:0-679-73669-7.
This	uniquely	identifies	a	particular	book,	and	will	always	refer	to	it	no	matter
where	the	book	may	be,	unlike	a	URL.	The	problem	is	that	while	the	URL
equivalent	tells	us	how	to	actually	find	this	book,	the	URN	does	not.	The	same
thing	goes	for	our	previous	human	example:	Identifying	Joe	Xavier	Zachariah	by
his	name	is	more	sensible	than	identifying	him	as	the	man	living	at	44	Glendale
Crescent	in	Sydney,	Australia,	but	at	least	with	the	latter,	we	know	where	Joe	is!



In	order	for	URNs	to	be	useful	on	an	internetwork,	they	require	an	additional
mechanism	for	translating	a	simple	URN	identification	string	into	a	particular
location	and/or	access	method.	In	other	words,	we	need	to	be	able	to	change	a
URN	into	the	equivalent	of	a	URL,	so	that	the	resource	can	be	found.	This
requirement	is	analogous	to	the	problem	of	resolving	Internet	DNS	domain
names	into	IP	addresses,	and	the	same	term	is	used	to	describe	it:	URN
resolution.

Ideally,	we	want	to	be	able	to	use	some	sort	of	technique	where	we	specify	the
name	Joe	Xavier	Zachariah,	and	we	are	told	where	Joe	is	so	we	can	find	him.	Or,
we	provide	the	string	URN:isbn:0-679-73669-7,	and	we	are	provided	with	a
list	of	libraries	or	other	places	where	the	book	can	be	found.	The	power	of	URNs
can	also	be	taken	advantage	of	in	such	a	system,	by	having	the	resolution	system
specify	the	location	of	a	copy	of	the	resource	that	is	closest	(in	terms	of	network
distance,	cost,	or	other	measurements)	to	the	entity	making	the	request.

However,	setting	up	URN	resolution	mechanisms	is	a	nontrivial	task.	The	matter
of	URN	resolution	has	been	the	subject	of	much	of	the	work	on	URNs	over	the
past	decade.	RFC	2483,	"URI	Resolution	Services	Necessary	for	URN
Resolution,"	was	published	in	1999	and	discusses	some	of	the	important	issues
in	URN	resolution.	In	October	2002,	a	series	of	RFCs,	3401	to	3405,	defined	a
new	system	called	the	Dynamic	Delegation	Discovery	System	(DDDS)	that	was
designed	not	just	to	resolve	URNs,	but	to	handle	the	entire	class	of	resolution
problems	where	an	identifier	is	given	and	the	output	is	information	about	where
to	get	more	information	about	that	identifier.	RFC	3406	was	published	at	the
same	time,	providing	more	information	about	URN	namespaces.

TIP

KEY	CONCEPT	Since	URNs	identify	resources	by	name	rather	than	location,	they	are	a	more	natural
way	of	identifying	resources	than	using	URLs.	Unfortunately,	this	advantage	is	also	a	disadvantage,
since	URNs	don't,	by	themselves,	provide	a	user	with	the	necessary	information	to	find	the	resource	so	it
can	be	used.	A	process	of	URN	resolution	must	be	performed	to	transform	the	URN	into	a	set	of
information	that	allows	the	resource	to	be	accessed.

Although	progress	on	URNs	has	been	slow,	it	has	been	steady.	While	it	may	yet
be	a	few	years	before	URNs	are	widely	used,	I	believe	it	is	likely	that	they	will
play	an	increasingly	prominent	role	in	identifying	resources	on	the	Internet	in	the
future.



future.



Chapter	71.	FILE	AND	MESSAGE
TRANSFER	OVERVIEW	AND
APPLICATION	CATEGORIES

The	purpose	of	networking	applications	is	to	allow	different	types	of	information
to	be	sent	between	networked	devices.	In	the	world	of	computers,	information	is
most	often	arranged	into	discrete	units	called	files.	When	those	files	are	created
specifically	for	the	purpose	of	communication,	they	are	often	called	messages.

Transferring	files	and	messages	between	networked	computers	is	the	most	basic
type	of	network	communication.	For	this	reason,	it	would	not	be	an	exaggeration
to	say	that	file	and	message	transfer	applications	may	be	the	most	important
class	of	internetworking	applications.	Some	of	the	members	of	this	group	are	so
common	that	many	people	use	them	every	day	without	even	thinking	about	it.

In	this	brief	introductory	chapter,	I	take	a	general	look	at	the	concepts	behind	file
and	message	transfer,	and	how	different	applications	treat	them.	I	begin	with	a
discussion	of	the	general	concept	behind	files,	then	discuss	the	categories	of
applications	that	use	them,	contrasting	message	transfer	with	file	transfer.

File	Concepts
To	understand	the	file	and	message	transfer	applications,	let's	first	take	a	quick
step	back	to	look	at	the	fundamental	concept	of	a	file.	Simply	put,	a	file	is	just	a
collection	of	information	that	is	treated	as	a	single	unit	by	a	computer	system.

Files	are	stored	in	directories	or	folders	in	a	file	system.	In	modern	computers,
files	are	normally	expressed	as	a	sequence	of	bytes	or	characters,	and	each	file	is
read,	written,	copied,	or	otherwise	manipulated	as	an	independent	object.	In



addition	to	the	data	it	contains,	each	file	has	associated	with	it	file	attributes	that
describe	it.

For	our	purposes,	the	critical	characteristic	of	a	file	is	that	it	is	a	self-contained
object	carrying	arbitrary	information.	Since	files	are	the	building	blocks	of
information	in	computer	systems,	it's	no	surprise	that	the	transfer	of	information
in	networking	was	originally	defined	in	terms	of	the	movement	of	files.	Some	of
the	protocols	describing	how	to	transfer	files	predate	all	of	the	modern	protocols
in	the	lower	levels	of	TCP/IP,	including	Internet	Protocol	version	4	(IPv4),	the
Transmission	Control	Protocol	(TCP),	and	the	User	Datagram	Protocol	(UDP).
It's	not	the	case	that	file	transfer	was	an	early	application	of	internetworking,	but
that	internetworking	was	invented	in	large	part	to	permit	file	transfer!



Application	Categories
Files	in	modern	computing	systems	are	inherently	designed	to	be	generic;	they
can	contain	any	type	of	information.	The	significance	of	the	contents	of	a	file
depends	entirely	on	the	user	or	software	program	that	examines	it.	The	TCP/IP
file	and	message	transfer	protocols	have	in	common	the	notion	of	moving	files
from	one	computer	to	another.	Where	they	differ	is	in	how	the	files	are	handled
and	processed.	There	are	two	basic	approaches:	file	transfer	and	message
transfer.

General	File	Transfer	Applications
General	transfer	applications	normally	treat	files	as	a	"black	box,"	moving	them
from	place	to	place	and	paying	little	or	no	attention	to	what	the	files	contain.	The
TCP/IP	File	Transfer	Protocol	(FTP)	and	Trivial	File	Transfer	Protocol	(TFTP)
fall	into	this	category.	FTP	has	been	around	in	one	form	or	another	for	more	than
30	years	now	and	is	still	widely	used.

Message	Transfer	Applications
Other	TCP/IP	applications	work	with	particular	types	of	files,	processing	and
interpreting	them	in	various	ways.	These	files	are	usually	designed	for	the
specific	purpose	of	communication,	and	are	thus	called	messages;	these
applications	allow	users	to	construct,	send,	and	receive	messages	that	fit	a
particular	message	format.	There	are	several	prominent	TCP/IP	messaging
applications	we'll	examine	in	this	book.

Electronic	Mail	(Email)
Email	is	a	system	that	allows	users	to	exchange	"letters"	(in	fact,	any	type	of
document)	in	a	manner	equivalent	to	the	conventional	postal	system,	but	with	the
advantages	of	great	speed	and	simplicity.	Email	has	not	replaced	regular	mail
entirely,	but	many	people	now	use	it	for	the	vast	majority	of	their
correspondence.

Network	News	(Usenet)
Usenet	is	an	application	that	is	like	email	in	that	it	allows	users	to	send
messages.	However,	while	email	is	normally	used	to	allow	a	message	to	be	sent



messages.	However,	while	email	is	normally	used	to	allow	a	message	to	be	sent
to	one	user	or	a	small	number	of	recipients,	network	news	is	a	way	for	thousands
of	users	to	share	messages	on	various	topics.

Any	user	can	contribute	a	message	that	can	be	seen	by	others,	any	of	whom	can
respond.	Unlike	the	case	with	email,	recipients	do	not	need	to	be	explicitly
identified,	which	makes	network	news	far	more	suitable	to	communication
among	large	groups	of	people	who	may	not	even	know	each	other.	This	was	one
of	the	first	TCP/IP	applications	to	create	something	like	an	electronic	bulletin
board:	an	online	community.

Hypertext	(World	Wide	Web)
You	probably	don't	even	need	me	to	explain	what	the	World	Wide	Web	is,	such
is	its	great	significance	in	modern	internetworking.	Hypertext	moves	the	idea	of
messaging	beyond	the	simple	exchange	of	text	messages	or	plain	files	to	the
notion	of	rich	messages	that	can	contain	a	variety	of	types	of	information.	This
includes	text,	graphics,	multimedia,	and	embedded	files.

Most	important,	hypertext	allows	one	document	to	be	linked	to	another,	forming
the	web	of	related	documents	that	led	to	the	name	World	Wide	Web.	The	Web	is
almost	certainly	the	single	most	important	TCP/IP	application,	used	daily	by
millions	of	people.

The	Merging	of	File	and	Message	Transfer
Methods
In	recent	years,	a	number	of	developments	have	caused	the	lines	between
applications	that	transfer	files	and	applications	that	transfer	messages	to	become
greatly	blurred.	Email	is	no	longer	limited	to	simple	text	messages;	it	can	now	be
used	to	carry	general	files	by	encoding	them	into	text	form	using	special
methods,	and	even	to	carry	hypertext	documents.	World	Wide	Web	clients
(browsers)	continue	to	be	enhanced	to	let	them	access	other	types	of	servers	and
files,	and	can	also	be	used	for	general	file	transfer.

These	developments	mean	even	more	functionality	and	flexibility	for	the	TCP/IP
user—and	a	bit	more	care	required	on	the	part	of	you,	the	TCP/IP	learner.

TIP



KEY	CONCEPT	One	of	the	most	important	groups	of	TCP/IP	applications	is	the	one	that	enables	files
to	be	moved	between	devices	on	an	internetwork:	file	and	message	transfer	applications.	This	group
contains	many	of	the	common	applications	that	TCP/IP	users	employ	every	day	to	communicate.	It	can
be	broken	into	two	main	categories:	general	file	transfer	applications	that	are	used	to	move	any	type	of
file	between	devices,	and	message	transfer	applications,	which	allow	different	types	of	communication
using	special	file	types,	such	as	electronic-mail	messages	or	hypertext	files.



Part	III-6.	TCP/IP	GENERAL	FILE	TRANSFER
PROTOCOLS
Chapter	72

Chapter	73

File	and	message	transfer	protocols	represent	the	most	basic	type	of	network
communication:	the	simple	movement	of	blocks	of	data.	Of	the	many	file	and
message	transfer	methods,	the	most	fundamental	application	is	what	I	call
general	file	transfer.	General	file	transfer	protocols	perform	one	main	function:
allowing	files	to	be	copied	from	one	computer	to	another.

Since	file	transfer	protocols	move	files	from	place	to	place	without	much
consideration	of	their	contents,	they	are	relatively	unsophisticated	compared
with	certain	message-processing	applications.	However,	the	idea	of	being	able	to
move	files	around	is	so	important	that	general	file	transfer	protocols	were	one	of
the	very	first	applications	in	internetworking.	While	many	people	now	use
electronic	mail	or	web	browsers	to	perform	the	functions	formerly	performed
exclusively	using	general	file	transfer,	these	older	protocols	are	still	very
important	and	widely	used,	and	important	to	understand.

This	part	covers	the	two	TCP/IP	general	file	transfer	protocols:	the	File	Transfer
Protocol	(FTP)	and	the	Trivial	File	Transfer	Protocol	(TFTP).	Each	is	described
in	its	own	chapter.

The	relationship	between	FTP	and	TFTP	is	similar	to	that	of	the	two	transport
protocols,	the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram
Protocol	(UDP)	at	layer	4	(discussed	in	Part	II-8).	FTP	is	full-featured,	session-
oriented,	and	somewhat	complex.	It	is	the	more	often	used	of	the	two	protocols,
providing	a	full	command	interface	and	taking	advantage	of	the	reliability	and
stream-transfer	functions	of	TCP,	over	which	it	runs.	TFTP,	like	the	UDP	it	uses
at	the	transport	layer,	is	a	stripped-down	version	of	FTP.	It	has	far	fewer
commands	and	capabilities	than	FTP,	but	it	is	ideal	for	cases	where	simplicity
and	small	software	program	size	are	important,	such	as	in	the	case	of	embedded
software	in	devices.



Chapter	72.	FILE	TRANSFER
PROTOCOL	(FTP)

The	primary	general	file	transfer	protocol	in	the	TCP/IP	suite	shows	its
generality	directly	through	its	unqualified	name:	the	File	Transfer	Protocol
(FTP).	FTP	is	one	of	the	most	widely	used	application	protocols	in	the	world.	It
was	designed	to	allow	the	efficient	transfer	of	files	between	any	two	devices	on	a
TCP/IP	internetwork.	It	automatically	takes	care	of	the	details	of	how	files	are
moved,	provides	a	rich	command	syntax	to	allow	various	supporting	file
operations	to	be	performed	(such	as	navigating	the	directory	structure	and
deleting	files),	and	operates	using	the	Transmission	Control	Protocol	(TCP)
transport	service	for	reliability.

In	this	chapter,	I	describe	in	detail	the	operation	of	FTP.	I	begin	with	an
overview	of	FTP,	a	discussion	of	its	long	history,	and	the	standards	that	define	it.
I	then	explain	the	key	concepts	related	to	FTP	and	how	it	functions.	This
includes	a	description	of	the	FTP	operational	model	and	a	look	at	how	FTP
control	connections	are	established,	how	and	when	normal	and	passive	data
connections	are	used,	and	FTP's	transmission	modes	and	data	representation
methods.	I	then	move	on	to	the	details	of	FTP	commands	and	how	they	work,
including	a	discussion	of	FTP	command	groups,	reply	codes,	and	user
commands.	Finally,	I	provide	a	sample	illustration	of	a	user	FTP	session
showing	the	internal	commands	used	for	each	action.

FTP	Overview,	History,	and	Standards
The	TCP/IP	protocol	suite	as	we	know	it	today	was	developed	in	the	late	1970s
and	early	1980s,	with	the	watershed	event	probably	the	publishing	of	the	version
4	standards	of	IP	and	TCP	in	1980.	Modern	TCP/IP	was	the	result	of



experimentation	and	development	work	that	had	been	underway	since	the	1960s.
This	work	included	both	the	design	and	implementation	of	the	protocols	that
would	implement	internetworks	and	also	the	creation	of	the	first	networking
applications	to	allow	users	to	perform	different	tasks.

FTP	Development	and	Standardization
The	developers	of	early	applications	conceptually	divided	methods	of	network
use	into	two	categories:	direct	and	indirect.	Direct	network	applications	let	a	user
access	a	remote	host	and	use	it	as	if	it	were	local,	creating	the	illusion	that	the
remote	network	doesn't	even	exist	(or	at	least,	minimizing	the	importance	of
distance).	Indirect	network	use	meant	getting	resources	from	a	remote	host	and
using	them	on	the	local	system,	and	then	transferring	them	back.	These	two
methods	of	use	became	the	models	for	the	first	two	formalized	TCP/IP
networking	applications:	Telnet	for	direct	access	(see	Chapter	87)	and	the	FTP
for	indirect	network	use.

The	first	FTP	standard	was	RFC	114,	published	in	April	1971,	before	TCP	and
IP	even	existed.	This	standard	defined	the	basic	commands	of	the	protocol	and
the	formal	means	by	which	devices	communicate	using	it.	At	this	time,	the
predecessor	of	TCP	(called	the	Network	Control	Protocol	or	NCP)	was	used	for
conveying	network	traffic.	There	was	no	Internet	back	then.	Its	precursor,	the
ARPAnet,	was	tiny,	consisting	of	only	a	small	group	of	development	computers.

A	number	of	subsequent	RFCs	refined	the	operation	of	this	early	version	of	FTP,
with	revisions	published	as	RFC	172	in	June	1971	and	RFC	265	in	November
1971.	The	first	major	revision	was	RFC	354,	published	in	July	1972,	which	for
the	first	time	contained	a	description	of	the	overall	communication	model	used
by	modern	TCP	and	details	on	many	of	the	current	features	of	the	protocol.	In
subsequent	months,	many	additional	RFCs	were	published	that	defined	features
for	FTP	or	raised	issues	with	it.	In	RFC	542,	published	in	August	1973,	the	FTP
specification	looks	remarkably	similar	to	the	one	we	use	today,	more	than	three
decades	later,	except	that	it	was	still	defined	to	run	over	NCP.

After	a	number	of	subsequent	RFCs	that	defined	and	discussed	changes,	the
formal	standard	for	modern	FTP	was	published	in	RFC	765,	"File	Transfer
Protocol	Specification,"	in	June	1980.	This	was	the	first	standard	to	define	FTP
operation	over	modern	TCP/IP	and	was	created	at	around	the	same	time	as	the



operation	over	modern	TCP/IP	and	was	created	at	around	the	same	time	as	the
other	primary	defining	standards	for	TCP/IP.

RFC	959,	"File	Transfer	Protocol	(FTP),"	was	published	in	October	1985	and
made	some	revisions	to	RFC	765,	including	the	addition	of	several	new
commands,	and	it	is	now	the	base	specification	for	FTP.	Since	that	time,	a
number	of	other	standards	have	been	published	that	define	extensions	to	FTP,
better	security	measures,	and	other	features.

Overview	of	FTP	Operation
FTP	was	created	with	the	overall	goal	of	allowing	indirect	use	of	computers	on	a
network	by	making	it	easy	for	users	to	move	files	from	one	place	to	another.
Like	most	TCP/IP	protocols,	FTP	is	based	on	a	client/server	model,	with	an	FTP
client	on	a	user	machine	creating	a	connection	to	an	FTP	server	to	send	and
retrieve	files	to	and	from	the	server.	The	main	objectives	of	FTP	were	to	make
file	transfer	simple	and	to	shield	the	user	from	implementation	details	of	how	the
files	are	actually	moved	from	one	place	to	another.	To	this	end,	FTP	is	designed
to	deal	automatically	with	many	of	the	issues	that	can	potentially	arise	due	to
format	differences	in	files	stored	on	differing	systems.

To	ensure	that	files	are	sent	and	received	without	loss	of	data	that	could	corrupt
them,	FTP	uses	the	reliable	TCP	at	the	transport	layer.	An	authentication	system
is	used	to	ensure	that	only	authorized	clients	are	allowed	to	access	a	server.	At
the	same	time,	a	feature	sometimes	called	anonymous	FTP	allows	an
organization	that	wishes	it	to	set	up	a	general	information	server	to	provide	files
to	anyone	who	might	want	to	retrieve	them.

After	a	TCP	connection	is	established,	an	FTP	control	connection	is	created.
Internal	FTP	commands	are	passed	over	this	logical	connection	based	on
formatting	rules	established	by	the	Telnet	Protocol.	Each	command	sent	by	the
client	receives	a	reply	from	the	server	to	indicate	whether	it	succeeded	or	failed.
A	data	connection	is	established	for	each	individual	data	transfer	to	be
performed.	FTP	supports	normal	and	passive	data	connections,	allowing	either
the	server	or	client	to	initiate	the	data	connection.	Multiple	data	types	and	file
types	are	supported	to	allow	flexibility	for	various	types	of	transfers.

The	interface	between	an	FTP	user	and	the	protocol	is	provided	in	the	form	of	a
set	of	interactive	user	commands.	After	establishing	a	connection	and



set	of	interactive	user	commands.	After	establishing	a	connection	and
completing	authentication,	two	basic	commands	can	be	used	to	send	or	receive
files.	Additional	support	commands	are	provided	to	manage	the	FTP	connection
as	well	as	to	perform	support	functions	such	as	listing	the	contents	of	a	directory
or	deleting	or	renaming	files.	In	recent	years,	graphical	implementations	of	FTP
have	been	created	to	allow	users	to	transfer	files	using	mouse	clicks	instead	of
having	to	memorize	commands.	Also,	other	applications	can	use	FTP	directly	to
move	files	from	one	place	to	another.

TIP

KEY	CONCEPT	The	most	important	general	file	transfer	protocol	in	TCP/IP	is	the	simply	named	File
Transfer	Protocol	(FTP).	The	need	to	be	able	to	move	files	of	any	type	between	machines	is	so
fundamental	that	FTP's	history	goes	back	more	than	30	years.	FTP	runs	over	TCP	to	ensure	that	files	are
transferred	reliably	with	no	data	loss.	The	protocol	uses	a	set	of	FTP	commands	sent	from	an	FTP	client
to	an	FTP	server	to	perform	file-transfer	operations;	the	FTP	server	sends	to	the	client	FTP	replies	that
indicate	the	success	or	failure	of	commands.



FTP	Operational	Model,	Protocol	Components,
and	Key	Terminology
The	standards	that	define	FTP	describe	its	overall	operation	using	a	simple
conceptual	tool	called	the	FTP	model.	This	model	defines	the	roles	of	the
devices	that	participate	in	a	file	transfer	and	the	two	communication	channels
that	are	established	between	them.	It	also	describes	the	components	of	FTP	that
manage	these	channels	and	defines	the	terminology	used	for	the	components.
This	makes	it	an	ideal	place	for	us	to	see	how	FTP	works	in	broad	terms.

The	Server-FTP	Process	and	User-FTP	Process
FTP	is	a	classic	client/server	protocol,	as	mentioned	earlier.	However,	the	client
is	not	called	by	that	name,	but	rather	is	called	the	user.	The	name	comes	from	the
fact	that	the	human	user	that	issues	FTP	commands	works	on	the	client	machine.
The	full	set	of	FTP	software	operating	on	a	device	is	called	a	process.	The	FTP
software	on	the	server	is	called	the	server-FTP	process,	while	the	software	on	the
client	is	the	user-FTP	process.

TIP

KEY	CONCEPT	The	FTP	client	is	sometimes	called	the	user	device,	since	the	human	user	interacts
with	the	client	directly.	The	FTP	client	software	is	called	the	user-FTP	process;	the	FTP	server	software
is	the	server-FTP	process.

FTP	Control	Connection	and	Data	Connection
A	critical	concept	in	understanding	FTP	is	that,	although	it	uses	TCP	like	many
other	applications,	it	does	not	use	just	one	TCP	connection	for	all
communication	the	way	most	protocols	do.	Instead,	the	FTP	model	is	designed
around	two	logical	channels	of	communication	between	the	server	and	user	FTP
processes:

Control	Connection	This	is	the	main	logical	TCP	connection	that	is	created
when	an	FTP	session	is	established.	It	is	maintained	throughout	the	FTP	session
and	is	used	only	for	passing	control	information,	such	as	FTP	commands	and
replies.	It	is	not	used	to	send	files.



Data	Connection	Each	time	data	is	sent	from	the	server	to	the	client	or	vice
versa,	a	distinct	TCP	data	connection	is	established	between	them.	Data	is
transferred	over	this	connection.	When	the	file	transfer	is	complete,	the
connection	is	terminated.

Using	separate	channels	provides	flexibility	in	how	the	protocol	is	used,	but	it
also	adds	complexity	to	FTP.

TIP

KEY	CONCEPT	Unlike	most	protocols,	FTP	does	not	use	a	single	TCP	connection.	When	a	session	is
set	up,	a	permanent	control	connection	is	established	using	TCP	for	passing	commands	and	replies.
When	files	or	other	data	are	to	be	sent,	they	are	passed	over	separate	TCP	data	connections	that	are
created	and	then	dismantled	as	needed.

FTP	Process	Components	and	Terminology
Since	the	control	and	data	functions	are	communicated	using	distinct	channels,
the	FTP	model	divides	the	software	on	each	device	into	two	logical	protocol
components	that	are	responsible	for	each	channel.	The	protocol	interpreter	(PI)	is
a	piece	of	software	that	is	charged	with	managing	the	control	connection,	issuing
and	receiving	commands	and	replies.	The	data	transfer	process	(DTP)	is
responsible	for	actually	sending	and	receiving	data	between	the	client	and	server.
In	addition	to	these	two	elements,	the	user	FTP	process	includes	a	third
component,	a	user	interface,	that	interacts	with	the	human	FTP	user;	it	is	not
present	on	the	server	side.

Thus,	two	server	process	components	and	three	client	(user)	process	components
are	included	in	FTP.	These	components	are	referred	to	in	the	FTP	model	by
specific	names,	which	are	used	in	the	standard	to	describe	the	detailed	operation
of	the	protocol.	I	plan	to	do	the	same	in	this	chapter,	so	I	will	now	describe	more
fully	the	components	in	each	device	of	this	model,	which	are	illustrated	in
Figure	72-1.



Figure	72-1.	FTP	operational	model	FTP	is	a	client/server	protocol,	with	communication	taking	place
between	the	user-FTP	process	on	the	client	and	the	server-FTP	process	on	the	server.	Commands,

replies,	and	status	information	are	passed	between	the	user-PI	and	server-PI	over	the	control	connection,
which	is	established	once	and	maintained	for	the	session.	Data	is	moved	between	devices	over	data

connections	that	are	set	up	for	each	transfer.

Server-FTP	Process	Components
The	server-FTP	process	contains	two	protocol	elements:

Server	Protocol	Interpreter	(Server-PI)	The	protocol	interpreter	is	responsible
for	managing	the	control	connection	on	the	server.	It	listens	on	the	main	reserved
FTP	port	for	incoming	connection	requests	from	users	(clients).	Once	a
connection	is	established,	it	receives	commands	from	the	user-PI,	sends	back
replies,	and	manages	the	server	data	transfer	process.

Server	Data	Transfer	Process	(Server-DTP)	The	DTP	on	the	server	side	is
used	to	send	or	receive	data	to	or	from	the	user-DTP.	The	server-DTP	may	either
establish	a	data	connection	or	listen	for	a	data	connection	coming	from	the	user.
It	interacts	with	the	server's	local	file	system	to	read	and	write	files.

User-FTP	Process	Components
The	User-FTP	Process	contains	three	protocol	elements:



User	Protocol	Interpreter	(User-PI)	This	protocol	interpreter	is	responsible	for
managing	the	control	connection	on	the	client.	It	initiates	the	FTP	session	by
issuing	a	request	to	the	server-PI.	Once	a	connection	is	established,	it	processes
commands	received	from	the	user	interface,	sends	them	to	the	server-PI,	and
receives	replies.	It	also	manages	the	user	data	transfer	process.

User	Data	Transfer	Process	(User-DTP)	The	DTP	on	the	user	side	sends	or
receives	data	to	or	from	the	server-DTP.	The	user-DTP	may	either	establish	a
data	connection	or	listen	for	a	data	connection	coming	from	the	server.	It
interacts	with	the	client	device's	local	file	system.

User	Interface	The	user	interface	provides	a	more	friendly	FTP	interface	to	a
human	user.	It	allows	simpler	user-oriented	commands	to	be	used	for	FTP
functions	rather	than	the	somewhat	cryptic	internal	FTP	commands,	and	it
allows	results	and	information	to	be	conveyed	back	to	the	person	operating	the
FTP	session.

TIP

KEY	CONCEPT	The	server-FTP	process	and	user-FTP	process	both	contain	a	protocol	interpreter	(PI)
element	and	a	data	transfer	process	(DTP)	element.	The	server-PI	and	user-PI	are	logically	linked	by	the
FTP	control	connection;	the	server-DTP	and	user-DTP	are	logically	linked	by	data	connections.	The
user-FTP	process	includes	a	third	component,	the	user	interface,	which	provides	the	means	for	the
human	user	to	issue	commands	and	see	responses	from	the	FTP	software.

Third-Party	File	Transfer	(Proxy	FTP)
The	FTP	standard	actually	defines	a	separate	model	for	an	alternative	way	of
using	the	protocol.	In	this	technique,	a	user	on	one	host	performs	a	file	transfer
from	one	server	to	another.	This	is	done	by	opening	two	control	connections:
one	each	from	the	user-PI	on	the	user's	machine	to	the	two	server-PIs	on	the	two
servers.	Then,	a	server-DTP	is	invoked	on	each	server	to	send	data;	the	user-
DTP	is	not	used.

This	method,	sometimes	called	third-party	file	transfer	or	proxy	FTP,	is	not
widely	used	today.	A	major	reason	for	its	lack	of	use	is	that	it	raises	security
concerns	and	has	been	exploited	in	the	past.	Thus,	while	it	is	worth	mentioning,	I
will	not	be	discussing	it	further	in	my	coverage	of	FTP.



FTP	Control	Connection	Establishment,	User
Authentication,	and	Anonymous	FTP	Access
You	just	saw	how	FTP	uses	distinct	logical	data	and	control	channels	that	are
established	between	an	FTP	client	(user)	and	an	FTP	server.	Before	the	data
connection	can	be	used	to	send	actual	files,	the	control	connection	must	be
established.	A	specific	process	is	followed	to	set	up	this	connection	and	thereby
create	the	permanent	FTP	session	between	devices	that	can	be	used	for
transferring	files.

As	with	other	client/server	protocols,	the	FTP	server	assumes	a	passive	role	in
the	control	connection	process.	The	server	protocol	interpreter	(server-PI)	listens
on	the	special	well-known	TCP	port	reserved	for	FTP	control	connections:	port
21.	The	user-PI	initiates	the	connection	by	opening	a	TCP	connection	from	the
user	device	to	the	server	on	this	port.	It	uses	an	ephemeral	port	number	as	its
source	port	in	the	TCP	connection.

Once	TCP	has	been	set	up,	the	control	connection	between	the	devices	is
established,	allowing	commands	to	be	sent	from	the	user-PI	to	the	server-PI	and
reply	codes	to	be	sent	back	in	response.	The	first	order	of	business	after	the
channel	is	operating	is	user	authentication,	which	the	FTP	standard	calls	the
login	sequence.	This	process	has	two	purposes:

Access	Control	The	authentication	process	allows	access	to	the	server	to	be
restricted	to	only	authorized	users.	It	also	lets	the	server	control	what	types	of
access	each	user	has.

Resource	Selection	By	identifying	the	user	making	the	connection,	the	FTP
server	can	make	decisions	about	what	resources	to	make	available	to	the	user.

FTP	Login	Sequence	and	Authentication
The	FTP's	regular	authentication	scheme	is	quite	rudimentary:	it	is	a	simple	user
name/password	login	scheme,	shown	in	Figure	72-2.	Most	of	us	are	familiar
with	this	type	of	authentication	for	various	types	of	access	on	the	Internet	and
elsewhere.	First,	the	user	is	identified	by	sending	a	user	name	from	the	user-PI	to
the	server-PI	using	the	USER	command.	Then,	the	user's	password	is	sent	using



the	PASS	command.

The	server	checks	the	user	name	and	password	against	its	user	database	to	verify
that	the	connecting	user	has	valid	authority	to	access	the	server.	If	the
information	is	valid,	the	server	sends	back	a	greeting	to	the	client	to	indicate	that
the	session	is	opened.	If	the	user	improperly	authenticates	(by	specifying	an
incorrect	user	name	or	password),	the	server	will	request	that	the	user	attempt
authorization	again.	After	a	number	of	invalid	authorization	tries,	the	server	may
time	out	and	terminate	the	connection.

Assuming	that	the	authentication	succeeds,	the	server	then	sets	up	the	connection
to	allow	the	type	of	access	to	which	the	user	is	authorized.	Some	users	may	have
access	to	only	certain	files	or	certain	types	of	files.	Some	servers	may	allow
particular	users	to	read	and	write	files	on	the	server,	while	other	users	may	only
retrieve	files.	The	administrator	can	thus	tailor	FTP	access	as	needed.

Figure	72-2.	FTP	connection	establishment	and	user	authentication	An	FTP	session	begins	with	the
establishment	of	a	TCP	connection	between	the	client	and	server.	The	client	then	sends	the	user	name
and	password	to	authenticate	with	the	server.	Assuming	that	the	information	is	accepted	by	the	server,	it

sends	a	greeting	reply	to	the	client	and	the	session	is	open.

Once	the	connection	is	established,	the	server	can	also	make	resource	selection
decisions	based	on	the	user's	identity.	For	example,	on	a	system	with	multiple
users,	the	administrator	can	set	up	FTP	so	that	when	any	user	connects,	she
automatically	is	taken	to	her	own	home	directory.	The	optional	ACCT	(account)
command	also	allows	a	user	to	select	a	particular	account	if	she	has	more	than
one.



one.

FTP	Security	Extensions
Like	most	older	protocols,	the	simple	login	scheme	used	by	FTP	is	a	legacy	of
the	relatively	closed	nature	of	the	early	Internet.	It	is	not	considered	secure	by
today's	global	Internet	standards,	because	the	user	name	and	password	are	sent
across	the	control	connection	in	clear	text.	This	makes	it	relatively	easy	for	login
information	to	be	intercepted	by	intermediate	systems	and	accounts	to	be
compromised.	RFC	2228,	"FTP	Security	Extensions,"	defines	more	sophisticated
authentication	and	encryption	options	for	those	who	need	added	security	in	their
FTP	software.

TIP

KEY	CONCEPT	An	FTP	session	begins	with	the	establishment	of	a	control	connection	between	an
FTP	client	and	server.	After	the	TCP	connection	is	made,	the	user	must	authenticate	with	the	server
using	a	simple	user	name/password	exchange	between	client	and	server.	This	provides	only	rudimentary
security,	so	if	more	security	is	required,	it	must	be	implemented	using	FTP	security	extensions	or
through	other	means.

Anonymous	FTP
Perhaps	surprisingly,	many	organizations	did	not	see	the	need	for	an	enhanced
level	of	security.	These	organizations,	in	fact,	went	in	the	opposite	direction:
They	used	FTP	without	any	authentication	at	all.	But	why	would	any	business
want	to	allow	just	anybody	access	to	its	FTP	server?	The	answer	is	pretty
simple:	Anyone	who	wants	to	use	the	server	can	do	so	to	provide	information	to
the	general	public.

Today,	most	organizations	use	the	World	Wide	Web	to	distribute	documents,
software,	and	other	files	to	customers	and	others	who	want	to	obtain	them.	But
in	the	1980s,	before	the	Web	became	popular,	FTP	was	often	used	to	distribute
such	information.	For	example,	today,	if	you	had	a	3Com	network	interface	card
and	wanted	to	obtain	a	driver	for	it,	you	would	go	to	the	web	server
www.3com.com,	but	several	years	ago,	you	might	have	accessed	the	3Com	FTP
server	(ftp.3com.com)	to	download	a	driver.

Clearly,	requiring	every	customer	to	have	a	user	name	and	password	on	such	a
server	would	be	ridiculously	difficult.	For	this	reason,	RFC	1635,	published	in



1994,	defined	a	use	for	the	protocol	called	anonymous	FTP.	In	this	technique,	a
client	connects	to	a	server	and	provides	a	default	user	name	to	log	in	as	a	guest.
Usually	the	names	anonymous	or	ftp	are	supported.	Seeing	this	name,	the	server
responds	back	with	a	special	message,	saying	something	like	"Guest	login	OK,
send	your	complete	email	address	as	password."	The	password	in	this	case	isn't
really	a	password;	it	is	used	simply	to	allow	the	server	to	log	who	is	accessing	it.

The	guest	is	then	able	to	access	the	site,	though	the	server	will	usually	severely
restrict	the	access	rights	of	guests	on	the	system.	Many	FTP	servers	support	both
identified	and	anonymous	access,	with	authorized	users	having	more
permissions	(such	as	being	able	to	traverse	the	full	directory	path	and	having	the
right	to	delete	or	rename	files)	and	anonymous	users	restricted	to	only	reading
files	from	a	particular	directory	set	up	for	public	access.

TIP

KEY	CONCEPT	Many	FTP	servers	support	anonymous	FTP,	which	allows	a	guest	who	has	no	account
on	the	server	to	have	limited	access	to	server	resources.	This	is	often	used	by	organizations	that	wish	to
make	files	available	to	the	public	for	purposes	such	as	technical	support,	customer	support,	or
distribution.



FTP	Data	Connection	Management
The	control	channel	created	between	the	server-PI	and	the	user-PI	using	the	FTP
connection	establishment	and	authentication	process	is	maintained	throughout
the	FTP	session.	Over	the	control	channel,	the	protocol	interpreters	exchange
commands	and	replies,	but	not	data.

Each	time	files	or	other	data	need	to	be	sent	between	the	server	and	user	FTP
processes,	a	data	connection	must	be	created.	The	data	connection	links	the	user-
DTP	with	the	server-DTP.	This	connection	is	required	both	for	explicit	file
transfer	actions	(getting	or	receiving	a	file)	and	for	implicit	data	transfers,	such
as	requesting	a	list	of	files	from	a	directory	on	the	server.

The	FTP	standard	specifies	two	different	ways	of	creating	a	data	connection,
though	it	doesn't	really	explain	them	in	a	way	that	is	very	easy	to	understand.
The	two	methods	differ	primarily	in	which	device—the	client	or	the	server—
initiates	the	connection.	This	may	at	first	seem	like	a	trivial	matter,	but	as	you'll
see	shortly,	it	is	actually	quite	important.

Normal	(Active)	Data	Connections
The	first	method	is	sometimes	called	creating	a	normal	data	connection	(because
it	is	the	default	method)	and	sometimes	an	active	data	connection	(in	contrast
with	the	passive	method	we	will	discuss	in	a	moment).	In	this	type	of
connection,	the	server-DTP	initiates	the	data	channel	by	opening	a	TCP
connection	to	the	user-DTP.	The	server	uses	the	special	reserved	port	number	20
(one	less	than	the	well-known	control	FTP	port	number	21)	for	the	data
connection.	On	the	client	machine,	the	default	port	number	used	is	the	same	as
the	ephemeral	port	number	used	for	the	control	connection,	but	as	you'll	see
shortly,	the	client	will	often	choose	a	different	port	for	each	transfer.

Let's	use	an	example	to	see	how	this	works.	Suppose	the	user-PI	established	a
control	connection	from	its	ephemeral	port	number	1678	to	the	server's	FTP
control	port	of	21.	Then,	to	create	a	data	connection	for	data	transfer,	the	server-
PI	would	instruct	the	server-DTP	to	initiate	a	TCP	connection	from	the	server's
port	20	to	the	client's	port	1678.	The	client	would	acknowledge	this,	and	then
data	could	be	transferred	(in	either	direction—remember	that	TCP	is
bidirectional).



bidirectional).

In	practice,	having	the	client's	control	and	data	connection	on	the	same	port	is
not	a	good	idea;	it	complicates	the	operation	of	FTP	and	can	lead	to	some	tricky
problems.	For	this	reason,	it	is	strongly	recommended	that	the	client	specify	a
different	port	number	using	the	PORT	command	prior	to	the	data	transfer.	For
example,	suppose	the	client	specifies	port	1742	using	PORT.	The	server-DTP
would	then	create	a	connection	from	its	port	20	to	the	client's	port	1742	instead
of	1678.	This	process	is	shown	in	Figure	72-3.

Passive	Data	Connections
The	second	method	is	called	a	passive	data	connection.	The	client	tells	the	server
to	be	passive—that	is,	to	accept	an	incoming	data	connection	initiated	by	the
client.	The	server	replies,	giving	the	client	the	server	IP	address	and	port	number
that	it	should	use.	The	server-DTP	then	listens	on	this	port	for	an	incoming	TCP
connection	from	the	user-DTP.	By	default,	the	user	machine	uses	the	same	port
number	it	used	for	the	control	connection,	as	in	the	active	case.	However,	here
again,	the	client	can	choose	to	use	a	different	port	number	for	the	data
connection	if	necessary	(typically	an	ephemeral	port	number).

Let's	consider	our	example	again,	with	the	control	connection	from	port	1678	on
the	client	to	port	21	on	the	server,	but	this	time	consider	data	transfer	using	a
passive	connection,	as	illustrated	in	Figure	72-4.	The	client	would	issue	the
PASV	command	to	tell	the	server	it	wanted	to	use	passive	data	control.	The
server-PI	would	reply	with	a	port	number	for	the	client	to	use—say	port	2223.
The	server-PI	would	then	instruct	the	server-DTP	to	listen	on	this	port	2223.	The
user-PI	would	instruct	the	user-DTP	to	create	a	connection	from	client	port	1742
to	server	port	2223.	The	server	would	acknowledge	this,	and	then	data	could	be
sent	and	received,	again	in	either	direction.



Figure	72-3.	FTP	active	data	connection	In	a	conventional,	or	active,	FTP	data	connection,	the	server
initiates	the	transfer	of	data	by	opening	the	data	connection	to	the	client.	In	this	case,	the	client	first
sends	a	PORT	command	to	tell	the	server	to	use	port	1742.	The	server	then	opens	the	data	connection
from	its	default	port	number	of	20	to	client	port	1742.	Data	is	then	exchanged	between	the	devices	using

these	ports.

Efficiency	and	Security	Issues	Related	to	the
Connection	Methods
At	this	point,	you	may	be	wondering	what	the	practical	difference	is	between	the
active	and	passive	connection	types.	I	already	said	that	in	either	case,	the	data
transfer	can	go	in	both	directions.	So	what	does	it	matter	who	initiates	the	data
connection?	Isn't	this	like	arguing	over	who	makes	a	local	telephone	call?

The	answer	is	related	to	the	dreaded	"S	word:"	security.	The	fact	that	FTP	uses
more	than	one	TCP	connection	can	cause	problems	for	the	hardware	and
software	that	people	use	to	ensure	the	security	of	their	systems.

Consider	what	is	happening	in	the	case	of	an	active	data	connection,	as	described
in	Figure	72-3.	From	the	perspective	of	the	client,	an	established	control
connection	exists	from	the	client's	port	1678	to	the	server's	port	21.	But	the	data
connection	is	initiated	by	the	server.	So	the	client	sees	an	incoming	connection
request	to	port	1678	(or	some	other	port).	Many	clients	are	suspicious	about



receiving	such	incoming	connections,	since	under	normal	circumstances,	clients
establish	connections—they	don't	respond	to	them.	Since	incoming	TCP
connections	can	potentially	be	a	security	risk,	many	clients	are	configured	to
block	them	using	firewall	hardware	or	software.

Figure	72-4.	FTP	passive	data	connection	In	a	passive	FTP	data	connection,	the	client	uses	the	PASV
command	to	tell	the	server	to	wait	for	the	client	to	establish	the	data	connection.	The	server	responds,
telling	the	client	what	port	it	should	use	on	the	server	for	the	data	transmission—in	this	case,	port	2223.
The	client	then	opens	the	data	connection	using	that	port	number	on	the	server	and	a	client	port	number

of	its	own	choosing—in	this	case,	1742.

Why	not	just	make	it	so	that	the	client	always	accepts	connections	to	the	port
number	one	above	the	ephemeral	number	used	for	the	control	connection?	The
problem	here	is	that	clients	often	use	different	port	numbers	for	each	transfer	by
using	the	PORT	command.	This	is	done	because	of	the	rules	of	TCP.	As	I
describe	in	Chapter	47,	after	a	connection	is	closed,	a	period	of	time	must	elapse
before	the	port	can	be	used	again	to	prevent	mixing	up	consecutive	sessions.
This	would	cause	delays	when	sending	multiple	files	one	after	the	other,	so	to
avoid	this,	clients	usually	use	different	port	numbers	for	each	transfer.	This	is
more	efficient,	but	it	means	a	firewall	protecting	the	client	would	be	asked	to
accept	incoming	connections	that	appear	to	be	going	to	many	unpredictable	port
numbers.



The	use	of	passive	connections	largely	eliminates	this	problem.	Most	firewalls
have	a	lot	more	difficulty	dealing	with	incoming	connections	to	odd	ports	than
outgoing	connections.	RFC	1579,	"Firewall-Friendly	FTP,"	discusses	this	issue
in	detail.	It	recommends	that	clients	use	passive	data	connections	by	default
instead	of	using	normal	connections	with	the	PORT	command	to	avoid	the	port-
blocking	problem.

Of	course,	passive	data	connections	don't	really	eliminate	the	problem;	they	just
push	it	off	onto	servers.	These	servers	now	must	face	the	issue	of	incoming
connections	to	various	ports.	Still,	it	is,	generally	speaking,	easier	to	deal	with
security	issues	on	a	relatively	smaller	number	of	servers	than	on	a	large	number
of	clients.	FTP	servers	must	be	able	to	accept	passive	mode	transfers	from
clients	anyway,	so	the	usual	approach	is	to	set	aside	a	block	of	ports	for	this
purpose,	which	the	server's	security	provisions	allow	to	accept	incoming
connections,	while	blocking	incoming	connection	requests	on	other	ports.

TIP

KEY	CONCEPT	FTP	supports	two	different	models	for	establishing	data	connections	between	the
client	and	server.	In	normal,	or	active,	data	connections,	the	server	initiates	the	connection	when	the
client	requests	a	transfer,	and	the	client	responds;	in	a	passive	data	connection,	the	client	tells	the	server
it	will	initiate	the	connection,	and	the	server	responds.	Since	TCP	is	bidirectional,	data	can	flow	either
way	in	both	cases;	the	chief	difference	between	the	two	modes	has	to	do	with	security.	In	particular,
passive	mode	is	often	used	because	many	modern	client	devices	are	not	able	to	accept	incoming
connections	from	servers.

Another	point	worth	mentioning	is	that	it	is	a	significant	violation	of	the	layering
principle	of	networks	to	pass	IP	addresses	and	port	numbers	in	FTP	commands
such	as	PORT	and	PASV	and	the	replies	to	them.	This	isn't	just	a	philosophical
issue.	Applications	aren't	supposed	to	deal	with	port	numbers,	and	this	creates
issues	when	certain	lower-layer	technologies	are	used.	For	example,	consider	the
use	of	Network	Address	Translation	(NAT;	see	Chapter	28),	which	modifies	IP
addresses	and	possibly	port	numbers.	To	prevent	NAT	from	"breaking"	when
FTP	is	used,	special	provisions	must	be	made	to	handle	the	protocol.



FTP	General	Data	Communication	and
Transmission	Modes
Once	a	data	connection	has	been	established	between	the	server-DTP	and	the
user-DTP,	data	is	sent	directly	from	the	client	to	the	server,	or	the	server	to	the
client,	depending	on	the	specific	command	issued.	Since	control	information	is
sent	using	the	distinct	control	channel,	the	entire	data	channel	can	be	used	for
data	communication.	(These	two	logical	channels	are	multiplexed	at	lower	layers
along	with	all	other	TCP	and	User	Datagram	Protocol	(UDP)	connections	on
both	devices,	so	this	doesn't	actually	represent	a	performance	improvement	over
a	single	channel.)

FTP	defines	three	different	transmission	modes	(also	called	transfer	modes)	that
specify	exactly	how	data	is	sent	from	one	device	to	another	over	an	open	data
channel:	stream	mode,	block	mode,	and	compressed	mode.

Stream	Mode
In	stream	mode,	data	is	sent	simply	as	a	continuous	stream	of	unstructured	bytes.
The	sending	device	simply	starts	pushing	data	across	the	TCP	data	connection	to
the	recipient.	No	message	format	with	distinct	header	fields	is	used,	making	this
method	quite	different	from	the	way	many	other	protocols	send	information	in
discrete	chunks.	It	relies	strongly	on	the	data	streaming	and	reliable	transport
services	of	TCP.	Since	there	is	no	header	structure,	the	end	of	the	file	is
indicated	simply	by	the	sending	device	closing	the	data	connection	when	it	is
done.

Of	the	three	modes,	stream	is	by	far	the	most	widely	used	in	real	FTP
implementations,	for	three	main	reasons:

It	is	the	default	and	also	the	simplest	method,	so	it	is	the	easiest	to	implement
and	is	required	for	compatibility.

It	is	the	most	general,	because	it	treats	all	files	as	simple	streams	of	bytes
without	paying	attention	to	their	content.

It	is	the	most	efficient	method	because	no	bytes	are	wasted	on	overhead	such
as	headers.



Block	Mode
Block	mode	is	a	more	conventional	data	transmission	mode,	in	which	data	is
broken	into	data	blocks	and	encapsulated	into	individual	FTP	blocks,	or	records.
Each	record	has	a	three-byte	header	that	indicates	its	length	and	contains
information	about	the	data	blocks	being	sent.	A	special	algorithm	is	used	to	keep
track	of	the	transmitted	data	and	to	detect	and	restart	an	interrupted	transfer.

Compressed	Mode
Compressed	mode	is	a	transmission	mode	in	which	a	relatively	simple
compression	technique	called	run-length	encoding	is	used	to	detect	repeated
patterns	in	the	data	being	sent,	which	then	represents	data	in	such	a	way	that	the
overall	message	takes	fewer	bytes.	The	compressed	information	is	sent	in	a	way
similar	to	block	mode,	using	a	header-plus-payload	record	format.

Compressed	mode	seems	on	the	surface	to	be	useful.	In	practice,	however,
compression	is	often	implemented	in	other	places	in	a	typical	networking
software	stack,	making	it	unnecessary	in	FTP.	For	example,	if	you	are
transferring	a	file	over	the	Internet	using	an	analog	modem,	your	modem
normally	performs	compression	down	at	layer	1.	Large	files	on	FTP	servers	are
also	often	already	compressed	using	something	like	the	ZIP	format,	meaning
further	compression	would	serve	no	purpose.

TIP

KEY	CONCEPT	FTP	includes	three	different	transmission	modes:	stream,	block,	and	compressed.	In
stream	mode,	the	most	commonly	used	mode,	data	is	sent	as	a	continuous	sequence	of	bytes.	In	block
mode,	data	is	formatted	into	blocks	with	headers.	In	compressed	mode,	bytes	are	compacted	using	run-
length	encoding.



FTP	Data	Representation:	Data	Types,	Format
Control,	and	Data	Structures
The	most	general	way	of	designing	FTP	would	have	been	to	make	it	treat	all
files	as	"black	boxes."	A	file	would	be	represented	as	just	as	a	set	of	bytes.	FTP
would	pay	no	attention	to	what	the	file	contained	and	would	simply	move	the
file,	one	byte	at	a	time,	from	one	place	to	another.	In	this	scenario,	FTP	would
seem	to	be	very	similar	to	the	Copy	command	that	is	implemented	on	most	file
systems,	which	likewise	creates	a	copy	without	looking	into	the	file	to	see	what
it	contains.

So	what	would	be	the	problem	with	that,	you	may	wonder?	Well,	for	some	types
of	files,	this	is	exactly	what	we	want,	but	for	others,	it	introduces	a	problem.
Certain	types	of	files	use	different	representations	on	different	systems.	If	you
copy	a	file	from	one	place	to	another	on	the	same	computer	using	a	Copy
command,	there	is	no	problem,	because	the	same	representation	for	files	is	used
everywhere	within	that	computer.	But	when	you	copy	it	to	a	computer	that	uses	a
different	representation,	you	may	encounter	difficulties.

The	most	common	example	of	this	is	a	type	of	file	that	may	surprise	you:	simple
text	files.	All	ASCII	text	files	use	the	ASCII	character	set,	but	they	differ	in	the
control	characters	used	to	mark	the	end	of	a	line	of	text.	On	UNIX,	a	line	feed
(LF)	character	is	used;	on	Apple	computers,	a	carriage	return	(CR)	is	used;	and
Windows	machines	use	both	(CR+LF).

If	you	move	a	text	file	from	one	type	of	system	to	another	using	regular	FTP,	the
data	will	all	get	moved	exactly	as	it	is.	Moving	a	text	file	from	a	UNIX	system	to
a	PC	as	just	a	set	of	bytes	would	mean	programs	would	not	properly	recognize
end-of-line	markers.	To	avoid	this	predicament,	FTP	moves	past	the	idea	that	all
files	are	just	bytes	and	incorporates	some	intelligence	to	handle	different	types	of
files.	The	FTP	standard	recognizes	this	by	allowing	the	specification	of	certain
details	about	a	file's	internal	representation	prior	to	transfer.

FTP	Data	Types
The	first	piece	of	information	that	can	be	provided	about	a	file	is	its	data	type,



which	dictates	the	overall	representation	of	the	file.	Four	different	data	types	are
specified	in	the	FTP	standard:

ASCII	This	data	type	defines	an	ASCII	text	file,	with	lines	marked	by	some	sort
of	end-of-line	marker.

EBCDIC	Conceptually,	EBCDIC	is	the	same	as	the	ASCII	type,	but	it	is	used
for	files	using	IBM's	EBCDIC	character	set.

Image	With	the	image	data	type,	the	file	has	no	formal	internal	structure	and	is
sent	one	byte	at	a	time	without	any	processing;	this	is	the	black	box	mode
mentioned	earlier.

Local	This	data	type	is	used	to	handle	files	that	may	store	data	in	logical	bytes
containing	a	number	of	bits	other	than	eight.	Specifying	this	type	along	with	the
way	the	data	is	structured	allows	the	data	to	be	stored	on	the	destination	system
in	a	manner	consistent	with	its	local	representation.

NOTE

The	term	byte	conventionally	refers	to	eight	bits,	but	strictly	speaking,	the	term	used	to	describe	eight
bits	is	octet.	A	byte	may	in	fact	contain	a	number	of	bits	other	than	eight	on	certain	systems.	For	details,
see	"Binary	Information	and	Representation:	Bits,	Bytes,	Nibbles,	Octets,	and	Characters"	in	Chapter	4.

In	practice,	the	two	data	types	most	often	used	are	ASCII	and	image.	The	ASCII
type	is	used	for	text	files,	and	allows	them	to	be	moved	between	systems	with
line-end	codes	converted	automatically.	The	Image	type	is	used	for	generic
binary	files,	such	as	graphical	images,	ZIP	files,	and	other	data	that	is
represented	in	a	universal	manner.	It	is	also	often	called	the	binary	type	for	that
reason.

ASCII	Data	Type	Line-Delimiting	Issues
When	the	ASCII	data	type	is	used,	differences	in	internal	representations
between	systems	are	handled	by	using	a	universal	external	representation	that
acts	as	a	common	language.	Lines	of	the	file	being	transmitted	are	converted	by
the	sending	FTP	process	from	the	sender's	internal	representation	to	the	neutral
ASCII	representation	used	by	the	Telnet	Protocol	(NETASCII),	with	each	line
ending	in	CR+LF.	The	receiving	device	then	converts	from	this	neutral



representation	to	the	internal	format	used	by	the	recipient	file	system.

For	example,	when	using	FTP	to	move	a	text	file	from	a	Macintosh	to	a	UNIX
system,	each	line	would	have	the	CR	changed	to	a	CR+LF	for	transmission	over
the	FTP	data	channel.	The	receiving	UNIX	system	would	change	each	CR+LF
to	just	LF	so	UNIX	programs	could	read	it	properly.

Note	that	because	of	these	changes,	the	resulting	file	can	be	bigger	or	smaller
than	the	original	if	it	is	transferred	between	systems	using	ASCII	mode.	Also,
since	FTP	works	by	converting	to	a	neutral	representation	for	universality,
sending	an	ASCII	file	from	a	UNIX	system	to	a	UNIX	system	means	each	LF	is
changed	to	CR+LF	for	transmission,	and	then	it's	changed	back	to	LF	by	the
recipient.	It's	slightly	inefficient,	but	not	that	big	a	deal.

It's	very	important	that	the	correct	data	type	be	specified	with	the	appropriate
user	command.	Sending	a	text	file	between	dissimilar	systems	without	setting
the	ASCII	mode	will	result	in	either	a	file	that	cannot	be	properly	read	on	the
destination	or	one	that	contains	stray	characters.	Conversely,	binary	files	must	be
sent	in	binary	mode.	If	you	send	something	like	a	ZIP	file	or	a	JPG	graphic	in
ASCII	mode,	the	FTP	software	will	think	it	is	a	text	file.	It	will	treat	the	file	as	if
it	were	text,	and	each	time	it	encounters	bytes	in	the	file	that	look	like	CR,	LF,	or
CR+LF,	it	will	convert	them,	which	you	do	not	want.	(Having	the	wrong	data
type	set	is	a	leading	cause	of	corrupted	files	when	using	FTP	to	move	files
between	PCs	and	UNIX	systems.	I	know	from	experience!)

TIP

KEY	CONCEPT	FTP	defines	four	data	types:	ASCII,	EBCDIC,	image,	and	local.	ASCII	and	EBCDIC
are	used	for	text	files	in	the	ASCII	and	EBCDIC	character	sets,	respectively.	The	image	type	is	used	for
files	with	no	specific	structure.	The	local	type	is	used	for	local	representation.	The	ASCII	type	is
important	because	it	allows	text	files	to	be	transferred	successfully	between	file	systems	that	may	use
different	methods	of	indicating	the	end	of	a	line	of	text.	The	image	type,	also	called	binary,	is	used	for
files	that	must	be	sent	and	received	byte-for-byte	with	no	transformation,	such	as	executable	files,
graphics,	and	files	with	arbitrary	formats.

FTP	Format	Control
For	the	ASCII	and	EBCDIC	types,	FTP	defines	an	optional	parameter	called
format	control,	which	allows	a	user	to	specify	a	particular	representation	for	how



vertical	formatting	is	used	to	describe	a	file.	The	format	control	option	was
created	to	handle	files	transferred	from	host	devices	to	printers.	It	is	not	used
today,	to	my	knowledge	(or	if	it	is	used,	it	is	used	only	in	special	applications).

Three	options	can	be	used	in	this	control:

Non	Print	This	is	the	default,	indicating	no	vertical	formatting.

Telnet	Format	The	file	uses	vertical	format	control	characters,	as	specified	in
the	Telnet	Protocol.

Carriage	Control/FORTRAN	The	file	uses	format	control	characters	given	as
the	first	character	of	each	line,	as	specified	for	the	FORTRAN	programming
language.

FTP	Data	Structures
In	addition	to	specifying	a	file's	data	type,	it	is	also	possible	to	specify	the	file's
data	structure	in	three	ways:

File	Structure	The	file	is	a	contiguous	stream	of	bytes	with	no	internal
structure.	This	is	the	default	and	is	used	for	most	types	of	files.

Record	Structure	The	file	consists	of	a	set	of	sequential	records,	each	of	which
is	delimited	by	an	end-of-record	marker.	The	record	structure	can	be	used	for
ASCII	text	files,	but	these	are	more	commonly	sent	with	the	regular	file	structure
using	the	ASCII	data	type.

Page	Structure	The	file	contains	a	set	of	special	indexed	data	pages.	This
structure	is	not	commonly	used;	it	was	initially	created	for	a	now	archaic	type	of
computer	used	in	the	early	ARPAnet.



FTP	Internal	Command	Groups	and	Protocol
Commands
Once	a	connection	is	established	between	an	FTP	server	and	user,	all
communication	to	manage	the	operation	of	the	protocol	takes	place	over	the
control	channel.	The	user-PI	sends	protocol	commands	to	the	server-PI,	which
processes	them	and	takes	appropriate	action.	The	server-PI	responds	with	reply
codes	to	tell	the	user-PI	the	result	of	the	commands	it	issued	and	convey	other
important	information.

Interestingly,	the	actual	transmission	of	FTP	commands	over	the	control	channel
is	done	using	specifications	based	on	the	Telnet	Protocol.	You	may	recall	from
the	"FTP	Overview,	History,	and	Standards"	section	earlier	in	this	chapter	that
Telnet	and	FTP	are	two	of	the	very	oldest	TCP/IP	applications,	the	former	being
for	direct	network	use	and	the	latter	for	indirect	resource	access.	They	were
developed	at	around	the	same	time,	and	setting	up	the	FTP	control	channel	to	act
as	a	type	of	Telnet	connection	is	a	good	example	of	how	Internet	standards	try
not	to	reinvent	the	wheel.

FTP	Command	Groups	and	Commands
Each	command	is	identified	by	a	short,	three-	or	four-letter	command	code	for
convenience,	and	the	command	performs	a	specific	task	in	the	overall
functionality	of	FTP.	Several	dozen	of	these	protocol	commands	are	available,
and	to	help	organize	them,	the	FTP	standard	categorizes	them	into	three	groups,
based	on	overall	function	type:

Access	Control	Commands	Commands	that	are	part	of	the	user	login	and
authentication	process,	are	used	for	resource	access,	or	are	part	of	general
session	control.	See	Table	72-1.

Transfer	Parameter	Commands	Commands	that	specify	parameters	for	how
data	transfers	should	occur.	For	example,	commands	in	this	group	specify	the
data	type	of	a	file	to	be	sent,	indicate	whether	passive	or	active	data	connections
will	be	used,	and	so	forth.	See	Table	72-2.

FTP	Service	Commands	Commands	that	actually	perform	file	operations,	such



as	sending	and	receiving	files,	and	to	implement	support	functions,	such	as
deleting	or	renaming	files.	This	is	the	largest	group.	See	Table	72-3.

TIP

KEY	CONCEPT	FTP	operation	is	controlled	through	the	issuing	of	protocol	commands	from	the	FTP
client	to	the	FTP	server.	Each	command	has	a	three-	or	four-letter	command	code	that	indicates	its
function.	The	commands	are	organized	into	three	groups:	access	control	commands	used	for	login	and
general	session	control,	transfer	parameter	commands	that	control	how	transfers	are	performed,	and	FTP
service	commands	that	are	used	to	perform	actual	file	operations.

Since	the	commands	are	based	on	the	Telnet	specifications,	they	are	sent	as	plain
text,	as	specified	by	Telnet's	Network	Virtual	Terminal	(NVT)	conventions.
Tables	Table	72-1,	Table	72-2,	and	Table	72-3	list	and	describe	the	FTP	internal
protocol	commands	in	the	access	control,	transfer	parameters,	and	service
command	groups.	They	are	shown	in	the	order	that	they	appear	in	the	FTP
standard	(RFC	959).

Table	72-1.	FTP	Access	Control	Commands

Command
Code

Command Description

USER User	name Identifies	the	user	attempting	to	establish	an	FTP	session.

PASS Password Specifies	the	password	for	the	user	given	previously	by	the	USER
command	during	login	authentication.

ACCT Account Specifies	an	account	for	an	authenticated	user	during	the	FTP
session.	Used	only	on	systems	that	require	this	to	be	separately
identified;	most	select	an	account	automatically	based	on	the	name
entered	in	the	USER	command.

CWD Change
working
directory

Allows	the	user	to	specify	a	different	directory	for	file	transfer
during	an	FTP	session.

CDUP Change	to
parent
directory
("change
directory
up")

A	special	case	of	the	CWD	command	that	goes	to	the	directory	one
level	up	in	the	server's	directory	structure.	It	is	implemented
separately	to	abstract	out	differences	in	directory	structures	between
file	systems;	the	user	can	use	CDUP	instead	of	knowing	the
specific	syntax	for	navigating	up	the	directory	tree	on	the	server.



SMNT Structure
mount

Allows	the	user	to	mount	a	particular	file	system	for	access	to
different	resources.

REIN Reinitialize Reinitializes	the	FTP	session,	flushing	all	set	parameters	and	user
information.	This	returns	the	session	to	the	state	when	the	control
connection	is	just	established.	It	is,	in	essence,	the	opposite	of	the
USER	command.	The	next	command	issued	is	often	USER,	to	log
in	a	different	user.

QUIT Logout Terminates	the	FTP	session	and	closes	the	control	connection.	Note
that	the	naming	of	this	command	was	unfortunate.	The	REIN
command	is	really	most	similar	to	a	conventional	logout	command,
as	it	terminates	a	logged-in	user	and	allows	another	user	to	log	in.
In	contrast,	the	QUIT	command	shuts	down	the	entire	session.

Table	72-2.	FTP	Transfer	Parameter	Commands

Command
Code

Command Description

PORT Data	port Used	to	tell	the	FTP	server	that	the	client	wants	to	accept	an
active	data	connection	on	a	specific	port	number.

PASV Passive Requests	that	the	FTP	server	allow	the	user-DTP	to	initiate
passive	data	connections.

TYPE Representation
type

Specifies	for	the	file	to	be	transferred	the	data	type	(ASCII,
EBCDIC,	image,	or	local),	and	optionally	the	format	control
(Non	Print,	Telnet,	or	Carriage	Control).

STRU File	structure Specifies	the	data	structure	for	the	file	(file,	record,	or	page).

MODE Transfer	mode Specifies	the	transmission	mode	to	be	used	(stream,	block,	or
compressed).

Table	72-3.	FTP	Protocol	Service	Commands

Command
Code

Command Description

RETR Retrieve Tells	the	server	to	send	the	user	a	file.

STOR Store Sends	a	file	to	the	server.

STOU Store
unique

Like	STOR,	but	instructs	the	server	to	make	sure	the	file	has	a
unique	name	in	the	current	directory.	This	is	used	to	prevent



unique unique	name	in	the	current	directory.	This	is	used	to	prevent
overwriting	a	file	that	may	already	exist	with	the	same	name.	The
server	replies	back	with	the	name	used	for	the	file.

APPE Append
(with
create)

Like	STOR,	but	if	a	file	with	the	name	specified	already	exists,	the
data	being	sent	is	appended	to	it	instead	of	replacing	it.

ALLO Allocate An	optional	command	used	to	reserve	storage	on	the	server	before	a
file	is	sent.

REST Restart Restarts	a	file	transfer	at	a	particular	server	marker.	Used	only	for
block	or	compressed	transfer	modes.

RNFR Rename
from

Specifies	the	old	name	of	a	file	to	be	renamed.	See	the	RNTO
command.

RNTO Rename	to Specifies	the	new	name	of	a	file	to	be	renamed.	Used	with	the
RNFR	command.

ABOR Abort Tells	the	server	to	abort	the	last	FTP	command	and/or	the	current
data	transfer.

DELE Delete Deletes	a	specified	file	on	the	server.

RMD Remove
directory

Deletes	a	directory	on	the	server.

MKD Make
directory

Creates	a	directory.

PWD Print
working
directory

Displays	the	current	server	working	directory	for	the	FTP	session;
shows	the	users	where	they	are	in	the	server's	file	system.

LIST List Requests	a	list	of	the	contents	of	the	current	directory	from	the
server,	including	both	names	and	other	information.	Similar	in
concept	to	the	DIR	command	in	DOS/Windows	or	the	ls	command
in	UNIX.

NLST Name	list Like	LIST,	but	returns	only	the	names	in	a	directory.

SITE Site
parameters

Used	to	implement	site-specific	functions.

SYST System Requests	that	the	server	send	to	the	client	information	about	the
server's	operating	system.

STAT Status Prompts	the	server	to	send	an	indication	of	the	status	of	a	file	or	the



STAT Status Prompts	the	server	to	send	an	indication	of	the	status	of	a	file	or	the
transfer	currently	in	progress.

HELP Help Asks	the	server	for	any	help	information	that	might	be	useful	in
allowing	the	user	to	determine	how	the	server	should	be	used.

NOOP No
operation

Does	nothing,	other	than	prompting	the	server	to	send	an	"OK"
response	to	verify	that	the	control	channel	is	alive.

NOTE

FTP	commands	are	not	case-sensitive,	but	they	have	been	shown	in	uppercase	for	clarity	in	Tables
Table	72-1,	Table	72-2,	and	Table	72-3.

FTP	commands	are	all	sent	between	FTP	elements;	they	are	not	usually	issued
directly	by	users.	Instead,	a	special	set	of	user	commands	is	employed	for	this
purpose.	The	FTP	user	interface	implements	the	link	between	the	user	and	the
user-FTP	process,	including	the	translation	of	user	commands	into	FTP
commands.	We'll	explore	these	commands	later	in	this	chapter.



FTP	Replies
Each	time	the	user-PI	sends	a	command	to	the	server-PI	over	the	control
connection,	the	server	sends	back	a	reply.	FTP	replies	serve	three	main	purposes:

They	serve	as	confirmation	that	the	server	received	a	command.

They	tell	the	user	device	whether	or	not	the	command	was	accepted,	and	if	an
error	occurred,	what	it	was.

They	communicate	various	types	of	information	to	the	user	of	the	session,
such	as	the	status	of	a	transfer.

Advantages	of	Using	Both	Text	and	Numeric
Replies
For	a	human	user,	a	string	of	reply	text	would	be	sufficient	to	satisfy	the
requirements	just	mentioned,	and	FTP	replies	do	include	descriptive	text.	But
having	only	a	text	string	would	make	it	difficult	or	impossible	for	FTP	software
on	the	client	side	to	interpret	results	coming	from	the	server.	FTP	was	designed
to	allow	software	applications	to	interact	with	each	other	over	the	FTP	command
link.	For	this	reason,	the	protocol's	reply	system	uses	reply	codes.

FTP	reply	codes	are	three-digit	numeric	responses	that	can	be	easily	interpreted
by	a	computer	program.	They	are	also	useful	for	human	users	who	are	familiar
with	FTP,	because	they	communicate	at	a	glance	the	results	of	various
operations.	While	each	FTP	server	implementation	may	differ	in	the	text	sent	for
each	type	of	reply,	the	reply	codes	are	used	in	a	consistent	manner	based	on	the
specifications	of	the	FTP	standard.	It	is,	therefore,	the	codes	that	are	examined	to
determine	the	results	of	a	command;	the	text	is	just	descriptive.

Reply	Code	Structure	and	Digit	Interpretation
To	make	reply	codes	even	more	useful,	they	are	not	just	assigned	in	a	linear	or
random	order.	Rather,	a	special	encoding	scheme	is	used,	in	which	each	code	has
three	digits	that	each	communicate	a	particular	type	of	information	and
categorize	replies.	A	code	can	be	considered	to	be	of	the	form	xyz,	where	x	is
the	first	digit,	y	is	the	second,	and	z	is	the	third.



The	first	digit	indicates	the	success	or	failure	of	the	command	in	general	terms,
whether	a	successful	command	is	complete	or	incomplete,	and	whether	or	not	an
unsuccessful	command	should	be	retried.	Table	72-4	shows	the	possible	values.

Table	72-4.	FTP	Reply	Code	Format:	First	Digit	Interpretation

Reply
Code
Format

Meaning Description

1yz Positive
preliminary
reply

An	initial	response	indicating	that	the	command	has	been	accepted	and
processing	is	still	in	progress.	The	user	should	expect	another	reply
before	a	new	command	may	be	sent.

2yz Positive
completion
reply

The	command	has	been	successfully	processed	and	completed.

3yz Positive
intermediate
reply

The	command	was	accepted,	but	processing	has	been	delayed,	pending
receipt	of	additional	information.	This	type	of	reply	is	used	in	the
middle	of	command	sequences.	For	example,	it	is	used	as	part	of	the
authentication	sequence	after	receiving	a	USER	command	but	before
the	matching	PASS	command	is	sent.

4yz Transient
negative
completion
reply

The	command	was	not	accepted	and	no	action	was	taken,	but	the	error
is	temporary	and	the	command	may	be	tried	again.	This	is	used	for
errors	that	may	be	a	result	of	temporary	glitches	or	conditions	that	may
change—for	example,	a	file	being	busy	due	to	another	resource
accessing	it	at	the	time	a	request	was	made	for	it.

5yz Permanent
negative
completion
reply

The	command	was	not	accepted	and	no	action	was	taken.	Trying	the
same	command	again	is	likely	to	result	in	another	error.	For	example,	a
request	for	a	file	that	is	not	found	on	the	server,	or	sending	an	invalid
command	like	BUGU,	would	fall	into	this	category.

The	second	digit	of	the	reply	code	is	used	to	categorize	messages	into	functional
groups.	These	groups	are	shown	in	Table	72-5.

Table	72-5.	FTP	Reply	Code	Format:	Second	Digit	Interpretation

Reply	Code
Format

Meaning Description

x0z Syntax Syntax	errors	or	miscellaneous	messages



x1z Information Replies	to	requests	for	information,	such	as
status	requests

x2z Connections Replies	related	to	the	control	connection	or	data
connection

x3z Authentication	and
accounting

Replies	related	to	login	procedures	and
accounting

x4z Unspecified Not	defined

x5z File	system Replies	related	to	the	server's	file	system

The	third	digit	indicates	a	specific	type	of	message	within	each	of	the	functional
groups	described	by	the	second	digit.	The	third	digit	allows	each	functional
group	to	have	ten	different	reply	codes	for	each	reply	type	given	by	the	first	code
digit	(preliminary	success,	transient	failure,	and	so	on).

These	x,	y,	and	z	digit	meanings	are	combined	to	make	specific	reply	codes.	For
example,	consider	reply	code	530,	diagrammed	in	Figure	72-5.	The	first	digit
tells	you	that	this	is	a	permanent	negative	reply,	and	the	second	indicates	that	it
is	related	to	login	or	accounting.	(It	is,	in	fact,	an	error	message	received	when	a
login	fails.)	The	third	digit	tells	you	the	specific	type	of	error	that	has	occurred.

Figure	72-5.	FTP	reply	code	format	This	diagram	shows	how	the	three-digit	FTP	reply	code	format	is
interpreted.	In	reply	code	530,	the	5	indicates	a	permanent	error,	the	3	specifies	that	the	error	is	related
to	authentication	or	accounting,	and	the	0	is	the	specific	error	type.	A	similar	method	is	used	for	reply
codes	in	many	other	TCP/IP	application	protocols,	including	the	Simple	Mail	Transfer	Protocol	(SMTP)

and	Hypertext	Transfer	Protocol	(HTTP).

Using	encoded	reply	codes	allows	the	code	itself	to	communicate	information
immediately	and	provides	a	way	of	keeping	different	types	of	responses
organized.	This	idea	was	adapted	for	use	by	several	other	application	protocols,



including	the	Simple	Mail	Transfer	Protocol	(SMTP)	for	email,	the	Network
News	Transfer	Protocol	(NNTP)	for	network	news,	and	the	Hypertext	Transfer
Protocol	(HTTP)	for	the	World	Wide	Web.

Table	72-6	contains	a	list	of	some	of	the	more	common	FTP	reply	codes	taken
from	RFC	959.	They	are	shown	in	numerical	order,	along	with	the	reply	text
presented	as	typical	in	that	document	and	additional	descriptive	information	as
needed.

Table	72-6.	FTP	Reply	Codes

Reply
Code

Typical	Reply
Text

Description

110 Restart	marker
reply.

Used	as	part	of	the	marker	restart	feature	when	transferring	in
block	mode.

120 Service	ready	in	nnn
minutes.

nnn	indicates	the	number	of	minutes	until	the	service	will	be
available.

125 Data	connection
already	open;
transfer	starting.

	

150 File	status	okay;
about	to	open	data
connection.

	

200 Command	okay. Sometimes	the	text	indicates	the	name	of	the	command	that	was
successful.

202 Command	not
implemented,	or
superfluous	at	this
site.

	

211 System	status,	or
system	help	reply.

Will	contain	system-specific	status	or	help	information.

212 Directory	status. 	

213 File	status. 	

214 Help	message. Includes	help	information	of	use	to	a	human	user	of	this	server.

215



215 NAME	system	type. NAME	is	the	name	of	a	type	of	operating	system.	Often	sent	as
a	reply	to	the	SYST	command.

220 Service	ready	for
new	user.

Sent	when	the	command	channel	is	established	before	the	USER
command	is	sent.

221 Service	closing
control	connection.

A	"goodbye"	message	is	sent	when	the	session	is	closed.

225 Data	connection
open;	no	transfer	in
progress.

	

226 Closing	data
connection.

Sent	after	a	successful	file	transfer	or	a	file	abort.

227 Entering	Passive
Mode
(h1,h2,h3,h4,p1,p2).

Sent	in	reply	to	the	PASV	command,	indicates	the	IP	address
and	port	to	use	for	the	data	connection.

230 User	logged	in,
proceed.

Sent	after	successful	USER	and	PASS	authentication.	Systems
often	include	additional	greeting	or	other	information	with	this
code	after	a	login.

250 Requested	file
action	okay,
completed.

The	text	description	will	provide	more	details	about	what	was
successfully	done,	such	as	confirming	a	change	of	directory	or
deleted	file.

257 PATHNAME
created.

PATHNAME	is	replaced	by	the	path	created.

331 User	name	okay,
need	password.

Intermediate	result	after	sending	USER	but	before	sending
PASS.

332 Need	account	for
login.

	

350 Requested	file
action	pending
further	information.

	

421 Service	not
available,	closing
control	connection.

Sometimes	sent	if	the	FTP	server	is	in	the	process	of	shutting
down.

425 Can't	open	data
connection.

	

426 Connection	closed; 	



426 Connection	closed;
transfer	aborted.

	

450 Requested	file
action	not	taken.
File	unavailable.

The	file	is	not	available;	for	example,	it	may	be	locked	by
another	user.	Contrast	to	reply	code	550.

451 Requested	action
aborted:	local	error
in	processing.

	

452 Requested	action	not
taken.	Insufficient
storage	space	in
system.

The	file	system	is	full.

500 Syntax	error,
command
unrecognized.

Bad	or	excessively	long	command	line	was	sent.

501 Syntax	error	in
parameters	or
arguments.

	

502 Command	not
implemented.

	

503 Bad	sequence	of
commands.

	

504 Command	not
implemented	for	that
parameter.

	

530 Not	logged	in. Sent	if	authentication	fails	due	to	a	bad	user	name	or	incorrect
password.

550 Requested	action	not
taken.	File
unavailable.

File	was	not	found	or	user	does	not	have	access	to	it.	This	error
code	may	be	sent	in	reply	to	any	file	transfer	command	if	the
user	has	not	successfully	logged	in	yet.	Contrast	to	reply	code
450.

551 Requested	action
aborted:	page	type
unknown.

	

552 Requested	file
action	aborted.
Exceeded	storage

	



Exceeded	storage
allocation.

553 Requested	action	not
taken.	File	name	not
allowed.

	

TIP

KEY	CONCEPT	Each	command	sent	by	the	FTP	client	results	in	a	reply	sent	by	the	FTP	server.	FTP
replies	consist	of	a	three-digit	numeric	reply	code,	along	with	a	line	of	descriptive	text.	The	reply	code
serves	to	standardize	FTP	replies,	both	so	they	can	be	interpreted	by	client	software	and	so	experienced
users	can	see	at	a	glance	the	results	of	a	command.	The	reply	code	is	structured	so	that	the	first	two	digits
indicate	the	type	of	reply	and	to	what	category	it	belongs.

FTP	Multiple-Line	Text	Replies
It	is	possible	for	a	reply	to	contain	more	than	one	line	of	text.	In	this	case,	each
line	starts	with	the	reply	code,	and	all	lines	but	the	last	have	a	hyphen	between
the	reply	code	and	the	reply	text,	to	indicate	that	the	reply	continues.	The	last
line	includes	a	space	between	the	reply	code	and	reply	text,	just	like	a	single-line
reply.	This	facility	is	often	used	to	provide	additional	response	information	after
a	user	logs	in,	via	the	230	reply	code.	Example	72-1	contains	an	example.

Example	72-1.	FTP	multiple-line	text	reply	example
230-Welcome user to FTP server jabberwockynocky.
230-
230-You are user #17 of 100 simultaneous users allowed.
230-
230-
230-Please see the file "faq.txt" for help using this server.
230-
230 Logged in.

As	I	mentioned,	the	actual	text	string	for	each	reply	code	is	implementation-
specific.	You	can	sometimes	find	some	rather	humorous	text	strings	associated
with	some	of	these	error	messages.	For	example,	I	tried	some	commands	using
the	FreeBSD	FTP	client	on	one	of	my	Internet	accounts.	I	tried	to	send	or
receive	a	file	before	I	was	logged	in,	and	it	didn't	return	an	error	like	"Requested
action	not	taken.	File	unavailable."	Instead,	it	told	me	this:	"Login	first,	then	I
might	let	you	do	that."



FTP	User	Interface	and	User	Commands
The	FTP	command	set	provides	a	rich,	complete	set	of	instructions	for
implementing	FTP.	A	human	user	could	employ	these	commands	to	perform
file-transfer	functions	directly	with	an	FTP	server.	But	to	do	this,	the	user	must
have	an	intimate	knowledge	of	how	FTP	works.	The	user	must	know	exactly
which	commands	to	send	at	which	time,	and	in	what	order.

Gaining	knowledge	of	internal	FTP	commands	might	be	a	reasonable
assignment	for	an	internetworking	expert,	but	not	for	a	typical	TCP/IP
application	user.	For	this	reason,	the	FTP	protocol	defines	an	additional	protocol
component	as	part	of	the	user-FTP	process:	the	FTP	user	interface.	It	provides
three	main	benefits	to	the	FTP	user:

User	Friendliness	The	FTP	user	interface	presents	FTP	to	the	human	user	in	a
way	that	is	easier	and	simpler	to	use	than	issuing	protocol	commands.	Instead	of
requiring	the	knowledge	of	all	those	four-letter	codes,	the	user	interface	can
allow	functions	to	be	performed	with	more	intuitive	human-language	commands.
For	example,	we	can	say	get	a	file	instead	of	having	to	use	the	command	RETR.

Customization	The	command	used	to	perform	a	particular	function	can	be
customized	based	on	common	parlance	in	the	networking	industry,	without
requiring	changes	to	be	made	to	FTP	itself.	For	example,	the	image	transfer
mode	is	now	also	commonly	called	binary	mode,	so	a	user	command	called
binary	has	been	created	to	set	this	mode.

Detail	Abstraction	and	Command	Sequence	Simplification	A	single	user
command	can	be	made	to	issue	multiple	FTP	protocol	commands,	hiding
internal	FTP	details	and	making	the	protocol	easier	to	use.	In	particular,
commands	that	are	related	to	the	maintenance	of	the	connection	and	other
overhead	issues	that	users	don't	want	to	deal	with	can	be	automated.	For
example,	an	FTP	client	normally	issues	a	PASV	or	PORT	command	prior	to
each	data	transfer.	The	user	interface	can	take	care	of	issuing	this	command
automatically	prior	to	a	RETR	or	STOR	command	when	a	user	tells	FTP	to	get
or	send	a	file.

Command-Line	and	Graphical	FTP	Interfaces



Traditionally,	FTP	clients	have	used	a	command-line	interface.	In	this	familiar
arrangement,	an	FTP	client	is	invoked	and	the	user	is	automatically	asked	for	a
user	name	and	password	to	establish	an	FTP	session.	Then	the	user	is	presented
with	a	command	prompt,	where	the	user	can	type	various	FTP	commands	to
perform	different	functions.	Text	responses	from	the	server	are	displayed	to	the
user	to	indicate	the	results	of	various	commands.	Normally,	the	internal	protocol
commands	(such	as	PASV	and	STOR)	sent	by	the	client	are	suppressed	to	avoid
screen	clutter,	but	their	display	can	be	enabled	in	a	debug	mode.

Command-line	utilities	are	efficient,	but	some	folks	don't	care	for	them.	They	are
rather	"old	school"	in	the	context	of	modern	graphical	operating	systems	and
applications.	Thus,	many	modern	FTP	clients	are	graphical	in	nature.	They	allow
actions	to	be	performed	by	the	user	clicking	buttons	instead	of	typing
commands.	Some	FTP	clients	allow	files	to	be	transferred	by	dragging	and
dropping	from	a	local	file	system	display	to	one	on	a	remote	server.	These	make
FTP	even	easier	to	use.

TIP

KEY	CONCEPT	The	FTP	user	interface	is	the	component	on	the	FTP	client	that	acts	as	an
intermediary	between	the	human	user	and	the	FTP	software.	The	existence	of	the	user	interface	allows
FTP	to	be	used	in	a	friendly	manner	without	requiring	knowledge	of	FTP's	internal	protocol	commands.
Most	FTP	software	uses	either	a	command-line	interface	that	understands	English-like	user	commands
or	a	graphical	interface,	where	mouse	clicks	and	other	graphical	operations	are	translated	into	FTP
commands.

Typical	FTP	User	Commands
To	discover	the	specific	commands	supported	by	an	FTP	client,	consult	its
documentation.	In	a	command-line	client,	you	can	enter	the	command	?	to	see	a
list	of	supported	commands.	Table	72-7	shows	some	of	the	common	commands
encountered	in	typical	FTP	command-line	clients,	along	with	the	typical
parameters	they	require.

Note	how	many	of	these	commands	are	actually	synonyms,	such	as	bye,	exit,
and	quit.	Similarly,	you	can	use	the	command	type ascii	to	set	the	ASCII
data	type	or	use	the	ascii	command.	This	is	all	done	for	the	user's	convenience
and	is	one	of	the	benefits	of	having	a	flexible	user	interface	that	is	distinct	from



the	FTP	command	set.

Finally,	an	alternative	way	of	using	FTP	is	through	the	specification	of	an	FTP
Uniform	Resource	Locator	(URL).	While	FTP	is	at	its	heart	an	interactive
system,	FTP	URLs	allow	simple	functions,	such	as	retrieving	a	single	file,	to	be
done	quickly	and	easily.	They	also	allow	FTP	file	references	to	be	integrated
with	hypertext	(World	Wide	Web)	documents.	See	"URL	Schemes	and	Scheme-
Specific	Syntaxes"	in	Chapter	70	for	more	on	how	FTP	uses	URLs.

Table	72-7.	Common	FTP	User	Commands

User	Command Description

account
<account-name>

Sends	the	ACCT	command	to	access	a	particular	account	on	the	server.

append <file-
name>

Appends	data	to	a	file	using	APPE.

ascii Sets	the	ASCII	data	type	for	subsequent	transfers.

binary Sets	the	image	data	type	for	subsequent	transfers.	Same	as	the	image
command.

bye Terminates	FTP	session	and	exits	the	FTP	client	(same	as	exit	and
quit).

cd <directory-
path>

Changes	the	remote	server	working	directory	(using	CWD	protocol
command).

cdup Goes	to	parent	of	current	working	directory.

chmod <file-
name>

On	UNIX	systems,	changes	file	permissions	of	a	file.

close Closes	a	particular	FTP	session	but	user	stays	at	FTP	command	line.

debug Sets	debug	mode.

delete <file-
name>

Deletes	a	file	on	the	FTP	server.

dir [<optional-
file-
specification>]

Lists	contents	of	current	working	directory	(or	files	matching	the
specification).

exit Another	synonym	for	bye	and	quit.



exit Another	synonym	for	bye	and	quit.

form <format> Sets	the	transfer	format.

ftp <ftp-
server>

Opens	session	to	the	FTP	server.

get <file-name>
[<dest-file-
name>]

Gets	a	file.	If	the	<dest-file-name>	parameter	is	specified,	it	is	used	for
the	name	of	the	file	retrieved;	otherwise,	the	source	filename	is	used.

help
[<optional-
command-name>]

Displays	FTP	client	help	information.	Same	as	?.

image Sets	the	image	data	type,	like	the	binary	command.

ls [<optional-
file-
specification>]

Lists	contents	of	current	working	directory	(or	files	matching	the
specification).	Same	as	dir.

mget <file-
specification>

Gets	multiple	files	from	the	server.

mkdir
<directory-
name>

Creates	a	directory	on	the	remote	server.

mode	<transfer-
mode>

Sets	the	file	transfer	mode.

mput <file-
specification>

Sends	(puts)	multiple	files	to	the	server.

msend <file-
specification>

Same	as	mput.

open <ftp-
server>

Opens	a	session	to	the	FTP	server	(same	as	ftp).

passive Turns	passive	transfer	mode	on	and	off.

put <file-name>
[<dest-file-
name>]

Sends	a	file	to	the	server.	If	the	<dest-file-name>	parameter	is
specified,	it	is	used	as	the	name	for	the	file	on	the	destination	host;
otherwise,	the	source	filename	is	used.

pwd Prints	current	working	directory.

quit Terminates	FTP	session	and	exits	FTP	client	(same	as	bye	and	exit).

recv <file-
name> [<dest-
file-name>]

Receives	file	(same	as	get).	If	the	<dest-file-name>	parameter	is
specified,	it	is	used	for	the	name	of	the	file	retrieved;	otherwise,	the
source	filename	is	used.



file-name>] source	filename	is	used.

rename <old-
file-name>
<new-file-name>

Renames	a	file.

rhelp Displays	remote	help	information,	obtained	using	FTP	HELP	command.

rmdir
<directory-
name>

Removes	a	directory.

send <file-
name> [<dest-
file-name>]

Sends	a	file	(same	as	put).	If	the	<dest-file-name>	parameter	is
specified,	it	is	used	as	the	name	for	the	file	on	the	destination	host;
otherwise,	the	source	file	name	is	used.

site Sends	a	site-specific	command	to	the	server.

size <file-
name>

Shows	the	size	of	a	remote	file.

status Displays	current	session	status.

struct
<structure-
type>

Sets	the	file	structure.

system Shows	the	server's	operating	system	type.

type <data-
type>

Sets	the	data	type	for	transfers.

user <user-
name>

Logs	in	to	server	as	a	new	user.	Server	will	prompt	for	a	password.

? [<optional-
command-name>]

Displays	FTP	client	help	information.	Same	as	help.



Sample	FTP	Session
Having	now	seen	all	the	details	of	how	FTP	works,	let's	tie	everything	together
by	looking	at	a	sample	FTP	session	between	an	FTP	client	and	server,	to	see
FTP	commands	and	replies	in	action.	In	this	example,	I	will	invoke	FTP	from	a
client	to	retrieve	a	text	file	from	an	FTP	server,	and	then	I'll	delete	the	file	from
the	server	and	the	directory	that	contained	it.	In	the	process,	I	will	issue	some
additional	commands	to	illustrate	more	of	how	FTP	works.	I	will	enable	debug
mode	in	the	FTP	client	so	that	for	each	user	command,	you	can	see	the	actual
FTP	commands	generated.

Table	72-8	shows	the	sample	FTP	session,	slightly	simplified.	The	first	column
contains	commands	entered	by	the	user	(that's	me,	of	course)	on	the	FTP	client.
The	second	shows	the	actual	protocol	command(s)	sent	to	the	FTP	server	in
highlighted	text	and	the	reply	returned	from	the	server	to	the	client	in	plain	text.
The	third	column	contains	descriptive	comments.

Table	72-8.	Sample	FTP	Session

User
Command

FTP	Protocol	Command/FTP
Server	Reply

Comments

ftp -d
pcguide.com

Connected to pcguide.com.
220 ftp199.pair.com
NcFTPd Server (licensed
copy) ready.
Name (pcguide.com:ixl):

This	is	the	command	to	start	up	FTP.
The	-d	enables	debug	mode.	In	this
initial	step,	the	TCP	control	connection
is	made	and	the	server	replies	with	a
220	reply	code	indicating	that	it's	ready
for	user	identification.	The	FTP	client
automatically	prompts	for	the	user
name.

ixl USER ixl

331 User ixl okay, need 
password.

I	use	ixl	for	user	names	commonly.
Here,	the	FTP	client	sends	the	user
name	and	the	server	responds,	asking
for	the	password.

**** PASS XXXX

230-You are user #1 of 
300 simultaneous users
allowed.
230-
230-

I	enter	my	password,	which	is	sent	to
the	FTP	server,	and	the	server
authenticates	me	and	sends	back	a	230
message.	This	tells	me	the	login	was
successful.	It	also	provides	additional
information.



230-
230-Welcome to (<system 
name>)
230-

230 Logged in.
SYST

215 UNIX Type: L8
Remote system type is 
UNIX.
Using binary mode to 
transfer files.

information.

The	FTP	client	then	automatically
sends	a	SYST	command	to	tell	me
what	type	of	system	the	server	is	using,
which	is	UNIX	in	this	case.	The	client
tells	me	that	binary	mode	has	been
selected	by	default;	this	is	often	the
default	when	doing	FTP	from	UNIX	to
UNIX	(as	I	am	doing	here),	since	there
is	no	need	for	ASCII	mode	when
moving	text	files	between	similar
systems.

pwd PWD

257 "/usr/home/ixl" is 
cwd.

I	check	the	current	working	directory
(cwd),	which	the	server	tells	me	is	my
own	home	directory	on	this	system.

cd ftptest CWD ftptest

550 No such directory.
I	try	to	go	to	a	directory	called	ftptest,
but	that	was	the	wrong	name,	so	I	get	a
550	error	for	my	trouble.	(I	wasn't
trying	to	do	this;	I	forgot	the	directory
name	but	figured	I	might	as	well	show
it	to	you	anyway!)

cd ftpdemo CWD ftpdemo

250 
"/usr/home/ixl/ftpdemo" 
is new cwd.

I	got	the	name	right	this	time,	and	the
server	confirms	the	new	working
directory.

dir PASV

227 Entering Passive Mode
(ip1,ip2,ip3,ip4,193,224)
LIST

150 Data connection 
accepted from
ip5.ip6.ip7.ip8:4279; 
transfer starting.
-rw-r-r- 1 ixl users 16 
May 22 17:47
testfile.txt
226 Listing completed.

I	request	a	list	of	files	from	the	server.
The	FTP	client	automatically	issues	a
PASV	command,	and	the	server
responds	with	a	port	number	and	IP
address	for	it	to	use.	(I	have	not	shown
the	IP	here	for	security	reasons.)	The
directory	listing	is	then	transferred
from	the	server	to	the	client.

asc TYPE A

200 Type okay.
I	set	ASCII	mode,	although	I	didn't
really	need	to	do	that.	Note	that	this
client	allowed	me	to	abbreviate	the
ascii	command	as	asc.

get
testfile.txt

PASV

227 Entering Passive Mode
I	get	the	file	in	this	demo	directory
using	a	get	command.	The	server



testfile.txt 227 Entering Passive Mode
(ip1,ip2,ip3,ip4,193,226)
RETR testfile.txt

150 Data connection 
accepted from
ip5.ip6.ip7.ip8:4283; 
transfer starting for
testfile.txt (16 bytes).
226 Transfer completed.
17 bytes received in 0.10 
seconds (0.17 KB/s)

using	a	get	command.	The	server
accepts	the	PASV	command	and	sends
the	file.	It	initially	sends	a	150	reply	as

the	transfer	starts	(initial	positive
reply),	and	then	sends	226	when	it	is
done.	Note	that	the	port	numbers	used
here	are	different	(for	both	server	and
client)	than	they	were	for	the	directory
listing	I	did	earlier.

del
testfile.txt

DELE testfile.txt

250 Deleted.
I	delete	the	original	file	on	the	server.

cdup CDUP

250 "/usr/home/ixl" is 
new cwd.

I	go	up	to	the	parent	directory.

rmdir
ftpdemo

RMD ftpdemo

250 Directory removed.
I	remove	the	directory	that	the	file	was
in.

quit QUIT
221 Goodbye.

I	end	the	FTP	session.	The	quit
command	also	automatically	closes	the
FTP	client	and	returns	me	to	the	UNIX
shell.



Chapter	73.	TRIVIAL	FILE
TRANSFER	PROTOCOL	(TFTP)

In	Chapter	72,	you	saw	how	the	File	Transfer	Protocol	(FTP)	implements	a	full
set	of	commands	and	reply	functionalities	that	enables	a	user	to	perform	a	wide
range	of	file	movement	and	manipulation	tasks.	Although	FTP	is	ideal	as	a
general-purpose	protocol	for	file	transfer	between	computers,	on	certain	types	of
hardware,	it	is	too	complex	to	implement	easily	and	provides	more	capabilities
than	are	really	needed.	In	cases	where	only	the	most	basic	file	transfer	functions
are	required	while	simplicity	and	small	program	size	is	of	paramount
importance,	a	companion	to	FTP	called	the	Trivial	File	Transfer	Protocol
(TFTP)	can	be	used.

This	chapter	provides	a	description	of	the	operation	of	TFTP,	beginning	with	an
overview	description	of	the	protocol,	its	history	and	motivation,	and	the	relevant
standards	that	describe	it.	I	discuss	its	operation	in	general	terms,	cover	how
TFTP	clients	and	servers	communicate,	and	explain	TFTP	messaging	in	detail.	I
then	discuss	TFTP	options	and	the	TFTP	option	negotiation	mechanism.	The
chapter	concludes	by	showing	the	various	TFTP	message	formats.

TIP

BACKGROUND	INFORMATION	While	TFTP	is	a	distinct	protocol	from	FTP,	explaining	the	former
is	easier	when	the	reader	is	familiar	with	the	latter.	I	assume	that	the	reader	has	some	understanding	of
FTP,	since	it	is	the	more	commonly	used	protocol.	If	you	have	come	to	this	chapter	prior	to	reading
Chapter	72,	I	recommend	at	least	reading	the	section	"FTP	Overview,	History,	and	Standards"	in	that
chapter	before	proceeding	here.

TFTP	Overview,	History,	and	Standards



FTP	is	the	main	protocol	used	for	the	majority	of	general	file	transfers	in	TCP/IP
internetworks.	One	of	the	objectives	of	the	designers	of	FTP	was	to	keep	the
protocol	relatively	simple,	but	that	was	possible	only	to	a	limited	extent.	To
enable	the	protocol	to	be	useful	in	a	variety	of	cases	and	between	many	kinds	of
devices,	FTP	needed	a	fairly	large	set	of	features	and	capabilities.	As	a	result,
while	FTP	is	not	as	complex	as	certain	other	protocols,	it	is	still	fairly
complicated	in	a	number	of	respects.

Why	TFTP	Was	Needed
The	complexity	of	FTP	is	partly	due	to	the	protocol	itself,	with	its	dozens	of
commands	and	reply	codes,	and	partly	due	to	the	need	of	using	TCP	for
connections	and	data	transport.	The	reliance	on	TCP	means	that	any	device
wanting	to	use	FTP	needs	not	only	the	FTP	program	but	a	full	TCP
implementation	as	well.	It	must	handle	FTP's	need	for	simultaneous	data	and
control	channel	connections	and	other	requirements.

For	a	conventional	computer,	such	as	a	regular	PC,	Macintosh,	or	UNIX
workstation,	none	of	this	is	really	an	issue,	especially	with	today's	large	hard
disks	and	fast,	cheap	memory.	But	remember	that	FTP	was	developed	more	than
three	decades	ago,	when	hardware	was	slow	and	memory	was	expensive.
Furthermore,	even	today,	regular	computers	are	not	the	only	devices	used	on
networks.	Some	networked	devices	do	not	have	the	capabilities	of	true
computers,	but	they	still	need	to	be	able	to	perform	file	transfers.	For	these
devices,	a	full	FTP	and	TCP	implementation	is	a	nontrivial	matter.

One	of	the	most	notable	examples	of	such	devices	are	diskless	workstations—
computers	that	have	no	permanent	storage,	so	when	they	start	up,	they	cannot
read	a	whole	TCP/IP	implementation	from	a	hard	disk	like	most	computers
easily	do.	They	start	with	only	a	small	amount	of	built-in	software	and	must
obtain	configuration	information	from	a	server	and	then	download	the	rest	of
their	software	from	another	network	device.	The	same	issue	arises	for	certain
other	hardware	devices	with	no	hard	disks.

The	process	of	starting	up	these	devices	is	commonly	called	bootstrapping	and
occurs	in	two	phases.	First,	the	workstation	is	provided	with	an	IP	address	and
other	parameters	through	the	use	of	a	host	configuration	protocol	such	as	the



Bootstrap	Protocol	(BOOTP;	see	Chapter	60)	or	the	Dynamic	Host	Control
Protocol	(DHCP;	see	Chapters	Chapter	61	to	Chapter	64).	Second,	the	client
downloads	software,	such	as	an	operating	system	and	drivers,	that	let	it	function
on	the	network	like	any	other	device.	This	requires	that	the	device	have	the
ability	to	transfer	files	quickly	and	easily.	The	instructions	to	perform	this
bootstrapping	must	fit	onto	a	read-only	memory	(ROM)	chip,	and	this	makes	the
size	of	the	software	an	important	issue—again,	especially	many	years	ago.

The	solution	to	this	need	was	to	create	a	"light"	version	of	FTP	that	would
emphasize	small	program	size	and	simplicity	over	functionality.	This	new
protocol,	TFTP,	was	initially	developed	in	the	late	1970s	and	first	standardized
in	1980.	The	modern	version,	TFTP	version	2,	was	documented	in	RFC	783	in
1981,	which	was	revised	and	published	as	RFC	1350,	"The	TFTP	Protocol
(Revision	2),"	in	1992.	This	is	the	current	version	of	the	standard.

Comparing	FTP	and	TFTP
Probably	the	best	way	to	understand	the	relationship	between	TFTP	and	FTP	is
to	compare	it	to	the	relationship	between	the	Transmission	Control	Protocol
(TCP)	and	User	Datagram	Protocol	(UDP)	at	the	transport	layer.	UDP	is	a
simplified,	stripped-down	alternative	to	TCP	that	is	used	when	simplicity	is
more	important	than	rich	functionality.	Similarly,	TFTP	is	a	greatly	simplified
version	of	FTP	that	allows	only	basic	operations	and	lacks	some	of	FTP's	fancy
capabilities	in	order	to	keep	its	implementation	easy	(even	trivial)	and	its
program	size	small.

Due	to	its	limitations,	TFTP	is	a	complement	to	FTP,	not	a	replacement	for	it.
TFTP	is	used	only	when	its	simplicity	is	important	and	its	lack	of	features	is	not.
Its	most	common	application	is	bootstrapping,	as	described	above,	though	it	can
be	used	for	other	purposes.	One	specific	application	that	the	TFTP	standard
describes	for	the	protocol	is	the	transport	of	electronic	mail	(email).	While	the
protocol	supports	this	explicitly,	TFTP	is	not	generally	used	for	this	purpose
today.

FTP	and	TFTP	have	significant	differences	in	at	least	four	significant	areas:

Transport	The	comparison	to	TCP	and	UDP	is	apt	not	only	based	on	the
features/simplicity	trade-off,	but	because	FTP	uses	TCP	for	transport	while



TFTP	uses	UDP.	Like	TFTP,	UDP	is	simple,	and	this	makes	the	two	ideal	for
embedding	together	as	a	hardware	program	set	in	a	network	device.

Limited	Command	Set	FTP	includes	a	rich	set	of	commands	to	allow	files	to	be
sent,	received,	renamed,	deleted,	and	so	forth.	TFTP	allows	files	only	to	be	sent
and	received.

Limited	Data	Representations	TFTP	does	not	include	some	of	FTP's	fancy
data	representation	options;	it	allows	only	simple	ASCII	or	binary	file	transfers.

Lack	of	Authentication	UDP	uses	no	login	mechanism	or	other	means	of
authentication.	This	is	again	a	simplification,	though	it	means	the	operators	of
TFTP	servers	must	severely	restrict	the	files	they	make	available	for	access.	(It	is
also	part	of	why	TFTP	specifically	does	not	allow	the	client	to	perform
dangerous	file	operations	such	as	deletion.)

Overview	of	TFTP	Operation
Communication	and	messaging	in	TFTP	is	very	different	from	FTP	because	of
the	different	transport	layer	protocols	used	by	each.	FTP	makes	use	of	TCP's	rich
functionality,	including	its	stream	data	orientation,	to	allow	it	to	send	bytes	of
data	directly	over	the	FTP	data	connection.	TCP	also	takes	care	of	reliable
delivery	of	data	for	FTP,	ensuring	that	files	are	received	correctly.	In	contrast,
since	TFTP	uses	UDP,	it	must	package	data	into	individual	messages	for	both
protocol	control	and	data	communication.	TFTP	must	also	take	care	of	timing
transmissions	to	detect	lost	datagrams	and	then	retransmitting	as	needed.

TFTP	servers	allow	connections	from	TFTP	clients	to	perform	file	send	and
receive	operations.	Many	hosts	that	run	FTP	servers	will	also	run	a	separate
TFTP	server	module.	TFTP	users	initiate	connections	by	starting	a	TFTP	client
program,	which	generally	uses	a	command-line	interface	similar	to	that	of	many
FTP	clients;	the	main	difference	is	the	much	smaller	number	of	commands	in
TFTP.

TIP

KEY	CONCEPT	For	situations	in	which	the	full	FTP	is	either	unnecessary	or	impractical,	the	simpler
Trivial	File	Transfer	Protocol	(TFTP)	was	developed.	TFTP	is	like	FTP	in	that	it	is	used	for	general	file
transfer	between	a	client	and	server	device,	but	it	is	stripped	down	in	its	capabilities.	Rather	than
including	a	full	command	set	and	using	TCP	for	communication,	like	FTP,	TFTP	can	be	used	only	for



reading	or	writing	a	single	file,	and	it	uses	the	fast	but	unreliable	UDP	for	transport.	It	is	often	preferred
in	situations	where	small	files	must	be	transferred	quickly	and	simply,	such	as	for	bootstrapping	diskless
workstations.

The	basic	operation	of	TFTP	has	not	changed	since	RFC	1350	was	published,
but	a	new	feature	was	added	to	the	protocol	in	1995.	RFC	1782,	"TFTP	Option
Extension,"	defines	a	mechanism	by	which	a	TFTP	client	and	TFTP	server	can
negotiate	certain	parameters	that	will	control	a	file	transfer	prior	to	the	transfer
commencing.	This	allows	more	flexibility	in	how	TFTP	is	used,	adding	a	slight
amount	of	complexity	to	TFTP,	but	not	a	great	deal.

The	option	extension	is	backward-compatible	with	regular	TFTP	and	is	used
only	if	both	server	and	client	support	it.	Two	subsequent	RFCs	define	the	actual
options	that	can	be	negotiated:	RFC	1783,	"TFTP	Blocksize	Option,"	and	RFC
1784,	"TFTP	Timeout	Interval	and	Transfer	Size	Options."	This	set	of	three
RFCs	(1782,	1783,	and	1784)	was	replaced	in	1998	by	updated	versions	in	RFCs
2347,	2348,	and	2349.



TFTP	General	Operation,	Connection
Establishment,	and	Client/Server
Communication
Since	the	T	in	TF	TP	stands	for	Trivial,	and	the	protocol	was	specifically
designed	to	be	simple,	you	would	think	that	describing	how	it	works	would,	in
fact,	be	simple,	wouldn't	you?	And,	actually,	that's	pretty	much	true.	TFTP
communication	is	client/server	based,	as	discussed	in	the	overview.	The	process
of	transferring	a	file	consists	of	three	main	phases:

Initial	Connection	The	TFTP	client	establishes	the	connection	by	sending	an
initial	request	to	the	server.	The	server	responds	back	to	the	client,	and	the
connection	is	effectively	opened.

Data	Transfer	Once	the	connection	is	established,	the	client	and	server
exchange	TFTP	messages.	One	device	sends	data,	and	the	other	sends
acknowledgments.

Connection	Termination	When	the	last	TFTP	message	containing	data	has
been	sent	and	acknowledged,	the	connection	is	terminated.

Connection	Establishment	and	Identification
The	matter	of	a	connection	is	somewhat	different	in	TFTP	than	it	is	with	a
protocol	like	FTP	that	uses	TCP.	FTP	must	establish	a	connection	at	the	TCP
level	before	anything	can	be	done	by	FTP	itself.	TFTP,	however,	uses	the
connectionless	UDP	for	transport,	so	there	is	no	connection	in	the	sense	that	one
exists	in	TCP.	In	TFTP,	the	connection	is	more	in	a	logical	sense,	meaning	that
the	client	and	server	are	participating	in	the	protocol	and	exchanging	TFTP
messages.

The	TFTP	server	listens	continuously	for	requests	on	well-known	UDP	port
number	69,	which	is	reserved	for	TFTP.	The	client	chooses	for	its	initial
communication	an	ephemeral	port	number,	as	is	usually	the	case	in	TCP/IP.	This
port	number	actually	identifies	the	data	transfer	and	is	called	a	transfer	identifier
(TID).

What's	different	about	TFTP,	however,	is	that	the	server	also	selects	a
pseudorandom	TID	that	it	uses	for	sending	responses	back	to	the	client;	it	doesn't



pseudorandom	TID	that	it	uses	for	sending	responses	back	to	the	client;	it	doesn't
send	them	from	port	number	69.	This	is	done	because	by	using	a	unique	client
port	number	and	source	port	number,	multiple	TFTP	exchanges	can	be
conducted	simultaneously	by	a	server.	Each	transfer	is	identified	automatically
by	the	source	and	destination	port	number,	so	there	is	no	need	to	identify	in	data
messages	the	transfer	to	which	each	block	data	belongs.	This	keeps	the	TFTP
header	size	down,	allowing	more	of	each	UDP	message	to	contain	actual	data.

For	example,	suppose	the	TFTP	client	selects	a	TID	of	3145	for	its	initial
message.	It	would	send	a	UDP	transmission	from	its	port	3145	to	the	server's
port	69.	Say	the	server	selects	a	TID	of	1114.	It	would	send	its	reply	from	its
port	1114	to	the	client's	port	3145.	From	then	on,	the	client	would	send	messages
back	to	server	port	1114	until	the	TFTP	session	was	completed.

Lock-Step	Client/Server	Messaging
After	the	initial	exchange,	the	client	and	server	exchange	data	and
acknowledgment	messages	in	lock-step	fashion.	Each	device	sends	a	message
for	each	message	it	receives:	one	device	sends	data	messages	and	waits	for
acknowledgments;	the	other	sends	acknowledgments	and	waits	for	data
messages.	This	form	of	rigid	communication	is	less	efficient	than	allowing	the
transmitter	to	fire	away	with	one	data	message	after	another,	but	it	is	important
because	it	keeps	TFTP	simple	when	it	comes	to	an	important	issue:
retransmissions.

Like	all	protocols	using	the	unreliable	UDP,	TFTP	has	no	assurances	that	any
messages	sent	will	actually	arrive	at	their	destination,	so	it	must	use	timers	to
detect	lost	transmissions	and	resend	them.	What	is	different	about	TFTP	is	that
both	clients	and	servers	perform	retransmission.	The	device	that	is	sending	data
messages	will	resend	the	data	message	if	it	doesn't	receive	an	acknowledgment
in	a	reasonable	period	of	time;	the	device	sending	the	acknowledgments	will
resend	the	acknowledgment	if	it	doesn't	receive	the	next	data	message	promptly.
The	lock-step	communication	greatly	simplifies	this	process,	since	each	device
needs	to	keep	track	of	only	one	outstanding	message	at	a	time.	It	also	eliminates
the	need	to	deal	with	complications	such	as	reorganizing	blocks	received	out	of
order	(which	protocols	like	FTP	rely	on	TCP	to	manage).



TIP

KEY	CONCEPT	Since	TFTP	uses	UDP	rather	than	TCP,	no	explicit	concept	of	a	connection	exists	as
in	FTP.	A	TFTP	session	instead	uses	the	concept	of	a	logical	connection,	which	is	opened	when	a	client
sends	a	request	to	a	server	to	read	or	write	a	file.	Communication	between	the	client	and	server	is
performed	in	lock-step	fashion:	one	device	sends	data	messages	and	receives	acknowledgments	so	it
knows	the	data	messages	were	received;	the	other	sends	acknowledgments	and	receives	data	messages	so
it	knows	the	acknowledgments	were	received.

Difficulties	with	TFTP's	Simplified	Messaging
Mechanism
One	of	the	most	important	drawbacks	with	this	technique	is	that	while	it
simplifies	communication,	it	does	so	at	the	cost	of	performance.	Since	only	one
message	can	be	in	transit	at	a	time,	this	limits	throughput	to	a	maximum	of	512
bytes	for	exchange	of	messages	between	the	client	and	server.	In	contrast,	when
using	FTP,	large	amounts	of	data	can	be	pipelined;	there	is	no	need	to	wait	for	an
acknowledgment	for	the	first	piece	of	data	before	sending	the	second.

Another	complication	is	that	if	a	data	or	an	acknowledgment	message	is	resent
and	the	original	was	not	lost	but	rather	just	delayed,	two	copies	will	show	up.
The	original	TFTP	rules	stated	that	upon	receipt	of	a	duplicate	datagram,	the
device	receiving	it	may	resend	the	current	datagram.	So,	receipt	of	a	duplicate
block	2	by	a	client	doing	a	read	would	result	in	the	client	sending	a	duplicate
acknowledgment	for	block	2.	This	would	result	in	two	acknowledgments	being
received	by	the	server,	which	would	in	turn	send	block	3	twice.	Then	there
would	be	two	acknowledgments	for	block	3,	and	so	on.

The	end	result	of	this	is	that	once	the	initial	duplication	occurs,	every	message
thereafter	is	sent	twice.	This	has	been	affectionately	dubbed	the	Sorcerer's
Apprentice	bug,	after	the	story	used	as	the	basis	of	the	famous	scene	in	the
movie	Fantasia,	where	Mickey	Mouse	cuts	animated	brooms	in	half	only	to	find
that	each	half	comes	to	life.	This	problem	was	fixed	by	changing	the	rules	so	that
only	the	device	receiving	a	duplicate	data	message	may	send	a	duplicate
acknowledgment.	Receipt	of	a	duplicate	acknowledgment	does	not	result	in
sending	a	duplicate	data	message.	Since	only	one	of	the	two	devices	can	send
duplicates,	this	fixes	the	problem.

It's	also	worth	emphasizing	that	TFTP	includes	absolutely	no	security,	so	no



login	or	authentication	process	is	in	place.	As	mentioned	earlier,	administrators
must	use	caution	in	deciding	what	files	to	make	available	via	TFTP	and	in
allowing	write	access	to	TFTP	servers.



TFTP	Detailed	Operation	and	Messaging
You	saw	earlier	that	TFTP	operation	consists	of	three	general	steps:	initial
connection,	data	transfer,	and	connection	termination.	All	operations	are
performed	through	the	exchange	of	specific	TFTP	messages.	Let's	take	a	more
detailed	look	now	at	these	three	phases	of	operation	and	the	specifics	of	TFTP
messaging.

Initial	Message	Exchange
The	first	message	sent	by	the	client	to	initiate	TFTP	is	either	a	read	request
(RRQ)	message	or	a	write	request	(WRQ)	message.	This	message	serves
implicitly	to	establish	the	logical	TFTP	connection	and	to	indicate	whether	the
file	is	to	be	sent	from	the	server	to	the	client	(read	request)	or	the	client	to	the
server	(write	request).	The	message	also	specifies	the	type	of	file	transfer	to	be
performed.	TFTP	supports	two	transfer	modes:	netascii	mode	(ASCII	text	files
as	used	by	the	Telnet	Protocol)	and	octet	mode	(binary	files).

NOTE

Originally,	a	third	file	type	option	existed,	called	mail	mode,	but	TFTP	was	never	really	designed	for
transmitting	mail	and	this	option	is	now	obsolete.

Assuming	no	problem	occurred	with	the	request	(such	as	a	server	problem,
inability	to	find	the	file,	and	so	on),	the	server	will	respond	with	a	positive	reply.
In	the	case	of	a	read	request,	the	server	will	immediately	send	the	first	data
message	back	to	the	client.	In	the	case	of	a	write	request,	the	server	will	send	an
acknowledgment	message	to	the	client,	telling	it	that	it	may	proceed	to	send	the
first	data	message.

After	the	initial	exchange,	the	client	and	server	exchange	data	and
acknowledgment	messages	in	lock-step	fashion	as	described	earlier.	For	a	read,
the	server	sends	one	data	message	and	waits	for	an	acknowledgment	from	the
client	before	sending	the	next	one.	For	a	write,	the	client	sends	one	data	message
and	the	server	sends	an	acknowledgment	for	it,	before	the	client	sends	the	next
data	message.



Data	Block	Numbering
Each	data	message	contains	a	block	of	between	0	and	512	bytes	of	data.	The
blocks	are	numbered	sequentially,	starting	with	1.	The	number	of	each	block	is
placed	in	the	header	of	the	data	message	carrying	that	block	and	then	used	in	the
acknowledgment	for	that	block	so	the	original	sender	knows	it	was	received.	The
device	sending	the	data	will	always	send	512	bytes	of	data	at	a	time	for	as	long
as	it	has	enough	data	to	fill	the	message.	When	it	gets	to	the	end	of	the	file	and
has	fewer	than	512	bytes	to	send,	it	will	send	only	as	many	bytes	as	remain.
(Interestingly,	this	means	that	if	the	size	of	the	file	is	an	exact	multiple	of	512,
the	last	message	sent	will	have	zero	bytes	of	data!)

The	receipt	of	a	data	message	with	between	0	and	511	bytes	of	data	signals	that
this	is	the	last	data	message.	Once	this	is	acknowledged,	it	automatically	signals
the	end	of	the	data	transfer.	There	is	no	need	to	terminate	the	connection
explicitly,	just	as	it	was	not	necessary	to	establish	it	explicitly.

TFTP	Read	Process	Steps
Let's	look	at	an	example	that	shows	how	TFTP	messaging	works.	Suppose	the
client	wants	to	read	a	particular	file	that	is	1200	bytes	long.	Here	are	the	steps	in
simplified	form	(also	displayed	in	Figure	73-1):

1.	 The	client	sends	a	read	request	to	the	server,	specifying	the	name	of	the
file.

2.	 The	server	sends	back	a	data	message	containing	block	1,	carrying	512
bytes	of	data.

3.	 The	client	receives	the	data	and	sends	back	an	acknowledgment	for	block
1.

4.	 The	server	sends	block	2,	with	512	bytes	of	data.

5.	 The	client	receives	block	2	and	sends	back	an	acknowledgment	for	it.

6.	 The	server	sends	block	3,	containing	176	bytes	of	data.	It	waits	for	an
acknowledgment	before	terminating	the	logical	connection.

7.	 The	client	receives	the	data	and	sends	an	acknowledgment	for	block	3.
Since	this	data	message	had	fewer	than	512	bytes,	it	knows	the	file	is



complete.

8.	 The	server	receives	the	acknowledgment	and	knows	the	file	was	received
successfully.

Figure	73-1.	TFTP	read	process	In	this	example,	the	client	starts	the	process	of	reading	a	file	by	sending
a	request	for	it	to	the	server.	The	server	acknowledges	this	request	by	immediately	sending	a	DATA

message	carrying	block	1,	containing	the	first	512	bytes	of	the	file.	The	client	acknowledges	this	with	an
ACK	message	for	block	1.	The	server	then	sends	block	2,	containing	bytes	513	to	1024,	which	the	client
acknowledges.	When	the	client	receives	block	3,	it	realizes	it	has	only	176	bytes,	which	marks	it	as	the

last	block	of	the	file.

TFTP	Write	Process	Steps
Here	are	the	steps	in	the	same	process,	but	where	the	client	is	writing	the	file
(see	Figure	73-2):

1.	 The	client	sends	a	write	request	to	the	server,	specifying	the	name	of	the
file.

2.	 The	server	sends	back	an	acknowledgment.	Since	this	acknowledgment	is
prior	to	the	receipt	of	any	data,	it	uses	block	0	in	the	acknowledgment.

3.	 The	client	sends	a	data	message	containing	block	1,	with	512	bytes	of	data.

4.	 The	server	receives	the	data	and	sends	back	an	acknowledgment	for	block
1.



5.	 The	client	sends	block	2,	containing	512	bytes	of	data.

6.	 The	server	receives	the	data	and	sends	back	an	acknowledgment	for	block
2.

7.	 The	client	sends	block	3,	containing	176	bytes	of	data.	It	waits	for	an
acknowledgment	before	terminating	the	logical	connection.

8.	 The	server	receives	block	3	and	sends	an	acknowledgment	for	it.	Since	this
data	message	had	fewer	than	512	bytes,	the	transfer	is	done.

9.	 The	client	receives	the	acknowledgment	for	block	3	and	knows	the	file
write	was	completed	successfully.

Figure	73-2.	TFTP	write	process	This	example	shows	the	client	sending	the	same	1200-byte	file	to	the
server	that	it	read	in	Figure	73-1.	The	client	sends	a	write	request	to	the	server,	which	acknowledges	it;
it	uses	block	0	to	represent	acknowledgment	of	the	request	prior	to	receipt	of	any	data.	The	client	then
sends	blocks	of	data	one	at	a	time,	each	of	which	is	acknowledged	by	the	server.	When	the	server
receives	block	3	containing	fewer	than	512	bytes	of	data,	it	knows	it	has	received	the	whole	file.

TIP

KEY	CONCEPT	A	TFTP	read	operation	begins	with	the	client	sending	a	read	request	message	to	the
TFTP	server;	the	server	then	sends	the	file	in	512-byte	data	messages,	waiting	after	each	one	for	the
client	to	acknowledge	receipt	before	sending	the	next.	A	TFTP	write	operation	starts	with	a	write	request
sent	by	the	client	to	the	server,	which	the	server	acknowledges.	The	client	then	sends	the	file	in	512-byte
data	blocks,	waiting	after	each	for	the	server	to	acknowledge	receipt.	In	both	cases,	there	is	no	explicit



means	by	which	the	end	of	a	transfer	is	marked;	the	device	receiving	the	file	simply	knows	the	transfer	is
complete	when	it	receives	a	data	message	containing	fewer	than	512	bytes.

If	a	problem	is	encountered	at	any	stage	of	the	connection	establishment	or
transfer	process,	a	device	may	reply	with	an	error	message	instead	of	a	data	or
acknowledgment	message,	as	appropriate.	An	error	message	normally	results	in
the	failure	of	the	data	transfer;	this	is	one	of	the	prices	paid	for	the	simplicity	of
TFTP.

Each	TFTP	file	transfer	proceeds	using	the	process	described,	which	transfers	a
single	file.	If	another	file	needs	to	be	sent	or	received,	a	new	logical
communication	is	established,	in	a	manner	analogous	to	how	FTP	creates	data
connections.	The	main	difference	is	that	TFTP	has	no	persistent	control
connection,	as	FTP	does.



TFTP	Options	and	Option	Negotiation
One	of	the	difficulties	that	designers	of	simple	protocols	and	applications	seem
to	have	is	keeping	them	simple.	Many	protocols	start	out	small,	but	over	time
well-intentioned	users	suggest	improvements	that	are	added	slowly	but	surely.
Eventually,	the	program	that	was	once	lean	and	mean	has	become,	shall	we	say,
"well-marbled."	In	the	software	industry,	this	is	called	feature	creep	and	has
happened	to	many	protocols	and	applications.

The	temptation	to	add	features	is	especially	strong	when	the	program	or	protocol
has	few	to	begin	with.	Given	this,	the	maintainers	of	TFTP	have	done	a	good	job
over	the	years	of	avoiding	this	pitfall.	However,	they	did	allow	one	new	feature
to	be	added	to	the	protocol	in	1995:	the	"TFTP	Option	Extension,"	which
describes	how	a	TFTP	client	and	server	can	negotiate	options	before	transferring
a	file.

The	reason	for	adding	this	capability	is	that	the	original	TFTP	provided	no	way
at	all	for	the	client	and	server	to	exchange	important	control	information	prior	to
sending	a	file.	This	limited	the	flexibility	of	the	protocol	to	deal	with	special
cases,	such	as	the	transfer	of	data	over	unusual	network	types.	The	TFTP	option
negotiation	feature	allows	additional	parameters	to	be	exchanged	between	the
client	and	server	that	govern	how	data	is	transferred.	It	does	this	without
significantly	complicating	the	protocol	and	is	backward-compatible	with	normal
TFTP.	It	is	used	only	if	both	client	and	server	support	it,	and	one	device	trying	to
use	the	feature	will	not	cause	problems	if	the	other	doesn't	support	it.

TFTP	Option	Negotiation	Process
The	client	begins	the	negotiation	by	sending	a	modified	TFTP	read	request	or
write	request	message.	In	addition	to	the	normal	information	that	appears	in	this
message	(described	in	the	"TFTP	Message	Formats"	section	later	in	this
chapter),	a	list	of	options	may	also	be	included.	Each	is	specified	with	an	option
code	and	an	option	value.	The	names	and	values	are	expressed	as	ASCII	strings,
terminated	by	a	null	character	(0	byte).	Multiple	options	may	be	specified	in	the
request	message.

The	server	receives	the	request	containing	the	options,	and	if	it	supports	the



option	extension,	it	processes	them.	It	then	returns	a	special	option
acknowledgment	(OACK)	message	to	the	client,	where	it	lists	all	the	options	that
the	client	specified	that	the	server	recognizes	and	accepts.	Any	options	that	the
client	requested	but	the	server	rejects	are	not	included	in	the	OACK.	The	client
may	use	only	the	options	that	the	server	accepts.	If	the	client	rejects	the	server's
response,	it	may	send	back	an	error	message	(with	error	code	8)	upon	receipt	of
the	unacceptable	OACK	message.

The	server	may	specify	an	alternative	value	in	its	response	for	certain	options,	if
it	recognizes	the	option	but	doesn't	like	the	client's	suggested	value.	Obviously,
if	the	server	doesn't	support	options	at	all,	it	will	ignore	the	client's	option
requests	and	respond	with	a	data	message	(for	a	read)	or	a	regular
acknowledgment	(for	a	write)	as	in	normal	TFTP.

If	the	server	did	send	an	OACK,	the	client	proceeds	to	send	messages	using	the
regular	messaging	exchange	described	in	the	previous	section.	In	the	case	of	a
write,	the	OACK	replaces	the	regular	acknowledgment	in	the	message	dialog.	In
the	case	of	a	read,	the	OACK	is	the	server's	first	message	instead	of	the	first	data
block	that	it	would	normally	send.	TFTP	doesn't	allow	the	same	device	to	send
two	datagrams	in	a	row,	so	a	reply	from	the	client	must	be	received	before	that
first	block	can	be	sent.	The	client	does	this	by	sending	a	regular
acknowledgment	with	a	block	number	of	0	in	it—the	same	form	of
acknowledgment	a	server	normally	sends	for	a	write.

TIP

KEY	CONCEPT	TFTP	is	supposed	to	be	a	small	and	simple	protocol,	so	it	includes	few	extra	features.
One	that	it	does	support	is	option	negotiation,	where	a	TFTP	client	and	server	attempt	to	come	to
agreement	on	additional	parameters	that	they	will	use	in	transferring	a	file.	The	TFTP	client	includes	one
or	more	options	in	its	read	request	or	write	request	message;	the	TFTP	server	then	sends	an	option
acknowledgment	(OACK)	message	listing	each	option	the	server	agrees	to	use.	The	use	of	options	when
reading	a	file	means	that	an	extra	acknowledgment	must	be	sent	by	the	client—to	acknowledge	the
OACK—before	the	server	sends	the	first	block	of	the	file.

For	review,	let's	take	a	look	at	each	of	the	four	possible	cases:	read	and	write,
with	and	without	options.

The	initial	message	exchange	for	a	normal	read	(without	option	negotiation),	as
shown	in	Figure	73-1,	is	as	follows:



1.	 Client	sends	read	request.

2.	 Server	sends	data	block	1.

3.	 Client	acknowledges	data	block	1.

And	so	on	…

With	option	negotiation,	a	read	is	as	follows	(see	Figure	73-3):

1.	 Client	sends	read	request	with	options.

2.	 Server	sends	OACK.

3.	 Client	sends	regular	acknowledgment	for	block	0;	that	is,	it	acknowledges
the	OACK.

4.	 Server	sends	data	block	1.

5.	 Client	acknowledges	data	block	1.

And	so	on	…

Figure	73-3.	TFTP	read	process	with	option	negotiation	This	diagram	shows	the	same	example
illustrated	in	Figure	73-1,	but	with	one	added	message	exchange	used	for	option	negotiation.	The
client's	initial	read	request	here	includes	options	that	it	wants	to	use	for	this	transfer.	The	server

responds	not	immediately	with	the	first	data	block,	but	with	an	OACK.	The	client	indicates	receipt	of
the	OACK	by	sending	an	acknowledgment	using	block	0.	The	server	sends	data	block	1,	and	the	rest	of



the	exchange	proceeds	as	normal.

The	initial	message	exchange	for	a	normal	write	(without	option	negotiation)	is
as	follows:

1.	 Client	sends	write	request.

2.	 Server	sends	acknowledgment.

3.	 Client	sends	data	block	1.

4.	 Server	acknowledges	data	block	1.

And	so	on	…

And	here's	a	write	with	option	negotiation:

1.	 Client	sends	write	request	with	options.

2.	 Server	sends	option	acknowledgment	(instead	of	regular	acknowledgment).

3.	 Client	sends	data	block	1.

4.	 Server	acknowledges	data	block	1.

And	so	on	…

TFTP	Options
Table	73-1	contains	a	summary	of	the	three	TFTP	options	currently	defined.

Table	73-1.	TFTP	Options

TFTP
Option
Name

TFTP	Option
Code	(Used
in	Request
Messages)

Defining
RFC

Description

Block
Size

blksize 2348 Allows	the	client	and	server	to	send	data	blocks	of	a
size	other	than	512	bytes	to	improve	efficiency	or
address	limitations	of	a	particular	type	of	network.

Timeout
Interval

interval 2349 Permits	the	client	and	server	to	agree	on	a	specified
number	of	seconds	to	use	for	their	retransmission
timers.	Again,	may	be	of	value	on	certain	networks
with	high	latency	or	other	special	requirements.

Transfer tsize 2349 Lets	the	device	sending	the	file	(client	on	a	write,	server



Transfer
Size

tsize 2349 Lets	the	device	sending	the	file	(client	on	a	write,	server
on	a	read)	tell	the	other	device	the	size	of	the	file	before
the	transfer	commences.	This	allows	the	receiving
device	to	allocate	space	for	it	in	advance.



TFTP	Message	Formats
Unlike	FTP,	all	communication	in	TFTP	is	accomplished	in	the	form	of	discrete
messages	that	follow	a	particular	message	format.	The	reason	why	TFTP	and
FTP	are	so	different	in	this	regard	is	because	of	the	different	transport	protocols
they	use.	FTP	uses	TCP,	which	allows	data	to	be	streamed	a	byte	at	a	time;	FTP
also	makes	use	of	a	dedicated	channel	for	commands.	TFTP	runs	on	UDP,	which
uses	a	conventional	header/data	formatting	scheme.

The	original	TFTP	standard	defines	five	different	types	of	messages:	read
request	(RRQ),	write	request	(WRQ),	data	(DATA),	acknowledgment	(ACK),
and	error	(ERROR).	The	TFTP	option	extension	feature	defines	a	sixth	message:
option	acknowledgment	(OACK).	Of	these	six	messages,	the	first	two	share	the
same	message	format.	The	only	common	field	in	every	TFTP	message	is	the
operation	code	(Opcode),	which	tells	the	recipient	of	the	message	what	type	it	is.

TFTP's	message	formats	are	different	than	those	used	for	certain	other	protocols,
because	many	of	the	fields	in	TFTP	are	variable	in	length.	Usually,	variable-
length	fields	in	messages	are	expressed	using	a	preceding	length	field	that
specifies	the	length	of	the	variable-sized	field.	Instead,	TFTP	sends	such	fields
as	strings	of	ASCII	characters	using	netascii,	the	Telnet	version	of	ASCII.	The
end	of	the	string	is	marked	by	a	zero	byte.	The	exception	to	this	is	the	data	field
in	data	messages,	the	content	of	which	depends	on	the	transfer	mode.

The	remainder	of	the	chapter	contains	the	details	on	each	of	the	TFTP	messages.

Read	Request	and	Write	Request	Messages
These	messages	use	a	common	message	format,	described	in	Table	73-2	and
shown	graphically	in	Figure	73-4.

Table	73-2.	TFTP	RRQ/WRQ	Message	Format

Field
Name

Size
(Bytes)

Description

Opcode 2 Operation	Code:	Specifies	the	TFTP	message	type.	A	value	of	1	indicates
a	RRQ	message,	while	a	value	of	2	is	a	WRQ	message.

Filename Variable



Filename Variable The	name	of	the	file	to	be	read	or	written.

Mode Variable Transfer	Mode:	The	string	netascii	or	octet,	zero-terminated.

Options Variable When	the	client	supports	TFTP	options,	it	will	encode	them	in	sequence
following	the	Mode	field.	Each	option	consists	of	two	variable-length
subfields.	The	optN	subfield	is	the	option	code	for	option	N,	containing	a
string	specifying	the	name	of	the	option;	currently,	blksize,	interval,	and
tsize	are	supported.	The	valueN	subfield	is	the	option	value	for	option	N,
containing	the	value	the	client	is	requesting	for	this	option.	(Note	that	this
is	a	zero-terminated	string	just	like	other	TFTP	variable-length	fields,
even	for	a	numeric	value.)

Figure	73-4.	TFTP	RRQ/WRQ	message	format

Data	Messages
Data	blocks	are	sent	using	the	simplified	format	shown	in	Table	73-3	and
Figure	73-5.

Table	73-3.	TFTP	Data	Message	Format

Field
Name

Size
(Bytes)

Description

Opcode 2 Operation	Code:	Specifies	the	TFTP	message	type.	A	value	of	3
indicates	a	data	message.

Block	# 2 Block	Number:	The	number	of	the	data	block	being	sent.

Data Variable Data:	0	to	512	bytes	of	data.



Data Variable Data:	0	to	512	bytes	of	data.

Figure	73-5.	TFTP	data	message	format

Acknowledgment	Messages
Acknowledgments	have	the	simplest	format	of	any	TFTP	message,	as	you	can
see	in	Table	73-4	and	Figure	73-6.

Table	73-4.	TFTP	Acknowledgment	Message	Format

Field
Name

Size
(Bytes)

Description

Opcode 2 Operation	Code:	Specifies	the	TFTP	message	type.	A	value	of	4	indicates
an	ACK	message.

Block
#

2 Block	Number:	The	number	of	the	data	block	being	acknowledged;	a	value
of	0	is	used	to	acknowledge	receipt	of	a	write	request	without	options	or	to
acknowledge	receipt	of	an	OACK.

Figure	73-6.	TFTP	acknowledgment	message	format

Error	Messages
Error	messages	can	be	sent	by	either	the	client	or	server	in	cases	where	a
problem	is	detected	in	the	communication.	They	have	the	format	indicated	in
Table	73-5	and	Figure	73-7.



Figure	73-7.	TFTP	error	message	format

Table	73-5.	TFTP	Error	Message	Format

Field
Name

Size
(Bytes)

Description

Opcode 2 Operation	Code:	Specifies	the	TFTP	message	type.	A	value	of	5	indicates
an	error	message.

Error
Code

2 A	numeric	code	indicating	the	type	of	message	being	communicated.
Values	0	to	7	are	defined	by	the	TFTP	standard,	while	value	8	was	added
by	the	TFTP	option	extension:

0	=	Not	defined;	see	error	message	field	for	details

1	=	File	not	found

2	=	Access	violation

3	=	Disk	full	or	allocation	exceeded

4	=	Illegal	TFTP	operation

5	=	Unknown	transfer	ID

6	=	File	already	exists

7	=	No	such	user

8	=	Client	transfer	termination	due	to	unacceptable	option	negotiation

Error
Msg

Variable Error	Message:	A	descriptive	text	error	message	string,	intended	for
"human	consumption,"	as	the	standard	puts	it.

Option	Acknowledgment	Messages
OACK	messages	are	used	to	acknowledge	receipt	of	TFTP	options.	They	are
structured	as	shown	in	Table	73-6	and	Figure	73-8.

Table	73-6.	TFTP	OACK	Message	Format



Field
Name

Size
(bytes)

Description

Opcode 2 Operation	Code:	Specifies	the	TFTP	message	type.	A	value	of	6	indicates
an	OACK	message.

Options Variable A	list	of	options	being	acknowledged	by	the	server.	Each	option	consists	of
two	variable-length	subfields.	The	optN	subfield	is	the	option	code	for
option	N,	containing	a	string	specifying	the	name	of	the	option,	copied
from	the	RRQ	or	WRQ	message.	The	valueN	subfield	is	the	option	value
for	option	N,	containing	the	acknowledged	value	for	the	option,	which	may
be	the	value	that	the	client	specified	or	an	alternative	value,	depending	on
the	type	of	option.

Figure	73-8.	TFTP	OACK	message	format



Part	III-7.	TCP/IP	ELECTRONIC	MAIL	SYSTEM:
CONCEPTS	AND	PROTOCOLS
Chapter	74

Chapter	75

Chapter	76

Chapter	77

Chapter	78

It	is	common	for	human	beings	to	create	systems	that	are	reminiscent	of	ones
with	which	they	are	already	familiar.	We	are	all	accustomed	to	using	the	regular
mail	system	to	send	letters	and	other	documents	from	our	location	to	recipients
anywhere	that	the	postal	system	serves.	Naturally,	one	of	the	first	applications	of
internetworks	was	to	create	an	electronic	version	of	this	conventional	mail
system	that	would	allow	messages	to	be	sent	in	a	similar	manner,	but	more
quickly	and	easily.	Over	the	course	of	many	years,	an	electronic	mail	system	for
TCP/IP	was	created	and	refined.	It	is	now	the	most	widely	used	means	of
electronic	messaging	in	the	world.

In	this	part,	I	describe	TCP/IP	electronic	mail	(email)	in	detail,	in	five	chapters
that	discuss	electronic	mail	concepts	and	the	various	components	and	protocols
that	comprise	the	overall	TCP/IP	email	system.	The	first	chapter	provides	an
overview	of	TCP/IP	email	and	discusses	the	way	that	it	is	used	and	the	different
protocols	and	methods	that	make	up	the	system.	The	second	chapter	discusses
how	email	messages	are	addressed,	and	the	third	chapter	covers	standard	and
special	formats	for	email	messages.	The	fourth	and	fifth	chapters	describe	the
TCP/IP	protocols	that	implement	email	functionality.	These	include	the	Simple
Mail	Transfer	Protocol	(SMTP),	which	is	responsible	for	the	delivery	of	email,
and	several	protocols	and	methods	used	for	mailbox	access	and	mail	retrieval,
including	the	Post	Office	Protocol	version	3	(POP3)	and	the	Internet	Message
Access	Protocol	(IMAP).

This	discussion	focuses	primarily	on	the	mechanisms	used	for	email
composition,	delivery,	and	access	in	modern	internetworks.	In	the	email



overview	in	Chapter	74,	I	mention	some	techniques	used	in	the	past	for	TCP/IP
email,	but	only	briefly	for	historical	completeness	and	to	contrast	these	methods
to	the	ones	presently	used.



Chapter	74.	TCP/IP	ELECTRONIC
MAIL	SYSTEM	OVERVIEW	AND
CONCEPTS

Electronic	mail	(email)	in	the	TCP/IP	protocol	suite	is	not	implemented	as	just	a
single	protocol	or	technology.	Rather,	it	is	a	complete	system	that	contains	a
number	of	related	components	that	work	together.	These	include	standards
defining	methods	for	addressing	and	message	formatting	and	a	number	of
protocols	that	play	different	functions	in	implementing	email	messaging.	Before
proceeding	to	examine	each	of	these	pieces,	it	makes	sense	to	start	with	an
overview	of	the	system	as	a	whole.

In	this	chapter,	I	provide	an	introductory	look	at	TCP/IP	email	to	help	you
understand	the	system,	how	it	works,	and	how	different	components	fit	into	it.	I
begin	with	an	overview	and	history	of	email	and	its	implementation	in	TCP/IP.	I
provide	a	general	overview	of	the	steps	involved	in	the	email	communication
process,	concluding	with	a	more	specific	discussion	of	the	communication	model
used	in	TCP/IP	and	the	roles	played	by	various	TCP/IP	devices	and	protocols	in
the	sending	and	receiving	of	email.

TCP/IP	Electronic	Mail	System	Overview	and
History
The	need	to	communicate	is	as	old	as	humanity	itself.	Thousands	of	years	ago,
communication	was	of	necessity	almost	exclusively	local.	Messages	were
primarily	oral,	and	even	when	in	writing,	they	were	rarely	delivered	a	great
distance.	Most	people	never	traveled	far	from	their	homes	and	rarely
communicated	with	those	distant	from	themselves.	But	even	in	ancient	times,
leaders	used	messengers	to	send	short	pieces	of	critical	information	from	place



leaders	used	messengers	to	send	short	pieces	of	critical	information	from	place
to	place.	It	was	slow	and	unreliable,	but	some	messages	were	important	enough
that	an	effort	to	communicate	often	had	to	be	made	despite	the	difficulties.

Advances	in	transportation	led	to	advances	in	communication	capability,
eventually	resulting	in	the	creation	of	physical	mail	systems.	Today,	these
systems	have	evolved	to	the	point	at	which	anyone	in	the	developed	world	can
send	a	letter	or	package	to	just	about	anyone	else.	Reliability	has	vastly
improved,	despite	all	the	jokes	people	make	about	the	postal	service.	Speed	is
also	much	better	than	it	used	to	be,	with	messages	now	taking	days	to	reach	their
destination	instead	of	weeks	or	months.

Waiting	even	days	for	a	message	to	get	from	one	place	to	another	is	pretty	slow
by	the	standards	of	our	modern	world.	For	this	reason,	one	of	the	most	natural
applications	of	networks	was	to	use	them	as	a	replacement	for	the	physical
transportation	of	messages	from	one	place	to	another.	Transforming	mail	from	a
physical	process	to	an	electronic	one	yields	enormous	benefits,	including	greatly
increased	communication	speed,	the	ability	to	send	one	message	to	multiple
recipients	instantly,	and	the	ability	to	get	nearly	instantaneous	feedback	upon
receipt	of	a	message.

The	Early	Days	of	Email
The	idea	behind	email	is	not	only	as	old	as	computer	networks,	but	it	actually
predates	internetworking.	The	first	email	systems	were	implemented	on
traditional	mainframe	computers.	These	were	single	large	computers	accessed	by
many	users	simultaneously	through	connected	terminals.	An	email	system	on	a
mainframe	consisted	of	a	set	of	software	running	on	the	mainframe	that
implemented	the	entire	email	system.	Each	user	simply	had	a	mailbox	that
resided	on	this	machine,	and	mail	was	delivered	by	moving	messages	from	one
mailbox	to	the	next.	Users	sent	and	received	mail	through	a	user-interface
program.

Such	an	early	email	system	was	useful	for	local	communication	but	not	for
sending	messages	to	a	person	in	another	organization.	Mainframe	email	is
somewhat	analogous	to	local	mail	being	sent	by	one	resident	of	a	town	to
another.	There	is	no	way	to	send	mail	to	a	person	in	a	distant	town	without	the
infrastructure	in	place	for	delivery.



infrastructure	in	place	for	delivery.

The	power	of	internetworking	is	what	really	enables	email	to	become	a	universal
method	of	communication.	Internetworks	link	together	systems	the	way	the
postal	service's	fleet	of	airplanes	and	vehicles	link	together	post	offices.	Mail	is
sent	from	user	to	user	over	the	underlying	technology	of	the	internetwork.	Since
TCP/IP	is	the	most	commonly	used	internetworking	protocol	suite,	and	the
modern	Internet	uses	TCP/IP	to	tie	together	systems	across	the	globe,	it	is	the
vehicle	used	for	sending	email.

History	of	TCP/IP	Email
As	with	some	other	file	and	message	transfer	protocols,	email	on	TCP/IP
actually	goes	back	to	before	TCP/IP	and	the	Internet	formally	existed.	The	first
protocols	for	email	were	developed	during	the	days	of	the	ARPAnet.	Prior	to	the
creation	of	email,	several	Internet	RFCs,	such	as	RFC	95	(yes	95,	two	digits—
we	are	going	back	a	long	way	here)	and	RFC	155,	describe	physical	mailing	lists
that	were	used	for	distributing	documents	in	the	early	1970s.	It	was	this	need	to
send	documents	that	likely	made	TCP/IP	pioneers	realize	the	usefulness	of	an
electronic	messaging	system,	using	the	technology	they	were	themselves
creating.

The	first	Internet	document	describing	email	was	probably	RFC	196,	published
in	1971.	It	describes	the	Mail	Box	Protocol,	a	very	rudimentary	message	transfer
method	using	the	predecessors	of	TCP/IP.	This	protocol	was	designed	for	the
specific	purpose	of	sending	documents	for	remote	printing.	In	those	days,	it	was
not	as	common	for	people	to	use	computers	at	interactive	terminals	as	it	is	today,
but	the	idea	of	electronically	mailing	documents	was	the	same.	The	Mail	Box
Protocol	was	revised	several	times	in	1971.

In	the	mid-1970s,	developers	began	working	on	a	more	comprehensive	method
of	implementing	email	on	the	fledgling	Internet.	The	technique	was	originally
described	using	a	number	of	existing	application	layer	transfer	protocols,
including	the	File	Transfer	Protocol	(FTP).	In	1980	the	"Mail	Transfer	Protocol
(MTP)"	was	published	in	RFC	772.	This	was	the	first	precursor	of	today's
TCP/IP	email	and	was	defined	using	principles	from	the	Telnet	Protocol	as	well
as	FTP.

During	the	time	that	email	protocols	were	being	developed	in	the	1970s,	mail



was	being	exchanged	between	host	systems	using	a	variety	of	techniques.	One	of
the	most	common	used	was	the	Unix-to-Unix	Copy	Protocol	(UUCP),	which
was	designed	to	allow	files	to	be	transferred	between	UNIX	systems,	moving
them	from	one	connected	system	to	the	next.	UUCP	was	also	used	for
communicating	Usenet	newsgroup	articles	and	other	files.

In	1981,	the	modern	TCP/IP	email	era	came	into	being	with	the	definition	of	the
Simple	Mail	Transfer	Protocol	(SMTP).	SMTP	described	in	detail	how	mail
could	be	moved	directly	or	indirectly	from	one	TCP/IP	host	to	another	without
the	need	to	use	FTP	or	another	file	transfer	method.	(SMTP	has	its	own	detailed
history	and	discussion	in	Chapter	77.)	Other	complementary	specifications	were
created	at	around	the	same	time,	which	formalized	or	defined	other	components
and	elements	of	the	system.	We'll	explore	these	pieces	of	the	puzzle	throughout
the	rest	of	this	chapter.

Overview	of	the	TCP/IP	Email	System
One	of	the	most	important	general	concepts	in	the	modern	email	system	is	that	a
distinction	is	made	between	protocols	that	deliver	email	between	SMTP	hosts	on
the	internetwork	and	those	that	let	users	access	received	mail	on	their	local	hosts.
To	continue	the	postal	mail	analogy,	different	protocols	are	used	for	sending
mail	between	post	offices	and	for	home	delivery.	As	you'll	see,	this	was	done
intentionally	to	make	it	possible	to	send	mail	to	users,	even	if	they	are	not
connected	to	the	Internet	when	the	mail	is	sent.	This	decoupling	is	critical,	as	it
enables	delayed	communication,	where	mail	can	be	sent	when	the	sender	wants
to	transmit	it	and	received	when	the	recipient	wants	to	read	it.

TIP

KEY	CONCEPT	One	of	the	most	important	TCP/IP	applications	is	the	internetworking	equivalent	of
the	real-world	postal	delivery	system,	commonly	called	electronic	mail	or	email.	The	history	of	email
goes	back	to	the	very	earliest	days	of	TCP/IP's	development.	Today,	it	is	used	by	millions	of	people
every	day	to	send	both	simple	and	complex	messages	around	the	world.	TCP/IP	email	is	not	a	single
application,	but	rather	a	complete	system	that	includes	several	protocols,	software	elements,	and
components.

Over	the	years,	the	basic	components	defined	in	the	early	1980s	have	not
changed	substantially,	but	how	they	are	used	has	evolved	and	improved.	Early
email	delivery	involved	the	use	of	route	specifications	by	one	SMTP	host	to



email	delivery	involved	the	use	of	route	specifications	by	one	SMTP	host	to
dictate	how	mail	was	to	be	delivered	through	intermediate	systems;	today,	the
Domain	Name	System	(DNS)	makes	much	of	that	obsolete,	facilitating	nearly
immediate	direct	mail	delivery	in	most	cases.	Early	email	supported	only	simple
text,	but	we	can	now	send	graphical	images,	programs,	and	other	file
attachments	in	email.	Modern	high-speed	Internet	connections	and	updated
access	protocols	allow	email	to	be	the	realization	of	the	ultimate	goal	of	nearly
instantaneous	communication,	even	across	continents.



TCP/IP	Email	Communication	Overview
You've	just	seen	that	TCP/IP	email	is	implemented	as	a	complete	system,	with	a
number	of	elements	that	perform	different	portions	of	the	complete	job	of	email
communication.	These	included	a	standard	message	format,	a	specific	syntax	for
recipient	addressing,	and	protocols	to	both	deliver	mail	and	allow	access	to
mailboxes	from	intermittently	connected	TCP/IP	clients.

To	help	set	the	groundwork	for	examining	these	components,	here,	I	provide	an
overview	of	the	complete	end-to-end	process	of	email	communication,	so	you
can	see	how	everything	works.	I	will	show	the	basic	steps	in	simplified	form	and
continue	the	analogy	to	the	regular	mail	system	for	comparison.

The	modern	TCP/IP	email	communication	process	consists	of	five	basic	steps:

1.	 Mail	Composition	A	user	begins	the	email	journey	by	creating	an	email
message.	The	message	contains	two	sections:	the	body	and	the	header.	The
body	of	the	message	is	the	actual	information	to	be	communicated.	The
header	contains	data	that	describes	the	message	and	controls	how	it	is
delivered	and	processed.	The	message	must	be	created	so	that	it	matches
the	standard	message	format	for	the	email	system	so	that	it	can	be
processed	(see	Chapter	76).	It	must	also	specify	the	email	addresses	of	the
intended	recipients	for	the	message	(see	Chapter	75).	By	way	of	analogy	to
"snail	mail,"	the	body	of	the	message	is	like	a	letter,	and	the	header	is	like
the	addressed	and	stamped	envelope	into	which	the	letter	is	placed.

2.	 Mail	Submission	Email	is	different	from	many	other	internetworking
applications	in	that	the	sender	and	receiver	of	a	message	do	not	necessarily
need	to	be	connected	to	the	network	simultaneously,	nor	even
continuously,	to	use	it.	The	system	is	designed	so	that	after	composing	the
message,	the	user	decides	when	to	submit	it	to	the	email	system	so	it	can	be
delivered.	This	is	done	using	SMTP	(see	Chapter	77).	This	is	analogous	to
dropping	off	an	envelope	at	the	post	office	or	to	a	postal	worker	picking	up
an	envelope	from	a	mailbox	and	carrying	it	to	the	local	post	office	to	insert
into	the	mail	delivery	stream.

3.	 Mail	Delivery	The	email	message	is	accepted	by	the	sender's	local	SMTP



system	for	delivery	through	the	mail	system	to	the	destination	user.	Today,
this	is	accomplished	by	performing	a	DNS	lookup	of	the	intended
recipient's	host	system	and	establishing	an	SMTP	connection	to	that
system.	SMTP	also	supports	the	ability	to	specify	a	sequence	of	SMTP
servers	through	which	a	message	must	be	passed	to	reach	a	destination.
Eventually,	the	message	arrives	at	the	recipient's	local	SMTP	system.	This
is	like	the	transportation	of	the	envelope	through	the	postal	system's
internal	"internetwork"	of	trucks,	airplanes,	and	other	equipment	to	the
intended	recipient's	local	post	office.

4.	 Mail	Receipt	and	Processing	The	local	SMTP	server	accepts	the	email
message	and	processes	it.	It	places	the	mail	into	the	intended	recipient's
mailbox,	where	it	waits	for	the	user	to	retrieve	it.	In	our	physical	analogy,
this	is	the	step	at	which	the	recipient's	local	post	office	sorts	mail	coming
in	from	the	postal	delivery	system	and	puts	the	mail	into	individual	post
office	boxes	or	bins	for	delivery.

5.	 Mail	Access	and	Retrieval	The	intended	recipient	periodically	checks
with	its	local	SMTP	server	to	determine	whether	any	mail	has	arrived.	If
so,	the	recipient	retrieves	the	mail,	opens	it,	and	reads	its	content.	This	is
done	using	a	special	mail	access	protocol	or	method	(see	Chapter	78).	To
save	time,	the	access	protocol	and	client	email	software	may	allow	the	user
to	scan	the	headers	of	received	mail	(such	as	the	subject	and	sender's
identity)	to	decide	which	mail	messages	to	download.	This	is	analogous	to
the	step	where	mail	is	physically	picked	up	at	the	post	office	or	delivered	to
the	home.

TIP

KEY	CONCEPT	TCP/IP	email	communication	normally	involves	a	sequence	of	five	steps,	each	of
which	is	analogous	to	a	portion	of	the	journey	taken	by	a	regular	letter	through	the	postal	system.	First,
email	is	composed	(written);	second,	it	is	submitted	to	the	email	system;	third,	it	is	delivered	to
recipient's	server;	fourth,	it	is	received	and	processed;	and	fifth,	it	is	accessed	and	retrieved	by	its
recipient.

In	some	cases,	not	all	of	these	steps	are	performed.	If	a	user	is	sending	email
from	a	device	that	is	already	an	SMTP	server,	then	step	2	can	be	omitted.	If	the
recipient	is	logged	in	to	a	device	that	is	also	an	SMTP	server,	step	5	will	be
skipped,	as	the	user	can	read	mail	directly	on	the	server.	Thus,	in	the	simplest



skipped,	as	the	user	can	read	mail	directly	on	the	server.	Thus,	in	the	simplest
case,	all	that	occurs	is	composition,	delivery,	and	receipt;	this	occurs	when	one
user	of	a	dial-up	UNIX	host	sends	mail	to	another.	In	most	cases	today,	however,
all	five	steps	occur.



TCP/IP	Email	Message	Communication	Model
The	purpose	of	the	email	system	as	a	whole	is	to	accomplish	the	transmission	of
messages	from	a	user	of	a	TCP/IP	internetwork	to	one	or	more	recipients.	To
accomplish	this,	a	special	method	of	communication	is	required	that	makes	the
email	system	quite	different	from	that	used	by	most	other	protocols.	To
understand	what	I	mean	by	this,	just	consider	the	difference	in	communication
between	sending	a	letter	and	making	a	phone	call.

Most	TCP/IP	protocols	are	analogous	to	making	a	phone	call	in	this	respect:	The
sender	and	the	receiver	must	both	be	on	the	network	at	the	same	time.	You	can't
call	someone	and	talk	to	him	if	he	isn't	around	to	answer	the	phone.	(I'm	ignoring
answering	machines	and	voice	mail	of	course!)	Most	TCP/IP	protocols	are	like
this.	To	send	a	file	using	FTP,	for	example,	you	must	make	a	direct	connection
from	the	sender's	machine	to	the	recipient's	machine.	If	the	recipient's	machine	is
not	on	the	network	at	the	exact	time	that	the	sender's	machine	is,	no
communication	is	possible.	For	email,	immediate	communication	of	this	sort	is
simply	unacceptable.

As	with	real-world	snail	mail,	Joe	wants	to	be	able	to	put	a	message	into	the
system	at	a	time	that	is	convenient	for	him,	and	Ellen	wants	to	be	able	to	receive
Joe's	mail	at	a	time	that	works	for	her.	For	this	to	work,	email	must	use	a	"send
and	forget"	model,	just	like	real	mail,	where	Joe	drops	the	"envelope"	into	the
email	system	and	it	eventually	arrives	at	its	destination.

This	decoupling	of	the	sender	and	receiver	is	critical	to	the	design	of	the	email
system.	This	is	especially	true	because	many	of	the	users	of	Internet	email	are
not	on	the	Internet	all	the	time.	Just	as	you	wouldn't	want	real	mail	to	be	rejected
if	it	arrived	when	you	are	not	home,	you	wouldn't	want	email	to	not	be	delivered
if	you	are	not	on	the	Internet	when	it	arrives.	Similarly,	you	may	not	want	to	be
connected	to	the	Internet	for	the	entire	time	it	takes	to	write	a	message,
especially	if	you	have	access	to	the	Internet	for	only	a	limited	amount	of	time
each	day.

Also	critical	to	the	entire	email	system	is	that	idea	that	communication	is
between	specific	users,	not	between	particular	machines.	This	makes	email
inherently	different	from	many	other	types	of	communication	on	TCP/IP



internetworks.	You'll	see	more	of	why	this	is	important	when	we	look	at	email
addressing	in	Chapter	75.

To	allow	the	type	of	communication	needed	for	email,	the	entire	system	is
designed	to	facilitate	the	delayed	delivery	of	email	messages	from	one	user	to
another.	To	see	how	this	works,	let's	look	again	at	the	example	communication
we	discussed	earlier—but	this	time,	consider	the	roles	of	the	different	devices	in
the	exchange	(as	shown	in	Figure	74-1):

Sender's	Client	Host	The	sender	composes	an	email	message,	generally	using	a
mail	client	program	on	her	local	machine.	The	mail,	once	composed,	is	not
immediately	sent	out	over	the	Internet;	it	is	held	in	a	buffer	area	called	a	spool.
This	allows	the	user	to	be	"unattached"	for	the	entire	time	that	a	number	of
outgoing	messages	are	created.	When	the	user	is	done,	all	of	the	messages	can	be
sent	at	once.

Sender's	Local	SMTP	Server	When	the	user's	mail	is	ready	to	be	sent,	she
connects	to	the	internetwork.	The	messages	are	then	communicated	to	the	user's
designated	local	SMTP	server,	normally	run	by	the	user's	Internet	service
provider	(ISP).	The	mail	is	sent	from	the	client	machine	to	the	local	SMTP
server	using	SMTP.	(It	is	possible	for	the	sender	to	be	working	directly	on	a
device	with	a	local	SMTP	server,	in	which	case	sending	is	simplified.)

Recipient's	Local	SMTP	Server	The	sender's	SMTP	server	sends	the	email
using	SMTP	to	the	recipient's	local	SMTP	server	over	the	internetwork.	There,
the	email	is	placed	into	the	recipient's	incoming	mailbox	(or	inbox).	This	is
comparable	to	the	outgoing	spool	that	existed	on	the	sender's	client	machine.	It
allows	the	recipient	to	accumulate	mail	from	many	sources	over	a	period	of	time
and	retrieve	them	when	it	is	convenient.

Recipient's	Client	Host	In	certain	cases,	the	recipient	may	access	her	mailbox
directly	on	the	local	SMTP	server.	More	often,	however,	a	mail	access	and
retrieval	protocol,	such	as	Post	Office	Protocol	(POP3)	or	Internet	Message
Access	Protocol	(IMAP),	is	used	to	read	the	mail	from	the	SMTP	server	and
display	it	on	the	recipient's	local	machine.	There,	it	is	displayed	using	an	email
client	program,	similar	to	the	one	the	sender	used	to	compose	the	message	in	the
first	place.



Figure	74-1.	Email	communication	model	This	diagram	shows	the	four	devices	that	are	involved	in	a
typical	email	communication	between	two	users.	Each	device	consists	of	a	number	of	different

elements,	which	communicate	as	indicated	by	the	black	arrows.	Note	the	inherent	asymmetry,	because
the	method	used	to	send	an	email	from	a	user	is	not	the	same	as	that	used	to	retrieve	it	from	the	server.
The	large,	shaded	arrows	show	a	typical	transaction:	the	sender	composes	mail	and	it	goes	to	her	local
email	spool.	It	is	sent	to	the	sender's	local	SMTP	server	using	SMTP,	and	then	to	the	recipient's	SMTP
server,	where	it	goes	into	that	user's	inbox.	It	is	then	retrieved,	usually	using	a	protocol	such	as	POP	or

IMAP.



Protocol	Roles	in	Email	Communication
You	may	have	noticed	that	SMTP	is	used	for	most	of	this	communication
process.	In	fact,	if	the	recipient	uses	a	machine	that	runs	SMTP	software,	which
is	common	for	those	using	dial-up	UNIX	shell	Internet	access,	the	process	of
sending	email	uses	SMTP	exclusively.	SMTP	servers	must,	however,	always	be
available	on	the	Internet	and	ready	to	accept	mail.	Most	people	access	the
Internet	using	devices	that	aren't	always	online	or	that	don't	run	SMTP	software.
That	is	why	the	last	step,	email	access	and	retrieval,	is	usually	required.

It	might	have	been	possible	to	define	the	email	system	so	that	this	last	step	of
communication	was	carried	out	using	SMTP	as	well,	which	would	mean	the
entire	system	used	the	same	protocol.	However,	SMTP	was	tailored	for	the
specific	purpose	of	transporting	and	delivering	email,	not	for	remote	mailbox
access.	It	made	more	sense	to	leave	the	function	of	mailbox	access	to	dedicated,
separate	protocols.	This	not	only	allows	these	protocols	to	be	tailored	to	the
needs	of	email	recipients,	but	it	also	provides	flexibility	by	giving	users	more
than	one	option	for	how	email	is	retrieved.	I	discuss	email	access	protocols	and
methods	in	Chapter	78,	highlighting	the	two	most	common	protocols:	POP	and
IMAP.

The	three	protocols	discussed	here—SMTP,	POP3,	and	IMAP—get	lead	billing
on	the	TCP/IP	email	stage,	but	they	rely	on	two	other	elements	to	play
supporting	roles.	The	first	is	a	method	of	addressing	email	messages	to	ensure
that	they	arrive	at	their	destinations.	The	second	is	the	set	of	message	formats
used	to	encode	messages	and	control	how	they	are	delivered	and	used.	These
elements	don't	usually	get	as	much	attention	as	they	deserve,	but	they	do	here,	as
I	have	devoted	the	next	two	chapters	to	them.

TIP

KEY	CONCEPT	One	of	the	critical	requirements	of	an	email	system	is	that	the	sender	and	receiver	of	a
message	are	not	required	to	be	on	the	system	at	the	time	mail	is	sent.	TCP/IP	therefore	uses	a
communication	model	with	several	devices	that	allow	the	sender	and	recipient	to	be	decoupled.	The
sender's	client	device	spools	mail	and	moves	it	to	the	sender's	local	SMTP	server	when	it	is	ready	for
transmission;	the	email	is	then	transmitted	to	the	receiver's	SMTP	server	using	SMTP.	The	email	can
remain	on	the	recipient's	server	for	an	indefinite	period	of	time.	When	the	recipient	is	ready	to	read	it,	he
retrieves	it	using	one	or	more	of	a	set	of	mail	access	protocols	and	methods,	the	two	most	popular	of



which	are	POP	and	IMAP.



Chapter	75.	TCP/IP	ELECTRONIC
MAIL	ADDRESSES	AND
ADDRESSING

The	entire	concept	of	electronic	mail	(email)	is	based	on	an	analogy:	sending
electronic	messages	is	like	sending	paper	messages.	The	analogy	works	well,
because	email	was	indeed	intended	to	be	like	regular	mail,	only	with	the
advantages	of	the	technological	era:	speed	and	flexibility.

One	of	the	many	similarities	between	email	and	regular	mail	is	the	need	for
addressing.	For	a	message	to	be	delivered,	it	is	necessary	for	the	sender	to
specify	the	recipient	and	provide	a	reasonable	amount	of	information	to	indicate
how	and	where	the	recipient	can	be	reached.	In	TCP/IP	email,	a	standard
electronic	mail	address	format	is	used	for	this,	and	support	is	also	provided	for
alternative	addressing	schemes	that	may	be	used	in	special	cases.

In	this	chapter,	I	describe	how	email	messages	are	addressed.	I	begin	with	a
discussion	of	standard	email	addressing	in	TCP/IP	and	how	those	addresses	are
used	to	determine	where	email	should	be	sent.	I	then	provide	a	brief	discussion
of	historical	and	special	email	addresses	that	you	may	encounter	from	time	to
time.	I	also	discuss	the	use	of	email	address	books	(aliases)	and	how	multiple
recipients	may	be	addressed,	and	I	provide	an	overview	of	electronic	mailing
lists,	one	of	the	earliest	ways	in	which	electronic	group	communication	was
implemented.

TCP/IP	Email	Addressing	and	Address
Resolution



All	communication	on	an	internetwork	requires	some	way	of	specifying	the
identity	of	the	intended	recipient	of	the	communication.	Most	application
protocols,	such	as	the	File	Transfer	Protocol	(FTP)	and	Hypertext	Transfer
Protocol	(HTTP),	use	conventional	TCP/IP	constructs—IP	addresses	and	port
numbers—to	specify	the	destination	of	information	to	be	sent.	The	IP	address
normally	identifies	a	particular	host	computer,	and	the	port	number	indicates	a
software	process	or	application	running	on	that	computer.

Email,	however,	uses	a	model	for	communication	that	differs	from	most
applications.	As	you	saw	in	the	discussion	of	the	email	model	in	the	previous
chapter,	one	element	that	sets	email	apart	from	many	other	systems	is	that
communication	is	user-oriented.	Email	is	not	sent	from	one	machine	to	another,
as	a	file	is	transferred	using	FTP.	Instead,	it	is	sent	from	one	user	to	another.
This	is	critical	to	the	operation	of	the	entire	system.	For	one	thing,	it	allows
someone	to	retrieve	email	that	has	been	sent	from	any	number	of	different	client
computers.	This	allows	the	recipient	to	receive	email	even	when	traveling,	for
example.

Since	email	messaging	is	user-based,	the	addressing	scheme	must	also	be	user-
based.	We	cannot	use	conventional	IP	addresses	and	ports,	so	we	need	a	distinct
system	that	specifies	two	primary	pieces	of	information:	who	the	user	is	and
where	the	user	is	located.	These	are,	of	course,	analogous	to	a	name	and	address
on	a	regular	mail	envelope.

The	idea	of	a	user	name	is	relatively	straightforward,	but	identifying	the	location
of	the	user	is	not.	In	regular	mail,	an	address	refers	to	a	physical	place.	It	would
have	been	possible	to	define	email	addresses	in	the	same	way;	that	is,	to	have	an
email	address	refer	to	the	user's	client	machine.	However,	recall	the	other
important	characteristic	of	email	delivery:	it	is	indirect	and	based	on	the	concept
of	a	user's	local	Simple	Mail	Transfer	Protocol	(SMTP)	server	holding	received
messages	until	they	can	be	retrieved.	The	machine	that	the	user	employs	to
access	his	email	may	not	even	routinely	be	connected	to	the	Internet,	and	it	may
thus	not	be	easy	to	identify.	And	we	also	want	a	user	to	be	able	to	access	email
from	multiple	machines.

For	all	of	these	reasons,	we	want	addresses	to	identify	not	the	user's	specific
location	at	any	particular	time,	but	the	place	where	the	user's	permanent	mailbox
lives—on	the	user's	SMTP	server,	which	is	permanently	connected	to	the



lives—on	the	user's	SMTP	server,	which	is	permanently	connected	to	the
Internet.

Standard	DNS-Based	Email	Addresses
In	TCP/IP,	the	system	used	for	identifying	servers	(and	other	machines)	is	the
Domain	Name	System	(DNS).	DNS	is	a	big	system	and	is	described	in	Part	III-1
of	this	book,	which	you	should	read	if	you	want	to	learn	more.	For	now,	it	is
important	that	you	realize	that	in	DNS,	all	devices	on	the	Internet	are	arranged
into	a	device-naming	hierarchy,	and	any	device	can	be	identified	using	a	domain
name	consisting	of	a	series	of	text	labels	separated	by	dots.

The	complete	TCP/IP	address	consists	of	two	components:	a	user	name
specification	and	a	domain	name	specification.	The	two	are	connected	together
using	the	at	symbol	(@)	to	form	the	TCP/IP	email	address	syntax	that	most	of	us
are	familiar	with	today:	<username>@<domainname>.

The	format	of	<domainname>	follows	the	syntax	rules	of	DNS	(see	Chapter	53),
which	specify	that	it	can	contain	only	numbers	and	digits	for	each	label,	and
periods	to	separate	the	labels.	The	format	of	<username>	is	slightly	less
restrictive,	allowing	special	characters	such	as	the	underscore	(_).	Other	special
characters	and	spaces	are	also	allowed	in	the	<username>	if	they	are	surrounded
by	quotation	marks	(or	otherwise	marked	as	being	part	the	name,	such	as
through	the	use	of	an	escape	character).	Domain	names	are	case-insensitive;	user
names	may	be	case-sensitive,	depending	on	the	system.

An	example	of	a	valid	email	address	is	cmk@athena.mit.edu	(an	address	I	used
when	I	was	in	school	many	years	ago).	Here,	cmk	is	my	user	name	(my	initials);
athena.mit.edu	is	the	name	of	the	host	where	I	was	receiving	mail;	and	athena	is
a	particular	system	at	Massachusetts	Institute	of	Technology	(mit),	an
educational	institution	that	uses	the	.edu	top-level	domain.

It	is	also	possible	to	specify	an	email	address	using	an	Internet-standard	Uniform
Resource	Locator	(URL).	This	allows	a	link	to	be	embedded	in	a	hypertext
(Web)	document;	when	clicked,	it	invokes	an	email	client	to	send	mail	to	a	user.
Email	URLs	are	created	by	preceding	the	address	by	the	special	URL	scheme
string	mailto:,	like	this:	mailto:cmk@athena.mit.edu.

mailto:cmk@athena.mit.edu
mailto:cmk@athena.mit.edu


Special	Requirements	of	Email	Addresses
Having	an	email	address	refer	to	a	user's	local	SMTP	server	provides	a	great	deal
of	flexibility	compared	to	having	the	address	mention	a	specific	client	computer.
But	this	doesn't	provide	enough	flexibility	to	handle	the	following	situations:

An	organization	may	want	to	use	generic	addresses	that	do	not	specify	the
name	of	the	SMTP	server	to	handle	email,	to	make	it	easier	for	senders	or
clients	to	remember	an	email	address.	For	example,	if	someone	knew	my	real
name	and	that	I	was	at	MIT,	it	would	be	easier	for	him	to	remember	my	email
address	as	cmk@mit.edu	than	to	remember	cmk@athena.mit.edu.

An	administrator	may	change	which	machines	handle	mail	over	a	period	of
time.	This	would	mean	all	the	users'	email	addresses	would	have	to	be
changed,	too—and	most	of	us	know	what	a	pain	that	is.	For	example,	if	I
moved	from	the	athena	machine	to	the	jabberwocky	machine,	my	old	address
would	need	to	be	changed	to	cmk@jabberwocky.mit.edu.	But	if	the	address
were	just	cmk@mit.edu,	a	server	change	would	not	affect	the	address.

In	larger	organizations,	it	might	be	desirable	to	have	multiple	servers	share
the	load	of	handling	incoming	email.

To	address	all	of	these	requirements,	the	DNS	system	includes	a	feature	that	was
specifically	designed	to	support	email	addressing.	A	special	mail	exchange	(MX)
record	can	be	set	up	that	specifies	which	SMTP	server	should	be	used	for	mail
arriving	at	a	particular	domain	name.	If	properly	configured,	this	allows
considerable	flexibility	to	handle	the	cases	described	above,	and	more.	For	more
details,	please	see	the	description	of	the	MX	record	and	DNS	electronic	mail
support	in	Chapter	56.

TIP

KEY	CONCEPT	Some	form	of	addressing	is	required	for	all	network	communication;	since	email	is
user-oriented,	email	addresses	are	also	based	on	users.	In	modern	TCP/IP	email,	standard	addresses
consist	of	a	user	name,	which	specifies	the	recipient,	and	a	domain	name,	which	specifies	the	DNS
domain	where	the	user	is	located.	A	special	DNS	mail	exchange	(MX)	record	is	set	up	for	each	domain
that	accepts	email,	so	a	sending	SMTP	server	can	determine	what	SMTP	server	it	should	use	to	send
mail	to	a	particular	recipient.

Suppose,	for	example,	that	I	am	the	owner	of	the	pcguide.com	domain	name.
Email	can	be	sent	to	me	at	pcguide.com,	but	the	mail	is	not	actually	stored	on

mailto:cmk@mit.edu
mailto:cmk@athena.mit.edu
mailto:cmk@jabberwocky.mit.edu
mailto:cmk@mit.edu


Email	can	be	sent	to	me	at	pcguide.com,	but	the	mail	is	not	actually	stored	on
any	server	by	that	name.	Instead,	it	is	redirected	to	the	real	server	where	my
inbox	is	located.	This	allows	me	to	handle	all	incoming	mail	to	pcguide.com,
regardless	of	where	my	mailbox	is	actually	located.

DNS	is	also	significant	in	that	its	MX	resource	records	eliminate	the	need	to
relay	email	from	one	SMTP	server	to	the	next	to	deliver	it.	In	modern	TCP/IP,	it
is	possible	to	send	email	directly	from	the	sender's	SMTP	server	to	the
recipient's	server,	making	communication	faster	and	more	efficient.	This	is	also
discussed	in	Chapter	56.



TCP/IP	Historical	and	Special	Email	Addressing
TCP/IP	email	has	been	so	successful	that	it	is	arguably	the	most	important
worldwide	standard	for	electronic	messaging.	The	widespread	acceptance	of
email	is	tied	inextricably	to	that	of	TCP/IP	and	the	Internet	as	a	whole.	Since
most	organizations	want	to	be	part	of	the	Internet,	they	connect	to	it	and	use	its
technologies,	including	DNS,	which	is	the	basis	for	TCP/IP	email	addresses.	In
turn,	the	use	of	simple	DNS-style	email	addresses	(user@domain)	encourages
further	use	of	email	because	people	find	it	conceptually	easy	to	decide	how	to
send	messages.

TCP/IP	is	not,	however,	the	only	email	system	around.	Over	the	years,	several
other	networks	have	developed	email	systems.	Due	to	the	fact	that	the	Internet	is
the	largest	internetwork	in	the	world,	TCP/IP	email	has	often	been	used	as	a
clearinghouse	of	sorts	to	link	together	some	of	these	different	email	mechanisms.
This	is	called	gatewaying,	and	it	allows	someone	using	a	non-SMTP	email
system	to	interact	with	someone	using	TCP/IP,	and	vice	versa.	Gatewaying	is
complex,	in	part	because	email	systems	use	different	ways	of	addressing	mail.
Let's	take	a	look	at	a	couple	of	these	systems	and	how	they	interact	with	TCP/IP.

FidoNet	Addressing
One	of	the	earliest	independent	email	systems	was	the	FidoNet,	which	has	been
around	for	a	long	time	and	is	still	in	use	today.	FidoNet	is	a	worldwide	network
connected	using	modems	and	proprietary	protocols;	it	is,	in	essence,	a
"competitor"	to	the	global	TCP/IP	Internet.	I	put	competitor	in	quotes	because
FidoNet	and	the	TCP/IP	Internet	are	not	really	comparable	in	terms	of	number	of
users	and	the	kinds	of	applications	they	support,	but	they	are	similar	in	overall
objectives:	worldwide	electronic	communication.

FidoNet	users	are	identified	using	four	numbers	that	specify	the	FidoNet	zone,
net,	node,	and	point	(connection	point).	These	addressing	elements	are	used	for
sending	mail	on	this	system,	which	again	is	completely	distinct	from	TCP/IP.
However,	to	allow	communication	between	TCP/IP	and	FidoNet,	the	FidoNet
administrators	have	set	up	a	gateway	system	that	allows	mail	to	be	sent	to
FidoNet	using	TCP/IP-style	domain	names.	This	style	of	mapping	was	also	used



by	other	systems	with	proprietary	mail	address	formats	to	allow	them	to
interface	with	the	Internet.

For	example,	if	a	user	was	on	machine	4,	node	205,	net	141,	zone	1	(North
America),	the	FidoNet	address	would	be	1:141/205:4.	The	equivalent	domain
name	would	be	p4.f205.n141.z1.fidonet.org	and	could	be	used	for	TCP/IP-style
user@domain	addressing.

UUCP-Style	Addressing
An	older	address	style	commonly	associated	with	email	was	the	UUCP-style
address.	The	Unix-to-Unix	Copy	Protocol	(UUCP)	was	commonly	used	years
ago	to	route	mail	before	SMTP	became	widely	deployed	(again,	it	is	still	used,
just	not	as	much	as	before).	The	addresses	in	this	system	are	specified	as	a	path
of	hosts	separated	by	exclamation	marks	(!).	The	path	dictates	the	route	that	mail
takes	to	get	to	a	particular	user,	passing	through	a	series	of	intermediate
machines	running	UUCP.	For	example,	if	mail	to	joe	at	the	host	joesplace	had	to
go	through	three	hosts—host1,	host2,	and	host3,	the	address	would	be
host1!host2!host3!joesplace!joe.	Since	the	slang	term	for	an	exclamation	mark	is
bang,	this	came	to	be	called	bang	path	notation.

The	use	of	UUCP-style	notation	was	sometimes	mixed	with	TCP/IP-style
domain	name	address	notation	when	DNS	came	into	use.	So	you	might	have
seen	something	like	host1!user@domain.	There	was	some	confusion	in	how
exactly	to	interpret	such	an	address:	Does	it	mean	to	send	mail	first	to	host1	and
then	to	user@domain?	Or	does	it	mean	to	first	send	it	to	the	domain,	which	then
goes	to	user	at	host1?	There	was	no	universal	answer	to	this.	The	problem	was
mostly	resolved	both	by	the	decrease	in	use	of	UUCP	and	the	move	on	the	part
of	UUCP	systems	to	TCP/IP-style	domain	name	addressing.

Addressing	for	Gatewaying
You	may	encounter	email	addresses	that	appear	as	if	multiple	TCP/IP	addresses
have	been	nested	using	unusual	punctuation.	For	example,	you	may	see
something	like	this:	user%domain1.com@subdomain.domain2.edu.	This	is	a
way	of	addressing	sometimes	seen	when	email	gateways	are	used;	it	will	cause
the	mail	to	be	sent	to	user%domain1.com	at	subdomain.domain2.edu.	The



address	then	is	interpreted	as	user@domain1.com.	However,	again,	not	all
systems	are	guaranteed	to	interpret	this	the	same	way.

Email	gatewaying	is	not	a	simple	matter	in	general,	and	as	you	can	see,	one
reason	is	the	use	of	different	email	address	styles	and	the	problems	of
consistency	in	how	complex	hybrid	addresses	are	interpreted.	However,	as	the
Internet	expands	and	TCP/IP	becomes	more	widespread,	it	is	becoming	less	and
less	common	to	see	these	older	special	address	formats	in	use.	They	are
becoming	more	and	more	a	historical	curiosity	(unless	you	happen	to	use	one	of
them).



TCP/IP	Email	Aliases	and	Address	Books
Email	is	analogous	to	regular	mail	but	superior	to	it	due	to	two	main	advantages
of	digital	and	electronic	communication.	One	advantage	is	speed,	which	is	why
modern	Internet	users	have	come	up	with	the	slang	term	snail	mail	to	refer	to	the
regular	postal	service.	But	the	other	advantage,	flexibility,	is	also	essential.
Email	allows	you	to	send	messages	easily	in	ways	that	would	be	cumbersome
with	regular	mail.	And	one	of	the	ways	this	flexibility	can	be	seen	is	in
addressing.

The	first	way	that	email	addressing	is	flexible	is	that	most	email	clients	support
advanced	features	that	allow	users	to	specify	the	identity	of	recipients	in
convenient	ways.	While	TCP/IP	addressing	is	fairly	straightforward,
remembering	the	addresses	of	everyone	you	know	is	difficult.	In	the	real	world,
we	use	address	books	to	help	us	remember	addresses.	With	email,	we	can	do	the
same	by	allowing	email	software	to	associate	a	name	with	an	email	address.

This	is	usually	done	in	one	of	two	ways.	In	old-fashioned,	text-based	email	such
as	that	used	on	many	UNIX	systems,	name	and	address	association	is	performed
using	aliases.	These	are	short	forms	for	email	addresses	that	save	typing.	For
example,	I	often	send	email	to	my	wife,	Robyn,	but	I'm	too	lazy	to	type	in	her
complete	address	all	the	time.	So	I	have	defined	an	alias	for	her	in	my	email
program	called	simply	r.	I	enter	the	mail	command	and	specify	the	alias	r	as	the
intended	recipient,	and	it	expands	her	email	address	for	me.

In	modern	graphical	email	systems,	aliases	aren't	used.	Instead,	an	electronic
address	book	is	usually	implemented,	which	is	the	equivalent	of	the	paper
address	book.	The	difference	is	that	there	is	no	manual	copying;	you	just	choose
the	name	from	the	list	using	your	mouse.



Multiple	Recipient	Addressing
Another	advantage	of	email	addressing	is	that	it	allows	the	easy	specification	of
multiple	recipients.	With	paper	mail,	sending	a	message	to	ten	people	means	you
need	ten	copies	of	the	message,	ten	envelopes,	and	ten	stamps.	With	email,	you
just	list	the	recipient	addresses	separated	by	a	comma	in	the	recipient	list:
<user1@domain1>,<user2@domain2>,<user3@domain3>.	A	separate	copy	is
mailed	to	each	recipient.	Of	course,	aliases	and/or	address	books	can	be	used	to
specify	each	recipient	here	as	well,	making	this	even	simpler.

Since	email	makes	it	so	easy	for	one	person	to	send	information	to	a	set	of
others,	so-called	one-to-many	messaging,	it	was	also	one	of	the	first	ways	in
which	electronic	group	communication	was	implemented.	Prior	to	email,	sharing
information	in	a	group	setting	required	either	a	face-to-face	meeting	or	a
telephone	conference	call.	In	both	cases,	all	parties	must	be	present
simultaneously,	and	a	cost	is	involved,	especially	when	the	parties	are
geographically	distant.

With	email,	a	group	of	individuals	can	share	information	without	needing	to
meet	or	even	be	available	at	the	same	time.	Suppose	a	group	comprises	four
individuals:	Ellen,	Joe,	Jane,	and	Tom.	Ellen	has	a	proposal	that	she	wants	to
discuss.	She	sends	it	to	Joe,	Jane,	and	Tom.	Each	recipient	will	read	it	at	a	time
convenient	for	him	or	her.	Each	person	can	then	reply	back	to	the	group.	For
example,	Tom	might	have	a	comment	on	the	proposal,	so	he	just	sends	it	to
Ellen,	Joe,	and	Jane.	Most	email	clients	include	a	group	reply	feature	for	this
purpose.



Mailing	Lists
In	larger	groups,	communication	by	typing	the	addresses	of	each	recipient
becomes	cumbersome.	Instead,	a	mailing	list	is	used.	The	list	is	created	by	an
individual	termed	the	list	owner	and	contains	the	email	addresses	of	all	the
members	of	the	group.	A	special	list	address	is	created,	which	functions	just	like
a	regular	email	address.	However,	when	anyone	sends	mail	to	this	special
address,	it	is	not	simply	deposited	into	a	mailbox.	It	is	instead	intercepted	by
special	software	that	processes	the	message	and	sends	it	out	automatically	to	all
recipients	on	the	list.	Any	recipient	can	reply	to	the	list	address,	and	all	members
will	receive	the	reply.

Many	other	ways	can	be	used	by	groups	to	share	information	today,	such	as
using	World	Wide	Web	bulletin	boards,	Usenet	newsgroups,	Internet	Relay	Chat
(IRC),	and	so	forth.	Some	of	these	have	a	lot	of	features	that	make	mailing	lists
seem	unsophisticated	by	comparison.	Despite	this,	electronic	mailing	lists	are
still	very	popular,	largely	because	email	is	the	most	universal	Internet
communication	method	and	one	of	the	easiest	methods	to	use.

Many	thousands	of	mailing	lists	are	in	use	on	the	Internet,	covering	every
subject	imaginable.	Each	list	differs	in	a	number	of	regards,	including	the
following	five	aspects:

Implementation	Usually,	some	sort	of	special	software	is	used	to	allow	the	list
owner	to	manage	it,	add	and	remove	users,	and	set	parameters	that	control	how
the	list	operates.	These	programs	are	commonly	called	robots	or	listservs	(list
servers).	One	of	the	more	common	listservs	is	named	Majordomo.	Some	mailing
lists	are	actually	implemented	and	managed	using	the	Web.	(The	line	between
Internet	applications	continues	to	get	more	and	more	blurry.)

Subscription	Rules	and	Technique	Some	mailing	lists	are	open	to	anyone	who
wishes	to	join;	others	are	by	invitation	only.	Most	allow	a	new	subscriber	to	join
automatically	using	software;	others	require	the	list	owner	to	add	new	members.

Management	Method	and	Style	The	list	owner	decides	what	is	acceptable	for
discussion	on	the	list.	Some	lists	are	moderated,	meaning	that	all	submissions	to
the	list	must	be	approved	by	the	list	owner	before	they	are	sent	to	list	members.



Some	lists	allow	mail	to	the	list	from	nonmembers,	and	some	do	not.

Culture	Like	all	groups,	groups	of	people	on	mailing	lists	have	their	own
culture,	interesting	personalities,	and	other	unique	traits.	New	members	of	a	list
are	often	encouraged	to	read	the	list	and	not	send	to	it	for	a	while	until	they
become	accustomed	to	it	and	how	it	works.	This	is	similar	to	the	acclimation
process	for	Usenet	newbies	(Usenet	is	covered	in	Chapter	85).

Special	Features	Some	lists	support	special	features,	such	as	the	ability	to
subscribe	in	digest	mode	(where	messages	are	collected	into	large	digests	to
reduce	the	number	of	individual	messages	sent)	or	to	access	messages	on	the
Web.

TIP

KEY	CONCEPT	One	of	the	many	benefits	of	email	is	that	it	is	easy	to	send	a	message	to	many	people
at	once,	simply	by	specifying	several	recipient	addresses.	This	permits	easy	and	simple	group
communication,	because	each	recipient	can	then	send	a	group	reply	to	respond	to	each	of	the	people	who
were	sent	the	original	message.	Electronic	mailing	lists	provide	a	more	formalized	way	for	groups	to
exchange	ideas	and	information;	many	thousands	of	such	lists	are	in	use	on	the	Internet.



Chapter	76.	TCP/IP	ELECTRONIC
MAIL	MESSAGE	FORMATS	AND
MESSAGE	PROCESSING:	RFC
822	AND	MIME

The	advantages	of	using	computers	for	communication	are	obvious,	but	some
limitations	are	also	imposed	by	the	use	of	computer	technology.	When	I	compare
electronic	mail	(email)	to	regular	mail,	I	always	point	out	that	email	is	much
faster	and	more	flexible	in	how	it	can	be	delivered,	and	this	is	true.	An	email
message	can	reach	its	destination	in	seconds,	while	a	conventional	letter	can	take
days.

However,	one	significant	drawback	of	using	computers	to	communicate	is	that
they	are	not	very	flexible	in	figuring	out	how	to	understand	messages.	Consider
that	anyone	can	put	any	type	of	letter,	memorandum,	or	other	communication	in
an	envelope	and	send	it	to	you,	and	assuming	you	know	the	language	in	which	it
is	written,	you	can	open	the	envelope	and	probably	understand	it.	You	can	figure
out	how	to	deal	with	a	date	that	appears	in	an	unusual	place	in	the	letter,	or	your
name	appearing	at	the	top	compared	to	the	bottom,	or	the	body	of	the	message
being	structured	in	different	ways.	You	can	read	notes	that	are	typed	or
handwritten	in	pen,	pencil,	or	crayon—as	long	as	the	letters	are	decipherable,
you	can	understand	what	is	being	said.

Computers	are	not	good	at	deciphering	such	subtleties.	It	is	for	that	reason	that
email	systems	must	rely	on	standard	message	formats	to	ensure	that	all	messages
have	the	same	form	and	structure.	This	then	makes	it	possible	for	all	devices	in
the	email	system	to	read	and	understand	one	another's	messages,	to	enable
TCP/IP	email	to	work	on	many	different	types	of	computers.



TCP/IP	email	to	work	on	many	different	types	of	computers.

In	this	chapter,	I	describe	the	two	formats	used	for	TCP/IP	email	messages:	the
main	TCP/IP	email	standard,	which	is	called	the	RFC	822	format	after	the
standard	that	defines	it,	and	the	Multipurpose	Internet	Mail	Extensions	(MIME)
standard,	which	greatly	expands	the	ability	of	email	to	support	the
communication	of	different	types	of	information	by	defining	methods	of
encoding	various	media	and	non-English-language	text	into	the	standard	RFC
822	format.

TCP/IP	Email	RFC	822	Standard	Message
Format	Overview
One	of	the	most	astute	observations	I	have	read	about	internetworking
applications	asserts	that	their	usefulness	is	proportional	to	the	number	of	people
who	use	them.	TCP/IP	email	is	a	great	example.	It	is	a	powerful	communication
method	in	large	part	because	almost	everyone	with	a	computer	today	participates
in	the	system.	The	more	people	who	sign	on	to	use	email,	the	more	powerful	it
becomes.

The	creators	of	TCP/IP	email	realized	that	people	who	use	the	system	would
employ	many	different	types	of	hardware	and	software.	To	ensure	that	everyone
was	able	to	understand	all	email	messages,	regardless	of	who	sent	them,	they
specified	a	common	message	format	for	email	messages.	This	format	doesn't
have	an	official	fancy	name;	it	is	simply	known	by	the	name	of	the	standard	that
defines	it:	the	RFC	822	message	format.

TIP

RELATED	INFORMATION	This	discussion	will	make	certain	references	to	the	discussion	of	the
Simple	Mail	Transfer	Protocol	(SMTP;	see	Chapter	77)	but	was	designed	so	that	you	could	read	it	prior
to	learning	about	SMTP	without	getting	confused.

The	primary	protocol	for	delivering	email	is	Simple	Mail	Transfer	Protocol
(SMTP).	For	this	reason,	the	message	format	used	for	TCP/IP	email	could	be
considered	SMTP's	protocol	message	format,	not	unlike	the	special	message
formats	discussed	for	other	protocols,	such	as	the	Internet	Protocol	(IP)	and	the
Transmission	Control	Protocol	(TCP).	However,	the	TCP/IP	email	message
format	is	used	not	only	by	SMTP,	but	by	all	protocols	and	applications	that	deal



format	is	used	not	only	by	SMTP,	but	by	all	protocols	and	applications	that	deal
with	email.	This	includes	the	mail-access	protocols	Post	Office	Protocol	(POP3)
and	Internet	Message	Access	Protocol	(IMAP),	as	well	as	others.	It	was	also
intended	to	be	potentially	usable	by	other	non-TCP/IP	mail	delivery	protocols.
Perhaps	for	this	reason,	the	TCP/IP	email	format	was	not	specified	as	part	of	the
SMTP	itself,	RFC	821,	but	was	specified	in	a	companion	document,	RFC	822.
Both	were	published	in	1982.

Development	of	the	RFC	822	Message	Format
Standard
The	history	of	the	message	format	used	in	TCP/IP	starts	long	before	1982.	It	was
originally	defined	as	the	format	for	passing	text	messages	on	the	Internet's
precursor,	the	ARPAnet,	in	the	early	1970s.	The	format	was	refined	several
times,	leading	to	the	publication	in	1977	of	the	important	email	standard	RFC
733,	"Standard	for	the	Format	of	ARPA	Network	Text	Messages."	RFC	822
later	streamlined	the	contents	of	RFC	733,	removing	some	of	the	features
described	in	the	earlier	standard	that	failed	to	gain	acceptance	and	simplifying
the	specification.

In	2001,	both	SMTP	and	the	RFC	822	message	format	were	revised;	SMTP	is
now	described	in	RFC	2821	and	the	message	format	in	RFC	2822.	This	newer
standard	makes	relatively	small	changes	to	the	RFC	822	message	format	to
reflect	modern	use	of	TCP/IP	email.	Even	though	RFC	2822	is	the	current
standard,	the	original	name	is	still	the	one	most	commonly	used.	I	will	respect
that	convention	in	this	discussion,	describing	the	message	format	based	on	RFC
2822	while	still	calling	it	the	RFC	822	message	format.

The	RFC	822	format	describes	the	form,	structure,	and	content	of	TCP/IP	email
messages.	It	is,	as	I	said,	analogous	to	the	message	formats	used	for	other
protocols	in	TCP/IP.	Like	those	other	formats,	the	RFC	822	format	can	be
logically	divided	into	two	main	sections:	the	message	header,	which	contains
important	control	and	descriptive	information,	and	the	message	body	or	payload,
which	carries	the	data.

Overview	of	RFC	822	Messages
Where	RFC	822	differs	from	the	field	formats	of	other	protocols	is	in



expression.	Most	TCP/IP	protocols	encode	header	information	into	a	compact	set
of	bytes	that	are	read	and	understood	based	on	their	location	in	the	message	and
the	semantic	meaning	assigned	to	them.	Consider	IP,	for	example.	The	ninth
byte	of	every	IP	datagram	is	the	Time	to	Live	(TTL)	field,	which	is	encoded	as	a
value	from	0	to	255.	A	device	reading	an	IP	datagram	simply	knows	that	byte
number	9	contains	the	TTL	value.	If	it	sees	the	binary	value	00010011	there,	it
knows	the	TTL	value	for	this	datagram	is	the	decimal	value	19.

In	contrast,	RFC	822	messages	do	not	use	a	binary	format.	They	are	composed
entirely	of	lines	of	regular	ASCII	text	(as	used	in	the	United	States,	called	US-
ASCII	by	the	standard),	even	the	headers.	Each	line	ends	with	an	ASCII	carriage
return	(CR)	character,	followed	by	a	line	feed	(LF)	character;	the	combination	is
collectively	termed	CRLF.	Each	line	of	text	should	be	78	or	fewer	characters
(not	including	the	terminating	CRLF)	and	must	not	be	more	than	998	characters
(again,	excluding	the	CRLF).	Also,	the	CR	and	LF	characters	must	not	appear	by
themselves	within	the	text.

The	RFC	822	message	begins	with	a	set	of	lines	of	text	that	collectively	make	up
the	message	header.	Each	header	field	is	expressed	in	the	following	form,	in	text:
<header	name>:	<header	value>.	So,	for	example,	if	a	TTL	field	were	in	an	RFC
822	message	(which	it	isn't,	as	that	concept	is	not	particular	to	email)	and	a	value
of	19	needed	to	be	expressed,	the	header	field	would	appear	like	this:	Time	to
Live:	19.

This	expressing	of	all	fields	as	simple	text	means	each	header	takes	up	more
space	in	each	message;	the	string	Time	To	Live:	19	takes	up	18	bytes	including
the	terminating	CRLF,	whereas	the	binary-encoded	TTL	field	in	the	IP	header
takes	only	a	single	byte.	What	we	gain	from	this	are	two	important	benefits:

Any	user	can	easily	check	the	headers	and	immediately	understand	what
headers	are	present	and	what	their	values	are,	which	makes	RFC	822
messages	very	readable.

Since	each	header	is	explicitly	labeled,	RFC	822	messages	can	vary	in	terms
of	the	number	of	headers	they	contain	and	even	in	what	order	they	appear,
making	them	flexible.

General	RFC	822	Message	Structure



The	RFC	822	message	always	starts	with	a	set	of	header	fields	(as	described	in
the	next	section).	After	all	the	headers,	an	empty	line	must	occur.	This	consists
simply	of	the	characters	CRLF	alone,	immediately	following	the	CRLF	at	the
end	of	the	final	header	field	line.	Seeing	two	CRLF	character	pairs	in	sequence
tells	the	device	reading	the	message	that	the	end	of	the	headers	has	been	reached.
All	the	remaining	lines	are	considered	the	body	of	the	message.	Like	the	header
lines,	body	lines	are	composed	of	ASCII	text	and	must	be	no	more	than	998
characters,	with	78	characters	or	fewer	recommended	(for	easier	reading	on
standard	80-character	terminal	displays).

TIP

KEY	CONCEPT	To	ensure	that	every	device	on	a	TCP/IP	internetwork	can	read	email	sent	by	every
other	device,	all	messages	are	required	to	adhere	to	a	specific	structure.	The	standard	that	first	specified
the	form	of	modern	TCP/IP	email	messages	was	RFC	822,	and	as	a	result,	this	is	now	called	the	RFC
822	message	format.	An	RFC	822	message	consists	of	a	set	of	message	headers	and	a	message	body,
which	are	separated	by	a	blank	line.	RFC	822	messages	must	contain	only	plain	ASCII	text	characters.
Each	line	must	be	no	more	than	1,000	characters	in	length,	and	the	last	two	characters	must	be	the	ASCII
CR	and	LF	characters	to	mark	the	end	of	the	line.

Since	both	the	header	and	body	of	email	messages	are	simply	ASCII	text,	the
entire	message	is	just	a	text	file,	so	these	messages	are	very	readable	and	also
easy	to	create.	You	can	use	a	simple	text	editor	to	create	a	complete	email
message,	including	headers,	and	it	can	be	read	with	a	simple	text	display	utility.
This	contributes	to	email's	universal	appeal.

The	drawback	is	that	the	decision	to	make	messages	entirely	ASCII	means	that
no	native	support	is	available	in	RFC	822	messages	for	anything	that	requires
more	complex	structuring	or	that	cannot	be	expressed	using	the	limited	number
of	ASCII	characters.	So,	you	cannot	express	pictures,	binary	files,	spreadsheets,
sound	clips,	and	similar	types	of	files	directly	using	ASCII.	Also,	the	use	of
ASCII	makes	RFC	822	well	suited	to	expressing	messages	in	English	but	not	in
many	other	languages	that	use	characters	that	ASCII	cannot	represent.	All	of
these	limitations	eventually	prompted	the	creation	of	the	enhanced	MIME
message	format,	which	we	will	explore	in	detail	later	in	this	chapter.



TCP/IP	Email	RFC	822	Standard	Message
Format	Header	Fields	and	Groups
The	RFC	822	message	format	describes	the	structure	and	content	of	TCP/IP
email	messages.	The	structure	is	intentionally	designed	to	be	simple	and	easy	to
create	and	understand.	Each	message	begins	with	a	set	of	headers	that	describe
the	message	and	its	contents.	An	empty	line	marks	the	end	of	the	headers,	and
then	the	message	body	follows.

The	message	body	contains	the	actual	text	that	the	sender	is	communicating	to
the	recipient(s),	while	the	message	header	contains	information	that	serves
various	purposes.	The	header	helps	control	how	the	message	is	processed	by
specifying	who	the	recipients	are,	describing	the	contents	of	the	message,	and
providing	information	to	a	recipient	of	a	message	about	processing	that	occurred
on	the	message	as	it	was	delivered.

Header	Field	Structure
As	mentioned	earlier,	the	<header	name>	field	is	the	name	of	the	header,	and	the
<header	value>	is	the	value	associated	with	that	header,	which	depends	on	the
header	type.	Like	all	RFC	822	lines,	headers	must	be	no	more	than	998
characters	long	and	are	recommended	to	be	no	more	than	78	characters	in	length,
for	easier	readability.	The	RFC	822	and	2822	standards	support	a	special	syntax
for	allowing	headers	to	be	folded	onto	multiple	lines	if	they	are	very	lengthy.
This	is	done	by	continuing	a	header	value	onto	a	new	line,	which	must	begin
with	at	least	one	white-space	character,	such	as	white	space	or	a	tab	character,
like	this:

<header	name>:	<header	value	part	1>

<white	space>	<header	value	part	2>

<white	space>	<header	value	part	3>

The	tab	character	is	most	often	used	for	this	purpose.	So,	for	example,	if	we
wanted	to	specify	a	large	number	of	recipients	for	a	message,	we	could	do	it	as
follows:

To:<tab>person1@domain1.org,	person2@domain2.com,



<tab>person3@domain3.net,	person4@domain4.edu

Header	Field	Groups
The	RFC	822	message	format	specifies	many	types	of	headers	that	can	be
included	in	email	messages.	A	small	number	of	headers	are	mandatory,	meaning
they	must	be	included	in	all	messages.	Some	are	not	mandatory	but	are	usually
present,	because	they	are	fundamental	to	describing	the	message.	Other	optional
headers	are	included	only	when	needed.

To	help	organize	the	many	headers,	the	RFC	2822	standard	categorizes	them
into	header	field	groups	(as	did	RFC	822,	though	the	groups	are	a	little	different
in	the	older	standard):

Origination	Date	Field	Specifies	the	date	and	time	that	the	message	was	made
ready	for	delivery;	see	the	next	section	for	details.	(This	field	is	in	its	own	group
for	reasons	that	are	unclear	to	me;	perhaps	just	because	it	is	so	important.)

Originator	Fields	Contain	information	about	the	sender	of	the	message.

Destination	Address	Fields	Specify	the	recipient(s)	of	the	message,	which	may
be	in	one	of	three	different	recipient	classes:	the	primary	recipients	("To"),
copied	recipients	("Cc"),	and	blind-copied	recipients	("Bcc").

Identification	Fields	Contain	information	to	help	identify	the	message.

Informational	Fields	Contain	optional	information	to	help	make	clear	to	the
recipient	what	the	message	is	about.

Resent	Fields	Preserve	the	original	originator,	destination,	and	other	fields	when
a	message	is	resent.

Trace	Fields	Show	the	path	taken	by	mail	as	it	was	transported.

In	addition,	the	format	allows	other	user-defined	fields	to	be	specified,	as	long	as
they	correspond	to	the	standard	<header	name>:	<header	value>	syntax.	This	can
be	used	to	provide	additional	information	of	various	sorts.	For	example,
sometimes	the	email	client	software	will	include	a	header	line	indicating	the
name	and	version	of	the	software	used	to	compose	and	send	the	message.	As
you'll	see	later	in	this	chapter,	MIME	uses	new	header	lines	to	encode
information	about	MIME	messages.



TIP

KEY	CONCEPT	Each	RFC	822	message	begins	with	a	set	of	headers	that	carry	essential	information
about	the	message.	These	headers	are	used	to	manage	how	the	message	is	processed	and	interpreted,	and
they	also	describe	the	contents	of	the	message	body.	Each	header	consists	of	a	header	name	and	a	header
value.	More	than	a	dozen	different	standard	RFC	822	headers	are	available	for	use	and	organized	into
groups.	It	is	also	possible	to	define	custom	user	headers.

Common	Header	Field	Groups	and	Header
Fields
Table	76-1	describes	the	header	fields	in	TCP/IP	email	messages	and	how	they
are	used.

Table	76-1.	RFC	822	Email	Header	Field	Groups	and	Fields

Field
Group

Field
Name

Appearance Number	of
Occurrences
Per	Message

Description

Origination
Date

Date: Mandatory 1 Indicates	date	and	time	that	the
message	was	made	available	for
delivery	by	the	mail	transport
system.	This	is	commonly	the
date/time	that	the	user	tells	her
email	client	to	send	the	message.

Originator
Fields

From: Mandatory 1 Email	address	of	the	user	sending
the	message,	who	should	be	the
person	who	is	the	source	of	the
message.

	 Sender: Optional 1 Email	address	of	the	person
sending	the	email,	if	different
from	the	message	originator.	For
example,	if	person	B	is	sending
an	email	containing	a	message
from	person	A	on	A's	behalf,
person	A's	address	goes	in	the
From:	header	and	person	B's	in
the	Sender:	header.	If	the
originator	and	the	sender	are	the
same	(commonly	the	case),	this
field	is	not	present.



	 Reply-To: Optional 1 Tells	the	recipient	of	the	message
the	address	the	originator	would
like	the	recipient	to	use	for
replies.	If	absent,	replies	are
normally	sent	back	to	the	From:
address.

Destination
Address
Field

To: Normally
present

1 A	list	of	primary	recipients	of	the
message.

	 Cc: Optional 1 A	list	of	recipients	to	receive	a
copy	of	the	message	(cc	stands
for	carbon	copy,	as	used	in	old
typewriters).	There	is	no
technical	difference	between	how
a	message	is	sent	to	someone
listed	in	the	Cc:	header	and
someone	in	the	To:	header.	The
difference	is	only	in	how	the
recipient	interprets	the	message.
The	person	in	the	To:	list	is
usually	the	main	recipient	of	the
message,	while	the	person	in	the
Cc:	list	is	being	copied	on	the
message	for	informational
purposes.

	 Bcc: Optional 1 Contains	a	list	of	recipients	to
receive	a	"blind"	copy	of	the
message	without	other	recipients
knowing	they	have	received	it.
For	example,	if	person	X	is
specified	in	the	To:	line,	person	Y
is	in	the	Cc:	line,	and	person	Z	is
in	the	Bcc:	line,	all	three	would
get	a	copy	of	the	message,	but	X
and	Y	would	not	know	Z	had
received	a	copy.	This	is	done	by
either	removing	the	Bcc:	line
before	message	delivery	or
altering	its	contents.

Identification
Fields

Message-
ID:

Should	be
present

1 Provides	a	unique	code	for
identifying	a	message;	normally
generated	when	a	message	is	sent.



	 In-Reply-
To:

Optional,
normally
present	for
replies

1 When	a	message	is	sent	in	reply
to	another,	the	Message-ID:	field
of	the	original	message	is
specified	in	this	field,	to	tell	the
recipient	of	the	reply	to	what
original	message	the	reply
pertains.

	 References: Optional 1 Identifies	other	documents	related
to	this	message,	such	as	other
email	messages.

Informational
Fields

Subject: Normally
present

1 Describes	the	subject	or	topic	of
the	message.

	 Comments: Optional Unlimited Contains	summarized	comments
about	the	message.

	 Keywords: Optional Unlimited Contains	a	list	of	comma-
separated	keywords	that	may	be
useful	to	the	recipient.	May	be
used	optionally	when	searching
for	messages	on	a	particular
subject	matter.

Resent	Fields Resent-
Date:

Resent-
From:

Resent-
Sender:

Resent-To:

Resent-Cc:

Resent-
Bcc:

Resent-
Message-
ID:

Each	time	a
message	is
resent,	a
resent	block
is	required

For	each	resent
block,	Resent-
Date:	and
Resent-Sender:
are	required;
others	are
optional

Special	fields	used	only	when	a
message	is	resent	by	the	original
recipient	to	someone	else,	called
forwarding.	For	example,	person
X	may	send	a	message	to	Y,	who
forwards	it	to	Z.	In	that	case,	the
original	Date:,	From:,	and	other
headers	are	as	they	were	when
person	X	sent	the	message.	The
Resent-Date:,	Resent-From:,	and
other	resent	headers	are	used	to
indicate	the	date,	originator,
recipient,	and	other
characteristics	of	the	resent
message.

Trace	Fields Received:
Return-
Path:

Inserted	by
email	system

Unlimited Inserted	by	computers	as	they
process	a	message	and	transport	it
from	the	originator	to	the
recipient.	Can	be	used	to	trace	the
path	a	message	took	through	the
email	system.



email	system.



TCP/IP	Email	RFC	822	Standard	Message
Format	Processing	and	Interpretation
The	standards	that	define	SMTP	describe	the	protocol	as	being	responsible	for
transporting	mail	objects.	A	mail	object	is	described	as	consisting	of	two
components:	a	message	and	an	envelope.	The	message	is	everything	in	the	email
message,	including	both	message	header	and	body;	the	envelope	contains	all	the
information	necessary	to	accomplish	transport	of	the	message.

The	distinction	between	these	objects	is	important	technically.	Just	as	the	postal
service	looks	only	at	the	envelope	and	not	its	contents	in	determining	what	to	do
with	a	letter,	SMTP	likewise	looks	only	at	the	envelope	in	deciding	how	to	send
a	message.	It	does	not	rely	on	the	information	in	the	actual	message	itself	for
basic	transport	purposes.

So	the	envelope	is	not	the	same	as	the	message	headers.	However,	as	you	can	tell
by	looking	at	the	list	of	email	headers,	each	message	includes	the	recipients	and
other	information	needed	for	mail	transport.	For	this	reason,	it	is	typical	for	an
email	message	to	be	specified	with	enough	header	information	to	accomplish	its
own	delivery.	Email	software	can	process	and	interpret	the	message	to	construct
the	necessary	envelope	for	SMTP	to	transport	the	message	to	its	destination
mailbox.	The	distinction	between	an	email	message	and	its	envelope	is	discussed
in	more	detail	in	the	section	describing	SMTP	mail	transfers,	in	Chapter	77.

The	processing	of	RFC	822	messages	is	relatively	straightforward,	due	again	to
the	simple	RFC	822	message	format.	The	creation	of	the	complete	email
message	begins	with	the	creation	of	a	message	body	and	certain	headers	by	the
user	creating	the	message.	Whenever	a	message	is	"handled"	by	a	software
program,	the	headers	are	examined	so	the	program	can	determine	what	to	do
with	it.	Additional	headers	are	also	added	and	changed	as	needed.

The	following	is	the	sequence	of	events	that	occur	during	the	lifetime	of	a
message's	headers.

Composition	The	human	composer	of	the	message	writes	the	message	body	and
tells	the	email	client	program	the	values	to	use	for	certain	important	header
fields.	These	include	the	intended	recipients,	the	message	subject,	other



informational	fields,	and	certain	optional	headers	such	as	the	Reply-To	field.

Sender	Client	Processing	The	email	client	processes	the	message,	puts	the
information	the	human	provided	into	the	appropriate	header	form,	and	creates
the	initial	email	message.	At	this	time,	it	inserts	certain	headers	into	the	message,
such	as	the	origination	date.	The	client	also	parses	the	intended	recipient	list	to
create	the	envelope	for	transmission	of	the	message	using	SMTP.

SMTP	Server	Processing	SMTP	servers	do	not	pay	attention	to	most	of	the
fields	in	a	message	as	they	forward	it.	They	will,	however,	add	certain	headers,
especially	trace	headers	such	as	Received	and	Return-Path,	as	they	transport	the
message.	These	are	generally	prepended	to	the	beginning	of	the	message	to
ensure	that	existing	headers	are	not	rearranged	or	modified.	Note,	however,	that
when	gatewaying	occurs	between	email	systems	(as	described	in	Chapter	75),
certain	headers	must	actually	be	changed	to	ensure	that	the	message	is
compatible	with	non-TCP/IP	email	software.

Recipient	Client	Processing	When	the	message	arrives	at	its	destination,	the
recipient's	SMTP	server	may	add	headers	to	indicate	the	date	and	time	the
message	was	received.

Recipient	Access	When	the	recipient	of	a	message	uses	client	software,
optionally	via	an	email	access	protocol	such	as	POP3	or	IMAP,	the	software
analyzes	each	message	in	the	mailbox.	This	enables	the	software	to	display	the
messages	in	a	way	that's	meaningful	to	the	human	user	and	may	also	permit	the
selection	of	particular	messages	to	be	retrieved.	For	example,	most	of	us	like	to
see	a	summary	list	of	newly	received	mail,	showing	the	originator,	message
subject,	and	the	date	and	time	the	message	was	received,	so	we	can	decide	what
mail	we	want	to	read	first,	what	mail	to	defer	to	a	later	time,	and	what	to	delete
without	reading	(such	as	spam).



MIME	Overview
The	RFC	822	email	message	format	is	the	standard	for	the	exchange	of	email	in
TCP/IP	internetworks.	Its	use	of	simple	ASCII	text	makes	it	easy	to	create,
process,	and	read	email	messages,	which	has	contributed	to	the	success	of	email
as	a	worldwide	communication	method.

Unfortunately,	while	ASCII	text	is	great	for	writing	simple	memorandums	and
other	short	messages,	it	provides	no	flexibility	to	support	other	types	of
communication.	To	allow	email	to	carry	multimedia	information,	arbitrary	files,
and	messages	in	languages	using	character	sets	other	than	ASCII,	the	MIME
standard	was	created.

NOTE

While	MIME	was	developed	specifically	for	email,	its	encoding	and	data	representation	methods	have
proven	so	useful	that	it	has	been	adopted	by	other	application	protocols	as	well.	One	of	the	best	known
of	these	is	the	Hypertext	Transfer	Protocol	(HTTP),	which	uses	MIME	headers	for	indicating	the
characteristics	of	data	being	transferred.	Some	elements	of	MIME	were	in	fact	developed	not	for	email
but	for	use	by	HTTP	or	other	protocols,	and	I	indicate	this	where	appropriate.	Be	aware	that	HTTP	only
uses	some	elements	of	MIME;	HTTP	messages	are	not	MIME-compliant.

Most	protocols	become	successful	specifically	because	they	are	based	on	open
standards	that	are	widely	accepted.	The	RFC	822	email	message	format	standard
is	an	excellent	example;	it	is	used	by	millions	of	people	every	day	to	send	and
receive	TCP/IP	email.

However,	success	of	standards	comes	at	a	price:	reliance	on	those	standards.
Once	a	standard	is	in	wide	use,	it	is	very	difficult	to	modify	it,	even	when	times
change	and	the	standard	is	no	longer	sufficient	for	the	requirements	of	modern
computing.	Again,	unfortunately,	the	RFC	822	email	message	format	is	an
excellent	example.

The	Motivation	for	MIME
The	Motivation	for	MIME
TCP/IP	email	was	developed	in	the	1960s	and	1970s.	Compared	to	the	way	the
world	of	computers	and	networking	is	today,	almost	everything	back	then	was



small.	The	networks	were	small;	the	number	of	users	was	small;	the	computing
capabilities	of	networked	hosts	was	small;	the	capacity	of	network	connections
was	small;	the	number	of	network	applications	was	small.	(The	only	thing	that
wasn't	small	back	then	was	the	size	of	the	computers	themselves!)

As	a	result	of	this,	the	requirements	for	electronic	mail	messaging	were	also
rather	…	small.	Most	computer	input	and	output	back	then	was	text-based,	and	it
was	therefore	natural	that	the	creators	of	SMTP	and	the	RFC	822	standard	would
have	envisioned	email	as	being	strictly	a	text	medium.	Accordingly,	they
specified	RFC	822	to	carry	text	messages.

The	fledgling	Internet	was	also	developed	within	the	United	States,	and	at	first,
the	entire	internetwork	was	within	American	borders.	Most	people	in	the	United
States	speak	English,	a	language	that	as	you	may	know	uses	a	relatively	small
number	of	characters	that	is	well-represented	using	the	ASCII	character	set.
Defining	the	email	message	format	to	support	United	States	ASCII	(US-ASCII)
also	made	sense	at	the	time.

However,	as	computers	developed,	they	moved	away	from	a	strict	text	model
toward	graphical	operating	systems.	And	predictably,	users	became	interested	in
sending	more	than	just	text.	They	wanted	to	be	able	to	transmit	diagrams,	non-
ASCII	text	documents	(such	as	Microsoft	Word	files),	binary	program	files,	and
eventually	multimedia	information:	digital	photographs,	MP3	audio	clips,	slide
presentations,	movie	files	and	much	more.	Also,	as	the	Internet	grew	and	became
global,	other	countries	came	"online,"	some	of	which	used	languages	that	simply
could	not	be	expressed	with	the	US-ASCII	character	set.

Unfortunately,	by	this	point,	the	die	was	cast.	RFC	822	was	in	wide	use	and
changing	it	would	have	also	meant	changes	to	how	protocols	such	as	SMTP,
POP	and	IMAP	worked,	protocols	that	ran	on	millions	of	machines.	Yet	by	the
late	1980s,	it	was	quite	clear	that	the	limitations	of	plain	ASCII	email	were	a	big
problem	that	had	to	be	resolved.	A	solution	was	needed,	and	it	came	in	the	form
of	the	Multipurpose	Internet	Mail	Extensions	(MIME).

NOTE

MIME	is	usually	referred	to	in	the	singular,	as	I	will	do	from	here	forward,	even	though	it	is	an
abbreviation	of	a	plural	term.



MIME	Capabilities
The	idea	behind	MIME	is	both	clever	and	elegant:	RFC	822	restricts	email
messages	to	ASCII	text,	but	that	doesn't	mean	that	we	can't	define	a	more
specific	structure	for	how	that	ASCII	text	is	created.	Instead	of	just	letting	the
user	type	an	ASCII	text	message,	we	can	use	ASCII	text	characters	to	encode
nontext	data	parcels	(commonly	called	attachments).	Using	this	technique,
MIME	allows	regular	RFC	822	email	messages	to	carry	the	following:

Nontext	Information	Includes	graphics	files,	multimedia	clips,	and	all	the	other
nontext	data	examples	listed	earlier.

Arbitrary	Binary	Files	Includes	executable	programs	and	files	stored	in
proprietary	formats	(for	example,	AutoCAD	files,	Adobe	Acrobat	PDF	files,	and
so	forth).

Text	Messages	That	Use	Character	Sets	Other	Than	ASCII	Includes	the
ability	to	use	non-ASCII	characters	in	the	headers	of	RFC	822	email	messages.

MIME	even	goes	one	step	beyond	this,	by	actually	defining	a	structure	that
allows	multiple	files	to	be	encoded	into	a	single	email	message,	including	files
of	different	types.	For	example,	someone	working	on	a	budget	analysis	could
send	one	email	message	that	includes	a	text	message,	a	PowerPoint	presentation,
and	a	spreadsheet	containing	the	budget	figures.	This	capability	has	greatly
expanded	email's	usefulness	in	TCP/IP.

All	of	this	is	accomplished	through	special	encoding	rules	that	transform	non-
ASCII	files	and	information	into	an	ASCII	form.	Headers	are	added	to	the
message	to	indicate	how	the	information	is	encoded.	The	encoded	message	can
then	be	sent	through	the	system	like	any	other	message.	SMTP	and	the	other
protocols	that	handle	mail	pay	no	attention	to	the	message	body,	so	they	don't
even	know	MIME	has	been	used.

The	only	change	required	to	the	email	software	is	adding	support	for	MIME	to
email	client	programs.	Both	the	sender	and	receiver	must	support	MIME	to
encode	and	decode	the	messages.	Support	for	MIME	was	not	widespread	when
MIME	was	first	developed,	but	the	value	of	the	technique	is	so	significant	that	it
is	present	in	nearly	all	email	client	software	today.	Furthermore,	most	clients
today	can	also	use	the	information	in	MIME	headers	to	not	only	decode	nontext
information	but	pass	it	to	the	appropriate	application	for	presentation	to	the	user.



information	but	pass	it	to	the	appropriate	application	for	presentation	to	the	user.

TIP

KEY	CONCEPT	The	use	of	the	RFC	822	message	format	ensures	that	all	devices	are	able	to	read	one
another's	email	messages,	but	it	has	a	critical	limitation:	It	supports	only	plain	ASCII	text.	This	is
insufficient	for	the	needs	of	modern	internetworks,	yet	reliance	on	the	RFC	822	standard	would	have
made	replacing	it	difficult.	MIME	specifies	several	methods	that	allow	email	messages	to	contain
multimedia	content,	binary	files,	and	text	files	using	non-ASCII	character	sets,	all	while	still	adhering	to
the	RFC	822	message	format.	MIME	also	further	expands	email's	flexibility	by	allowing	multiple	files	or
pieces	of	content	to	be	sent	in	a	single	message.

MIME	Standards
MIME	was	first	described	in	a	set	of	two	standards,	RFC	1341	and	RFC	1342,
published	in	June	1992.	These	were	updated	by	RFCs	1521	and	1522	in
September	1993.	In	March	1994,	a	supplemental	standard	was	published,	RFC
1590,	which	specified	the	procedure	for	defining	new	MIME	media	types.

Work	continued	on	MIME	through	the	mid-1990s,	and	in	November	1996,	the
standards	were	revised	again.	This	time,	the	documents	were	completely
restructured	to	improve	the	readability	of	the	information	and	published	as	a	set
of	five	individual	standards.	These	standards	are	shown	in	Table	76-2.

Since	the	time	that	these	five	primary	MIME	standards	were	released,	numerous
additional	RFCs	have	been	published	that	have	defined	various	extensions	to
MIME	itself,	including	additional	MIME	header	types	and	new	media	types.
Notable	examples	are	RFCs	2183	and	2557,	which	define	the	MIME	Content-
Disposition	and	Content-Location	headers,	respectively.	Some	other	MIME
capabilities	are	actually	defined	as	part	of	other	technologies	that	use	MIME;	for
example,	the	first	HTTP	standard,	RFC	1945	defines	the	Content-Length	header.
Other	RFCs	define	new	media	types	and	subtypes	(too	many	to	list	here).

Table	76-2.	MIME	Standards

RFC
Number

RFC	Name Description

2045 Multipurpose	Internet	Mail
Extensions	(MIME)	Part	One:
Format	of	Internet	Message

Describes	the	fundamental	concepts	behind
MIME	and	the	structure	of	MIME	messages.



Format	of	Internet	Message
Bodies

2046 Multipurpose	Internet	Mail
Extensions	(MIME)	Part	Two:
Media	Types

Explains	the	concept	of	MIME	media	types	and
subtypes	and	describes	some	of	the	kinds	of
media	whose	encoding	is	defined	in	the	MIME
standards.

2047 MIME	(Multipurpose	Internet
Mail	Extensions)	Part	Three:
Message	Header	Extensions	for
Non-ASCII	Text

Describes	how	RFC	822	headers	can	be
modified	to	carry	non-ASCII	text.

2048 Multipurpose	Internet	Mail
Extensions	(MIME)	Part	Four:
Registration	Procedures

Discusses	how	organizations	can	register
additional	media	types	for	use	with	MIME.

2049 Multipurpose	Internet	Mail
Extensions	(MIME)	Part	Five:
Conformance	Criteria	and
Examples

Provides	additional	implementation	information
and	examples	of	how	MIME	can	be	used.



MIME	Basic	Structures	and	Headers
The	creators	of	the	MIME	standard	had	a	difficult	challenge	on	their	hands:	how
to	bring	flexibility	in	the	types	of	data	contained	in	email	messages,	when	RFC
822	said	that	messages	could	contain	only	ASCII	text.	To	accomplish	this,
MIME	creators	had	to	exploit	the	areas	of	flexibility	that	had	already	been	put
into	the	existing	RFC	822.

Two	such	opportunities	were	available:	The	first	was	the	fact	that	RFC	822
message	bodies	are	allowed	to	contain	any	type	of	ASCII	text,	as	long	as	lines
don't	exceed	998	text	characters	and	each	line	ends	with	a	CRLF	control	code
combination.	Even	though	the	creators	of	RFC	822	naturally	assumed	this	ASCII
text	would	be	human-readable,	there	was	nothing	stopping	it	from	being
machine-readable	code.	The	second	opportunity	was	the	facility	built	into	RFC
822	(and	the	protocols	that	use	it,	such	as	SMTP)	that	allowed	custom	user-
defined	header	fields	to	be	added	to	any	email	message.

The	nonspecific	nature	of	RFC	822	message	bodies	forms	the	basis	for	how
MIME	itself	works.	An	email	client	that	supports	the	MIME	standard	uses
special	encoding	algorithms	that	transform	non-ASCII	information	into	ASCII
form.	It	then	places	this	set	of	encoded	ASCII	characters	into	the	body	of	the
message,	as	if	it	had	been	typed	by	a	user,	using	one	of	two	special	structures.

The	ability	to	add	new	headers	to	RFC	822	is	used	to	communicate	information
about	the	use	of	MIME	from	the	sender	to	the	recipient.	The	devices	transporting
a	MIME	message	don't	care	that	MIME	was	used,	because	they	don't	pay
attention	to	the	contents	of	the	message	body.	However,	when	the	message
reaches	its	destination,	the	recipient's	email	client	program	must	have	some	way
of	knowing	that	MIME	was	used	and	must	also	be	told	how	the	information	in
the	message	was	encoded.	Otherwise,	it	might	just	present	the	encoded	non-
ASCII	data	to	the	user	as	ASCII	text	(which	would	look	like	random	gibberish).

Basic	Structures
The	exact	method	by	which	data	is	encoded	in	the	message	body	and	MIME
headers	are	included	depends	on	the	overall	structure	of	the	MIME	message.
Two	basic	structure	types	are	described,	based	on	the	kind	of	media	the	message



carries:

Simple	Structure	(Discrete	Media)	MIME	messages	carrying	a	single	discrete
media	type,	such	as	a	text	message	or	a	graphical	image,	use	a	simple	structure.
Only	one	encoding	of	information	is	present	in	the	body	of	the	message.

Complex	Structure	(Composite	Media)	Some	MIME	messages	carry	a
composite	media	type,	which	allows	multiple	different	media	to	be	contained	in
a	single	message,	such	as	a	text	message	and	a	graphical	image,	or	which	allows
the	email	to	encapsulate	another	email	message	in	its	entirety.	Many	of	these
messages	use	a	more	complex	structure,	where	the	body	of	the	message	contains
several	MIME	body	parts.

MIME	Entities
Collectively,	both	whole	MIME	messages	and	individual	body	parts	are	called
MIME	entities.	Each	set	of	MIME	headers	provides	information	about	either
type	of	MIME	entity:	a	MIME	message	as	a	whole	or	a	body	part	in	a	composite
message.	When	a	MIME	message	is	received,	the	recipient	first	examines	the
headers	in	the	message	as	a	whole	(the	RFC	822	headers)	to	determine	the
overall	message	type.	This	then	indicates	whether	the	message	uses	a	simple	or
complex	structure.	If	the	latter	is	used,	the	body	of	the	message	is	parsed	and
each	individual	body	part	is	individually	interpreted,	including	its	individualized
headers.	The	section	"MIME	Composite	Media	Types,"	later	in	this	chapter,
provides	more	details	on	how	these	body	parts	are	formatted.

Primary	MIME	Headers
The	first	of	the	five	main	MIME	standards,	RFC	2045,	describes	a	set	of	five
primary	MIME	headers	that	communicate	basic	information	about	the	content	of
each	MIME	entity	(message	or	body	part).

MIME-Version	Each	MIME	message	is	required	to	have	a	MIME-Version
header,	which	serves	two	purposes.	First,	it	identifies	the	email	message	as	being
MIME-encoded.	Second,	even	though	only	one	version	of	MIME	has	been
defined	so	far,	having	a	version	number	header	provides	future	proofing	in	case
a	new	version	is	created	later	that	may	have	some	incompatibilities	with	the
present	one.	Currently,	all	MIME	messages	use	version	1.0.	This	is	the	only



MIME	header	that	applies	to	an	entire	message;	it	is	not	used	to	label	individual
MIME	body	parts.	This	is	easy	to	remember,	as	it	is	the	only	header	whose	name
does	not	begin	with	Content-.

Content-Type	Describes	the	nature	of	the	data	that	is	encoded	in	the	MIME
entity.	This	header	specifies	a	content	type	and	a	content	subtype,	which	are
separated	by	a	slash	character.	It	may	optionally	also	contain	certain	parameters
that	convey	additional	information	about	the	type	and	subtype.	In	a	message
body,	this	header	tells	the	recipient	of	the	email	message	what	sort	of	media	it
contains	and	whether	the	body	uses	a	simple	or	complex	structure.	In	a	body
part,	it	describes	the	media	type	the	body	part	contains.	For	example,	a	message
containing	an	HTML	document	might	have	a	Content-Type	header	of
text/html,	where	a	message	containing	a	JPEG	graphical	file	might	be
specified	as	image/jpeg.	For	a	composite	MIME	type,	the	Content-Type	header
of	the	whole	message	will	contain	something	like	multipart/mixed	or
multipart/alternative,	and	each	body	part	will	contain	individual	Content-
Type	headers	such	as	text/html	or	image/jpeg.	These	are	all	discussed	in
detail	in	the	next	two	sections.	This	header	is	optional.	When	not	present,	the
default	of	a	regular	US-ASCII	text	message	is	assumed	(the	media	type	of
regular	RFC	822	messages).

Content-Transfer-Encoding	For	a	message	using	simple	structure,	specifies	the
method	used	to	encode	the	data	in	the	message	body;	for	a	composite	message,
identifies	the	encoding	method	for	each	MIME	body	part.	For	data	that	is
already	in	ASCII	form,	no	special	encoding	is	needed,	but	other	types	of	data
must	be	converted	to	ASCII	for	transmission.	This	header	tells	the	recipient	how
to	decode	the	data	back	into	its	normal	representation.	(MIME	encoding	methods
are	described	later	in	this	chapter.)	This	header	is	optional;	the	default	value,	if	it
is	not	present,	is	7-bit	encoding,	which	again	is	the	encoding	of	regular	ASCII.

Content-ID	Allows	the	MIME	content	to	be	assigned	a	specific	identification
code.	This	header	is	analogous	to	the	RFC	822	Message-ID	header	field	but	is
specific	to	the	MIME	content	itself.	It	is	optional	and	is	most	often	used	for	body
parts	in	multipart	MIME	messages.

Content-Description	This	optional	header	allows	an	arbitrary	additional	text
description	to	be	associated	with	the	MIME	entity.	In	a	multipart	message,	each



body	part	might	be	given	a	description	header	to	make	clear	to	the	recipient	what
the	parts	represent.

TIP

KEY	CONCEPT	MIME	provides	flexibility	in	the	information	that	can	be	carried	in	email	messages,
by	encoding	non-ASCII	data	in	ASCII	form,	and	by	adding	special	headers	that	describe	this	data	and
how	it	is	to	be	interpreted.	The	most	important	MIME	headers	are	Content-Type,	which	describes	what
sort	of	data	is	in	the	message,	and	Content-Transfer-Encoding,	which	specifies	how	the	data	is	encoded.
MIME	supports	two	basic	overall	formats:	simple	structure,	in	which	a	single	type	of	discrete	media	is
encoded	in	a	message,	and	complex	structure,	which	encodes	a	composite	media	type	that	can	carry
multiple	kinds	of	information.

Additional	MIME	Headers
In	addition	to	the	five	basic	headers,	the	MIME	standard	allows	additional
headers	to	be	defined.	The	only	restriction	is	that	they	all	must	start	with	the
word	Content-,	which	clearly	labels	them	as	describing	content	of	a	MIME	entity
(message	or	body	part).	Both	the	sender	and	recipient	must	support	a	custom
header	for	it	to	be	useful.

Several	new	MIME	headers	have	in	fact	been	created	and	documented	in	various
Internet	RFCs.	Some	are	actually	designed	not	specifically	for	use	by	email
messages,	but	for	use	by	other	protocols	that	make	use	of	MIME	technology,
such	as	HTTP.	Three	are	notable:

Content-Disposition	In	multipart	MIME	messages,	this	header	may	be	given	to
MIME	body	parts	to	control	how	information	is	presented	to	the	user.	The	two
most	common	values	are	inline,	which	says	the	content	is	intended	to	be
displayed	automatically	along	with	other	body	parts,	and	attachment,	which
indicates	that	the	content	is	separate	from	the	main	document.	This	header	is
defined	in	RFC	2183.

Content-Location	Allows	the	location	of	a	MIME	body	part	to	be	identified
using	a	Uniform	Resource	Locator	(URL).	This	is	sometimes	used	when
encoding	HTML	and	other	multimedia-enabled	document	formats	into	email
using	MIME	multipart	messages.	It	is	defined	in	RFC	2557.

Content-Length	Specifies	the	length	of	a	MIME	entity	in	bytes.	This	header	is
not	commonly	used	in	email	applications	of	MIME	but	is	an	important	header	in



HTTP.	It	is	described	in	the	HTTP	standards,	first	appearing	in	RFC	1945.



MIME	Content-Type	Header	and	Discrete	Media
MIME	uses	special	techniques	to	encode	various	kinds	of	information	into
ASCII	text	form,	such	as	graphical	images,	sound	files,	video	clips,	application
programs,	compressed	data	files,	and	many	others.	We	commonly	refer	to	these
as	different	types	of	media,	and	MIME	uses	the	same	term	to	describe	them.

Since	MIME	supports	so	many	kinds	of	media,	it	is	necessary	that	each	message
contain	information	that	describes	what	it	contains	to	permit	accurate	decoding
of	message	contents.	This	is	the	function	of	the	important	MIME	Content-Type
header.

Content-Type	Header	Syntax
The	syntax	of	the	Content-Type	header	is	as	follows:

Content-Type:	<type>/<subtype>	[;	parameter1	;	parameter2	..	;	parameterN	]

The	purpose	of	these	different	elements	is	to	describe	the	media	in	the	MIME
entity	in	a	way	that	proceeds	from	the	general	to	the	specific.	The	first	element,
<type>,	is	called	the	top-level	media	type	and	describes	the	overall	form	of	the
data.	For	example,	it	indicates	whether	the	MIME	entity	contains	text,	an	image,
audio,	and	so	forth.	The	second	element,	<subtype>,	provides	specific
information	about	the	form	or	format	of	the	data.	For	example,	a	JPEG	image
and	a	GIF	image	are	both	images,	but	they	are	in	a	different	format.	Both	<type>
and	<subtype>	are	mandatory	in	the	Content-Type	header.

Following	these	elements	may	appear	one	or	more	parameters,	which	are	usually
optional	but	may	be	required	for	some	media	types.	These	provide	still	more
details	about	the	nature	of	the	data,	when	it	is	required.	Each	parameter	is
preceded	by	a	semicolon	and	is	expressed	as	an	attribute/value	pair,	separated	by
an	equal	(=)	sign,	like	this:	;	attribute=value.

One	example	of	how	parameters	may	be	used	is	in	specifying	the	character	set	in
a	text	message.	The	representation	of	regular	RFC	822	ASCII	text	is	as	follows:

Content-type: text/plain; charset="us-ascii"

The	top-level	media	type	is	text,	and	the	subtype	is	plain,	so	this	indicates	a



plain-text	message.	The	parameter	charset	specifies	that	the	message	uses	the
US-ASCII	character	set.	Another	common	use	for	parameters	is	to	specify	the
name	of	an	attached	file,	like	this:

Content-type: image/jpeg; name="ryanpicture.jpg"

Discrete	Media	Types	and	Subtypes
As	I	mentioned	earlier,	MIME	supports	two	basic	structures:	simple	and
complex.	A	simple	message	carries	only	one	media	type,	such	as	a	piece	of	text,
a	picture,	or	an	executable	file.	These	are	called	discrete	media	types	in	MIME.
A	complex	message	carries	a	composite	media	type,	which	may	incorporate
multiple	body	parts.	Each	body	part	in	turn	carries	data	corresponding	to	one	of
the	discrete	media	types.	The	top-level	media	type	indicates	whether	the	whole
message	carries	a	discrete	media	type	or	a	composite	type.

TIP

KEY	CONCEPT	The	MIME	Content-Type	header	specifies	what	sort	of	data	is	encoded	in	a	MIME
message.	The	header	indicates	the	general	form	of	the	message's	content	through	a	top-level	media	type,
and	the	more	specific	nature	of	the	data	through	the	specification	of	a	subtype.	It	may	also	contain
optional	parameters	that	provide	still	more	information	about	the	content.

The	RFC	2046	standard	(part	two	of	the	set	of	five	standards	that	describes
MIME)	defines	five	discrete	top-level	media	types:	text,	image,	audio,	video,
and	application.	They	each	represent	one	of	the	major	classes	of	data
commonly	transmitted	over	TCP/IP.	Each	of	these	has	one	or	more	subtypes,
and	some	also	have	parameters	that	are	used	to	provide	more	information	about
them.

The	creators	of	MIME	recognized	that	the	standard	could	not	describe	every
media	type	and	that	new	ones	would	be	created	in	the	future.	RFC	2048	(part
four	of	the	MIME	set)	describes	the	process	by	which	new	media	types,
subtypes,	and	parameters	can	be	described	and	registered	with	the	Internet
Assigned	Numbers	Authority	(IANA).

Thus	far,	only	one	new	top-level	media	type	has	been	created;	this	is	the	model
top-level	type,	defined	for	CAD	modeling	files	and	similar	uses,	as	described	in
RFC	2077.	However,	many	dozens	of	new	subtypes	have	been	created	over	the



years,	some	specified	in	RFCs	and	others	just	registered	directly	with	IANA.
This	includes	many	vendor-specific	subtypes,	which	are	usually	identified	by
either	the	prefix	x-	or	vnd.	in	the	subtype	name.

Literally	hundreds	of	type/subtype	combinations	now	exist,	and	I	will	not	list
them	all.	You	can	find	a	complete	list	of	MIME	media	organized	by	top-level
media	type	on	IANA's	website:	http://www.iana.org/assignments/media-
types/index.html.

Here,	I	will	briefly	describe	the	six	MIME	discrete	top-level	media	types.	For
each,	I've	provided	a	table	showing	some	of	the	more	commonly	encountered
MIME	subtypes	to	give	you	an	idea	of	what	is	out	there.

Text	Media	Type	(text)
The	text	media	type	is	used	for	sending	data	that	is	primarily	in	textual	form.
Table	76-3	describes	shows	the	subtypes.

Table	76-3.	MIME	text	Media	Type	Subtypes

Type/Subtype Description Defining
Source

text/plain Plain	text,	used	for	regular	messages	such	as	those
corresponding	to	the	initial	RFC	822	standard

RFC	2046

text/enriched Text	that	includes	formatting	information	or	other	enrichment
that	makes	it	no	longer	plain

RFC	1896

text/html A	document	expressed	in	HTML,	commonly	used	for	the
World	Wide	Web

RFC	2854

text/css Cascading	style	sheet	information	for	the	World	Wide	Web RFC	2318

Image	Media	Type	(image)
The	image	media	type	indicates	graphical	image	files,	such	as	pictures.	The
subtype	normally	indicates	the	specific	format	to	allow	the	recipient	to	decode
and	present	the	file	properly.	Some	of	the	more	common	subtypes	are	shown	in
Table	76-4.

Table	76-4.	MIME	image	Media	Type	Subtypes

http://www.iana.org/assignments/media-types/index.html


Type/Subtype Description Defining	Source

image/jpeg An	image	in	JPEG	format RFC	2046

image/gif A	Graphical	Interchange	Format
(GIF)	image

IANA	says	RFC	2046,	but	it's
not	there.

image/tiff Tagged	Image	File	Format	(TIFF)
image

RFC	2302

image/vnd.dwg,
image/vnd.dxf,
image/vnd.svf

Vector	images	used	in	AutoCAD Registration	with	IANA

Audio	Media	Type	(audio)
The	audio	media	type	is	used	for	sending	audio	information.	The	subtype
normally	indicates	the	specific	format.	Table	76-5	shows	a	couple	of	common
values.

Table	76-5.	MIME	audio	Media	Type	Subtypes

Type/Subtype Description Defining
Source

audio/basic A	basic	audio	type	defined	in	the	main	MIME	standards	that
describes	single-channel	audio	encoded	using	8-bit	ISDN	mu-law
pulse	code	modulation	at	8,000	Hz

RFC
2046

audio/mpeg MPEG	standard	audio	(including	the	popular	MP3	file	format) RFC
3003

Video	Media	Type	(video)
The	video	media	type	is	used	for	sending	video	information.	Again,	the	subtype
normally	indicates	the	specific	format,	as	shown	in	Table	76-6.

Table	76-6.	MIME	video	Media	Type	Subtypes

Type/Subtype Description Defining
Source

video/mpeg Video	encoded	to	the	MPEG	digital	video	standard RFC	2046



video/dv Digital	video	corresponding	to	several	popular	standards
including	SD-VCR,	HD-VCR,	and	DVB,	as	used	by	various
types	of	video	equipment

RFC	3189

video/quicktime Apple's	QuickTime	movie	format Registration
with	IANA

Model	Media	Type	(model)
The	model	media	type	describes	a	model	representation,	such	as	a	two-
dimensional	or	three-dimension	physical	model.	Its	subtypes	are	described	in
Table	76-7.

Table	76-7.	MIME	model	Media	Type	Subtypes

Type/Subtype Description Defining
Source

model/mesh A	mesh,	as	used	in	modeling RFC	2077

model/vrml A	Virtual	Reality	Modeling	Language	(VRML)	model RFC	2077

model/iges A	model	file	corresponding	to	the	Initial	Graphics
Exchange	Specification	(IGES)

Registration
with	IANA

Application	Media	Type	(application)
The	application	media	type	is	a	catchall	for	any	kind	of	data	that	doesn't	fit
into	one	of	the	preceding	categories	or	that	is	inherently	application-specific.
The	subtype	describes	the	data	by	indicating	the	kind	of	application	that	uses	it.
This	can	be	used	to	guide	the	recipient's	email	program	in	choosing	an
appropriate	application	program	to	display	it,	just	as	a	file	extension	in	Windows
tells	the	operating	system	how	to	open	different	kinds	of	files.

For	example,	if	you	have	Microsoft	Excel	installed	on	your	PC,	clicking	a
filename	ending	with	.XLS	will	launch	Excel	automatically.	Similarly,	an	Excel
spreadsheet	will	normally	be	sent	using	MIME	with	a	media	type	of
application/vnd.ms-excel.	This	tells	the	recipient's	email	program	to	launch
Excel	to	read	this	file.

Since	so	many	applications	are	out	there,	more	than	100	different	subtypes	exist
within	this	top-level	type.	Table	76-8	contains	a	few	representative	samples.



Table	76-8.	MIME	application	Media	Type	Subtypes

Type/Subtype Description Defining
Source

application/octet-stream An	arbitrary	set	of	binary	data	octets	(see	the
discussion	following	this	table	for	more	details)

RFC	2046

application/postscript A	PostScript	file,	used	for	printing	and	for
generating	Adobe	Acrobat	(PDF)	files

RFC	2046

application/applefile Resource	file	information	for	representing
Apple	Macintosh	files

Registration
with	IANA

application/msword Microsoft	Word	document	(note	that	this	does
not	have	the	vnd	prefix	like	most	other
Microsoft	file	types)

Registration
with	IANA

application/pdf A	Portable	Document	Format	(PDF)	file,	as
created	by	Adobe	Acrobat

Registration
with	IANA

application/vnd.framemaker An	Adobe	FrameMaker	file Registration
with	IANA

application/vnd.lotus-1-2-
3

A	Lotus	1-2-3	file Registration
with	IANA

application/vnd.lotus-
notes

A	Lotus	Notes	file Registration
with	IANA

application/vnd.ms-excel A	Microsoft	Excel	spreadsheet	file Registration
with	IANA

application/vnd.ms-
powerpoint

A	Microsoft	PowerPoint	presentation	file Registration
with	IANA

application/vnd.ms-project A	Microsoft	Project	file Registration
with	IANA

application/zip A	compressed	archive	file	containing	one	or
more	other	files,	using	the	ZIP/PKZIP
compression	format

Registration
with	IANA

Of	these	application	subtypes,	a	special	one	is	worth	further	mention:	the
application/octet-stream	subtype.	This	is	the	catchall	within	the	catchall	of
the	application	type,	which	just	means	the	file	is	a	sequence	of	arbitrary	binary



data.	It	is	usually	used	when	the	sender	is	unsure	of	what	form	the	data	takes	or
cannot	identify	it	as	belonging	to	a	particular	application.	When	this	type	is	used,
the	recipient	will	usually	be	prompted	to	save	the	data	to	a	file.	He	must	then
figure	out	what	application	to	use	to	read	it.

The	application/octet-stream	MIME	type/subtype	may	even	be	used	for
images,	audio,	or	video	in	unknown	formats.	If	you	try	to	send	a	multimedia
document	that	your	sending	program	does	not	understand,	it	will	generally
encode	it	as	application/octet-stream	for	transmission.	This	is	your	email
program's	way	of	saying	to	the	recipient,	"I	am	sending	you	this	file	as-is;	you
figure	out	what	to	do	with	it."

This	application/octet-stream	type	is	also	often	used	for	transmitting
executable	files	(programs)	especially	on	Windows	systems.	Unfortunately,
while	convenient,	this	can	be	a	serious	security	hazard.	In	recent	years,	the
Internet	has	been	subject	to	a	steady	stream	of	viruses	and	worms	that	spread	by
sending	themselves	to	other	users	through	executable	file	attachments	in	email.
This	makes	opening	and	running	any	unknown	application/octet-stream
attachment	potentially	dangerous.



MIME	Composite	Media	Types:	Multipart	and
Encapsulated	Message	Structures
MIME	discrete	media	types	allow	MIME	to	represent	hundreds	of	different
kinds	of	data	in	email	messages.	This	alone	would	make	MIME	an	incredibly
useful	technology,	but	the	MIME	standard	goes	one	step	further	by	defining
composite	media	types.	These	allow	MIME	to	perform	even	more	spectacular
feats,	such	as	sending	many	types	of	data	at	once	or	encapsulating	other
messages	or	information	into	email.

The	use	of	a	MIME	composite	media	type	is	indicated	via	the	Content-Type
header	of	an	RFC	822	message.	Instead	of	one	of	the	six	discrete	media	types
(text,	image,	audio,	video,	model,	or	application),	one	of	these	two
composite	media	types	is	used:	multipart,	which	allows	one	or	more	sets	of
data	to	be	sent	in	a	single	MIME	message,	and	message,	which	allows	a
message	to	encapsulate	another	message.

TIP

KEY	CONCEPT	Two	MIME	composite	media	types	exist:	message,	which	allows	one	message	to
encapsulate	another,	and	multipart,	which	allows	multiple	individual	media	types	to	be	encoded	into	a
single	email	message.



MIME	Multipart	Message	Type
The	multipart	media	type	is	the	more	common	of	the	two	types,	and	for	good
reason:	It	is	an	incredibly	powerful	mechanism.	It	allows	one	message	to	contain
many	different	kinds	of	information	that	can	be	used	in	different	ways.	Each
piece	of	data	is	encoded	separately	as	a	MIME	body	part,	and	the	parts	are
combined	into	a	single	email	message.	How	these	parts	are	used	depends	on	the
semantics	of	the	message,	indicated	by	the	MIME	subtype.	RFC	2046	describes
several	of	these,	and	a	few	new	ones	have	also	been	defined	by	the	IANA
registration	scheme	described	earlier.

MIME	Multipart	Message	Subtypes
Table	78-9	shows	the	most	common	multipart	media	subtypes	and	how	they	are
used.	The	first	four	are	defined	in	RFC	2046.

Table	76-9.	Common	MIME	multipart	Media	Type	Subtypes

Type/Subtype Description Defining
Source

multipart/mixed Indicates	that	the	body	parts	are	not	really	related,	but
they	have	been	bundled	for	transport	in	a	single
message	for	convenience.	For	example,	this	might	be
used	by	someone	to	send	an	office	memo	along	with	a
vacation	snapshot	just	for	fun.	This	subtype	is	also
sometimes	used	when	the	parts	are	related	but	the
relationship	is	communicated	to	the	recipient	in	some
other	way	(such	as	via	a	description	in	a	distinct	body
part).

RFC
2046

multipart/alternative Specifies	that	the	body	parts	are	alternative
representations	of	the	same	information.	The	recipient
decodes	the	parts	and	chooses	the	one	that	is	best	suited
to	her	needs.	A	common	use	of	this	is	in	sending
Hypertext	Markup	Language	(HTML)-encoded	email.
Some	email	clients	can't	display	HTML,	so	it	is
courteous	to	send	a	multipart/alternative	message
containing	the	message	in	both	HTML	and	plain	text
forms.	The	alternatives	should	be	placed	in	the	message
in	increasing	order	of	preference,	meaning	that	the
preferred	format	goes	last.	In	the	case	of	a	document
that	includes	plain	text	and	rich	text	alternatives—such

RFC
2046



that	includes	plain	text	and	rich	text	alternatives—such
as	the	preceding	example	with	plain	text	and	HTML
versions	of	a	document—the	plainest	format	should	go

first	and	the	fanciest	last.

multipart/parallel Tells	the	recipient	that	the	body	parts	should	all	be
displayed	at	the	same	time	(in	parallel).	For	example,
someone	sends	an	audio	clip	along	with	explanatory
text	to	be	displayed	alongside	it	as	it	plays.

RFC
2046

multipart/digest Allows	a	message	to	carry	a	digest,	such	as	a	collection
of	other	email	messages.

RFC
2046

multipart/related Indicates	specifically	that	the	body	parts	are	related	to
each	other.	Special	parameters	are	used	to	provide	more
information	on	how	they	are	to	be	interpreted.

RFC
2387

multipart/encrypted Used	for	encrypted	data.	The	first	body	part	contains
information	on	how	the	data	is	to	be	decrypted,	and	the
second	contains	the	data	itself.

RFC
1847



Multipart	Message	Encoding
You	can	see	just	from	the	different	subtypes	shown	in	Table	78-9	how	much
flexibility	the	multipart	type	provides	to	MIME,	and	there	are	other	subtypes.	In
all	cases,	the	same	syntax	is	used	to	encode	the	constituent	body	parts	into	a
single	message.	The	basic	process	is	as	follows:

1.	 Each	individual	piece	of	data	is	processed	as	if	it	were	to	be	transmitted	as
the	body	of	a	discrete	media	type	MIME	message.	This	includes	the
specification	of	appropriate	headers,	such	as	Content-Type,	Content-ID,
and	Content-Transfer-Encoding,	as	needed.

2.	 A	special	boundary	delimiter	is	chosen	to	separate	the	body	parts.	It	must
be	selected	so	that	it	will	not	appear	in	any	of	the	body	parts;	a	random
string	is	sometimes	used.	It	is	prepended	with	two	dashes	(—)	when	placed
in	the	message	to	reduce	the	chance	of	it	being	mistaken	for	data.

3.	 The	multipart	message	is	assembled.	It	consists	of	a	preamble	text	area,
then	a	boundary	line,	followed	by	the	first	body	part.	Each	subsequent
body	part	is	separated	from	the	previous	one	with	another	boundary	line.
After	the	last	body	part,	another	boundary	line	appears,	followed	by	an
epilogue	text	area.

4.	 The	special	parameter	boundary	is	included	in	the	Content-Type	header	of
the	message	as	a	whole,	to	tell	the	recipient	what	pattern	separates	the	body
parts.

TIP

KEY	CONCEPT	MIME	multipart	messages	are	formed	by	first	processing	each	individual	data
component	to	create	a	MIME	body	part.	Each	can	have	a	distinct	encoding	method	and	set	of	headers,	as
if	it	were	a	separate	MIME	message.	These	body	parts	are	then	combined	into	a	single	multipart	message
and	separated	with	a	boundary	delimiter.	The	identity	of	the	delimiter	is	inserted	into	the	boundary
parameter	of	the	Content-Type	header,	so	the	recipient	can	easily	separate	the	individual	body	parts	upon
receipt	of	the	message.

These	rules	may	seem	rather	complicated,	but	once	you've	seen	a	couple	of
multipart	messages,	the	structure	will	make	sense.	To	help	clarify	multipart
message	encoding,	Figure	76-1	shows	graphically	the	overall	structure	of	a



multipart	MIME	message.

Example	76-1	contains	a	specific	example	of	a	multipart	message	(with	portions
abbreviated	to	keep	the	length	down),	so	you	can	see	what	one	looks	like	in	text
form.	(If	you	want	to	see	more,	you	probably	have	several	in	your	own	email
inbox	right	now!)

Example	76-1.	Example	of	a	MIME	multipart	message
From: Joe Sender <joe@someplace.org>
To: Jane Receiver <jane@somewhereelse.com>
Date: Sun, 1 Jun 2003 13:28:19 —0800
Subject: Photo and discussion
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="exampledelimtext123"
 
This is a multipart message in MIME format
 
-exampledelimtext123
Content-Type: text/plain
 
Jane, here is the photo you wanted from me for the new client.
Here are some notes on how it was processed.
(Blah blah blah...)
Talk to you soon,
Joe.
 
-exampledelimtext123
 
Content-Type: image/jpeg; name="clientphoto.jpg"
Content-Transfer-Encoding: base64
 
SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs
...
zv/wAARCADIARoDASIAAhEBAxEB/8QAHAAAAQUBA
 
-exampledelimtext123
 
(Epilogue)



Figure	76-1.	MIME	multipart	message	structure	A	MIME	multipart	message	consists	of	a	set	of	main
headers	and	a	main	body	portion,	like	all	messages.	Within	the	main	body	are	one	or	more	body	parts,
each	of	which	has	its	own	body-part-specific	headers	followed	by	the	body	part	itself;	each	body	part	is
shown	in	a	black	box.	The	Content-Type	header	of	the	message	as	a	whole	indicates	that	the	message
type	is	multipart,	and	the	boundary	parameter	specifies	the	name	of	the	delimiter,	in	this	case	just	called
"Delimiter."	This	delimiter	is	used	to	separate	the	body	parts	from	each	other	and	from	the	preamble	and

epilogue	that	begin	and	end	the	message	body,	respectively.

In	this	example,	Joe	is	sending	Jane	a	multipart	message	containing	a	JPEG
photograph	and	some	explanatory	text.	The	main	header	of	the	message	specifies
the	multipart/mixed	type	and	a	boundary	string	of	exampledelimtext123.
The	message	begins	with	the	preamble,	which	is	ignored	by	the	recipient	email
client	but	can	be	seen	by	the	human	reader.	It	is	common	to	put	a	string	here
such	as	the	one	given	in	this	example.	That	way,	if	a	person	using	a	client	that
does	not	support	MIME	receives	the	message,	the	recipient	will	know	what	it	is.

The	first	delimiter	string	is	then	placed	in	the	message,	followed	by	the	first
body	part,	the	text	Joe	is	sending	Jane.	This	is	preceded	by	whatever	headers	are



needed	by	the	body	part,	in	this	case	Content-Type: text/plain.	(Note,
however,	that	this	is	the	default	in	MIME,	so	it	could	be	omitted	here.)	After	the
text	message	is	another	delimiter,	and	then	the	encoded	JPEG	photo	in	the
second	body	part,	with	its	own	headers.	Finally,	there	is	one	more	delimiter,	and
then	a	space	for	the	epilogue.	This	is	ignored	if	present	and	is	often	not	used	at
all.

It	is	possible	to	send	a	multipart	message	that	has	only	a	single	body	part.	This	is
sometimes	done	to	take	advantage	of	the	preamble	area	to	provide	information
about	how	to	decode	a	nontext	media	type.	Of	course,	this	can	also	be	done	by
including	such	text	decoding	instructions	as	a	body	part.

MIME	Encapsulated	Message	Type
The	other	composite	media	type	is	the	message	type,	which	is	devoted	to	the
special	purpose	of	encapsulating	existing	email	messages	within	the	body	of	a
new	message,	or	encapsulating	other	types	of	messages.	This	may	be	another
email	message	previously	sent	or	a	message	of	some	other	kind.	This	media	type
also	provides	flexibility	for	sending	partial	messages	and	other	special	types	of
communication.	Table	76-10	shows	the	three	subtypes	defined	in	RFC	2046.

Table	76-10.	Common	MIME	message	Media	Type	Subtypes

Type/Subtype Description Defining
Source

message/rfc822 Indicates	that	the	body	contains	an	encapsulated	email,	itself
formatted	according	to	the	RFC	822	standard.	Note	that	this
doesn't	necessarily	mean	it	is	a	plain	text	email	message;	it
could	be	a	MIME	message	(though	encapsulating	MIME
within	MIME	must	be	done	carefully).

RFC
2046

message/partial Allows	the	fragmentation	of	larger	messages	into	pieces	that
can	later	be	reassembled.

RFC
2046

message/external-
body

Indicates	that	the	body	of	the	message	is	not	actually
contained	in	the	message	itself;	instead,	a	reference	is
provided	to	where	the	body	is	located.	Sufficient	information
to	locate	the	real	message	body	must	be	provided.

RFC
2046



MIME	Content-Transfer-Encoding	Header	and
Encoding	Methods
One	of	the	main	reasons	why	MIME	was	created	was	the	significant	restrictions
that	the	RFC	822	standard	places	on	how	data	in	email	messages	must	be
formatted.	To	follow	the	rules,	messages	must	be	encoded	in	US-ASCII,	a	7-bit
data	representation.	This	means	that	even	though	each	byte	can	theoretically
have	any	of	256	values,	in	ASCII	only	128	values	are	valid.	Furthermore,	lines
can	be	no	longer	than	1,000	characters	including	the	carriage	return	and	line	feed
(CRLF)	characters	at	the	end,	and	those	two	characters	cannot	appear	elsewhere.

For	some	types	of	data,	such	as	text	files,	this	is	no	big	deal;	but	for	others	it	is	a
serious	problem.	This	is	especially	the	case	with	binary	data.	If	you	look	at	the
data	in	a	video	clip,	MP3	file,	or	executable	program,	it	will	appear	to	be	random
gibberish.	In	fact,	such	data	is	not	random;	it	is	represented	using	specific	rules,
but	the	data	is	expressed	in	raw	binary	form,	where	any	8-bit	byte	can	contain
any	value	from	0	to	255,	which	is	why	it	looks	like	junk	to	humans.	More
important,	this	means	that	this	data	does	not	follow	the	rules	for	RFC	822	files
and	cannot	be	sent	directly	in	this	form.

To	send	non-ASCII	data	in	MIME,	it	must	be	encoded.	The	Content-Transfer-
Encoding	header	is	used	to	specify	how	a	MIME	message	or	body	part	has	been
encoded,	so	that	it	can	be	decoded	by	its	recipient.	Four	types	of	encoding	are
defined:	7bit, 8bit/binary, quoted-printable,	and	base64.	The	quoted-
printable	and	base64	encodings	are	the	most	interesting	ones,	because	they	are
what	allow	non-RFC-822	data	to	be	sent	using	RFC	822.

TIP

KEY	CONCEPT	MIME	supports	four	encoding	methods:	7bit,	8bit	(binary),	quoted-printable,
and	base64.	7bit	encoding	is	standard	ASCII	and	is	used	for	text.	quoted-printable	encoding	is	for
output	that	is	mostly	text	but	has	some	special	characters	that	must	be	encoded.	base64	is	used	for
arbitrary	binary	files.	The	8-bit	encoding	method	is	defined	in	MIME	but	not	used	for	RFC	822
messages.

7-Bit	and	8-Bit	Encoding
7bit	encoding	indicates	that	the	message	is	already	in	ASCII	form	compatible



with	RFC	822.	It	is	the	default	and	is	what	is	assumed	if	no	Content-Transfer-
Encoding	header	is	present.

The	8bit	and	binary	values	are	synonymous.	They	mean	the	message	has	been
encoded	directly	in	8-bit	binary	form.	Yes,	I	did	just	say	that	this	would	violate
the	rules	of	RFC	822.	These	options	appear	to	have	been	included	to	support
future	mechanisms	for	transporting	binary	data	directly.	RFC	1652	describes	an
SMTP	extension	that	discusses	this	in	part:	"SMTP	Service	Extension	for	8bit-
MIMEtransport"	(there	is	no	space	between	MIME	and	transport).	However,	the
standard	clearly	states	that	this	still	does	not	allow	the	transfer	of	raw	binary	data
using	SMTP	and	RFC	822.

Quoted-Printable	Encoding
Quotable-printable	encoding	is	a	special	type	that	is	used	when	most	of	the	data
is	ASCII	text,	but	it	contains	certain	violations	of	the	rules	of	RFC	822.	These
illegal	sections	are	converted	using	special	encoding	rules	so	the	data	as	a	whole
is	consistent	with	RFC	822;	only	the	problem	bytes	are	encoded.	The	result	is
that	RFC	822	compatibility	is	achieved	while	maintaining	most	of	the	data	as
regular	text	so	it	can	still	be	easily	understood	by	a	human.

An	example	would	be	letters	with	tildes	or	accents,	such	as	those	used	in	French
or	Spanish.	Another	would	be	a	text	message	formed	using	an	editor	that	inserts
carriage	return	characters	in	the	middle	of	a	line.	Most	of	the	message	is	still
text.	The	quoted-printable	encoding	can	be	used	here,	with	the	carriage	return
characters	represented	as	=0D	(the	hexadecimal	value	of	the	character	prepended
by	an	equal	sign).	RFC	2046	contains	more	details	on	how	this	is	done.

Base64	Encoding
In	contrast,	base64	encoding	is	more	often	used	for	raw	binary	data	that	is	not	in
human-readable	form	anyway,	such	as	graphical	image,	audio,	video,	and
application	files.	This	encoding	is	used	to	allow	arbitrary	binary	data	to	be
represented	in	ASCII	form.	The	data	is	then	sent	as	ASCII	and	decoded	back
into	binary	form	by	the	recipient.	The	idea	behind	this	type	of	encoding	is
simple:	The	data	that	needs	to	be	sent	can	have	any	value	for	each	8-bit	byte,
which	is	not	allowed.	So	why	not	rearrange	the	bits	so	the	data	fits	into	the	7-bit



ASCII	limits	of	RFC	822?

This	is	done	by	processing	the	data	to	be	sent	three	bytes	at	a	time.	There	are	24
bits	in	each	three-byte	block,	which	are	carved	into	four	sets	of	6	bits	each.	Each
6-bit	group	has	a	value	from	0	to	63	and	is	represented	by	a	single	ASCII
character,	as	presented	in	Table	76-11.

Table	76-11.	MIME	base64	Encoding	Groups

6-Bit
Value

Encoding 6-Bit
Value

Encoding 6-Bit
Value

Encoding 6-Bit
Value

Encoding

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

For	example,	suppose	the	first	three	bytes	of	the	data	to	be	sent	were	the	decimal
values	212,	39,	and	247.	These	cannot	all	be	expressed	in	7-bit	ASCII.	In	binary



values	212,	39,	and	247.	These	cannot	all	be	expressed	in	7-bit	ASCII.	In	binary
form,	they	are	expressed	like	so:

11010100	00100111	11110111

We	can	divide	these	into	four	6-bit	groups:

110101	-	00	0010	-	0111	11	-	110111

Which	yields	the	four	values	53,	2,	31,	and	55.	Thus,	the	values	214,	39,	and	247
would	be	encoded	as	the	three	ASCII	characters	1Cf3.	The	conceptual	steps	of
this	process	are	shown	in	Figure	76-2.

NOTE

The	sequence	of	steps	for	the	encoding	are	intended	to	help	you	understand	the	process.	Computers
inherently	deal	directly	with	bits	and	would	not	bother	with	converting	to	decimal	before	encoding	the	6-
bit	groups	into	ASCII	characters.

Figure	76-2.	MIME	base64	encoding	In	this	simplified	example,	three	binary	data	bytes	are	encoded	as
four	ASCII	characters	using	MIME	base64	encoding.	Instead	of	transmitting	those	three	bytes,	two	of

which	would	not	be	valid	in	RFC	822,	the	four	ASCII	characters	1Cf3	are	sent.

This	3-to-4	encoding	is	done	for	all	the	data.	The	converted	ASCII	characters	are
then	placed	into	the	body	of	the	entity	instead	of	the	raw	binary	data,	76
characters	to	a	line.	I	showed	how	this	is	done	in	the	second	body	part	in	the
example	in	Example	76-1	(except	I	didn't	use	76	characters	per	line,	to	keep	the
line	lengths	short).	One	final	character	is	involved	in	this	scheme,	the	equal	sign
(=),	which	is	used	as	a	padding	character	when	needed.

Since	base64	characters	are	regular	ASCII,	they	appear	to	SMTP	like	a	regular
text	message.	Of	course,	the	data	looks	like	gibberish	to	us,	but	that's	not	a
problem	since	it	will	be	converted	back	to	its	regular	form	and	displayed	to	the
recipient	as	an	image,	movie,	audio,	or	whatever.



TIP

KEY	CONCEPT	MIME	uses	base64	encoding	to	transform	arbitrary	8-bit	files	into	a	form	that	is
acceptable	for	communication	in	email.	Each	set	of	three	8-bit	bytes	is	divided	into	four	6-bit	groups,
and	each	6-bit	group	is	represented	by	an	ASCII	character.	Since	the	data	is	ASCII,	it	conforms	to	the
RFC	822	message	format	standard,	even	if	it	is	not	human-readable.	The	receiving	device	reverses	the
encoding,	changing	each	four-character	block	back	into	three	8-bit	bytes.

The	main	drawback	of	the	base64	method	is	that	it	is	about	33	percent	less
efficient	than	sending	binary	data	directly,	using	a	protocol	like	the	File	Transfer
Protocol	(FTP).	The	reason	is	that	three	8-bit	bytes	of	binary	data	are	sent	as	four
ASCII	characters,	but	of	course,	each	ASCII	character	is	represented	using	8	bits
itself.	So	there	is	one-third	more	overhead	when	using	base64.	In	most	cases,
this	is	not	a	big	deal,	but	it	can	be	significant	if	downloading	very	large	email
files	over	a	slow	Internet	connection.

Note	that	RFC	2046	also	defines	two	other	encodings:	ietf-token	and	x-
token.	These	are	included	to	allow	new	encoding	types	to	be	defined	in	the
future.



MIME	Extension	for	non-ASCII	Mail	Message
Headers
All	of	the	MIME	mechanisms	discussed	up	to	this	point	deal	with	ways	of
encoding	different	kinds	of	ASCII	and	non-ASCII	data	into	the	body	of	an	RFC
822	message.	In	addition	to	these	capabilities,	MIME	also	includes	a	way	in
which	non-ASCII	data	can	be	encoded	into	headers	of	an	RFC	822	message.

At	this	point,	you	might	be	wondering	why	anyone	would	want	to	do	this.	Sure,
it	makes	sense	to	be	able	to	use	MIME	to	encode	binary	data	such	as	an	image
into	an	email,	but	why	do	it	in	a	header?	Well,	if	you	can't	see	the	need	for	this,
chances	are	that	you	are	a	native	English	speaker.	ASCII	does	a	great	job	of
representing	English,	but	isn't	so	good	with	many	other	languages.	With	RFC
822,	speakers	of	languages	that	use	non-ASCII	characters	were	unable	to	use
descriptive	headers	fully,	such	as	the	Subject	and	Comments	headers.	Some
could	not	even	properly	express	their	own	names!

The	solution	to	this	problem	is	the	subject	of	RFC	2047,	the	third	of	the	five
main	MIME	standards.	It	describes	how	to	encode	non-ASCII	text	into	ASCII
RFC	822	message	headers.	The	idea	is	straightforward:	As	with	message	bodies,
the	non-ASCII	text	is	replaced	with	ASCII,	and	information	is	provided	to
describe	how	this	was	done.

With	this	technique,	the	value	of	a	regular	header	is	replaced	by	a	MIME
encoded-word	that	has	the	following	syntax:

=?<charset>?<encoding>?<encoded-text>?=

The	strings	=?	and	?=	are	used	to	bracket	the	non-ASCII	header,	which	flags	it
as	a	MIME	encoded	header	to	the	recipient's	email	client.	The	other	elements,
separated	by	?,	indicate	how	the	non-ASCII	text	is	encoded,	as	follows:

<charset>	The	character	set	used,	such	as	iso-8859-1.

<encoding>	Two	different	encoding	types	are	defined,	each	represented	by	a
single	letter	for	brevity:	B	indicates	base64	encoding,	and	Q	indicates	quoted-
printable	encoding	(these	encoding	types	are	discussed	in	the	previous	section.

<encoded-text>	The	non-ASCII	text	that	has	been	encoded	as	ASCII	using	the



encoding	type	indicated.

As	you	can	see,	this	method	is	analogous	to	how	a	non-ASCII	message	body	or
body	part	would	be	encoded,	but	the	information	about	the	encoding	has	been
condensed	so	everything	can	fit	in	a	single	header	line.	The	<charset>	parameter
is	somewhat	analogous	to	the	Content-Type	header	for	a	message	body,	but
since	headers	can	contain	only	text,	it	specifies	what	kind	of	text	it	is.	The
<encoding>	parameter	is	clearly	equivalent	to	the	Content-Transfer-Encoding
header.

TIP

KEY	CONCEPT	In	addition	to	its	many	functions	for	encoding	a	variety	of	data	in	email	message
bodies,	MIME	provides	a	feature	that	allows	non-ASCII	information	to	be	placed	into	email	headers.
This	is	done	by	encoding	the	data	using	either	quoted-printable	or	base64	encoding,	and	then	using	a
special	format	for	the	header	value	that	specifies	its	encoding	and	character	set.	This	technique	is
especially	useful	for	email	sent	in	languages	that	cannot	be	represented	easily	in	standard	ASCII,	such	as
many	Asian	languages.

Here's	an	example	of	a	non-ASCII	header,	using	the	GB2312	character	set	(for
Chinese	characters)	and	base64	encoding:

Subject: =?GB2312?B?u7bTrbLOvNPDwLn61bm74Q==?=

I	hope	that	doesn't	say	anything	inappropriate;	I	took	it	from	a	piece	of	spam
email	I	received	once!



Chapter	77.	TCP/IP	ELECTRONIC
MAIL	DELIVERY	PROTOCOL:
THE	SIMPLE	MAIL	TRANSFER
PROTOCOL	(SMTP)

I	emphasized	in	my	overall	description	of	TCP/IP	email	that	communication
using	email	requires	the	interaction	of	various	protocols	and	elements.	One
mistake	that	some	people	make	is	to	equate	the	method	used	for	delivering	email
with	the	entire	system.	This	is,	however,	an	understandable	mistake—just	as	the
postal	service	is	only	a	part	of	the	whole	system	of	mailing	a	letter,	it	is
nonetheless	a	very	big	part.	Likewise,	the	delivery	of	email	from	sender	to
recipient	is	arguably	the	most	important	part	of	email	as	a	whole.	In	modern
TCP/IP,	this	task	is	the	responsibility	of	the	Simple	Mail	Transfer	Protocol
(SMTP).

In	this	chapter,	I	describe	in	detail	the	operation	of	SMTP.	I	begin	with	an
overview	and	history	of	the	protocol	and	a	discussion	of	the	standards	that	define
it.	I	then	examine	the	way	that	SMTP	client/server	communication	and	message
transport	work.	I	explain	the	way	that	SMTP	servers	establish	connections	and
transaction	sessions,	and	then	the	process	by	which	mail	is	transferred	from	one
server	to	another.	I	describe	some	of	the	special	features	implemented	in	SMTP
and	discuss	SMTP	security	issues.	I	conclude	with	a	reference	summary	of
SMTP	commands	and	replies.

TIP

BACKGROUND	INFORMATION	My	discussion	of	SMTP	assumes	that	you	already	have	a	basic
understanding	of	the	general	concepts	of	TCP/IP	email,	as	well	as	familiarity	with	TCP/IP	email



addressing	and	message	formatting.	These	topics	are	discussed	in	Chapters	Chapter	74,	Chapter	75,	and
Chapter	76,	respectively.

SMTP	Overview,	History,	and	Standards
The	overview	and	history	of	the	TCP/IP	email	system	in	Chapter	74	describes
how	TCP/IP	evolved	from	its	early	beginnings	to	its	current	form.	Since	the
mechanism	used	to	deliver	email	is	such	a	big	part	of	the	system	as	a	whole,	any
overview	of	the	system	must	of	necessity	discuss	how	delivery	mechanisms	have
changed	as	well.	In	the	case	of	TCP/IP,	the	delivery	of	mail	evolved	through
many	forms	during	the	1970s,	as	developers	sought	to	find	effective	ways	of
communicating	email	messages	between	systems.	Most	of	these	efforts	involved
attempts	to	transmit	mail	using	existing	protocols;	this	makes	sense,	since	it	is
easier	to	adapt	a	technology	than	design	one	from	scratch.

SMTP	Standards
One	important	achievement	in	the	development	of	a	mail	system	was	the
publishing	of	the	Mail	Transfer	Protocol	(MTP),	which	was	first	defined	in	RFC
772	in	September	1980,	and	then	updated	in	RFC	780	in	May	1981.	MTP
describes	a	set	of	commands	and	procedures	by	which	two	devices	can	connect
using	TCP	to	exchange	email	messages.	Its	operation	is	described	largely	using
elements	borrowed	from	two	early	TCP/IP	application	protocols	that	were
already	in	use	at	that	time:	Telnet	and	the	File	Transfer	Protocol	(FTP).	The
commands	of	MTP	are	actually	based	directly	on	those	of	FTP.

Although	there	was	nothing	inherently	wrong	with	basing	email	delivery	on
FTP,	defining	it	this	way	made	MTP	somewhat	of	a	hack.	It	was	also	restricted
to	the	capabilities	defined	by	FTP,	a	general	file	transfer	protocol,	so	it	was	not
possible	to	include	features	in	MTP	that	were	specific	to	sending	and	receiving
mail.	Due	to	the	importance	of	email,	a	specific	protocol	designed	for	the
purpose	of	delivering	email	was	warranted.	SMTP	was	first	defined	in	RFC	788
and	published	in	November	1981.

The	name	suggests	that	SMTP	is	simpler	than	the	protocol	that	it	replaced.
Whether	or	not	this	is	true	is	somewhat	a	matter	of	opinion;	I	do	note	that	RFC
788	is	61	pages	long,	while	the	earlier	RFC	780	was	only	43	pages.	What	SMTP



definitely	has	over	MTP	is	elegance;	the	protocol	is	designed	specifically	for	the
transport	of	email.	While	it	retains	certain	similarities	to	FTP,	it	is	an
independent	protocol	running	over	the	Transmission	Control	Protocol	(TCP).	So,
from	a	conceptual	standpoint,	it	can	be	considered	simpler	than	MTP.	In	terms	of
mechanics,	the	process	SMTP	uses	to	transfer	an	email	message	is	indeed	rather
simple,	especially	compared	to	some	other	protocols.

RFC	788	described	the	operation	of	SMTP	carrying	email	messages
corresponding	to	the	ARPAnet	text	message	standard	as	described	in	RFC	733.
Development	of	both	email	messages	and	SMTP	continued,	and	in	August	1982,
a	milestone	in	TCP/IP	email	was	achieved	when	RFCs	821	and	822	were
published.	RFC	821	revised	SMTP	and	became	the	defining	standard	for	the
protocol	for	the	next	two	decades.	RFC	822,	its	companion	standard,	became	the
standard	for	TCP/IP	email	messages	carried	by	SMTP.

TIP

KEY	CONCEPT	The	most	important	component	of	the	TCP/IP	email	system	is	the	Simple	Mail
Transfer	Protocol	(SMTP).	SMTP	was	derived	from	the	earlier	Mail	Transfer	Protocol	(MTP)	and	is	the
mechanism	used	for	the	delivery	of	mail	between	TCP/IP	systems	and	users.	The	only	part	of	the	email
system	for	which	SMTP	is	not	used	is	the	final	retrieval	step	by	an	email	recipient.

As	the	1980s	progressed,	and	TCP/IP	and	the	Internet	both	grew	in	popularity,
SMTP	gradually	overtook	other	methods	to	become	the	dominant	method	of
email	message	delivery.	For	a	number	of	years,	the	protocol	was	used	mostly	as
is,	with	no	new	RFCs	published	to	define	new	versions	or	formally	change	its
behavior.	This	changed	in	February	1993,	when	RFC	1425,	"SMTP	Service
Extensions,"	was	published.	As	the	name	suggests,	this	standard	describes	a
process	for	adding	new	capabilities	to	extend	how	SMTP	works,	while
maintaining	backward	compatibility	with	existing	systems.	SMTP	with	these
extensions	is	sometimes	called	Extended	SMTP	or	ESMTP	(though	use	of	this
term	seems	not	to	be	entirely	universal).

As	development	of	SMTP	continued,	RFC	1425	was	revised	in	RFC	1651	in
July	1994,	and	then	in	RFC	1869	in	November	1995.	Along	with	these	revisions,
a	number	of	other	RFCs	defining	particular	SMTP	extensions,	such	as	pipelining
and	message	size	declaration,	were	defined.

In	April	2001,	another	major	milestone	in	TCP/IP	email	was	reached	when



In	April	2001,	another	major	milestone	in	TCP/IP	email	was	reached	when
revisions	of	RFC	821	and	RFC	822	were	published,	as	RFCs	2821	and	2822,
respectively.	Both	documents	are	consolidations	of	updates	and	changes	that	had
been	made	to	RFCs	821	and	822	between	1982	and	2001.	And,	no,	I	don't	think
it	is	a	coincidence	that	the	old	and	new	RFC	numbers	are	exactly	2,000	apart.
RFCs	2820	and	2823	were	both	published	in	May	2000,	so	it	looks	like	2821	and
2822	were	reserved	for	the	email	standards.	I	think	this	naming	was	a	great	idea,
as	it	makes	it	clear	that	the	new	RFCs	are	revisions	of	the	old	ones.

RFC	2821	is	the	current	base	standard	for	SMTP.	It	incorporates	the	base
protocol	description	from	RFC	821	and	the	latest	SMTP	extensions	as	defined	in
RFC	1869.	It	updates	the	description	of	the	email	communication	model	to
reflect	the	realities	of	modern	TCP/IP	networks,	especially	the	email	features
built	into	the	Domain	Name	System	(DNS).	We'll	examine	this	in	more	detail	in
the	next	section.

SMTP	Communication	and	Message	Transport
Methods
The	TCP/IP	email	communication	model	describes	the	way	email	messages	are
conveyed	from	the	sender	to	the	recipient.	In	most	cases,	this	involves	the
sender's	client	machine	sending	the	email	to	its	local	SMTP	server,	which	sends
it	to	the	recipient's	local	SMTP	server,	which	then	sends	it	to	the	recipient's	local
host.	SMTP	handles	the	transport	between	SMTP	servers.	In	fact,	the	overall
email	communication	model	is	largely	described	by	the	RFC	821	and	2821
SMTP	standards.

The	initial	communication	takes	place	between	the	sender's	client	machine	and	a
local	SMTP	server	that	the	sender	is	allowed	to	access.	After	submission	of	the
email	message,	that	SMTP	server	becomes	responsible	for	delivering	the
message	to	the	SMTP	server	responsible	for	the	recipient's	mailbox.

Early	Email	Communication	Using	Relaying
In	the	early	days	of	email,	when	RFC	821	and	its	predecessors	were	first
defined,	the	Internet	was	very	different	from	what	it	is	today.	There	was	no
DNS,	and	this	made	email	delivery	complex,	because	there	was	no	way	to	map	a
mailbox	address	to	the	IP	address	of	the	SMTP	server	that	managed	that



mailbox.	Also,	many	proprietary	networks	were	connected	to	the	Internet,	which
meant	that	it	was	not	always	possible	for	any	particular	system	to	communicate
with	any	other.

Given	this,	how	could	email	be	delivered?	The	most	common	way	in	the	early
days	of	SMTP	was	through	a	process	called	relaying.	SMTP	routing	information
was	included	along	with	the	email	address,	to	specify	a	sequence	of	SMTP
servers	that	the	mail	should	be	relayed	through	to	get	to	its	destination.	For
example,	if	a	sender	using	SMTP	Server	A	wanted	to	send	email	to	someone
whose	mailbox	was	on	SMTP	Server	Z,	the	sender	might	have	needed	to	specify
that	the	mail	be	sent	through	intermediate	SMTP	Servers	D,	P,	and	U	to	get
there.	An	SMTP	connection	would	be	established	from	Server	A	to	Server	D	to
send	the	message	on	one	leg	of	its	journey;	then	it	would	go	from	Server	D	to	P,
Server	P	to	U,	and	then	Server	U	to	Z.	The	process	is	analogous	to	how	Internet
Protocol	(IP)	routing	works,	but	at	the	application	layer	(actually	using	IP
routing	at	a	lower	level).

You	can	probably	see	the	problems	with	this	quite	easily:	It's	cumbersome,
requires	many	devices	to	handle	the	mail,	results	in	delays	in	communication,
and	requires	the	communication	of	source	routes	between	SMTP	servers.	It	was
certainly	functional,	but	it	was	far	from	ideal.

Modern	Email	Communication	Using	DNS	and	Direct
Delivery
The	creation	of	DNS	radically	changed	how	email	delivery	worked.	DNS
includes	support	for	a	special	mail	exchange	(MX)	record	that	allows	easy
mapping	from	the	domain	name	in	an	email	address	to	the	IP	address	of	the
SMTP	server	that	handles	mail	for	that	domain.	I	explain	this	in	the	description
of	the	regular	email	address	format	in	Chapter	76,	as	well	as	the	section	about
DNS	email	support	in	Chapter	56.

In	the	new	system,	SMTP	communication	is	much	simpler	and	more	direct.	The
sending	SMTP	server	uses	DNS	to	find	the	MX	record	of	the	domain	to	which
the	email	is	addressed.	This	gives	the	sender	the	DNS	name	of	the	recipient's
SMTP	server.	This	is	resolved	to	an	IP	address,	and	a	connection	can	be	made
directly	from	the	sender's	SMTP	server	to	the	recipient's	server	to	deliver	the
email.	While	SMTP	still	supports	relaying,	direct	email	delivery	using	MX



email.	While	SMTP	still	supports	relaying,	direct	email	delivery	using	MX
records	is	faster	and	more	efficient,	and	RFC	2821	makes	clear	that	this	is	now
the	preferred	method.

In	this	new	system,	SMTP	is	generally	used	only	for	two	transfers:	first,	from	the
sender's	client	machine	to	the	sender's	local	SMTP	server,	and	then	from	that
server	to	the	recipient's	local	SMTP	server,	as	shown	in	Figure	74-1	in
Chapter	74.	(A	distinct	mail	access	protocol	or	method	is	used	by	the	recipient
for	the	last	leg	of	the	journey.)	Each	transfer	of	an	email	message	between
SMTP	servers	involves	the	establishment	of	a	TCP	connection,	and	then	the
transfer	of	the	email	headers	and	body	using	the	SMTP	mail	transfer	process.
The	following	sections	describe	in	detail	how	this	occurs.

TIP

KEY	CONCEPT	In	the	early	days	of	SMTP,	mail	was	delivered	using	the	relatively	inefficient	process
of	relaying	from	server	to	server	across	the	internetwork.	Today,	when	an	SMTP	server	has	mail	to
deliver	to	a	user,	it	determines	the	server	that	handles	the	user's	mail	using	the	Domain	Name	System
(DNS)	and	sends	the	mail	directly	to	that	server.

Terminology:	Client/Server	and	Sender/Receiver
The	original	RFC	821	standard	referred	to	the	device	that	initiates	an	SMTP
email	transfer	as	the	sender	and	the	device	that	responds	to	it	as	the	receiver.
These	terms	were	changed	to	client	and	server	in	RFC	2821	to	"reflect	current
industry	terminology."	Strictly	speaking,	this	is	correct,	but	in	some	ways,	the
more	current	terminology	is	significantly	less	clear.

As	I	explained	in	the	general	discussion	of	TCP/IP	client/server	operation	in
Chapter	8,	the	terms	client	and	server	are	used	in	many	different	senses	in
networking,	which	often	leads	to	confusion.	In	common	parlance,	the	computers
that	handle	email	on	the	Internet	are	usually	all	called	SMTP	servers.	This	is
because	they	run	SMTP	server	software	to	provide	SMTP	services	to	client
machines,	such	as	end-user	PCs.	In	addition,	these	devices	are	usually	dedicated
hardware	servers	running	in	network	centers,	typically	managed	by	Internet
service	providers	(ISPs).

However,	the	terms	client	and	server	are	now	used	to	refer	to	the	roles	in	a
particular	SMTP	communication	as	well.	Since	all	SMTP	servers	both	send	and



receive	email,	they	all	act	as	both	clients	and	servers	at	different	times.	An
SMTP	server	that	is	relaying	an	email	will	act	as	both	server	and	client	for	that
message,	receiving	it	as	a	server,	and	then	sending	it	to	the	next	server	as	a
client.	Adding	to	this	potential	confusion	is	the	fact	that	the	initial	stage	in
sending	an	email	is	from	the	sender's	client	machine	to	the	sender's	local	SMTP
server.	Thus,	the	client	role	in	an	SMTP	transaction	may	not	be	an	actual	SMTP
server,	but	the	server	role	will	always	be	a	server.

For	all	of	these	reasons,	the	old	terms	sender	and	receiver	are	still	used	in	places
in	RFC	2821,	where	needed	for	clarity.	I	consider	them	much	more
straightforward	and	use	them	in	the	rest	of	this	chapter.

TIP

KEY	CONCEPT	SMTP	servers	both	send	and	receive	email.	The	device	sending	mail	acts	as	a	client
for	that	transaction,	and	the	one	receiving	it	acts	as	a	server.	To	avoid	confusion,	it	is	easier	to	refer	to
the	device	sending	email	as	the	SMTP	sender	and	the	one	receiving	as	the	SMTP	receiver;	these	terms
were	used	when	SMTP	was	originally	created.



SMTP	Connection	and	Session	Establishment
and	Termination
The	delivery	of	email	using	SMTP	involves	the	regular	exchange	of	email
messages	among	SMTP	servers.	SMTP	servers	are	responsible	for	sending	email
that	users	of	the	server	submit	for	delivery.	They	also	receive	email	intended	for
local	recipients,	or	for	forwarding	or	relaying	to	other	servers.

Overview	of	Connection	Establishment	and
Termination
All	SMTP	communication	is	done	using	TCP.	This	allows	SMTP	servers	to
make	use	of	TCP's	many	features	that	ensure	efficient	and	reliable
communication.	SMTP	servers	generally	must	be	kept	running	and	connected	to
the	Internet	24	hours	a	day,	seven	days	a	week,	to	ensure	that	mail	can	be
delivered	at	any	time.	(This	is	a	big	reason	why	most	end	users	employ	access
protocols	such	as	the	Post	Office	Protocol	to	access	their	received	email	rather
than	running	their	own	SMTP	servers.)	The	server	listens	continuously	on	the
SMTP	server	port,	well-known	port	number	25,	for	any	TCP	connection	requests
from	other	SMTP	servers.

An	SMTP	server	that	wishes	to	send	email	normally	begins	with	a	DNS	lookup
of	the	MX	record	corresponding	to	the	domain	name	of	the	intended	recipient's
email	address	to	get	the	name	of	the	appropriate	SMTP	server.	This	name	is	then
resolved	to	an	IP	address;	for	efficiency,	this	IP	address	is	often	included	as	an
additional	record	in	the	response	to	the	MX	request	to	save	the	sending	server
from	needing	to	perform	two	explicit	DNS	resolutions.

The	SMTP	sender	then	establishes	an	SMTP	session	with	the	SMTP	receiver.
Once	the	session	is	established,	mail	transactions	can	be	performed	to	allow	mail
to	be	sent	between	the	devices.	When	the	SMTP	sender	is	finished	sending	mail,
it	terminates	the	connection.	All	of	these	processes	involve	specific	exchanges	of
commands	and	replies,	which	are	illustrated	in	Figure	77-1.

Let's	take	a	look	at	these	processes	in	more	detail,	starting	with	SMTP	session
establishment.



Connection	Establishment	and	Greeting
Exchange
The	SMTP	sender	begins	by	initiating	a	TCP	connection	to	the	SMTP	receiver.
The	sending	SMTP	server	uses	an	ephemeral	port	number,	since	it	is	playing	the
role	of	the	client	in	the	transaction.	Assuming	that	the	server	is	willing	to	accept
a	connection,	it	will	indicate	that	it	is	ready	to	receive	instructions	from	the	client
by	sending	reply	code	220.	This	is	called	the	greeting	or	service	ready	response.
It	commonly	includes	the	full	domain	name	of	the	server	machine,	the	version	of
the	SMTP	server	software	it	is	running,	and	possibly	other	information.

Now,	it	would	be	rude	for	the	server	acting	as	a	client	to	start	sending	commands
to	the	responding	server	without	saying	hello	first,	wouldn't	it?	So	that's	exactly
what	comes	next:	the	client	says,	"Hello."	In	the	original	SMTP	protocol,	this	is
done	by	issuing	a	HELO	command,	which	includes	the	domain	name	of	the
sending	(client)	SMTP	server	as	a	courtesy.	The	receiving	device	then	responds
back	with	a	return	hello	message	using	an	SMTP	reply	code	250.

For	example,	if	the	SMTP	server	smtp.sendersite.org	was	making	a	connection
to	the	SMTP	server	mail.receiversplace.com,	it	would	say:

HELO smtp.sendersite.org.

After	receiving	this	greeting,	mail.receiversplace.com	would	respond	back	with
a	hello	message	of	its	own,	something	like	this:

250 mail.receiversplace.com Hello smtp.sendersite.org, nice to meet you.

http://mail.receiversplace.com
http://mail.receiversplace.com


Figure	77-1.	SMTP	transaction	session	establishment	and	termination	An	SMTP	session	begins	with	the
SMTP	sender	establishing	a	TCP	connection	to	the	SMTP	receiver.	The	receiver	sends	a	ready	message;
the	sender	sends	a	HELO	or	EHLO	command,	to	which	the	receiver	responds.	Assuming	no	difficulties
are	encountered,	the	session	is	established	and	mail	transactions	take	place.	When	the	sender	is	finished,

it	sends	a	QUIT	command;	the	receiver	responds	with	a	221	reply	and	closes	the	session.

(The	chatty	text	is	of	course	purely	optional;	most	of	the	time,	SMTP
communication	is	between	software	programs,	so	the	pleasantries	are	usually
written	by	programmers	who	have	a	sense	of	humor.)

Connection	Establishment	Using	SMTP
Extensions
The	SMTP	extensions	first	defined	in	RFC	1425,	and	then	in	subsequent
standards	up	to	RFC	2821,	define	an	alternative	hello	message	for	the	client	to
use:	EHLO	(extended	hello).	An	SMTP	sender	supporting	SMTP	extensions
(and	most	do)	uses	EHLO	instead	of	HELO	in	response	to	the	220	greeting.	This
serves	both	to	say	hello	to	the	SMTP	receiver	and	to	tell	it	that	the	sender
supports	SMTP	extensions.

If	the	SMTP	receiver	supports	the	extensions,	it	replies	with	the	usual	250	reply,
as	well	as	a	series	of	extra	250	responses.	Each	of	these	lists	an	EHLO	keyword



that	indicates	a	particular	SMTP	extension	the	receiver	supports.	If	the	receiving
server	doesn't	support	the	extensions,	it	will	reject	the	EHLO	command	with	a
500	reply	code	("syntax	error,	command	not	recognized").	This	tells	the	SMTP
sender	that	it	cannot	use	extensions.	It	will	then	issue	a	conventional	HELO
command,	or	it	will	QUIT	the	connection	if	it	requires	the	SMTP	extension	to	be
present.	(In	practice,	it	is	rare	for	a	server	to	require	the	use	of	SMTP
extensions.)

Here's	the	same	example	used	earlier,	but	using	EHLO.	The	sender	says:
EHLO smtp.sendersite.org.

Assuming	mail.receiversplace.com	supports	the	SMTP	extensions,	a	typical
reply	might	look	like	this:

250-mail.receiversplace.com Hello smtp.sendersite.org, nice to meet you.
250-SIZE
250-DSN
250 PIPELINING

Each	of	these	additional	replies	identifies	a	particular	SMTP	extension	supported
by	mail.receiversplace.com;	in	this	case,	message	size	declaration	(SIZE),
delivery	status	notification	(DSN),	and	command	pipelining.	(The	dashes	after
the	250	indicate	a	multiple-line	response	to	a	command;	this	is	discussed	in	the
"SMTP	Multiple-Line	Text	Replies"	section	later	in	the	chapter.)

Once	the	HELO	or	EHLO	command	has	been	sent	and	the	receiving	device	has
responded,	the	session	is	initiated.	Further	commands	can	be	sent	by	the	sending
SMTP	server	to	the	responding	server.	These	usually	take	the	form	of	email
message	transfer	transactions	using	the	process	described	in	the	upcoming
"SMTP	Mail	Transaction	Process"	section,	and	other	command/reply	exchanges
as	needed.

Connection	Termination
When	the	sending	device	is	finished	sending	all	the	email	it	has	to	transfer	to	the
receiving	device,	and	it	has	completed	all	its	other	activities,	it	terminates	the
session	by	issuing	the	QUIT	command.	This	normally	results	in	a	221	"goodbye"
message	from	the	SMTP	receiver,	which	says	something	like	"closing
transmission	channel."	The	TCP	connection	is	then	terminated.

http://mail.receiversplace.com
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TIP

KEY	CONCEPT	An	SMTP	session	consists	of	three	basic	phases.	The	session	is	first	established
through	the	creation	of	a	TCP	connection	and	the	exchange	of	identity	information	between	the	SMTP
sender	and	receiver	using	the	HELO	command.	Once	established,	mail	transactions	can	be	performed.
When	the	SMTP	sender	is	finished	with	the	session,	it	terminates	it	using	the	QUIT	command.	If	SMTP
extensions	are	supported,	the	SMTP	sender	uses	the	EHLO	(extended	hello)	command	instead	of	HELO,
and	the	SMTP	receiver	replies	with	a	list	of	extensions	it	will	allow	the	SMTP	sender	to	use.

A	server	may	also	terminate	prematurely	in	special	cases.	If	it	is	given	a	local
command	to	shut	down	(for	example,	due	to	imminent	rebooting	of	the	hardware
server	on	which	it	is	running),	it	may	respond	to	any	routine	command	with	a
421	response	("Service	not	available,	closing	transmission	channel").	A	server	is
not	supposed	to	terminate	a	session	simply	due	to	receipt	of	an	invalid
command,	however;	this	should	happen	only	in	special	cases	where	session
termination	cannot	be	avoided.



SMTP	Mail	Transaction	Process
As	described	in	the	previous	section,	the	delivery	of	an	email	message	begins
with	the	establishment	of	an	SMTP	session	between	the	devices	sending	and
receiving	the	message.	The	SMTP	sender	initiates	a	TCP	connection	to	the
SMTP	receiver	and	then	sends	a	HELO	or	an	EHLO	command,	to	which	the
receiver	responds.	Assuming	no	problems	ensue,	the	session	is	then	established
and	ready	for	actual	email	message	transactions.

Overview	of	SMTP	Mail	Transaction
The	SMTP	mail	transaction	process	itself	consists	of	three	steps:

Transaction	Initiation	and	Sender	Identification	The	SMTP	sender	tells
the	SMTP	receiver	that	it	wants	to	start	sending	a	message	and	gives	the
receiver	the	email	address	of	the	message's	originator.

Recipient	Identification	The	sender	tells	the	receiver	the	email	address(es)
of	the	intended	recipients	of	the	message.

Mail	Transfer	The	sender	transfers	the	email	message	to	the	receiver.	This	is
a	complete	email	message	meeting	the	RFC	822	specification	(which	may	be
in	MIME	format	as	well).

That's	it!	So	you	can	see	that	the	word	Simple	in	Simple	Mail	Transfer	Protocol
definitely	has	at	least	some	merit.	In	fact,	one	question	that	sometimes	comes	up
when	examining	SMTP	is	"Why	couldn't	this	process	be	even	simpler?"	The	first
two	steps	identify	the	sender	of	the	email	and	the	intended	recipient(s).	But	all	of
this	information	is	already	contained	in	headers	in	the	message	itself.	Why
doesn't	SMTP	just	read	that	information	from	the	message,	which	would	make
the	mail	transaction	a	one-step	process?

The	explanation	isn't	specifically	addressed	in	the	SMTP	standards,	but	I	believe
there	are	several	reasons	for	this:

Specifying	the	sender	and	recipients	separately	is	more	efficient,	as	it	gives
the	SMTP	receiver	the	information	it	needs	up	front	before	the	message	itself
is	transmitted.	In	fact,	the	SMTP	receiver	can	decide	whether	or	not	to	accept
the	message	based	on	the	source	and	destination	email	addresses.



Having	this	information	specified	separately	gives	greater	control	on	how
email	is	distributed.	For	example,	an	email	message	may	be	addressed	to	two
recipients,	but	they	may	be	on	totally	different	systems;	the	SMTP	sender
might	wish	to	deliver	the	mail	using	two	separate	SMTP	sessions	to	two
different	SMTP	receivers.

In	a	similar	vein,	there	is	the	matter	of	delivering	blind	carbon	copies.
Someone	who	is	BCC'ed	a	message	must	receive	it	without	being	mentioned
in	the	message	itself.

Having	this	information	separate	makes	implementing	security	on	SMTP
much	easier.

For	these	reasons,	SMTP	draws	a	distinction	between	the	message	itself,	which
it	calls	the	content,	and	the	sender	and	recipient	identification,	which	it	calls	the
envelope.	This	is	consistent	with	our	running	analogy	between	regular	mail	and
email.	Just	as	the	postal	service	delivers	a	piece	of	mail	using	only	the
information	written	on	the	envelope,	SMTP	delivers	email	using	the	envelope
information,	not	the	content	of	the	message.	It's	not	quite	the	case	that	the	SMTP
server	doesn't	look	at	the	message	itself,	just	that	this	is	not	the	information	it
uses	to	manage	delivery.

NOTE

It	is	possible	for	the	sender	of	a	message	to	generate	envelope	information	based	on	the	contents	of	the
message,	but	this	is	somewhat	external	to	SMTP	itself.	It	is	described	in	the	standard,	but	caution	is
urged	in	exactly	how	this	is	implemented.

SMTP	Mail	Transaction	Details
Let's	take	a	more	detailed	look	at	the	SMTP	mail	transaction	process,	using	as
aids	the	process	diagram	in	Figure	77-2	and	the	sample	transaction	of
Example	77-1	(which	has	commands	highlighted	in	bold	and	replies	in	italics).

Example	77-1.	Example	of	an	SMTP	mail	transaction
MAIL FROM:<joe@someplace.org>
250 <joe@someplace.org> . . . Sender ok
RCPT TO:<jane@somewhereelse.com>
250 <jane@somewhereelse.com> . . . Recipient ok
DATA
354 Enter mail, end with "." on a line by itself



From: Joe Sender <joe@someplace.org>
To: Jane Receiver <jane@somewhereelse.com>
Date: Sun, 1 Jun 2003 14:17:31 --0800
Subject: Lunch tomorrow

Hey Jane,

It's my turn for lunch tomorrow. I was thinking we could
[rest of message]
Hope you are free. Send me a reply back when you get a chance.
Joe.
.
250 OK

Figure	77-2.	SMTP	mail	transaction	process	Once	an	SMTP	session	is	established	between	a	sender	and
receiver,	each	mail	transaction	consists	of	a	set	of	three	command/reply	sequences.	The	sender	is	first

identified	using	the	MAIL	command	and	the	recipients	are	specified	using	one	or	more	RCPT
commands.	The	actual	mail	message	is	then	transferred	using	the	DATA	command,	which	involves	a
preliminary	reply	before	the	actual	message	is	sent	and	a	completion	reply	when	it	has	been	fully

received.

The	first	two	steps	in	the	mail	transaction	are	responsible	for	providing	the
receiving	SMTP	server	with	the	envelope	information	just	discussed.	The
transaction	begins	by	the	SMTP	sender	issuing	a	MAIL	command.	This	serves	to
inform	the	receiver	that	a	new	transaction	is	commencing	and	also	to	tell	it	the
from	information	on	the	envelope.	Here's	an	example:



MAIL FROM:<joe@someplace.org>

The	email	address	of	the	originator	is	always	enclosed	in	angle	brackets	(<	and
>).	The	SMTP	receiver	acknowledges	the	command	with	a	250	("OK")	reply
message,	sometimes	sending	back	the	address	as	a	confirmation.	Here's	an
example:

250 <joe@someplace.org> . . . Sender ok

Next,	the	SMTP	sender	uses	RCPT	commands	to	specify	the	intended	recipients
of	the	email	that	is	being	sent.	Each	RCPT	line	can	contain	only	one	recipient,	so
if	multiple	recipients	are	indicated,	two	or	more	RCPT	commands	must	be
issued.	Each	one	normally	specifies	an	email	address,	but	if	relaying	is	being
used,	the	command	may	contain	routing	information	as	well.	(As	described
earlier	in	the	"SMTP	Communication	and	Message	Transport	Methods"	section,
this	is	not	as	commonly	done	as	it	was	in	the	past.)	Here's	an	example:

RCPT TO:<jane@somewhereelse.com>

Assuming	the	server	accepts	the	email,	it	will	give	a	250	"OK"	reply	again,	like
so:

250 <jane@somewhereelse.com> . . . Recipient ok

The	SMTP	sender	then	issues	the	DATA	command,	which	tells	the	SMTP
receiver	that	the	message	is	coming:

DATA

The	SMTP	receiver	responds	with	a	354	"intermediate"	reply	message,	such	as
this:

354 Enter mail, end with "." on a line by itself

The	SMTP	sender	then	sends	the	email	message,	one	line	at	a	time,	with	a	single
dot	(.)	on	a	line	to	terminate	it.	The	server	confirms	the	receipt	of	the	message
with	another	250	"OK"	reply,	and	the	transaction	is	finished.

TIP

KEY	CONCEPT	After	an	SMTP	session	is	established,	email	messages	are	sent	using	the	SMTP	mail
transaction	process.	The	SMTP	sender	starts	the	transaction	by	identifying	the	sender	of	the	email	and
then	specifying	one	or	more	recipients.	The	email	message	itself	is	then	transmitted	to	the	SMTP
receiver.	Each	email	to	be	sent	is	a	separate	transaction.

While	this	indeed	is	quite	simple,	notice	that	I	have	shown	an	email	transfer



While	this	indeed	is	quite	simple,	notice	that	I	have	shown	an	email	transfer
from	a	sender	to	one	recipient,	one	in	which	there	were	no	problems	or
complications	in	the	transaction.	Due	either	to	command	syntax	or	server	issues,
it	is	possible	for	various	types	of	errors	to	occur	at	different	stages	of	the
process,	which	may	result	in	the	transaction	failing.	As	you'll	see	shortly,
security	concerns	may	come	also	into	play,	leading	to	restrictions	in	what
transactions	a	server	may	allow.



SMTP	Special	Features,	Capabilities,	and
Extensions
The	primary	job	of	the	SMTP	is	to	implement	the	TCP/IP	email	delivery	system.
Whenever	the	user	of	an	SMTP	server	gives	it	an	email	message	addressed	to	a
remote	mailbox,	the	server	will	attempt	to	transfer	it	to	the	appropriate
destination	server,	using	the	SMTP	mail	transaction	process.	Many	billions	of
such	transfers	are	performed	every	day	on	the	Internet,	allowing	email	to	reach
its	destination	quickly	anywhere	around	the	world.

SMTP	Special	Features	and	Capabilities
In	addition	to	this	basic	transfer	mechanism,	SMTP	includes	a	number	of	other
features	and	capabilities.	These	allow	SMTP	to	support	special	requirements	and
auxiliary	needs	of	the	mail	system,	as	described	in	detail	in	RFC	2821.	It	would
take	many	pages	to	describe	them	all	in	detail,	so	I	will	provide	a	quick	summary
of	the	more	important	ones	here	so	you	know	a	bit	about	them.

The	following	are	some	of	SMTP's	special	features:

Mail	Relaying	As	discussed	in	the	"SMTP	Communication	and	Message
Transport	Methods"	section	earlier	in	this	chapter,	the	protocol	was	once	widely
used	in	a	relaying	mode,	where	email	was	routed	from	one	SMTP	server	to
another	to	reach	its	destination.	Today,	the	more	efficient,	normal	method	of
email	transfer	on	the	Internet	is	directly	from	the	sender's	SMTP	server	to	the
recipient's	server,	using	DNS	MX	records	to	determine	the	recipient	SMTP
server	address.	SMTP	still	includes	the	ability	to	relay	mail	from	one	server	to
another,	provided	certain	conditions	are	met.	Note	that	many	servers	won't	relay
mail	because	this	feature	has	been	abused	for	spamming	and	malicious	hacking.

Mail	Forwarding	Under	certain	conditions,	an	SMTP	server	may	agree	to
accept	email	for	a	remote	mailbox	and	forward	it	to	the	appropriate	destination.
This	sounds	similar	to	relaying	but	is	used	in	a	different	way.	A	common
example	is	when	users	change	their	email	address.	For	example,	if	you	have
worked	at	XYZ	Industries	for	years	and	then	retire,	the	company	may	no	longer
wish	to	let	you	receive	email	at	the	company's	SMTP	server.	As	a	courtesy,



however,	they	may	forward	email	sent	to	you	there,	so	that	you	receive	it	at	your
new	company.

Mail	Gatewaying	Certain	SMTP	servers	may	be	configured	as	email	gateways.
These	devices	translate	TCP/IP	email	into	a	form	suitable	for	another	email
system,	and	vice	versa.	Gatewaying	is	a	complex	topic	because	email	systems
can	be	so	different.	One	of	the	more	important	problems	is	the	inconsistency	of
addressing	methods	of	different	email	systems.

Address	Debugging	SMTP	includes	a	VRFY	(verify)	command	that	can	be
used	to	check	the	validity	of	an	email	address	without	actually	sending	mail	to	it.

Mailing	List	Expansion	The	SMTP	command	EXPN	(expand)	can	be	used	to
determine	the	individual	email	addresses	associated	with	a	mailing	list.	(Note,
however,	that	this	has	nothing	directly	to	do	with	mailing	list	software	like
Majordomo.)

Turning	The	original	SMTP	included	a	command	that	allows	the	SMTP	sender
and	SMTP	receiver	to	change	roles.	This	could	be	used	to	allow	SMTP	Server	A
to	send	email	to	Server	B,	and	then	have	Server	B	send	email	it	has	queued	for
Server	A	in	the	same	session.	In	practice,	this	capability	was	not	widely	used	for
a	variety	of	reasons,	including	security	considerations.	It	is	now	officially	not
recommended	but	may	still	be	implemented	in	some	SMTP	software.

These	are	just	a	few	of	the	features	that	are	mentioned	in	the	SMTP	standards.	In
addition,	developers	of	a	particular	type	of	SMTP	server	software	may	give	it
other	features	as	well.	The	HELP	command	is	one	way	of	determining	what
commands	are	supported	by	a	particular	SMTP	server.

SMTP	servers	also	must	perform	a	great	deal	of	background	processing	that
doesn't	get	a	great	deal	of	attention.	This	includes	managing	connections,
checking	for	errors	in	commands	and	email	messages,	and	reacting	accordingly.
They	must	also	be	on	the	lookout	for	problem	conditions,	such	as	looping	that
may	result	in	an	email	message	being	passed	back	and	forth	between	two	SMTP
servers,	each	thinking	the	other	is	the	intended	recipient.	In	the	event	of	an	initial
failure	to	deliver	mail,	an	SMTP	server	is	also	required	to	retry	communication
periodically	with	the	destination	device	and	return	a	failure	message	to	the
sender	if	it	cannot	deliver	the	message	after	a	certain	period	of	time.	RFC	2821
contains	more	details.



contains	more	details.

SMTP	Extensions
As	discussed	earlier	in	this	chapter,	during	the	1990s,	many	extensions	to	the
basic	operation	of	SMTP	were	defined.	These	are	enabled	when	two	SMTP
servers	supporting	the	extension	set	up	a	session	using	the	EHLO	command	and
appropriate	extension	response	codes.	Table	77-1	summarizes	some	of	the	more
interesting	SMTP	extensions	that	have	been	defined	and	gives	the	RFC	number
where	each	is	described.	You	can	find	the	full	current	set	of	SMTP	extensions	at
http://www.iana.org/assignments/mail-parameters.

Table	77-1.	SMTP	Extensions

Extension	Keyword Extension Defining
Document

Description

8BITMIME 8-bit	MIME
support

RFC	1652 Theoretically	defines	support	for
the	8-bit	content	transfer
encoding	type	in	MIME,	but
complications	associated	with
this.	See	the	discussion	of
content	encoding	in	Chapter	76
for	details.

AUTH Authorization RFC	2554 Used	to	implement	an
authorization	mechanism	for
servers	requiring	enhanced
security.

DSN Delivery
status
notification

RFC	1891 Allows	an	SMTP	sender	to
request	that	the	SMTP	receiver
notify	it	if	a	problem	occurs	in
delivering	a	message.

ENHANCEDSTATUSCODES Enhanced
status	codes

RFC	2034,
RFC	1893

Extends	the	traditional	three-
digit	SMTP	reply	code	format
with	extra	codes	that	provide
more	information.	See	the
"SMTP	Replies	and	Reply
Codes"	section	later	in	this
chapter	for	more	information.

PIPELINING Command
pipelining

RFC	2920 Allows	multiple	commands	to	be
transmitted	in	batches	from	the

http://www.iana.org/assignments/mail-parameters


pipelining transmitted	in	batches	from	the
SMTP	sender	to	the	receiver,
rather	than	sending	one
command	at	a	time	and	waiting
for	a	response	code.

SIZE Message	size
declaration

RFC	1870 Allows	information	about	the
size	of	a	message	to	be	declared
by	an	SMTP	sender	prior	to
transmitting	it,	so	the	SMTP
receiver	can	decide	if	it	wants
the	message	or	not.

NOTE

Certain	commands	in	the	basic	SMTP	description	that	are	considered	optional	are	also	sometimes
considered	extensions,	such	as	the	EXPN	and	HELP	commands;	I	have	not	listed	these	here,	since	they
are	not	true	SMTP	extensions.



SMTP	Security	Issues
When	it	comes	to	security	and	SMTP,	the	theme	is	a	common	one	in	TCP/IP:	A
lack	of	security	in	how	the	protocol	is	implemented,	because	it	was	developed
when	the	Internet	was	just	a	small	group	of	machines	controlled	by	individuals
who	mostly	knew	and	trusted	each	other	or	who	were	able	to	use	physical
security.	Developers	never	imagined	TCP/IP	being	used	by	millions	of
anonymous	average	Joes	around	the	world,	which	necessitates	far	more	attention
to	security	than	a	small	research	internetwork	like	the	ARPAnet.

With	SMTP,	security	matters	are,	if	anything,	worse	than	they	are	with	some	of
the	other	protocols.	Not	only	does	SMTP	not	have	any	real	security	mechanism,
the	original	relaying	model	of	SMTP	communication	is	entirely	designed	around
the	idea	of	cooperation	and	trust	among	servers.	Since	most	SMTP	servers
would	be	asked	to	handle	a	certain	number	of	intermediate	transfers,	each	server
was	required	to	accept	mail	from	any	originator	to	be	delivered	to	any
destination.

The	basic	assumption	in	this	model	is	that	users	of	SMTP	servers	would	all	be
well	behaved	and	not	abuse	the	system	by	flooding	intermediate	servers	with	a
lot	of	mail	to	be	delivered	or	sending	bogus	messages	to	cause	problems.	This	all
changed	as	the	Internet	exploded	in	popularity	in	the	1990s.	Con	artists,
malicious	hackers,	and	disreputable	salespeople	discovered	that	email	could	be
used	for	free	delivery	of	messages	simply	by	submitting	them	to	an	SMTP	server
for	delivery.	The	result	was	overloaded	servers,	primarily	due	to	the	sending	of
large	quantities	of	unwanted	email,	which	Internet	users	commonly	call	spam.

NOTE

The	term	spam,	in	this	context,	has	nothing	directly	to	do	with	the	Hormel	processed	meat	product.	Its
use	in	reference	to	massive	amounts	of	email	comes	from	a	Monty	Python	comedy	sketch	in	which	that
word	is	repeated	in	phrases	over	and	over	again.

It	is	actually	very	easy	to	impersonate	an	SMTP	server.	You	can	use	the	Telnet
Protocol	to	connect	directly	to	an	SMTP	server	on	port	25.	SMTP	commands	are
all	sent	as	text,	and	so	are	SMTP	replies,	so	you	can	have	a	conversation	with	a
server,	and	even	manually	perform	a	mail	transaction.	This	is	useful	for
debugging,	but	it	also	makes	abuse	of	a	wide-open	SMTP	server	trivially	easy.



debugging,	but	it	also	makes	abuse	of	a	wide-open	SMTP	server	trivially	easy.
Since	spammers	often	don't	want	to	be	identified,	they	employ	spoofing
techniques	to	make	it	more	difficult	to	identify	them,	so	resolving	these
problems	is	even	more	difficult.

Despite	this	obvious	dilemma,	efforts	to	implement	a	general	security
mechanism	in	SMTP	have	been	resisted	for	two	main	reasons.	First,	there	is	no
foolproof	way	to	retrofit	a	new	security	mechanism	onto	something	as	widely
used	as	SMTP	without	creating	incompatibilities	between	newer	and	older
systems.	Second,	many	administrators	were	reluctant	to	do	away	completely
with	the	general	notion	of	cooperation	among	sites	that	has	helped	make	the
Internet	so	successful.

Still,	something	had	to	be	done.	The	compromise	was	for	system	administrators
to	tighten	up	their	SMTP	servers	through	the	imposition	of	both	technical	and
policy	changes.	Naturally,	these	vary	from	one	organization	to	another.	Some	of
the	more	common	SMTP	security	provisions	include	the	following:

Checking	the	IP	address	of	a	device	attempting	connection	and	refusing	even
to	start	an	SMTP	session	unless	it	is	in	a	list	of	authorized	client	devices.

Restricting	certain	commands	or	features,	such	as	email	relaying,	to
authorized	users	or	client	servers.	This	is	sometimes	done	by	requiring
authentication	via	the	SMTP	extension	AUTH	before	the	command	will	be
accepted.

Limiting	the	use	of	commands	such	as	EXPN	to	prevent	unauthorized	users
from	determining	the	email	addresses	of	users	on	mailing	lists.

Checking	the	validity	of	envelope	information	before	accepting	a	message	for
delivery.	Some	servers	will	first	verify	that	the	originator's	email	address	is
valid	before	agreeing	to	accept	the	MAIL	command.	Many	will	check	the
recipient's	address	and	refuse	the	message	if	delivery	is	not	to	a	local
mailbox.	Others	use	even	more	advanced	techniques.

Limiting	the	size	of	email	messages	that	may	be	sent	or	the	number	that	may
be	sent	in	a	given	period	of	time.

Logging	all	access	to	the	server	to	keep	records	of	server	use	and	check	for
abuse.

Because	of	all	the	abuse	in	recent	years,	you	will	find	that	most	SMTP	servers



Because	of	all	the	abuse	in	recent	years,	you	will	find	that	most	SMTP	servers
implement	these	or	other	features,	even	though	most	of	those	features	are	not
formally	defined	by	the	SMTP	standards.	Rather,	they	are	enhancements	built
into	individual	SMTP	server	software	packages.

SMTP	was	designed	during	an	era	in	which	Internet	security	was	not	much	of	an
issue;	as	a	result,	the	base	protocol	includes	no	security	mechanism	at	all.	Since
email	is	so	often	abused	today,	most	modern	SMTP	servers	incorporate	one	or
more	security	features	to	avoid	problems.

Some	of	these	measures	can	actually	be	quite	sophisticated.	For	example,	the
SMTP	server	run	by	pair	Networks,	the	great	web-hosting	company	I	have	used
for	years,	uses	POP-before-SMTP	authentication.	This	means	that	before	the
server	will	accept	outgoing	mail	from	the	user	via	SMTP,	the	user	must	first	log
in	to	check	incoming	mail	using	the	Post	Office	Protocol	(POP).	Since	POP
includes	authentication,	a	successful	POP	login	tells	the	server	the	user	is
authorized.	This	"flips	a	switch"	in	the	server	that	allows	the	user	to	access	the
SMTP	service	after	that	login	for	a	limited	period	of	time.	If	this	seems
convoluted,	then	you're	starting	to	get	an	idea	of	the	hassle	that	spammers	and
malicious	hackers	have	created	for	ISPs	today.

It's	also	worth	noting	that	SMTP	does	not	include	any	mechanism	for	encryption
to	ensure	the	privacy	of	email	transmissions.	Users	requiring	security	to	control
who	sees	their	messages	must	use	a	separate	encryption	scheme	to	encode	the
body	of	the	message	prior	to	submission.



SMTP	Commands
Early	TCP/IP	email	mechanisms	were	developed	by	borrowing	techniques	and
elements	from	existing	application	protocols,	especially	Telnet	and	FTP.	SMTP
is	an	independent	protocol,	but	its	heritage	can	still	be	seen	clearly	in	a	few
areas.	One	of	the	more	obvious	of	these	is	in	the	method	by	which	commands
are	issued	by	an	SMTP	sender	and	replies	returned	by	an	SMTP	receiver.

Like	FTP,	all	SMTP	commands	are	sent	as	plain	ASCII	text	over	the	TCP
connection	established	between	the	client	and	server	in	an	SMTP	connection.
These	commands	must	end	with	the	two-character	CRLF	sequence	that	normally
terminates	ASCII	text	as	required	for	the	Telnet	Network	Virtual	Terminal
(NVT;	see	Chapter	87).	In	fact,	you	can	check	the	function	of	an	SMTP	server
and	even	issue	commands	to	it	yourself	simply	by	using	Telnet	to	connect	to	it
on	port	25.

All	SMTP	commands	are	specified	using	a	four-letter	command	code.	Some
commands	also	either	allow	or	require	parameters	to	be	specified.	The	basic
syntax	of	a	command	is

<command-code> <parameters>

When	parameters	are	used,	they	follow	the	command	code	and	are	separated
from	it	by	one	or	more	space	characters.	For	example,	the	HELO	and	EHLO
commands	are	specified	with	the	command	code,	a	space	character,	and	then	the
domain	name	of	the	SMTP	sender,	as	you	saw	earlier	in	the	discussion	of	SMTP
connection	establishment.

Table	77-2	lists	the	commands	currently	used	in	modern	SMTP	in	the	order	they
are	described	in	RFC	2821,	with	a	brief	description	of	each.

Table	77-2.	SMTP	Commands

Command
Code

Command Parameters Description

HELO Hello The	domain	name
of	the	sender

The	conventional	instruction	sent	by	an	SMTP
sender	to	an	SMTP	receiver	to	initiate	the
SMTP	session.

EHLO Extended The	domain	name Sent	by	an	SMTP	sender	that	supports	SMTP



EHLO Extended
Hello

The	domain	name
of	the	sender

Sent	by	an	SMTP	sender	that	supports	SMTP
extensions	to	greet	an	SMTP	receiver	and	ask	it
to	return	a	list	of	SMTP	extensions	the	receiver
supports.	The	domain	name	of	the	sender	is
supplied	as	a	parameter.

MAIL Initiate
Mail
Transaction

Must	include	a
FROM:	parameter
specifying	the
originator	of	the
message,	and	may
contain	other
parameters	as
well

Begins	a	mail	transaction	from	the	sender	to	the
receiver.

RCPT Recipient Must	include	a
TO:	parameter
specifying	the
recipient	mailbox,
and	may	also
incorporate	other
optional
parameters

Specifies	one	recipient	of	the	email	message
being	conveyed	in	the	current	transaction.

DATA Mail
Message
Data

None Tells	the	SMTP	receiver	that	the	SMTP	sender
is	ready	to	transmit	the	email	message.	The
receiver	normally	replies	with	an	intermediate
"go	ahead"	message,	and	the	sender	then
transmits	the	message	one	line	at	a	time,
indicating	the	end	of	the	message	by	a	single
period	on	a	line	by	itself.

RSET Reset None Aborts	a	mail	transaction	in	progress.	This	may
be	used	if	an	error	is	received	upon	issuing	a
MAIL	or	RCPT	command,	if	the	SMTP	sender
cannot	continue	the	transfer	as	a	result.

VRFY Verify Email	address	of
mailbox	to	be
verified

Asks	the	SMTP	receiver	to	verify	the	validity
of	a	mailbox.

EXPN Expand Email	address	of
mailing	list

Requests	that	the	SMTP	server	confirm	that	the
address	specifies	a	mailing	list,	and	return	a	list
of	the	addresses	on	the	list.

HELP Help Optional
command	name

Requests	general	help	information	if	no
parameter	is	supplied;	otherwise,	information
specific	to	the	command	code	supplied.



specific	to	the	command	code	supplied.

NOOP No
Operation

None Does	nothing	except	for	verifying
communication	with	the	SMTP	receiver.

QUIT Quit None Terminates	the	SMTP	session.

Like	FTP	commands,	SMTP	commands	are	not	case-sensitive.

TIP

KEY	CONCEPT	The	SMTP	sender	performs	operations	using	a	set	of	SMTP	commands.	Each
command	is	identifies	using	a	four-letter	code.	Since	SMTP	supports	only	a	limited	number	of	functions,
it	has	a	small	command	set.

The	commands	in	Table	77-2	are	those	most	commonly	used	in	SMTP	today.
Certain	other	commands	were	also	originally	defined	in	RFC	821	but	have	since
become	obsolete.	These	include	the	following:

SEND,	SAML	(Send	and	Mail),	and	SOML	(Send	or	Mail)	RFC	821	defined
a	distinct	mechanism	for	delivering	mail	directly	to	a	user's	terminal	as	opposed
to	a	mailbox,	optionally	in	combination	with	conventional	email	delivery.	These
were	rarely	implemented	and	obsoleted	in	RFC	2821.

TURN	Reverses	the	role	of	the	SMTP	sender	and	receiver	as	described	earlier	in
the	SMTP	special	features	discussion.	This	had	a	number	of	implementation	and
security	issues	and	was	removed	from	the	standard	in	RFC	2821.

Finally,	note	that	certain	SMTP	extensions	make	changes	to	the	basic	SMTP
command	set.	For	example,	the	AUTH	extension	specifies	a	new	command	(also
called	AUTH)	that	specifies	an	authentication	method	the	SMTP	client	wants	to
use.	Other	extensions	define	new	parameters	for	existing	commands.	For
example,	the	SIZE	extension	defines	a	SIZE	parameter	that	can	be	added	to	a
MAIL	command	to	tell	the	SMTP	receiver	the	size	of	the	message	to	be
transferred.



SMTP	Replies	and	Reply	Codes
All	SMTP	protocol	operations	consist	of	the	plain	ASCII	text	SMTP	commands
you	saw	in	Table	77-2,	issued	by	the	sender	to	the	receiver.	The	receiver
analyzes	each	command,	carries	out	the	instruction	requested	by	the	sender	if
possible,	and	then	sends	a	reply	to	the	sender.	The	reply	serves	several	functions:
confirming	command	receipt,	indicating	whether	or	not	the	command	was
accepted,	and	communicating	the	result	of	processing	the	command.

Just	as	SMTP	commands	are	sent	in	a	manner	reminiscent	of	how	FTP	internal
commands	work,	SMTP	replies	are	formatted	and	interpreted	in	a	way	almost
identical	to	that	of	FTP	replies.	As	with	FTP,	the	reply	consists	of	not	just	a
string	of	reply	text,	but	a	combination	of	reply	text	and	a	numerical	reply	code.
And	as	with	FTP,	these	reply	codes	use	three	digits	to	encode	various
information	about	the	reply,	with	each	digit	having	a	particular	significance.	The
reply	code	is	really	the	key	part	of	the	reply,	with	the	reply	text	being	merely
descriptive.

NOTE

The	discussion	of	FTP	reply	codes	in	Chapter	72	contains	a	thorough	explanation	of	the	benefits	of	using
these	structured	numeric	reply	codes.

Reply	Code	Structure	and	Digit	Interpretation
SMTP	reply	codes	can	be	considered	to	be	of	the	form	xyz,	where	x	is	the	first
digit,	y	is	the	second,	and	z	is	the	third.

The	first	reply	code	digit	(x)	indicates	the	success	or	failure	of	the	command	in
general	terms,	whether	a	successful	command	is	complete	or	incomplete,	and
whether	an	unsuccessful	command	should	be	tried	again	or	not.	This	particular
digit	is	interpreted	in	exactly	the	same	way	as	it	is	in	FTP,	as	shown	in	Table	77-
3.

Table	77-3.	SMTP	Reply	Code	Format:	First	Digit	Interpretation

Reply
Code

Meaning Description



Code
Format

1yz Positive
Preliminary
Reply

An	initial	response	indicating	that	the	command	has	been	accepted	and
processing	of	it	is	still	in	progress.	The	SMTP	sender	should	expect
another	reply	before	a	new	command	may	be	sent.	Note	that	while	this
first	digit	type	is	formally	defined	in	the	SMTP	specification	for
completeness,	it	is	not	currently	used	by	any	of	the	SMTP	commands;
that	is,	no	reply	codes	between	100	and	199	exist	in	SMTP.

2yz Positive
Completion
Reply

The	command	has	been	successfully	processed	and	completed.

3yz Positive
Intermediate
Reply

The	command	was	accepted	but	processing	it	has	been	delayed,
pending	receipt	of	additional	information.	For	example,	this	type	of
reply	is	often	made	after	receipt	of	a	DATA	command	to	prompt	the
SMTP	sender	to	send	the	actual	email	message	to	be	transferred.

4yz Transient
Negative
Completion
Reply

The	command	was	not	accepted	and	no	action	was	taken,	but	the	error
is	temporary	and	the	command	may	be	tried	again.	This	is	used	for
errors	that	may	be	a	result	of	temporary	glitches	or	conditions	that	may
change,	such	as	a	resource	on	the	SMTP	server	being	temporarily
busy.

5yz Permanent
Negative
Completion
Reply

The	command	was	not	accepted	and	no	action	was	taken.	Trying	the
same	command	again	is	likely	to	result	in	another	error.	An	example
would	be	sending	an	invalid	command.

The	second	reply	code	digit	(y)	is	used	to	categorize	messages	into	functional
groups.	This	digit	is	used	in	the	same	general	way	as	in	FTP,	but	some	of	the
functional	groups	are	different	in	SMTP,	as	you	can	see	in	Table	77-4.

Table	77-4.	SMTP	Reply	Code	Format:	Second	Digit	Interpretation

Reply	Code
Format

Meaning Description

x0z Syntax Syntax	errors	or	miscellaneous	messages.

x1z Information Replies	to	requests	for	information,	such	as	status	requests.

x2z Connections Replies	related	to	the	connection	between	the	SMTP	sender
and	SMTP	receiver.

x3z Unspecified Not	defined.



x3z Unspecified Not	defined.

x4z Unspecified Not	defined.

x5z Mail
System

Replies	related	to	the	SMTP	mail	service	itself.

The	third	reply	code	digit	(z)	indicates	a	specific	type	of	message	within	each	of
the	functional	groups	described	by	the	second	digit.	The	third	digit	allows	each
functional	group	to	have	ten	different	reply	codes	for	each	reply	type	given	by
the	first	code	digit	(preliminary	success,	transient	failure,	and	so	on).

Again,	as	in	FTP,	these	x,	y,	and	z	digit	meanings	are	combined	to	make	specific
reply	codes.	For	example,	the	reply	code	250	is	a	positive	reply	indicating
command	completion,	related	to	the	mail	system.	It	is	usually	used	to	indicate
that	a	requested	mail	command	was	completed	successfully.

Table	77-5	contains	a	list	of	some	of	the	more	common	SMTP	reply	codes	taken
from	RFC	2821,	in	numerical	order.	For	each,	I	have	shown	the	typical	reply	text
specified	in	the	standard	and	provided	additional	descriptive	information	when
needed.

As	mentioned	earlier,	the	actual	text	string	for	each	reply	code	is
implementation-specific.	While	the	standard	specifies	dry	response	text	such	as
"Requested	action	completed"	for	a	250	message,	some	servers	will	customize
this	code	or	even	give	different	replies	to	different	250	messages,	depending	on
the	context.

Table	77-5.	SMTP	Reply	Codes

Reply
Code

Reply	Text Description

211 System	status	or
system	help	reply.

214 <Help	message…> Used	for	text	sent	in	reply	to	the	HELP	command.

220 <servername>
Service	ready.

Greeting	message	sent	when	TCP	connection	is	first	established
to	an	SMTP	server.

221 <servername>
closing
transmission

Goodbye	message	sent	in	response	to	a	QUIT	message.



transmission
channel.

250 Requested	mail
action	ok,
completed

Indicates	successful	execution	of	a	variety	of	commands.

251 User	not	local;	will
forward	to
<forward-path>

Used	when	the	SMTP	receiver	agrees	to	forward	a	message	to	a
remote	user.

252 Cannot	VRFY	user,
but	will	accept
message	and
attempt	delivery

Indicates	that	a	server	tried	to	verify	an	email	address,	but	was
not	able	to	do	so	completely.	Usually	means	the	address	appears
to	be	valid	but	it	was	not	possible	to	ascertain	this	to	be
positively	true.

354 Start	mail	input;
end	with	<CRLF>.
<CRLF>

Intermediate	reply	to	a	DATA	command.

421 <servername>
Service	not
available,	closing
transmission
channel

Sent	in	response	to	any	command	when	the	SMTP	receiver
prematurely	terminates	the	connection.	A	common	reason	for
this	is	receipt	of	a	local	shutdown	command,	due	to	a	hardware
reboot,	for	example.

450 Requested	mail
action	not	taken:
mailbox
unavailable

Sent	when	a	mailbox	is	busy	due	to	another	process	accessing	it.

451 Requested	action
aborted:	local	error
in	processing

Local	processing	problem	on	the	server.

452 Requested	action
not	taken:
insufficient	system
storage.

Time	to	clean	out	the	server's	hard	disk!

500 Syntax	error,
command
unrecognized

Response	to	a	bad	command	or	one	that	was	too	long.

501 Syntax	error	in
parameters	or
arguments

502 Command	not Command	is	valid	for	SMTP	in	general	but	not	supported	by	this



502 Command	not
implemented

Command	is	valid	for	SMTP	in	general	but	not	supported	by	this
particular	server.

503 Bad	sequence	of
commands

Commands	were	not	sent	in	the	correct	order,	such	as	sending
the	DATA	command	before	the	MAIL	command.

504 Command
parameter	not
implemented.

550 Requested	action
not	taken:	mailbox
unavailable

Generic	response	given	due	to	a	problem	with	a	specified
mailbox.	This	includes	trying	to	send	mail	to	an	invalid	address,
refusal	to	relay	to	a	remote	mailbox,	and	so	forth.

551 User	not	local;
please	try
<forward-path>

Tells	the	SMTP	sender	to	try	a	different	path;	may	be	used	to
support	mailbox	forwarding.

552 Requested	mail
action	aborted:
exceeded	storage
allocation

User's	mailbox	is	full.

553 Requested	action
not	taken:	mailbox
name	not	allowed

Specification	of	an	invalid	mailbox	address.

554 Transaction	failed. General	failure	of	a	transaction.

SMTP	Multiple-Line	Text	Replies
As	in	FTP,	it	is	possible	for	an	SMTP	reply	to	contain	more	than	one	line	of	text.
In	this	case,	each	line	starts	with	the	reply	code,	and	all	lines	but	the	last	have	a
hyphen	between	the	reply	code	and	the	reply	text	to	indicate	that	the	reply
continues.	The	last	line	has	a	space	between	the	reply	code	and	reply	text,	just
like	a	single-line	reply.	See	the	"Connection	Establishment	Using	SMTP
Extensions"	section	earlier	in	this	chapter	for	an	example	of	a	multiple-line
response	to	an	EHLO	command.

Enhanced	Status	Code	Replies
When	the	ENHANCEDSTATUSCODES	SMTP	extension	is	enabled,	this
causes	supplemental	reply	codes	to	be	issued	by	the	SMTP	receiver	in	response
to	each	command.	These	codes	are	similar	in	some	respects	to	the	standard	reply



to	each	command.	These	codes	are	similar	in	some	respects	to	the	standard	reply
codes;	they	also	use	three	digits,	but	the	digits	are	separated	by	periods.	These
enhanced	codes	provide	more	information	about	the	results	of	operations,
especially	errors.

For	example,	if	you	try	to	issue	a	RCPT	command	specifying	a	remote	mailbox
on	a	server	that	does	not	support	this	feature,	it	will	send	back	a	550	reply,	which
is	a	generic	error	meaning	"requested	action	not	taken:	mailbox	unavailable."
When	enhanced	status	codes	are	active,	the	response	will	be	550	5.7.1,	which	is
the	more	specific	message	"delivery	not	authorized,	request	refused."	A	full
description	of	these	enhanced	codes	can	be	found	in	RFC	1893.

TIP

KEY	CONCEPT	Each	time	the	SMTP	sender	issues	a	command,	it	receives	a	reply	from	the	SMTP
receiver.	SMTP	replies	are	similar	to	FTP	replies,	using	both	a	three-digit	reply	code	and	a	descriptive
text	line.	A	special	enhanced	status	codes	SMTP	extension	is	also	defined;	when	enabled,	this	causes	the
SMTP	receiver	to	return	more	detailed	result	information	after	processing	a	command.



Chapter	78.	TCP/IP	ELECTRONIC
MAIL	ACCESS	AND	RETRIEVAL
PROTOCOLS	AND	METHODS

The	Simple	Mail	Transfer	Protocol	(SMTP)	is	responsible	for	most	of	the
process	of	sending	an	electronic	mail	(email)	message	from	the	originator	to	the
recipient.	SMTP's	job	ends	when	the	message	has	been	successfully	deposited
into	the	recipient's	mailbox	on	his	local	SMTP	server.

In	some	cases,	this	mailbox	is	the	end	of	the	message's	travels	through
cyberspace.	More	often,	however,	it	is	only	a	"rest	stop"—the	last	step	of	the
journey	is	for	the	message	to	be	accessed	and	read	by	the	user	to	whom	it	was
sent.	This	may	require	that	it	be	retrieved	from	the	mailbox	and	transferred	to
another	client	machine.	For	a	variety	of	reasons,	SMTP	is	not	used	for	the
process	of	accessing	a	mailbox;	instead,	a	special	set	of	protocols	and	methods	is
designed	specifically	for	email	access	and	retrieval.

In	this	chapter,	I	describe	some	of	the	more	common	techniques	used	for	TCP/IP
email	access	and	retrieval.	I	begin	with	an	overview	of	the	subject	that	describes
in	general	the	different	paradigms	used	for	email	access	and	gives	an	overview
of	the	protocols.

I	then	describe	the	operation	of	the	very	popular	Post	Office	Protocol	(POP),
focusing	on	version	3	(POP3).	I	look	at	the	protocol	in	general	terms,	discussing
its	history,	the	various	versions	of	the	protocol,	and	the	standards	that	define
them.	I	describe	POP3's	general	operation	and	the	communication	between	a
client	and	server,	concentrating	on	the	three	main	states	through	which	the
session	transitions.	I	then	describe	each	of	these	states	in	sequence:	the
Authorization	state,	Transaction	state,	and	Update	state.



Following	this,	I	discuss	the	other	common	mail	access	protocol:	the	Internet
Message	Access	Protocol	(IMAP).	This	includes	a	description	of	its	benefits
compared	to	the	simpler	POP3,	a	discussion	of	its	operation,	and	a	look	at	how
client	and	server	devices	communicate,	showing	how	the	IMAP	session	moves
through	a	series	of	four	states.

Finally,	I	conclude	with	a	discussion	of	two	alternative	methods	of	email	access
and	retrieval.	The	first	I	call	direct	server	access,	which	describes	several	ways
that	mailboxes	are	accessed	without	the	use	of	special	remote-access	protocols
such	as	POP	and	IMAP.	The	second	is	email	access	using	a	web	browser.	This	is
the	newest	email	access	method	and	is	growing	in	popularity	every	year.

TCP/IP	Email	Mailbox	Access	Model,	Method,
and	Protocol	Overview
In	an	ideal	world,	every	device	on	the	Internet	would	run	SMTP	server	software,
and	that	one	protocol	would	be	sufficient	to	implement	the	entire	TCP/IP	email
system.	You	would	compose	email	on	your	machine,	your	SMTP	software
would	send	it	to	a	recipient's	machine,	and	she	would	read	it.

Here	in	the	real	world,	however,	this	is	not	possible	in	general	terms.	An	SMTP
server	must	be	connected	to	the	Internet	and	available	around	the	clock	to
receive	email	sent	at	any	time	by	any	of	the	millions	of	other	computers	in	the
world.	Most	of	us	either	cannot	or	do	not	want	to	run	machines	continuously
connected	to	the	Internet,	nor	do	we	want	to	configure	and	maintain	potentially
complex	SMTP	software.	For	these	reasons,	a	complete	email	exchange
normally	involves	not	two	devices	but	four:	A	message	is	composed	on	the
sender's	client	machine,	and	then	transferred	to	the	sender's	SMTP	server,	then	to
the	recipient's	SMTP	server,	and	finally	to	the	recipient's	machine.

The	communication	between	SMTP	servers	is	done	with	SMTP;	so	is	the	initial
step	of	sending	the	email	from	the	sender's	machine	to	the	sender's	SMTP	server.
However,	SMTP	is	not	used	for	the	last	part	of	the	process,	which	is	accessing
the	recipient's	mailbox.	Instead,	specific	mailbox	access	and	retrieval	protocols
and	methods	were	devised.

Why	not	simply	have	mail	wait	on	the	recipient's	SMTP	server,	and	then	have



the	mail	sent	to	the	recipient	client	device	when	it	comes	online,	using	SMTP?
This	isn't	possible	for	two	main	reasons.	First,	SMTP	was	designed	for	the
specific	purpose	of	transporting	only	email.	Having	it	responsible	for	client
mailbox	access	would	require	adding	more	functionality,	making	it	difficult	to
keep	SMTP	simple.	In	the	same	vein,	SMTP	works	on	a	push	model,	with
transactions	being	initiated	by	the	sender.	It	would	need	changes	to	allow	it	to
respond	to	requests	from	a	client	device	that	is	only	online	intermittently.

The	second	reason	is	probably	more	important,	because	the	current	protocol
configuration	allows	flexibility	in	how	email	is	accessed.	If	we	used	SMTP,	all
we	would	be	able	to	do	is	transfer	email	to	the	recipient's	client	machine.	This
would	be	functional,	but	it	would	greatly	limit	the	capabilities	of	how	email	is
used,	especially,	for	example,	for	users	who	wish	to	access	mail	directly	on	the
server	and	manipulate	it	there.	Also	consider	the	problem	of	people	with	special
requirements,	such	as	those	who	travel	and	may	need	to	access	email	from	a
number	of	different	client	devices.	There	is	thus	an	advantage	to	providing	more
than	one	way	to	access	a	mailbox.

Email	Access	and	Retrieval	Models
RFC	1733,	"Distributed	Electronic	Mail	Models	in	IMAP4,"	describes	three
different	paradigms,	or	models,	for	mail	access	and	retrieval:

Online	Access	Model	We	would	all	be	using	this	mode	of	access	in	my	ideal
world	scenario,	where	every	machine	was	always	connected	to	the	Internet
running	an	SMTP	server.	We	would	have	constant,	direct	online	access	to	our
mailboxes.	In	the	real	world,	this	model	is	still	used	by	some	Internet	users,
especially	those	who	have	UNIX	accounts	or	run	their	own	SMTP	servers.	I	call
this	direct	server	access.

Offline	Access	Model	In	this	paradigm,	a	user	establishes	a	connection	to	a
server	where	his	mailbox	is	located.	The	user	downloads	received	messages	to
the	client	device	and	then	deletes	them	from	the	server	mailbox.	All	reading	and
other	activity	performed	on	the	mail	can	be	done	offline	once	the	mail	has	been
retrieved.

Disconnected	Access	Model	This	is	a	hybrid	of	online	and	offline	access.	The
user	downloads	messages	from	the	server,	so	she	can	read	or	otherwise



manipulate	them	without	requiring	a	continuous	connection	to	the	server.
However,	the	mail	is	not	deleted	from	the	server,	as	in	the	offline	model.	At
some	time	in	the	future,	the	user	connects	back	with	the	server	and	synchronizes
any	changes	made	on	the	local	device	with	the	mailbox	on	the	server.	What	sort
of	changes	can	be	made?	Examples	include	marking	whether	or	not	a	message
has	been	read	to	keep	track	of	read	and	unread	mail,	and	marking	messages	to
which	the	user	has	already	replied.	These	are	important	tools	to	help	those	with
busy	mailboxes	keep	track	of	what	they	need	to	do.

None	of	the	three	models	is	entirely	better	than	the	others.	Each	has	advantages
and	disadvantages,	which	is	why	it	is	good	that	we	have	these	options	rather	than
the	single	SMTP	protocol	for	mail	access.

Direct	server	access	has	the	main	benefits	of	instant	speed	and	universal	access
from	any	location.	As	for	disadvantages,	you	must	be	online	to	read	mail,	and	it
usually	requires	that	you	use	UNIX	email	clients,	which	with	most	people	are
not	familiar.	However,	IMAP	can	also	be	used	for	online	access.

Offline	access	has	the	main	advantages	of	simplicity	and	short	connection	time
requirements;	you	can	easily	connect	to	the	mailbox,	download	messages,	and
then	read	them	locally.	But	that	makes	this	method	somewhat	inflexible	and
poorly	suited	to	access	from	different	machines.	Still,	it	is	currently	the	most
popular	access	method	because	simplicity	is	important;	it	is	best	typified	by
POP.

Disconnected	access	attempts	to	combine	the	advantages	of	offline	and	online
access	without	combining	their	disadvantages,	and	it	does	a	pretty	good	job.	The
advantages	are	significant:	the	ability	to	access	mail	quickly	and	use	it	offline,
while	retaining	and	updating	the	mailbox	on	the	server	to	allow	access	from
different	client	machines.	IMAP	is	popularly	used	for	disconnected	access.	In	the
IMAP	overview	later	in	this	chapter,	I	explore	its	advantages	over	offline	access
as	well	as	its	main	disadvantages,	which	are	complexity	and	far	less	universal
support	than	POP	(though	acceptance	of	IMAP	is	slowly	increasing).

Finally,	in	recent	years,	a	somewhat	new	mailbox	access	method	has	become
popular:	email	access	using	the	World	Wide	Web.	This	technique	allows	a	user
to	access	his	mailbox	from	any	computer	with	an	Internet	connection	and	a	web
browser.	It	is	a	good	example	of	line	blurring,	not	only	between	the	access
models	discussed	here,	but	between	TCP/IP	applications—in	this	case,	the	Web



models	discussed	here,	but	between	TCP/IP	applications—in	this	case,	the	Web
and	email.

TIP

KEY	CONCEPT	For	flexibility,	TCP/IP	uses	a	variety	of	mailbox	access	and	retrieval	protocols	and
methods	to	allow	users	to	read	email.	Three	different	models	describe	how	these	different	methods	work:
the	online	model,	in	which	email	is	accessed	and	read	on	the	server;	the	offline	model,	in	which	mail	is
transferred	to	the	client	device	and	used	there;	and	the	disconnected	model,	in	which	mail	is	retrieved
and	read	offline	but	remains	on	the	server	with	changes	synchronized	for	consistency.



TCP/IP	Post	Office	Protocol	(POP/POP3)
The	overall	communication	model	used	for	TCP/IP	email	provides	many	options
to	an	email	user	for	accessing	her	electronic	mailbox.	The	most	popular	access
method	today	is	the	simple	offline	access	model,	in	which	a	client	device
accesses	a	server,	retrieves	mail,	and	deletes	it	from	the	server.	POP	was
designed	for	quick,	simple,	and	efficient	mail	access;	it	is	used	by	millions	of
people	to	access	billions	of	email	messages	every	day.

POP	Overview,	History,	Versions,	and	Standards
Of	the	three	mailbox	access	paradigms—online,	offline,	and	disconnected—the
offline	model	is	probably	the	least	capable	in	terms	of	features.	And	it	is	also	the
most	popular.	This	may	seem	counterintuitive,	but	it	is	in	fact	a	pattern	that
repeats	itself	over	and	over	in	the	worlds	of	computing	and	networking.	The
reason	is	that	simplicity	and	ease	of	implementation	are	keys	to	the	success	of
any	technology,	and	the	offline	mail	access	model	beats	the	other	two	in	these
areas.

The	history	of	offline	email	access	goes	back	farther	than	one	might	expect—to
the	early	1980s.	Two	decades	ago,	not	everyone	and	his	brother	were	accessing
the	Internet	to	check	email	the	way	we	do	today.	In	fact,	only	a	relatively	small
number	of	machines	were	connected	using	TCP/IP,	and	most	users	of	these
machines	could	access	their	email	on	a	server,	using	the	online	access	model.

However,	even	back	then,	developers	recognized	the	advantages	of	being	able	to
retrieve	email	from	a	server	directly	to	a	client	computer,	rather	than	accessing
the	mailbox	on	the	server	using	Telnet	or	Network	File	System	(NFS).	In	1984,
RFC	918	was	published,	defining	POP.	This	protocol	provided	a	simple	way	for
a	client	computer	to	retrieve	email	from	a	mailbox	on	an	SMTP	server	so	it
could	be	used	locally.

The	emphasis	was	on	simple.	The	RFC	for	this	first	version	of	POP	is	only	five
pages	long,	and	the	standard	it	defined	is	extremely	rudimentary.	It	describes	a
simple	sequence	of	operations	in	which	a	user	provides	a	name	and	password	for
authentication	and	then	downloads	the	entire	contents	of	a	mailbox.	Simple	is
good,	but	simple	has	limits.



RFC	937,	"Post	Office	Protocol	-	Version	2"	was	published	in	February	1985.
POP2	expanded	the	capabilities	of	POP	by	defining	a	much	richer	set	of
commands	and	replies.	This	included	the	ability	to	read	only	certain	messages,
rather	than	dumping	a	whole	mailbox.	Of	course,	this	came	at	the	cost	of	a	slight
increase	in	protocol	complexity,	but	POP2	was	still	quite	simple	as	protocols	go.

These	two	early	versions	of	POP	were	used	in	the	mid-1980s,	but	not	very
widely.	Again,	this	is	simply	because	the	need	for	an	offline	email	access
protocol	was	limited	at	that	time;	most	people	were	not	using	the	Internet	before
the	1990s.

In	1988,	RFC	1081	was	published,	describing	POP3.	By	this	time,	the	personal
computer	(PC)	was	transitioning	from	a	curiosity	to	a	place	of	importance	in	the
worlds	of	computing	and	networking.	POP3	was	based	closely	on	POP2,	but	the
new	version	was	refined	and	enhanced	with	the	idea	of	providing	a	simple	and
efficient	way	for	PCs	and	other	clients	not	normally	connected	to	the	Internet	to
access	and	retrieve	email.

Development	on	POP3	continued	through	the	1990s,	with	several	new	RFCs
published	every	couple	of	years.	RFC	1081	was	made	obsolete	by,	in	turn,	RFCs
1225,	1460,	1725,	and	1939.	Despite	the	large	number	of	revisions,	the	protocol
itself	has	not	changed	a	great	deal	since	1988;	these	RFCs	contain	only	relatively
minor	tweaks	to	the	original	description	of	the	protocol.	RFC	1939	was
published	in	1996,	and	POP3	has	not	been	revised	since	that	time,	though	a	few
subsequent	RFCs	define	optional	extensions	and	additions	to	the	basic	protocol,
such	as	alternative	authentication	mechanisms.

While	POP3	has	been	enhanced	and	refined,	its	developers	have	remained	true	to
the	basic	idea	of	a	very	simple	protocol	for	quick	and	efficient	email	transfer.
POP3	is	a	straightforward	state-based	protocol,	with	a	client	and	server
proceeding	through	three	stages	during	a	session.	A	very	small	number	of
commands	is	defined	to	perform	simple	tasks,	and	even	after	all	its	changes	and
revisions,	the	protocol	has	a	minimum	of	fluff.

For	reasons	that	are	unclear	to	me,	almost	everyone	refers	to	POP	with	its
version	number—that	is,	they	say	POP3	instead	of	POP.	This	is	true	despite
most	people	not	using	version	numbers	with	many	other	protocols,	and	almost
no	one	using	any	other	version	of	POP.	But	it	is	the	convention,	and	I	will	follow



it	in	the	rest	of	this	discussion.

TIP

KEY	CONCEPT	POP	is	currently	the	most	popular	TCP/IP	email	access	and	retrieval	protocol.	It
implements	the	offline	access	model,	allowing	users	to	retrieve	mail	from	their	SMTP	server	and	use	it
on	their	local	client	computers.	It	is	specifically	designed	to	be	a	simple	protocol	and	has	only	a	small
number	of	commands.	The	current	revision	of	POP	is	version	3,	and	the	protocol	is	usually	abbreviated
POP3.

NOTE

Some	implementations	of	POP	attempt	to	implement	the	disconnected	access	model,	with	limited
success.	More	often,	however,	IMAP	is	used	for	this	purpose,	since	it	is	better	suited	to	that	access
model.	See	the	overview	of	IMAP	later	in	this	chapter	for	more	details.

POP3	General	Operation
POP3	is	a	regular	TCP/IP	client/server	protocol.	In	order	to	provide	access	to
mailboxes,	POP3	server	software	must	be	installed	and	continuously	running	on
the	server	on	which	the	mailboxes	are	located.	This	does	not	necessarily	have	to
be	the	same	physical	hardware	device	that	runs	the	SMTP	server	software	that
receives	mail	for	those	boxes—a	mechanism	such	as	NFS	may	be	used	to	allow
both	the	POP3	and	SMTP	servers	to	"see"	mailboxes	locally.	POP3	clients	are
regular	end-user	email	programs	that	make	connections	to	POP3	servers	to	get
mail;	examples	include	Microsoft	Outlook	and	Eudora	Email.

POP3	uses	TCP	for	communication,	to	ensure	the	reliable	transfer	of	commands,
responses,	and	message	data.	POP3	servers	listen	on	well-known	port	number
110	for	incoming	connection	requests	from	POP3	clients.	After	a	TCP
connection	is	established,	the	POP3	session	is	activated.	The	client	sends
commands	to	the	server,	which	replies	with	responses	and/or	email	message
contents.

POP3	commands	are	three	or	four	letters	long	and	are	case-insensitive.	They	are
all	sent	in	plain	ASCII	text	and	terminated	with	a	CRLF	sequence,	just	as	with
FTP	and	SMTP	commands.	POP3	replies	are	also	textual,	but	the	protocol	does
not	use	the	complex	three-digit	reply	code	mechanism	of	FTP	(and	SMTP).	In
fact,	it	defines	only	two	basic	responses:



+OK	A	positive	response,	sent	when	a	command	or	action	is	successful

-ERR	A	negative	response,	sent	to	indicate	that	an	error	has	occurred

These	messages	may	be	accompanied	by	explanatory	text,	especially	in	the	case
of	an	ERR	response,	to	provide	more	information	about	the	nature	of	the	error.

POP3	Session	States
POP3	is	described	in	terms	of	a	finite	state	machine	(FSM),	with	a	session
transitioning	through	three	states	during	the	course	of	its	lifetime,	as	shown	in
Figure	78-1.	(I	describe	the	concepts	behind	using	FSM	as	a	descriptive	tool	in
Chapter	47.)	Fortunately,	unlike	the	FSMs	of	protocols	like	TCP,	this	one	really
is	simple,	because	it	is	linear.	The	session	goes	through	each	state	once	and	only
once,	in	the	following	sequence:

1.	 Authorization	State	The	server	provides	a	greeting	to	the	client	to	indicate
that	it	is	ready	for	commands.	The	client	then	provides	authentication
information	to	allow	access	to	the	user's	mailbox.

2.	 Transaction	State	The	client	is	allowed	to	perform	various	operations	on
the	mailbox.	These	include	listing	and	retrieving	messages	and	marking
retrieved	messages	for	deletion.

3.	 Update	State	When	the	client	is	finished	with	all	of	its	tasks	and	issues	the
QUIT	command,	the	session	enters	this	state	automatically,	where	the
server	actually	deletes	the	messages	marked	for	deletion	in	the	Transaction
state.	The	session	is	then	concluded,	and	the	TCP	connection	between	the
two	is	terminated.



Figure	78-1.	POP3	finite	state	machine	POP	uses	a	finite	state	machine	(FSM)	to	describe	its	operation,
but	it	is	very	simple	because	it	is	linear.	Once	a	TCP	connection	is	established	between	a	POP3	client
and	POP3	server,	the	session	proceeds	through	three	states	in	sequence,	after	which	the	connection	is

terminated.

POP3	is	designed	so	that	only	certain	commands	may	be	sent	in	each	of	these
states.	Here,	I	will	describe	the	activities	that	take	place	in	these	three	states,
including	the	commands	that	are	issued	by	the	client	in	each.

TIP

KEY	CONCEPT	POP3	is	a	client/server	protocol	that	is	described	using	a	simple	linear	sequence	of
states.	A	POP3	session	begins	with	a	POP3	client	making	a	TCP	connection	to	a	POP3	server,	at	which
point	the	session	is	in	the	Authorization	state.	After	successful	authentication,	the	session	moves	to	the
Transaction	state,	where	the	client	can	perform	mail	access	transactions.	When	it	is	finished,	the	client
ends	the	session	and	the	Update	state	is	entered	automatically,	where	cleanup	functions	are	performed
and	the	POP3	session	ended.

POP3	Authorization	State:	User	Authentication	Process
and	Commands
A	session	between	a	POP3	client	and	a	POP3	server	begins	when	the	client
sends	a	TCP	connection	request	to	the	server.	The	connection	is	established
using	the	standard	TCP	three-way	handshake,	and	the	POP3	session	commences.



The	first	of	the	three	states	of	a	POP3	session,	the	Authorization	state,	is
responsible	for	authenticating	the	POP3	client	with	the	server.

When	the	session	first	enters	this	state,	the	server	sends	a	greeting	message	to	the
client.	This	tells	the	client	that	the	connection	is	alive	and	ready	for	the	client	to
send	the	first	command.	An	example	of	such	a	greeting	follows:

+OK POP3 server ready

The	client	is	now	required	to	authenticate	the	user	who	is	trying	to	access	a
mailbox.	This	proves	that	the	user	has	the	right	to	access	the	server	and	identifies
the	user	so	the	server	knows	which	mailbox	is	being	requested.

The	normal	method	of	authorization	in	POP3	is	a	standard	user	name/password
login.	This	is	pretty	much	identical	to	how	a	login	is	performed	in	FTP;	even	the
commands	are	the	same.	First	the	client	issues	a	USER	command	along	with	the
user's	mailbox	name	(his	user	name	or	email	address).	The	server	responds	with
an	intermediate	acknowledgment.	The	client	then	uses	the	PASS	command	to
send	the	user's	password.	Assuming	the	login	is	valid,	the	server	responds	to	the
client	with	an	acknowledgment	that	indicates	successful	authentication.	The
response	will	also	typically	specify	the	number	of	messages	waiting	for	the	user
in	the	mailbox.	This	process	is	illustrated	in	Figure	78-2.

Figure	78-2.	POP3	user	authentication	process	Once	the	TCP	connection	is	established	from	the	client
to	the	server,	the	server	responds	with	a	greeting	message,	and	the	simple	POP3	authentication	process
begins.	The	client	sends	a	user	name	and	password	to	the	server	using	the	USER	and	PASS	commands,
and	the	server	evaluates	the	information	to	determine	whether	or	not	it	will	allow	the	client	access.



Example	78-1	shows	an	example	POP3	authorization,	with	the	client's
commands	in	boldface	and	the	server's	responses	in	italics.

NOTE

Some	servers	may	require	only	the	name	of	the	user	(jane),	while	others	require	the	full	email	address,	as
shown	in	Example	78-1.

Example	78-1.	Example	of	POP3	authorization
+OK POP3 server ready
USER jane@somewhereelse.com
+OK
PASS *******
+OK jane@somewhereelse.com has 3 messages

If	authorization	is	successful,	the	POP3	session	transitions	to	the	Transaction
state,	where	mail-access	commands	can	be	performed.	If	the	user	name	or
password	is	incorrect,	an	error	response	is	given,	and	the	session	cannot	proceed.
The	authorization	may	also	fail	due	to	technical	problems,	such	as	an	inability	by
the	server	to	lock	the	mailbox	(perhaps	due	to	new	mail	arriving	via	SMTP).

Since	user	name/password	authorization	is	considered	by	many	people	to	be
insufficient	for	the	security	needs	of	modern	internetworks,	the	POP3	standard
also	defines	an	alternative	authentication	method	using	the	APOP	command.
This	is	a	more	sophisticated	technique	based	on	the	Message	Digest	5	(MD5)
encryption	algorithm.	If	the	server	supports	this	technique,	in	its	opening
greeting	it	provides	a	string	indicating	a	timestamp	that	is	unique	for	each	POP3
session.	The	client	then	performs	an	MD5	calculation	using	this	timestamp	value
and	a	shared	secret	known	by	the	server	and	client.	The	result	of	this	calculation
is	included	in	the	client's	APOP	command.	If	it	matches	the	server's	calculation,
authentication	is	successful;	otherwise,	the	session	remains	in	the	Authorization
state.

POP	was	also	designed	to	be	extendable	through	the	addition	of	other
authentication	mechanisms.	This	process	is	based	on	the	use	of	the	optional
AUTH	command,	as	described	in	RFC	1734.

TIP

KEY	CONCEPT	A	POP3	session	begins	in	the	Authorization	state,	where	the	client	device	is	expected



to	authenticate	with	the	server.	By	default,	POP3	uses	only	a	simple	user	name/password	authentication
method.	Optional	authentication	methods	are	also	defined	for	applications	requiring	more	security.

POP3	Transaction	State:	Mail	and	Information	Exchange
Process	and	Commands
Once	the	POP3	client	has	successfully	authenticated	the	user	who	is	performing
mailbox	access,	the	session	transitions	from	the	Authorization	state	to	the
Transaction	state.	There's	no	real	mystery	as	to	what	this	phase	of	the	connection
is	all	about:	The	POP3	client	issues	the	commands	that	perform	mailbox	access
and	message	retrieval	transactions.

Most	of	the	commands	defined	in	POP3	are	valid	only	in	the	Transaction	state.
Table	78-1	lists	each	of	them,	in	the	order	in	which	they	appear	in	RFC	1939.

Table	78-1.	POP3	Transaction	Commands

Command
Code

Command Parameters Description

STAT Status None Requests	status	information	for	the	mailbox.	The
server	will	normally	respond,	telling	the	client	the
number	of	messages	in	the	mailbox	and	the	number
of	bytes	of	data	it	contains.	Optionally,	more
information	may	also	be	returned.

LIST List
Messages

Optional
message
number

Lists	information	for	the	messages	in	a	mailbox;
generally	this	means	showing	the	message	number
and	its	size.	If	a	message	number	is	given,	only	that
message's	information	is	provided;	otherwise,	the
full	contents	of	the	mailbox	are	described,	one	line
at	a	time,	with	a	line	containing	just	a	single	period
at	the	end.

RETR Retrieve Message
number

Retrieves	a	particular	message	from	the	mailbox.
The	server	responds	with	a	standard	+OK	message
and	then	immediately	sends	the	message	in	RFC	822
format,	one	line	at	a	time.	A	line	with	a	single
period	is	sent	after	the	last	line.

DELE Delete Message
number

Marks	a	message	as	deleted.	Once	deleted,	any
further	attempt	to	access	a	message	(using	LIST	or
RETR,	for	example)	results	in	an	error.



NOOP No
Operation

None Does	nothing;	the	server	just	returns	an	+OK	reply.

RSET Reset None Resets	the	session	to	the	state	it	was	in	upon	entry	to
the	Transaction	state.	This	includes	undeleting	any
messages	already	marked	for	deletion.

TOP Retrieve
Message
Top

Message
number	and
number	of
lines

Allows	a	client	to	retrieve	only	the	beginning	of	a
message.	The	server	returns	the	headers	of	the
message	and	only	the	first	N	lines,	where	N	is	the
number	of	lines	specified.	This	command	is	optional
and	may	not	be	supported	by	all	servers.

UIDL Unique	ID
Listing

Optional
message
number

If	a	message	number	was	specified,	returns	a	unique
identification	code	for	that	message;	otherwise,
returns	an	identification	code	for	each	message	in
the	mailbox.	This	command	is	optional	and	may	not
be	supported	by	all	servers.

The	Transaction	state	is	relatively	unstructured	in	that	commands	do	not	need	to
be	issued	in	any	particular	order	to	meet	the	requirements	of	the	standard.
However,	there	is	a	natural	progression	to	how	a	mailbox	is	retrieved,	and	that
means	the	commands	are	usually	used	in	the	following	order:

1.	 The	client	issues	a	STAT	command	to	see	the	number	of	messages	in	the
mailbox.

2.	 The	client	issues	a	LIST	command,	and	the	server	tells	it	the	number	of
each	message	to	be	retrieved.

3.	 The	client	issues	a	RETR	command	to	get	the	first	message	and,	if
successful,	marks	it	for	deletion	with	DELE.	The	client	uses	RETR/DELE
for	each	successive	message.

Example	78-2	and	Figure	78-3	show	a	sample	access	sequence	for	a	mailbox
containing	two	messages	that	total	574	bytes;	the	client's	commands	are	in
boldface	and	the	server's	responses	are	in	italics.

Example	78-2.	Example	of	the	POP3	mail	exchange	process
STAT
+OK 2 574
LIST
+OK
1 414
2 160



.
RETR 1
+OK
(Message 1 is sent)
.
DELE 1
+OK message 1 deleted
RETR 2
+OK
(Message 2 is sent)
.
DELE 2
+OK message 2 deleted
QUIT

The	exact	message	sent	in	reply	to	each	command	is	server-dependent;	some	say
+OK,	while	others	provide	more	descriptive	text,	as	I	have	done	here	for	the
responses	to	the	DELE	command.

TIP

KEY	CONCEPT	After	successful	authorization,	the	POP3	session	transitions	to	the	Transaction	state,
where	the	client	actually	accesses	email	messages	on	the	server.	The	client	normally	begins	by	first
retrieving	statistics	about	the	mailbox	from	the	server	and	obtaining	a	list	of	the	messages	in	the	mailbox.
The	client	then	retrieves	each	message	one	at	a	time,	marking	each	retrieved	message	for	deletion	on	the
server.

In	some	cases,	a	POP3	client	may	be	configured	to	not	delete	messages	after
retrieving	them.	This	is	useful,	for	example,	when	Web-based	access	is	being
combined	with	a	conventional	email	client	program.

POP3	Update	State:	Mailbox	Update	and	Session
Termination	Process	and	Commands
Once	the	POP3	client	has	completed	all	the	email	message	access	and	retrieval
transactions	that	it	needs	to	perform,	it	isn't	quite	finished	yet.	The	POP3
standard	defines	a	final	session	state,	the	Update	state,	to	perform	various
housekeeping	functions,	after	which	both	the	POP3	session	and	the	underlying
TCP	connection	are	terminated.

The	transition	from	the	Transaction	state	to	the	Update	state	occurs	when	the
POP3	client	issues	the	QUIT	command.	This	command	has	no	parameters	and
serves	to	tell	the	POP3	server	that	the	client	is	finished	and	wishes	to	end	the
session.	The	POP3	standard	lists	this	command	as	part	of	its	description	of	the
Update	state,	though	it	is	actually	issued	from	the	Transaction	state.



Update	state,	though	it	is	actually	issued	from	the	Transaction	state.

Figure	78-3.	POP3	mail	exchange	process	This	diagram	shows	the	typical	exchange	of	commands	and
replies	employed	by	a	POP3	client	to	retrieve	email	from	a	POP3	server.	The	STAT	command	is	used	to

get	mailbox	statistics,	followed	by	the	LIST	command	to	obtain	a	list	of	message	numbers.	Each
message	in	turn	is	then	retrieved	using	RETR	and	marked	for	deletion	by	DELE.	(Messages	are	not

actually	deleted	until	the	Update	state	is	entered.)

After	the	POP3	server	receives	the	QUIT	command,	it	deletes	any	messages	that
were	previously	marked	for	deletion	by	the	DELE	command	in	the	Transaction
state.	It's	interesting	to	note	that	POP	chose	to	implement	this	two-stage	deletion
process.	The	standard	doesn't	describe	specifically	why	this	was	done,	but	it
seems	likely	that	it	is	a	precaution	to	insure	against	accidental	deletion	and	loss
of	mail.

By	delaying	actual	deletion	until	the	Update	state,	the	server	can	verify	that	it
has	received	and	processed	all	commands	prior	to	the	move	to	the	Update	state.
This	also	allows	the	deletion	of	messages	to	be	undone	if	necessary,	using	the
RSET	command,	if	the	user	changes	her	mind	about	the	deletion	prior	to	exiting



RSET	command,	if	the	user	changes	her	mind	about	the	deletion	prior	to	exiting
the	Transaction	state.	Finally,	if	any	problem	occurs	with	communication
between	the	client	and	server	that	causes	the	TCP	connection	to	be	interrupted
prematurely	before	the	QUIT	command	is	issued,	no	messages	will	be	removed
from	the	mailbox,	giving	the	client	a	second	chance	to	retrieve	them	in	case	they
were	not	received	properly.

Once	the	deleted	messages	have	been	removed,	the	server	returns	an
acknowledgment	to	the	client:	+OK	if	the	update	was	successful,	or	-ERR	if
there	was	a	problem	removing	one	or	more	of	the	deleted	messages.	Assuming
no	problems	occurred,	the	+OK	response	will	also	contain	a	goodbye	message	of
some	sort,	indicating	that	the	session	is	about	to	be	closed.	The	TCP	connection
between	the	client	and	server	is	then	torn	down	and	the	session	is	done.

TIP

KEY	CONCEPT	When	the	POP3	client	is	done	with	its	email	transactions,	it	issues	the	QUIT
command.	This	causes	the	Update	state	to	be	entered	automatically,	where	the	server	performs	necessary
cleanup	operations,	including	deleting	any	messages	marked	for	deletion	in	the	Transaction	state.

A	POP3	mail-retrieval	session	normally	lasts	a	few	seconds	or	minutes,	but	it
can	take	many	minutes	if	the	mailbox	is	large	and	the	connection	between	the
client	and	server	is	slow.	There	is	no	limit	on	how	long	the	client	and	server	can
be	connected,	as	long	as	commands	continue	to	be	sent	by	the	client.	A	POP3
server	will	normally	implement	an	inactivity	timer,	however,	which	is
customizable	but	must	have	a	duration	of	no	less	than	ten	minutes.	If	the
connection	is	idle	for	the	full	duration	of	the	inactivity	timer,	the	server	assumes
that	the	client	has	experienced	some	sort	of	a	problem	and	shuts	down	the
connection.	If	this	occurs,	the	server	does	not	delete	any	messages	marked	for
deletion—again,	this	is	to	give	the	client	another	chance	to	retrieve	those
messages	if	a	problem	occurred	getting	them	the	first	time.



TCP/IP	Internet	Message	Access	Protocol
(IMAP/IMAP4)
The	offline	mailbox	access	model	provides	the	basic	mail	access	functions	that
most	users	need.	Using	the	popular	POP3,	a	user	can	access	her	mailbox	and
retrieve	messages	so	she	can	read	them	on	her	local	machine.	This	model	has	the
advantage	of	simplicity,	but	it	does	not	provide	many	features	that	are
increasingly	in	demand	today,	such	as	keeping	track	of	the	status	of	messages
and	allowing	access	from	many	client	devices	simultaneously.	To	provide	better
control	over	how	mail	is	accessed	and	managed,	we	must	use	either	the	online	or
disconnected	access	models.	IMAP	was	created	to	allow	these	access	models	to
be	used;	it	provides	rich	functionality	and	flexibility	for	the	TCP/IP	email	user.

TIP

RELATED	INFORMATION	The	main	price	that	IMAP	pays	for	having	a	much	richer	set	of
functionality	than	POP	is	much	more	complexity.	In	this	section,	I	have	described	IMAP	in
approximately	the	same	level	of	detail	that	I	did	earlier	for	POP.	Please	see	the	appropriate	RFC
documents	for	the	full	description	of	the	protocol	and	more	discussion	of	some	of	its	nuances,
particularly	the	syntax	of	the	many	commands	and	parameters,	which	would	take	dozens	of	pages	to
cover	fully	here.

IMAP	Overview,	History,	Versions,	and
Standards
POP3	has	become	the	most	popular	protocol	for	accessing	TCP/IP	mailboxes,
not	because	of	its	rich	functionality,	but	in	spite	of	its	lack	of	functionality.	POP
implements	the	offline	mail	access	model,	where	mail	is	retrieved	and	then
deleted	from	the	server	where	the	mailbox	resides,	so	it	can	be	used	on	a	local
machine.	Millions	of	people	use	POP3	every	day	to	access	incoming	mail.
Unfortunately,	due	to	the	way	the	offline	access	model	works,	POP3	cannot	be
used	for	much	else.

The	online	model	is	the	one	we	would	use	in	an	ideal	world,	in	which	we	all
would	be	always	connected	to	the	Internet	all	the	time.	Offline	access	is	a
necessity,	however,	because	most	user	client	machines	are	connected	to	the
Internet	only	periodically.	The	transfer	of	mail	from	the	server	to	a	client



machine	removes	the	requirement	that	we	be	online	to	perform	mail	functions,
but	it	costs	us	the	benefits	of	central	mail	storage	on	the	server.

This	may	seem	counterintuitive:	how	can	it	be	better	to	have	mail	stored	on
some	remote	server	rather	than	on	our	local	computer?	The	main	reason	for	this
is	flexibility	of	access.	One	of	the	biggest	problems	with	offline	access	using
POP3	is	that	mail	is	transferred	permanently	from	a	central	server	to	one	client
machine.	This	is	fine	as	long	as	an	individual	uses	only	that	one	machine,	but
what	if	the	person	has	separate	work	and	home	computers	or	travels	a	great	deal?
And	what	about	a	mailbox	shared	by	many	users?	These	concerns	have	become
more	and	more	important	in	recent	years.

Another	issue	is	data	security	and	safety.	Mail	servers	run	by	Internet	service
providers	(ISPs)	are	usually	located	in	professionally	managed	data	centers.
They	are	carefully	controlled	and	monitored,	and	backups	occur	on	a	routine
basis.	Most	people	do	not	take	this	sort	of	care	with	their	own	PCs	and	Macs,	nor
do	they	back	up	their	data	routinely.	So,	it's	less	likely	that	people	will	lose	mail
that	on	the	server.

Of	course,	we	still	have	the	problem	of	not	wanting	to	force	users	to	be	online	all
the	time	to	access	their	mail.	The	solution	is	the	disconnected	mailbox	access
model,	which	marries	the	benefits	of	online	and	offline	access.	Mail	is	retrieved
for	local	use	as	in	the	offline	model,	so	the	user	does	not	need	to	be	connected	to
the	server	continuously.	However,	changes	made	to	the	mailbox	are
synchronized	between	the	client	and	the	server.	The	mail	remains	on	the	server,
where	it	can	be	accessed	from	a	different	client	in	the	future,	and	the	server	acts
as	a	permanent	home	base	for	the	user's	mail.

Recognizing	these	benefits,	developers	made	some	attempts	to	implement	POP
using	the	disconnected	access	model.	Typically,	this	was	done	by	using	POP
commands	to	retrieve	mail	but	still	leave	it	on	the	server,	which	is	an	option	in
many	client	programs.	This	works,	but	only	to	a	limited	extent;	for	example,
keeping	track	of	which	messages	are	new	or	old	becomes	an	issue	when	they	are
both	retrieved	and	left	on	the	server.	POP	simply	lacks	the	features	required	for
proper	disconnected	access	because	it	was	not	designed	for	it.

In	the	mid-1980s,	development	began	at	Stanford	University	on	a	new	protocol
that	would	provide	a	more	capable	way	of	accessing	user	mailboxes.	The	result



was	the	Interactive	Mail	Access	Protocol,	later	renamed	the	Internet	Message
Access	Protocol	(IMAP).

IMAP	Features
IMAP	was	designed	for	the	specific	purpose	of	providing	flexibility	in	how	users
access	email	messages.	It,	in	fact,	can	operate	in	all	three	of	the	access	modes:
online,	offline,	and	disconnected	access.	Of	these,	the	online	and	disconnected
access	modes	are	of	interest	to	most	users	of	the	protocol;	offline	access	is
similar	to	how	POP	works.

IMAP	allows	a	user	to	do	all	of	the	following:

Access	and	retrieve	mail	from	a	remote	server	so	it	can	be	used	locally	while
retaining	it	on	the	server.

Set	message	flags	so	that	the	user	can	keep	track	of	which	messages	he	has
already	seen,	already	answered,	and	so	on.

Manage	multiple	mailboxes	and	transfer	messages	from	one	mailbox	to
another.	You	can	organize	mail	into	categories,	which	is	useful	for	those
working	on	multiple	projects	or	those	who	are	on	various	mailing	lists.

Determine	information	about	a	message	prior	to	downloading	it,	to	decide
whether	or	not	to	retrieve	it.

Download	only	portions	of	a	message,	such	as	one	body	part	from	a	MIME
multipart	message.	This	can	be	quite	helpful	in	cases	where	large	multimedia
files	are	combined	with	short	text	elements	in	a	single	message.

Manage	documents	other	than	email.	For	example,	IMAP	can	be	used	to
access	Usenet	messages.

Of	course,	there	are	some	disadvantages	to	IMAP,	but	not	many.	One
disadvantage	is	that	it	is	more	complex,	but	it's	really	not	that	complex,	and	the
protocol	has	been	around	for	enough	years	that	this	is	not	a	big	issue.	The	most
important	sticking	point	with	IMAP	is	simply	that	it	is	used	less	commonly	than
POP,	so	providers	that	support	it	are	not	as	easy	to	find	as	those	that	support
POP.	This	is	changing,	however,	as	more	people	discover	IMAP's	benefits.

TIP



KEY	CONCEPT	POP	is	popular	because	of	its	simplicity	and	long	history,	but	it	has	few	features	and
normally	supports	only	the	rather	limited	offline	mail	access	method.	To	provide	more	flexibility	for
users	in	how	they	access,	retrieve,	and	work	with	email	messages,	IMAP	was	developed.	IMAP	is	used
primarily	in	the	online	and	disconnected	access	models.	It	allows	users	to	access	mail	from	many
different	devices,	manage	multiple	mailboxes,	select	only	certain	messages	for	downloading,	and	much
more.	Due	to	its	many	capabilities,	it	is	growing	in	popularity.

IMAP	History	and	Standards
IMAP	has	had	a	rather	interesting	history—interesting	in	the	sense	that	the
normal	orderly	development	process	that	is	used	for	most	TCP/IP	protocols
broke	down.	The	result	wasn't	quite	as	bad	as	the	chaos	that	occurred	in	the
development	of	SNMP	version	2	(see	Chapter	65),	but	it	was	still	unusual.

The	first	version	of	IMAP	formally	documented	as	an	Internet	standard	was
IMAP	version	2	(IMAP2)	in	RFC	1064,	published	in	July	1988.	This	was
updated	in	RFC	1176,	August	1990,	retaining	the	same	version	number.
However,	it	seems	that	some	of	the	people	involved	with	IMAP	were	not	pleased
with	RFC	1176,	so	they	created	a	new	document	defining	version	3	of	IMAP
(IMAP3):	RFC	1203,	published	in	February	1991.	This	is	described	by	its
authors	as	a	"counter	proposal."

For	whatever	reason,	however,	IMAP3	was	never	accepted	by	the	marketplace.
Instead,	people	kept	using	IMAP2	for	a	while.	An	extension	to	the	protocol	was
later	created,	called	IMAP2bis,	which	added	support	for	Multipurpose	Internet
Mail	Extensions	(MIME)	to	IMAP.	This	was	an	important	development	due	to
the	usefulness	of	MIME,	and	many	implementations	of	IMAP2bis	were	created.
Despite	this,	for	some	reason	IMAP2bis	was	never	published	as	an	RFC.	This
may	have	been	due	to	the	problems	associated	with	the	publishing	of	IMAP3.

NOTE

bis	is	a	Latin	word	meaning	again.	It	is	sometimes	used	to	differentiate	changed	technical	documents
from	their	previous	versions	when	no	official	new	version	number	is	allocated.

In	December	1994,	IMAP	version	4	(IMAP4)	was	published	in	two	RFCs:	RFC
1730	describing	the	main	protocol,	and	RFC	1731	describing	authentication
mechanisms	for	IMAP4.	IMAP4	is	the	current	version	of	IMAP	that	is	widely
used	today.	It	continues	to	be	refined;	the	latest	specific	version	is	actually	called



version	4rev1	(IMAP4rev1),	defined	in	RFC	2060,	and	then	most	recently	by
RFC	3501.	Most	people	still	just	call	this	IMAP4,	and	that's	what	I	will	do	in	the
rest	of	this	section.

IMAP	General	Operation
IMAP4	is	a	standard	client/server	protocol	like	POP3	and	most	other	TCP/IP
application	protocols.	For	the	protocol	to	function,	an	IMAP4	server	must	be
operating	on	the	server	where	user	mailboxes	are	located.	Again,	as	with	POP3,
this	does	not	necessarily	need	to	be	the	same	physical	server	that	provides	SMTP
service.	The	mailbox	must	in	some	way	be	made	accessible	to	both	SMTP	for
incoming	mail,	and	to	IMAP4	for	message	retrieval	and	modification.	A
mechanism	for	ensuring	exclusive	access	to	avoid	interference	between	the
various	protocols	is	also	needed.

IMAP4	uses	the	Transmission	Control	Protocol	(TCP)	for	communication.	This
ensures	that	all	commands	and	data	are	sent	reliably	and	received	in	the	correct
order.	IMAP4	servers	listen	on	well-known	port	number	143	for	incoming
connection	requests	from	IMAP4	clients.	After	a	TCP	connection	is	established,
the	IMAP4	session	begins.

IMAP	Session	States
The	session	between	an	IMAP4	client	and	server	is	described	in	the	IMAP
standards	using	an	FSM.	Again,	this	is	similar	to	how	POP3	operates,	except	that
IMAP4	is	a	bit	more	complex.	Its	FSM	defines	four	states	instead	of	three,	and
where	a	POP3	session	is	linear	(going	through	each	state	only	once)	in	IMAP4
the	session	is	not.	However,	the	state	flow	is	still	fairly	straightforward,	mostly
following	a	logical	sequence	from	one	state	to	the	next.	The	IMAP	FSM	is
illustrated	in	Figure	78-4.



Figure	78-4.	IMAP	FSM	The	IMAP	FSM	is	slightly	more	complex	than	that	of	POP	(shown	in
Figure	78-1)	but	it's	still	rather	straightforward.	Once	the	TCP	connection	is	made	between	client	and
server,	the	Not	Authenticated	state	is	entered;	after	successful	authorization,	the	session	moves	to	the
Authenticated	state.	The	session	may	move	between	Authenticated	and	Selected	several	times,	as
different	mailboxes	are	selected	for	use	and	then	closed	when	no	longer	needed.	From	any	state	the

session	may	be	terminated,	entering	the	Logout	state.

The	following	are	the	IMAP	states,	in	the	usual	sequence	in	which	they	occur	for
a	session:

1.	 Not	Authenticated	State	The	session	normally	begins	in	this	state	after	a
TCP	connection	is	established,	unless	the	special	IMAP	preauthentication
feature	has	been	used	(we'll	get	to	this	feature	shortly).	At	this	point,	the
client	cannot	really	do	much	aside	from	providing	authentication
information	so	it	can	move	to	the	next	state.

2.	 Authenticated	State	The	client	has	completed	authentication,	either
through	an	authentication	process	in	the	prior	state	or	through
preauthentication.	The	client	is	now	allowed	to	perform	operations	on



whole	mailboxes.	The	client	must	select	a	mailbox	before	individual
message	operations	are	permitted.

3.	 Selected	State	After	a	mailbox	has	been	chosen,	the	client	is	allowed	to
access	and	manipulate	individual	messages	within	the	mailbox.	When	the
client	is	finished	with	the	current	mailbox,	it	can	close	it	and	return	to	the
Authenticated	state	to	select	a	new	one	to	work	with,	or	it	can	log	out	to
end	the	session.

4.	 Logout	State	The	client	may	issue	a	Logout	command	from	any	of	the
other	states	to	request	that	the	IMAP	session	be	ended.	The	session	may
also	enter	this	state	if	the	session	inactivity	timer	expires.	The	server	sends
a	response,	and	the	connection	is	terminated.

TIP

KEY	CONCEPT	IMAP	is	a	client/server	application,	and	an	IMAP	session	begins	with	the	client
making	a	TCP	connection	to	the	server.	The	session	then	normally	starts	in	the	Not	Authenticated	state
and	remains	there	until	successful	authentication.	In	the	Authenticated	state,	the	client	may	perform
operations	on	whole	mailboxes,	but	a	mailbox	must	be	selected	to	transition	to	the	Selected	state,	where
individual	messages	can	be	manipulated.	The	client	can	work	with	many	mailboxes	by	selecting	each
one	in	turn;	it	then	logs	out	from	the	server.

Of	the	four	IMAP	states,	only	the	first	three	are	interactive,	meaning	states	in
which	commands	are	actively	issued	by	the	client	and	responses	provided	by	the
server.	Some	IMAP	commands	can	be	used	while	the	session	is	in	any	state;
others	are	state-specific.

Session	Establishment	and	Greeting
The	server	determines	in	which	state	the	IMAP	session	begins	and	sends	a
greeting	message	to	tell	the	client	the	session	is	established	and	indicate	which
state	it	is	in.	Normally,	the	server	will	begin	the	session	in	the	Not	Authenticated
state.	This	is	conveyed	to	the	client	with	the	normal	OK	greeting	message,	such
as	this:

* OK <server-name> server ready

Preauthentication
In	certain	circumstances,	a	server	may	already	know	the	identity	of	the	client,



perhaps	as	a	result	of	some	external	authentication	mechanism	not	part	of	the
IMAP	protocol.	In	this	case,	a	special	greeting	is	used:

* PREAUTH <server-name> server ready, logged in as <user-name>

This	tells	the	client	that	it	is	already	in	the	Authenticated	state.

If	the	server	decides	for	whatever	reason	not	to	accept	a	new	session	from	the
client,	it	can	respond	with	a	BYE	response,	instead	of	OK	or	PREAUTH,	and
close	the	TCP	connection.

IMAP	Commands,	Results,	and	Responses
Once	an	IMAP	session	is	established,	all	communication	between	the	client	and
server	takes	place	in	the	form	of	commands	sent	by	the	client	and	responses
returned	by	the	server.	Like	POP3,	commands	and	responses	are	sent	as	strings
of	ASCII	text	and	terminated	with	a	CRLF	sequence,	making	them	compatible
with	the	way	data	is	sent	using	the	Telnet	Protocol.	However,	IMAP	has	a	few
differences	from	POP	and	many	other	TCP/IP	application	protocols.

The	first	interesting	thing	about	IMAP	commands	is	that	most	are	not
abbreviated	into	codes	of	three	or	four	letters—they	are	spelled	out	in	full.	So
where	POP3	has	a	STAT	command,	the	command	in	IMAP	is	called	STATUS.
Commands	are	normally	shown	in	uppercase,	as	I	do	in	this	book,	but	they	are
case-insensitive.

IMAP	also	uses	an	interesting	system	of	command	tagging	to	match	client
commands	explicitly	with	certain	server	responses.	Each	time	a	client	sends	a
command,	it	prefixes	it	with	a	tag	that	is	unique	for	the	particular	session.	The
tags	are	usually	short	strings	with	a	monotonically	increasing	number	in	them;
the	examples	in	the	IMAP	standards	have	the	first	command	tagged	a0001,	the
second	a0002,	and	so	on.	That	said,	as	long	as	each	command	is	uniquely
labeled,	it	doesn't	matter	what	tagging	scheme	is	used.	When	the	server	needs	to
send	a	response	that	is	specific	to	a	command,	it	tags	the	reply	with	the
appropriate	command	tag.	Not	all	replies	are	tagged,	however.

The	standard	doesn't	state	explicitly	why	this	tagging	scheme	is	needed,	but	I
believe	it	is	probably	related	to	IMAP's	multiple	command	feature.	IMAP	clients
are	allowed	to	send	a	sequence	of	commands	to	the	server	to	be	processed,	rather
than	sending	commands	only	one	at	a	time.	This	can	improve	performance	when



than	sending	commands	only	one	at	a	time.	This	can	improve	performance	when
certain	commands	would	take	a	long	time	to	complete.	The	only	restriction	is
that	the	commands	must	be	independent	enough	that	the	result	of	executing	them
all	would	be	the	same,	regardless	of	the	order	in	which	they	were	processed.	For
example,	sending	a	command	to	read	a	particular	entity	in	combination	with	a
command	to	store	a	value	into	the	same	entity	is	not	allowed.

TIP

KEY	CONCEPT	IMAP	tags	its	commands	with	a	unique	identifier.	These	tags	can	then	be	used	in
replies	by	the	server	to	match	replies	with	the	commands	to	which	they	correspond.	This	enables
multiple	commands	to	be	sent	to	an	IMAP	server	in	succession.

Command	Groups
IMAP	commands	are	organized	into	groups	based	on	which	session	states	the
IMAP	session	may	be	in	when	they	are	used:

"Any	State"	Commands	A	small	number	of	commands	that	can	be	used	at	any
time	during	an	IMAP	session.

Not	Authenticated	State	Commands	Commands	that	can	be	used	only	in	the
Not	Authenticated	state.	They	are	usually	used	for	authentication,	of	course.

Authenticated	State	Commands	Commands	used	to	perform	various	actions	on
mailboxes.	(Note	that	despite	the	name,	these	commands	can	also	be	used	in	the
Selected	state.)

Selected	State	A	set	of	commands	for	accessing	and	manipulating	individual
messages	that	can	be	used	only	in	the	Selected	state.

The	reason	for	having	the	distinct	Authenticated	and	Selected	states	and
command	groups	is	that	IMAP	is	designed	specifically	to	enable	the
manipulation	of	multiple	mailboxes.	After	the	session	starts	and	the	client	is
authenticated,	the	client	is	allowed	to	issue	commands	that	work	with	entire
mailboxes.	However,	it	may	not	issue	commands	that	manipulate	individual
messages	until	it	tells	the	server	which	mailbox	it	wants	to	work	with,	which
puts	it	in	the	Selected	state.	The	client	can	also	issue	mailbox	commands	from
the	Selected	state.

NOTE



In	addition	to	these	four	state	groups,	the	standard	also	defines	an	extension	mechanism	that	allows	new
commands	to	be	defined.	These	must	begin	with	the	letter	X.

"Any	State"	Commands
Table	78-2	describes	the	IMAP	"any	state"	commands,	which	can	be	used
whenever	needed.

Table	78-2.	IMAP	"Any	State"	Commands

Command Parameters Description

CAPABILITY None Asks	the	server	to	tell	the	client	what	capabilities	and	features	it
supports.

NOOP	(No
Operation)

None Does	nothing.	May	be	used	to	reset	the	inactivity	timer	or	to
prompt	the	server	periodically	to	send	notification	if	new
messages	arrive.

LOGOUT None Tells	the	server	that	the	client	is	done	and	ready	to	end	the
session,	which	transitions	to	the	Logout	state	for	termination.

Results	and	Responses
Each	command	sent	by	the	IMAP	client	elicits	some	sort	of	reaction	from	the
IMAP	server.	The	server	takes	action	based	on	what	the	client	requested	and
then	returns	one	or	more	text	strings	to	indicate	what	occurred.	The	server	can
send	two	types	of	replies	after	a	command	is	received:

Result	A	reply	usually	indicating	the	status	or	disposition	of	a	command.	It	may
be	tagged	with	the	command	tag	of	the	command	whose	result	it	is
communicating,	or	it	may	be	a	general	message	that	is	not	tagged.

Response	Any	type	of	information	that	is	being	sent	by	the	server	to	the	client.	It
is	usually	not	tagged	with	a	command	tag	and	is	not	specifically	intended	to
indicate	server	status.

NOTE

The	IMAP	standards	sometimes	use	the	terms	result,	response,	and	reply	in	a	manner	that	I	find	to	be
inconsistent.	Watch	out	for	this	if	you	examine	the	IMAP	RFCs.



TIP

KEY	CONCEPT	IMAP	servers	issue	two	basic	types	of	replies	to	client	commands:	results	are	replies
that	indicate	the	success,	failure,	or	status	of	a	command;	responses	are	general	replies	containing	many
different	types	of	information	that	the	server	needs	to	send	to	the	client.

Result	Codes
Three	main	result	codes	are	sent	in	reply	to	a	command,	and	two	special	ones	are
used	in	certain	circumstances:

OK	A	positive	result	to	a	command,	usually	sent	with	the	tag	of	the	command
that	was	successful.	May	be	sent	untagged	in	the	server's	initial	greeting	when	a
session	starts.

NO	A	negative	result	to	a	command.	When	tagged,	indicates	the	command
failed;	when	untagged,	serves	as	a	general	warning	message	about	some
situation	on	the	server.

BAD	Indicates	an	error	message.	It	is	tagged	when	the	error	is	directly	related	to
a	command	that	has	been	sent	and	otherwise	is	untagged.

PREAUTH	An	untagged	message	sent	at	the	start	of	a	session	to	indicate	that
no	authentication	is	required;	the	session	goes	directly	to	the	Authenticated	state.

BYE	Sent	when	the	server	is	about	to	close	the	connection.	It	is	always	untagged
and	is	sent	in	reply	to	a	Logout	command	or	when	the	connection	is	to	be	closed
for	any	other	reason.

Response	Codes
In	contrast	to	results,	responses	are	used	to	communicate	a	wide	variety	of
information	to	the	client	device.	Responses	normally	include	descriptive	text	that
provides	details	about	what	is	being	communicated.	They	may	be	sent	either
directly	in	reply	to	a	command	or	incidentally	to	one.	An	example	of	the	latter
case	would	be	if	a	new	message	arrives	in	a	mailbox	during	a	session.	In	this
case,	the	server	will	convey	this	information	unilaterally	at	its	first	opportunity,
regardless	of	what	command	was	recently	sent.

The	following	are	the	response	codes	defined	by	the	IMAP	standard:

ALERT	An	alert	message	to	be	sent	to	the	human	user	of	the	IMAP	client	to



inform	him	of	something	important.

BADCHARSET	Sent	when	a	search	fails	due	to	use	of	an	unsupported
character	set.

CAPABILITY	A	list	of	server	capabilities	may	be	sent	as	part	of	the	initial
server	greeting	so	the	CAPABILITY	command	does	not	need	to	be	used.

PARSE	Sent	when	an	error	occurs	parsing	the	headers	or	MIME	content	of	an
email	message.

PERMANENTFLAGS	Communicates	a	list	of	message	status	flags	that	the
client	is	allowed	to	manipulate.

READ-ONLY	Tells	the	client	that	the	mailbox	is	accessible	only	in	a	read-only
mode.

READ-WRITE	Tells	the	client	that	the	mailbox	is	accessible	in	read-write
mode.

TRYCREATE	Sent	when	an	APPEND	or	COPY	command	fails	due	to	the
target	mailbox	not	existing,	to	suggest	to	the	client	that	it	try	creating	the
mailbox	first.

UIDNEXT	Sent	with	a	decimal	number	that	specifies	the	next	unique	identifier
value	to	use	in	an	operation.	These	identifiers	allow	each	message	to	be	uniquely
identified.

UIDVALIDITY	Sent	with	a	decimal	number	that	specifies	the	unique	identifier
validity	value,	used	to	confirm	unique	message	identification.

UNSEEN	Sent	with	a	decimal	number	that	tells	the	client	the	message	that	is
flagged	as	not	yet	seen	(a	new	message).

IMAP	Not	Authenticated	State:	User
Authentication	Process	and	Commands
An	IMAP4	session	begins	with	an	IMAP4	client	establishing	a	TCP	connection
with	an	IMAP4	server.	Under	normal	circumstances,	the	IMAP4	server	has	no
idea	who	the	client	is,	and	therefore	starts	the	session	in	the	Not	Authenticated
state.	For	security	reasons,	the	client	is	not	allowed	to	do	anything	until	it	is
authenticated.	Thus,	the	only	purpose	of	this	state	is	to	allow	the	client	to	present



valid	credentials	so	the	session	can	move	on	to	the	Authenticated	state.

IMAP	Authentication	Methods
The	IMAP4	standard	defines	three	different	mechanisms	by	which	a	client	may
authenticate	itself.	These	are	implemented	using	one	or	more	of	the	three
different	commands	allowed	only	in	the	Not	Authenticated	state,	which	are
shown	in	Table	78-3.

Table	78-3.	IMAP	Not	Authenticated	State	Commands

Command Parameters Description

LOGIN User	name
and	password

Specifies	a	user	name	and	password	to	use	for
authentication.

AUTHENTICATE Authentication
mechanism
name

Tells	the	server	that	the	client	wants	to	use	a	particular
authentication	mechanism	and	prompts	the	client	and
server	to	exchange	authentication	information	appropriate
for	that	mechanism.

STARTTLS None Tells	the	IMAP4	server	to	use	the	Transport	Layer
Security	(TLS)	protocol	for	authentication,	and	prompts
TLS	negotiation	to	begin.

In	response	to	a	LOGIN	or	AUTHENTICATE	command,	the	server	will	send	an
OK	message	if	the	authentication	was	successful,	and	then	transition	to	the
Authenticated	state.	It	will	send	a	NO	response	if	authentication	failed	due	to
incorrect	information.	The	client	can	then	try	another	method	of	authenticating
or	terminate	the	session	with	the	LOGOUT	command.

The	three	authentication	methods	are	as	follows:

Plain	Login	This	is	the	typical	user	name/password	technique,	using	the	LOGIN
command	by	itself.	This	is	similar	to	the	simple	scheme	used	in	POP3,	except
that	in	IMAP4	one	command	is	used	to	send	both	the	user	name	and	password.
Since	the	command	and	parameters	are	sent	in	plain	text,	this	is	by	far	the	least
secure	method	of	authentication	and	is	not	recommended	by	the	standard	unless
some	other	means	is	used	in	conjunction.

TLS	Login	This	is	a	secure	login	where	the	Transport	Layer	Security	(TLS)
protocol	is	first	enabled	with	the	STARTTLS	command,	and	then	the	LOGIN



command	can	be	used	securely.	Note	that	STARTTLS	only	causes	the	TLS
negotiation	to	begin	and	does	not	itself	cause	the	IMAP	client	to	be
authenticated.	Either	LOGIN	or	AUTHENTICATE	must	still	be	used.

Negotiated	Authentication	Method	The	AUTHENTICATE	command	allows
the	client	and	server	to	use	any	authentication	scheme	that	they	both	support.
The	server	may	indicate	which	schemes	it	supports	in	response	to	a
CAPABILITY	command.	After	specifying	the	authentication	mechanism	to	be
used,	the	server	and	client	exchange	authentication	information	as	required	by
the	mechanism	specified.	This	may	require	one	or	more	additional	lines	of	data
to	be	sent.

TIP

KEY	CONCEPT	IMAP	supports	three	basic	types	of	authentication:	a	plain	user	name/password	login,
authentication	using	the	Transport	Layer	Security	(TLS)	protocol,	or	the	negotiation	of	some	other
authentication	method	between	the	client	and	server.	In	some	cases,	the	IMAP	server	may	choose	to
preauthenticate	clients	that	it	is	able	to	identify	reliably;	in	which	case,	the	Not	Authenticated	state	is
skipped	entirely.

IMAP	Authenticated	State:	Mailbox
Manipulation/Selection	Process	and	Commands
In	the	normal	progression	of	an	IMAP	session,	the	Authenticated	state	is	the	first
state	in	which	the	IMAP	client	is	able	to	perform	useful	work	on	behalf	of	its
user.	This	state	will	normally	be	reached	from	the	Not	Authenticated	state	after
successful	authentication	using	the	LOGIN	or	AUTHENTICATE	command.
Alternately,	a	server	may	preauthenticate	a	client	and	begin	the	session	in	this
state	directly.

Once	in	the	Authenticated	state,	the	client	is	considered	authorized	to	issue
commands	to	the	server.	However,	it	may	issue	only	commands	that	deal	with
whole	mailboxes.	As	mentioned	in	the	general	operation	overview,	IMAP	was
created	to	allow	access	to,	and	manipulation	of,	multiple	mailboxes.	For	this
reason,	the	client	must	specify	dynamically	which	mailbox	it	wants	to	use	before
commands	dealing	with	individual	messages	may	be	given.	This	is	done	in	this
state	using	the	SELECT	or	EXAMINE	command,	which	both	cause	a	transition
to	the	Selected	state.



It	is	also	possible	that	the	Authenticated	state	can	be	reentered	during	the	course
of	a	session.	If	the	CLOSE	command	is	used	from	the	Selected	state	to	close	a
particular	mailbox,	the	server	will	consider	that	mailbox	deselected,	and	the
session	will	transition	back	to	the	Authenticated	state	until	a	new	selection	is
made.	The	same	can	occur	if	a	new	SELECT	or	EXAMINE	command	is	given
from	the	Selected	state	but	fails.

Authenticated	State	Commands
Table	78-4	provides	a	brief	description	of	the	mailbox-manipulation	commands
that	can	be	used	in	the	Authenticated	state.

Table	78-4.	IMAP	Authenticated	State	Commands

Command Parameters Description

SELECT Mailbox
name

Selects	a	particular	mailbox	so	that	messages	within	it	can	be
accessed.	If	the	command	is	successful,	the	session
transitions	to	the	Selected	state.	The	server	will	also	normally
respond	with	information	for	the	client	about	the	selected
mailbox,	as	described	after	this	table.

EXAMINE Mailbox
name

The	same	as	the	SELECT	command,	except	that	the	mailbox
is	opened	read-only;	no	changes	are	allowed.

CREATE Mailbox
name

Creates	a	mailbox	with	the	given	name.

DELETE Mailbox
name

Deletes	the	specified	mailbox.

RENAME Current	and
new	mailbox
names

Renames	a	mailbox.

SUBSCRIBE Mailbox
name

Adds	the	mailbox	to	the	server's	set	of	active	mailboxes.	This
is	sometimes	used	when	IMAP4	is	employed	for	Usenet
message	access.

UNSUBSCRIBE Mailbox
name

Removes	the	mailbox	from	the	active	list.

LIST Mailbox
name	or
reference

Requests	a	partial	list	of	available	mailbox	names,	based	on
the	parameter	provided.



reference
string

LSUB Mailbox
name	or
reference
string

The	same	as	LIST	but	returns	only	names	from	the	active	list.

STATUS Mailbox
name

Requests	the	status	of	the	specified	mailbox.	The	server
responds	providing	information	such	as	the	number	of
messages	in	the	box	and	the	number	of	recently	arrived	and
unseen	messages.

APPEND Mailbox
name,
message,
optional
flags,	and
date/time

Adds	a	message	to	a	mailbox.

NOTE

All	of	the	commands	in	Table	78-4	may	also	be	used	in	the	Selected	state;	they	should	really	be	called
Authenticated+Selected	state	commands.

When	either	the	SELECT	or	EXAMINE	command	is	successfully	issued,	the
server	will	return	to	the	client	a	set	of	useful	information	about	the	mailbox,
which	can	be	used	to	guide	commands	issued	from	the	Selected	state.	This
information	includes	the	following	three	mandatory	responses:

<n>	EXISTS	Tells	the	client	the	number	of	messages	in	the	mailbox.

<n>	RECENT	Tells	the	client	the	number	of	recently	arrived	(new)	messages.

FLAGS	(<flag-list>)	Tells	the	client	which	flags	are	supported	in	the	mailbox.
These	include	the	following:	\Seen,	\Answered,	\Flagged	(marked	for	special
attention),	\Deleted,	\Draft,	and	\Recent.	(The	backslashes	are	part	of	the	flag
names.)

The	reply	from	the	server	may	also	contain	these	optional	replies:

UNSEEN	<n>	The	message	number	of	the	first	unseen	message.

PERMANENTFLAGS	(<flag-list>)	A	list	of	flags	(as	for	the	FLAGS	response
above)	that	the	client	is	allowed	to	change.



UIDNEXT	<n>	The	next	unique	identifier	value.	This	is	used	to	check	for
changes	made	to	the	mailbox	since	the	client	last	accessed	it.

UIDVALIDITY	<n>	The	unique	identifier	validity	value,	used	to	confirm	valid
UID	values.

TIP

KEY	CONCEPT	In	the	Authenticated	state,	the	IMAP	client	can	perform	operations	on	whole
mailboxes,	such	as	creating,	renaming,	or	deleting	mailboxes,	or	listing	mailbox	contents.	The	SELECT
and	EXAMINE	commands	are	used	to	tell	the	IMAP	server	which	mailbox	the	client	wants	to	open	for
message-specific	access.	Successful	execution	of	either	command	causes	the	server	to	provide	the	client
with	several	pieces	of	important	information	about	the	mailbox,	after	which	the	session	transitions	to	the
Selected	state.

IMAP	Selected	State:	Message	Manipulation
Process	and	Commands
Once	the	IMAP	client	has	been	authorized	to	access	the	server,	it	enters	the
Authenticated	state,	where	it	is	allowed	to	execute	tasks	on	whole	mailboxes.
Since	IMAP	allows	multiple	mailboxes	to	be	manipulated,	message-specific
commands	cannot	be	used	until	the	client	tells	the	server	which	mailbox	in	wants
to	work	with.	Only	one	mailbox	can	be	accessed	at	a	time	in	a	given	session.

After	the	SELECT	or	EXAMINE	command	is	successfully	issued,	the	session
enters	the	Selected	state.	In	this	state,	the	full	palette	of	message	and	mailbox
commands	is	available	to	the	client.	This	includes	the	message-specific
commands	in	Table	78-5	as	the	mailbox	commands	defined	for	the
Authenticated	state.	Most	of	IMAP's	message-specific	commands	do	not	include
a	mailbox	name	as	a	parameters,	since	the	server	knows	automatically	that	the
commands	apply	to	whatever	mailbox	was	selected	in	the	Authenticated	state.

The	session	remains	in	the	Selected	state	for	as	long	as	the	client	continues	to
have	work	to	do	with	the	particular	selected	(or	examined)	mailbox.	Three
different	actions	can	cause	a	transition	out	of	the	Selected	state:

If	the	client	has	nothing	more	to	do	when	it	is	done	with	the	current	mailbox,
it	can	use	the	LOGOUT	command	to	end	the	session.

The	client	can	use	the	CLOSE	command	to	tell	the	server	it	is	finished	with



the	current	mailbox	but	keep	the	session	active.	The	server	will	close	the
mailbox,	and	the	session	will	go	back	to	the	Authenticated	state.

The	client	can	issue	a	new	SELECT	or	EXAMINE	command,	which	will
implicitly	close	the	current	mailbox	and	then	open	the	new	one.	The
transition	in	this	case	is	from	the	Selected	state	back	to	the	Selected	state,	but
with	a	new	current	mailbox.

Selected	State	Commands
Table	78-5	lists	the	message-specific	commands	that	can	be	used	only	in	the
Selected	state.

Table	78-5.	IMAP	Selected	State	Commands

Command Parameters Description

CHECK None Sets	a	checkpoint	for	the	current	mailbox.	This	is	used	to
mark	when	a	certain	sequence	of	operations	has	been
completed.

CLOSE None Explicitly	closes	the	current	mailbox	and	returns	the
session	to	the	Authenticated	state.	When	this	command	is
issued,	the	server	will	also	implicitly	perform	an
EXPUNGE	operation	on	the	mailbox.

EXPUNGE None Permanently	removes	any	messages	that	were	flagged	for
deletion	by	the	client.	This	is	done	automatically	when	a
mailbox	is	closed.

SEARCH Search	criteria	and	an
optional	character	set
specification

Searches	the	current	mailbox	for	messages	matching	the
specified	search	criteria.	The	server	response	lists	the
message	numbers	meeting	the	criteria.

FETCH Sequence	of	message
numbers	and	a	list	of
message	data	items
(or	a	macro)

Retrieves	information	about	a	message	or	set	of	messages
from	the	current	mailbox.

STORE Sequence	of	message
numbers,	message
data	item	name,	and
value

Stores	a	value	for	a	particular	message	data	item	for	a	set
of	messages.

COPY Sequence	of	message
numbers	and	a

Copies	the	set	of	messages	specified	to	the	end	of	the
specified	mailbox.



numbers	and	a
mailbox	name

specified	mailbox.

UID Command	name	and
arguments

Used	to	allow	one	of	the	other	commands	above	to	be
performed	using	unique	identifier	numbers	for	specifying
the	messages	to	be	operated	on,	rather	than	the	usual
message	sequence	numbers.

The	list	in	Table	78-5	might	seem	surprisingly	short.	You	might	wonder,	for
example,	where	the	specific	commands	are	to	read	a	message	header	or	body,
delete	a	message,	mark	a	message	as	read,	and	so	forth.	The	answer	is	that	these
(and	much	more)	are	all	implemented	as	part	of	the	powerful	and	flexible
FETCH	and	STORE	commands.

The	FETCH	command	can	be	used	to	read	a	number	of	specific	elements	from
either	one	message	or	a	sequence	of	messages.	The	list	of	message	data	items
specifies	what	information	is	to	be	read.	The	data	items	that	can	be	read	include
the	headers	of	the	message,	the	message	body,	flags	that	are	set	for	the	message,
the	date	of	the	message,	and	much	more.	The	FETCH	command	can	even	be
used	to	retrieve	part	of	a	message,	such	as	one	body	part	of	a	MIME	multipart
message,	making	it	very	useful	indeed.	Special	macros	are	also	defined	for
convenience.	For	example,	the	client	can	specify	the	message	data	item	FULL	to
get	all	the	data	associated	with	a	message.

The	complement	to	FETCH,	the	STORE	command,	is	used	to	make	changes	to	a
message.	However,	this	command	does	not	modify	the	basic	message
information	such	as	the	content	of	headers	and	the	message	body.	Rather,	it
exists	for	changing	the	message's	status	flags.	For	example,	after	replying	to	a
particular	message,	the	client	may	set	the	\Answered	flag	for	that	message	using
the	STORE	command.

Message	deletion	in	IMAP	is	done	in	two	stages	for	safety,	as	in	POP	and	many
other	protocols.	The	client	sets	the	\Deleted	flag	for	whichever	messages	are	to
be	removed,	using	the	STORE	command.	The	messages	are	deleted	only	when
the	mailbox	is	expunged,	typically	when	it	is	closed.

The	search	facility	in	IMAP4	is	also	surprisingly	quite	sophisticated,	allowing
the	client	to	look	for	messages	based	on	multiple	criteria	simultaneously.	For
example,	with	the	appropriate	syntax,	you	could	search	for	"all	posts	that	are
flagged	as	having	been	answered	that	were	sent	by	Jane	Jones	before	April	1,



flagged	as	having	been	answered	that	were	sent	by	Jane	Jones	before	April	1,
2004."	Users	of	IMAP	clients	can	thus	easily	locate	specific	messages	even	in
very	large	mailboxes	without	needing	to	download	and	hunt	through	hundreds	of
messages.

TIP

KEY	CONCEPT	After	the	client	opens	a	specific	mailbox,	the	IMAP	session	enters	the	Selected	state,
where	operations	such	as	reading	and	copying	individual	email	messages	may	be	performed.	The	two
most	important	commands	used	in	this	state	are	FETCH,	which	can	be	used	to	retrieve	a	whole	message,
part	of	a	message,	or	only	certain	message	headers	or	flags;	and	STORE,	which	sets	a	message's	status
information.	IMAP	also	includes	a	powerful	search	facility,	providing	users	with	great	flexibility	in
finding	messages	in	a	mailbox.	When	the	client	is	finished	working	with	a	particular	mailbox,	it	may
choose	a	different	one	and	reenter	the	Selected	state,	close	the	mailbox	and	return	to	the	Authenticated
state,	or	log	out,	automatically	entering	the	Logout	state.



TCP/IP	Direct	Server	Email	Access
This	final	portion	of	the	journey	of	a	TCP/IP	email	message	is	usually	the	job	of
an	email	access	and	retrieval	protocol	like	POP3	or	IMAP4.	These	are
customized	protocols,	by	which	I	mean	that	they	were	created	specifically	for	the
last	step	of	the	email	communication	process.	However,	there	are	also	several
generic	methods	by	which	an	email	client	can	gain	access	to	a	mailbox,	without
the	use	of	a	special	protocol.

These	methods	are	all	variations	of	the	online	email	access	model.	They
generally	work	by	establishing	direct	access	to	the	server	where	the	mailbox	is
located.	The	mailbox	itself	is	just	a	file	on	a	server	somewhere,	so	if	that	file	can
be	made	available,	it	can	be	viewed	and	manipulated	like	any	other	file	using	an
email	client	program	that	reads	and	writes	the	mailbox	file.	The	following	are
some	of	the	ways	in	which	this	can	be	done:

Using	the	SMTP	Server	Directly	The	simplest	method	for	gaining	access	to	the
mailbox	is	to	log	on	to	the	server	itself.	This	is	not	an	option	for	most	people,
and	even	in	years	gone	by,	it	was	not	often	done,	for	security	and	other	reasons.
However,	some	people	do	run	their	own	SMTP	servers,	giving	them
considerable	control	over	access	to	their	email.

File	Sharing	Access	Using	a	protocol	such	as	NFS,	it	is	possible	to	have	a
mailbox	mounted	on	a	user's	client	machine	where	it	can	be	accessed	as	if	it
were	a	local	file.	The	mail	is	still	on	the	server	and	not	the	client	machine,	but
the	communication	between	the	client	and	the	server	occurs	transparently	to	both
the	user	and	the	email	client	software.

Dial-Up	Remote	Server	Access	A	user	on	a	client	machine	dials	up	a	server
where	her	mailbox	is	located	and	logs	in	to	it.	The	user	then	can	issue	commands
to	access	mail	on	that	server	as	if	she	were	logged	in	to	it	directly.

Telnet	Remote	Server	Access	Instead	of	dialing	in	to	the	server,	a	user	can
connect	to	it	for	remote	access	using	the	Telnet	Protocol.

These	techniques	are	much	more	commonly	associated	with	timesharing
systems,	which	commonly	use	the	UNIX	family	of	operating	systems	more	than
others.	They	are	also	often	combined;	for	example,	remote	access	is	often



provided	for	UNIX	users,	but	most	companies	don't	want	users	logging	in
directly	to	the	SMTP	server.	Instead,	an	ISP	might	run	an	SMTP	server	on	one
machine	called	mail.companyname.com	and	also	operate	a	different	server	that
is	designed	for	client	access	called	users.companyname.com.	A	user	could
access	email	by	dialing	into	the	users	machine,	which	would	employ	NFS	to
access	user	mailboxes	on	the	mail	machine.

Direct	server	access	is	a	method	that	has	been	around	for	decades.	At	one	time,
this	was	how	the	majority	of	people	accessed	email,	for	two	main	reasons.	First,
if	you	go	back	far	enough,	protocols	like	POP	or	IMAP	had	not	yet	been
developed;	the	TCP/IP	email	system	as	a	whole	predates	them	by	many	years,
and	direct	access	was	the	only	option	back	then.	Second,	the	general	way	that
email	and	networks	were	used	years	ago	was	different	from	what	it	is	today.
Most	individuals	did	not	have	PCs	at	home,	and	no	Internet	as	we	know	it
existed.	Remotely	accessing	a	UNIX	server	using	a	modem	or	Telnet	for	email
and	other	services	was	just	the	way	it	was	done.

I	got	started	using	direct	server	access	for	email	more	than	ten	years	ago,	and	I
still	use	it	today.	I	Telnet	in	to	a	client	machine	and	use	a	UNIX	email	program
called	elm	to	access	and	manipulate	my	mailbox.	To	me,	this	provides	numerous
advantages:

Most	important,	I	can	access	my	email	using	Telnet	from	any	machine	on	the
Internet,	anywhere	around	the	world.

Since	I	am	logged	in	directly,	I	get	immediate	notification	when	new	mail
arrives,	without	needing	to	check	routinely	for	new	mail.

My	mailbox	is	always	accessible,	and	all	my	mail	is	always	on	a	secure
server	in	a	professionally	managed	data	center.

I	have	complete	control	over	my	mailbox	and	can	edit	it,	split	it	into	folders,
write	custom	spam	filters,	or	do	anything	else	I	need	to	do.

This	probably	sounds	good,	but	most	people	today	do	not	use	direct	server
access	because	of	the	disadvantages	of	this	method.	One	big	issue	is	that	you
must	be	logged	in	to	the	Internet	to	access	your	email.	Another	one,	perhaps
even	larger,	is	the	need	to	be	familiar	with	UNIX	and	a	UNIX	email	program.
UNIX	is	simply	not	as	user-friendly	as	a	graphical	operating	systems	such	as
Windows	or	the	Mac.	For	example,	my	UNIX	email	program	doesn't	support



Windows	or	the	Mac.	For	example,	my	UNIX	email	program	doesn't	support
color	and	cannot	show	me	attached	graphic	images.	I	must	extract	images	and
other	files	from	MIME	messages	and	transfer	them	to	my	own	PC	for	viewing.

Most	ordinary	computer	users	today	don't	know	UNIX	and	don't	want	to	know
it.	They	are	much	happier	using	a	fancy	graphical	email	program	based	on	POP3
or	IMAP4.	However,	a	number	of	us	old	UNIX	dinosaurs	are	still	around	and
believe	the	benefits	of	direct	access	outweigh	the	drawbacks.	(Oh,	one	other
benefit	that	I	forgot	to	mention	is	that	it's	very	hard	to	get	a	computer	virus	in
email	when	you	use	UNIX!)

TIP

KEY	CONCEPT	Instead	of	using	a	dedicated	protocol	like	POP3	or	IMAP4	to	retrieve	mail,	on	some
systems	it	is	possible	for	a	user	to	have	direct	server	access	to	email.	This	is	most	commonly	done	on
UNIX	systems,	where	protocols	like	Telnet	or	NFS	can	give	a	user	shared	access	to	mailboxes	on	a
server.	This	is	the	oldest	method	of	email	access.	It	provides	the	user	with	the	most	control	over	his
mailbox	and	is	well	suited	to	those	who	must	access	mail	from	many	locations.	The	main	drawback	is
that	it	means	the	user	must	be	on	the	Internet	to	read	email,	and	it	also	usually	requires	familiarity	with
the	UNIX	operating	system,	which	few	people	use	today.



TCP/IP	World	Wide	Web	Email	Access
Most	email	users	like	the	advantages	of	online	access,	especially	the	ability	to
read	mail	from	a	variety	of	different	machines.	What	they	don't	care	for	is	direct
server	access	using	protocols	like	Telnet,	UNIX,	and	nonintuitive,	character-
based	email	programs.	They	want	online	access,	but	they	want	it	to	be	simple
and	easy	to	use.

In	the	1990s,	the	World	Wide	Web	was	developed	and	grew	in	popularity	very
rapidly,	due	in	large	part	to	its	ease	of	use.	Millions	of	people	became
accustomed	to	firing	up	a	web	browser	to	perform	a	variety	of	tasks,	to	the	point
at	which	using	the	Web	has	become	almost	second	nature.	It	didn't	take	very
long	before	someone	figured	out	that	using	the	Web	would	be	a	natural	way	of
providing	easy	access	to	email	on	a	server.

This	technique	is	straightforward.	It	exploits	the	flexibility	of	the	Hypertext
Transfer	Protocol	(HTTP)	to	tunnel	email	from	a	mailbox	server	to	the	client.	A
web	browser	(client)	is	opened	and	given	a	URL	for	a	special	web	server
document	that	accesses	the	user's	mailbox.	The	web	server	reads	information
from	the	mailbox	and	sends	it	to	the	web	browser,	where	it	is	displayed	to	the
user.

This	method	uses	the	online	access	model	like	direct	server	access,	because
requests	must	be	sent	to	the	web	server,	and	this	requires	the	user	to	be	online.
The	mail	also	remains	on	the	server,	as	when	NFS	or	Telnet	are	used.	The	big
difference	between	Web-based	mail	and	the	UNIX	methods	is	that	the	former	is
much	easier	for	nonexperts	to	use.

Since	the	idea	was	first	developed,	many	companies	have	jumped	on	the	Web-
mail	bandwagon,	and	the	number	of	people	using	this	technique	has	exploded
into	the	millions	in	just	a	few	years.	Many	free	services	even	popped	up	in	the
late	1990s	as	part	of	the	dot-com	bubble,	allowing	any	Internet	user	to	send	and
receive	email	using	the	Web	at	no	charge	(except	perhaps	for	tolerating
advertising).	Many	ISPs	now	offer	Web	access	as	an	option	in	additional	to
conventional	POP/IMAP	access,	which	is	useful	for	those	who	travel.

There	are	drawbacks	to	the	technique,	however,	which	as	you	might	imagine	are
directly	related	to	its	advantages.	Web-based	mail	is	easy	to	use,	but	inflexible;



directly	related	to	its	advantages.	Web-based	mail	is	easy	to	use,	but	inflexible;
the	user	does	not	have	direct	access	to	her	mailbox	and	can	use	only	whatever
features	the	provider's	website	implements.	For	example,	suppose	the	user	wants
to	search	for	a	particular	string	in	her	mailbox;	this	requires	that	the	Web
interface	provide	this	function.	If	it	doesn't,	the	user	is	out	of	luck.

Web-based	mail	also	has	a	disadvantage	that	is	an	issue	for	some	people:
performance.	Using	conventional	UNIX	direct	access,	it	is	quick	and	easy	to
read	through	a	mailbox;	the	same	is	true	of	access	using	POP3,	once	the	mail	is
downloaded.	In	contrast,	Web-based	mail	services	mean	each	request	requires
another	HTTP	request/response	cycle.	The	fact	that	many	Web-based	services
are	free	often	means	server	overload	that	exacerbates	the	speed	issue.

Note	that	when	Web-based	mail	is	combined	with	other	methods	such	as	POP3,
care	must	be	taken	to	avoid	strange	results.	If	the	Web	interface	doesn't	provide
all	the	features	of	the	conventional	email	client,	certain	changes	made	by	the
client	may	not	show	up	when	Web-based	access	is	used.	Also,	mail	retrieval
using	POP3	by	default	removes	the	mail	from	the	server.	If	you	use	POP3	to
read	your	mailbox	and	then	later	try	to	use	the	Web	to	access	those	messages
from	elsewhere,	you	will	find	that	the	mail	is	gone—it's	on	the	client	machine
where	you	used	the	POP3	client.	Many	email	client	programs	now	allow	you	to
specify	that	you	want	the	mail	left	on	the	server	after	retrieving	it	using	POP3.

TIP

KEY	CONCEPT	In	the	past	few	years,	a	new	method	has	been	developed	to	allow	email	access	using
the	World	Wide	Web.	This	technique	is	rapidly	growing	in	popularity,	because	it	provides	many	of	the
benefits	of	direct	server	access,	such	as	the	ability	to	receive	email	anywhere	around	the	world,	while
being	much	simpler	and	easier	than	the	older	methods	of	direct	access	such	as	making	a	Telnet
connection	to	a	server.	In	some	cases,	Web-based	email	can	be	used	in	combination	with	other	methods
or	protocols,	such	as	POP3,	giving	users	great	flexibility	in	how	they	read	their	mail.



Part	III-8.	TCP/IP	WORLD	WIDE	WEB	AND	THE
HYPERTEXT	TRANSFER	PROTOCOL	(HTTP)
Chapter	79

Chapter	80

Chapter	81

Chapter	82

Chapter	83

Chapter	84

In	my	overview	of	file	and	message	transfer	protocols	in	Chapter	71,	I	said	that
the	World	Wide	Web	was	"almost	certainly"	the	most	important	TCP/IP
application.	If	anything,	I	was	probably	understating	the	case.	The	Web	is	not
only	quite	clearly	the	most	important	TCP/IP	application	today,	it	is	arguably	the
single	most	important	application	in	the	history	of	networking,	and	perhaps	even
computing	as	a	whole.

This	may	sound	a	little	melodramatic,	but	consider	what	the	Web	has	done	in	the
decade	or	so	that	it	has	been	around.	It	has	transformed	not	only	how
internetworks	are	used,	but	in	many	ways,	it	has	also	changed	society	itself.	The
Web	put	the	Internet	on	the	map,	so	to	speak,	moving	it	from	the	realm	of
technicians	and	academics	to	the	mainstream	world.

This	part	contains	six	chapters	that	describe	the	World	Wide	Web	and	the	all-
important	Hypertext	Transfer	Protocol	(HTTP),	the	TCP/IP	application	layer
protocol	that	makes	the	Web	work.	The	first	chapter	discusses	the	Web	and	the
concepts	behind	hypertext	and	hypertext	documents	in	general	terms.	The
second	chapter	provides	an	overview	of	HTTP	and	describes	its	operation	in
general	terms,	focusing	on	how	connections	are	established	and	maintained.	The
third	chapter	outlines	HTTP	messages	and	how	they	are	formatted,	and	describes
HTTP	methods	(commands)	and	status	codes.	The	fourth	chapter	details	the
many	HTTP	headers,	which	are	critically	important	because	they	are	the	primary
way	that	information	is	communicated	between	HTTP	servers	and	clients.	The
fifth	chapter	provides	information	about	how	resources,	called	entities,	are



encoded	and	transferred	in	HTTP.	The	sixth	and	final	chapter	explores	special
features	and	capabilities	of	the	modern	HTTP	protocol.

Like	so	many	TCP/IP	protocols,	when	HTTP	was	designed,	its	creators
borrowed	elements	from	other	application	protocols.	In	this	case,	HTTP	uses
certain	elements	from	email,	especially	the	Multipurpose	Internet	Mail
Extensions	(MIME).	I	would	recommend	familiarity	with	both	the	RFC	822
email	message	format	and	MIME,	especially	MIME	headers	and	media	types,
before	reading	this	part	(both	topics	are	covered	in	Chapter	76).	The	relationship
between	HTTP	and	MIME	is	covered	more	fully	in	Chapter	83,	which	discusses
HTTP	entities	and	media	types.



Chapter	79.	WORLD	WIDE	WEB
AND	HYPERTEXT	OVERVIEW
AND	CONCEPTS

The	World	Wide	Web	(the	Web)	expands	the	concepts	of	messaging	beyond	the
limits	of	simple	text	file	transfer	of	electronic	mail	(email),	File	Transfer
Protocol	(FTP),	and	Usenet.	Its	power	is	in	its	combination	of	hypertext,	a
system	that	allows	related	documents	to	be	linked	together,	its	rich	document
format	that	supports	not	just	text	but	graphics	and	multimedia,	and	the	special
protocol	that	allows	efficient	movement	of	those	media.	The	result	is	a	powerful
system	that,	once	introduced,	caught	on	almost	immediately	among	everyone
from	large	company	users	to	individuals.	In	a	few	short	years,	the	Web	came	to
dominate	all	other	applications	on	the	Internet.

In	this	chapter,	I	take	a	high-level,	summarized	look	at	the	concepts	behind	the
Web.	I	begin	with	a	short	overview	and	history	of	the	Web	and	hypertext	and	a
discussion	of	the	components	that	make	up	the	Web	system.	I	briefly	describe
the	documents	and	media	used	on	the	Web	and	explain	the	importance	of	the
Hypertext	Markup	Language	(HTML).	I	conclude	with	an	overview	of	how
documents	are	addressed	on	the	Web	using	Uniform	Resource	Locators	(URLs).

World	Wide	Web	and	Hypertext	Overview	and
History
The	World	Wide	Web	is	one	of	the	members	of	the	class	of	Internet	messaging
applications.	But	for	some	reason,	it	just	doesn't	seem	like	a	message	transfer
protocol	to	me.	This	led	me	to	wonder,	what	is	so	special	about	the	Web	that
caused	it	to	become	popular	in	a	way	that	no	prior	messaging	applications	ever



had?

There	is	no	truly	accurate	one-word	answer	to	this	question.	However,	if	I	had	to
give	one	anyway,	it	would	be	this:	hypertext.	Sure,	applications	like	email	and
Usenet	allow	users	to	send	and	receive	information,	and	FTP	lets	a	user	access	a
set	of	files	on	a	server.	But	what	these	methods	lack	is	any	way	of	easily
representing	the	relationship	between	documents	or	providing	a	way	of	moving
from	one	to	another.	Highly	simplified,	hypertext	does	exactly	that:	It	allows	the
creator	of	a	document	to	include	links	to	related	information,	either	elsewhere	in
that	document	or	in	other	documents.	With	the	appropriate	software,	a	user	can
easily	move	from	one	location	to	another.	So	why	is	this	a	big	deal?	In	fact,	this
is	more	important	than	it	may	initially	seem.

Without	some	way	of	linking	documents	together,	they	remain	in	unconnected
islands.	In	some	ways,	hypertext-linked	documents	are	to	unlinked	documents
what	networked	computers	are	to	those	that	are	not	networked.

History	of	Hypertext
The	ideas	behind	hypertext	actually	go	back	far	beyond	the	Web	and	even
electronic	computers.	Vannevar	Bush	(1890–1974)	is	generally	credited	with
introducing	the	idea	in	his	1945	description	of	a	theoretical	device	called	the
Memex,	which	was	intended	to	be	used	to	store	and	retrieve	documents.	He
described	the	concept	of	a	trail	that	would	link	together	related	information	to
make	it	easier	to	organize	and	access	the	information	in	the	device.

Bush's	ideas	were	used	as	the	basis	of	the	work	of	several	researchers	who
followed.	One	of	these	was	Ted	Nelson,	who	coined	the	term	hypertext	and,	in
1960,	first	described	a	system	called	Xanadu,	which	is	considered	one	of	the
original	hypertext	software	models.

The	history	of	the	Web	itself	goes	back	to	1989	at	CERN,	the	European
Organization	for	Nuclear	Research,	in	Geneva.	(The	acronym	stands	for	Conseil
Européen	pour	la	Recherche	Nucléaire,	the	French	name	of	the	organization.)
Many	of	the	projects	undertaken	at	CERN	were	large	and	complex,	and	they
took	many	years	to	complete.	They	also	involved	many	scientists	who	had	to
work	with	and	share	related	documents.



A	researcher	at	CERN,	Tim	Berners-Lee,	proposed	the	idea	of	creating	a	"web"
of	electronically	linked	documents.	The	rapidly	growing	Internet	was	the
obvious	conduit	for	this	project.	He	designed	the	first	(very	crude	and	simple)
version	of	HTTP	for	TCP/IP	in	1990.	He	was	also	responsible	for	developing	or
co-developing	several	of	the	other	key	concepts	and	components	behind	the
Web,	such	as	Uniform	Resource	Identifiers	(URIs)	and	HTML.

The	ability	to	link	documents	and	files	had	tremendous	appeal,	and	it	took	little
time	before	creative	individuals	found	many	different	uses	for	this	new
technology.	The	early	1990s	saw	a	flurry	of	development	activity.	Web	server
and	client	software	was	developed	and	refined,	and	the	first	graphical	web
browser,	Mosaic,	was	created	by	the	National	Center	for	Supercomputer
Applications	(NCSA)	in	1993.	(The	developer	of	this	program,	Marc
Andreessen,	eventually	formed	Netscape	Communications.)

Once	the	Web	started	to	form,	it	grew	very	quickly	indeed.	In	fact,	to	call	the
growth	of	the	Web	anything	but	explosive	would	not	do	it	justice.	In	early	1993,
only	50	active	HTTP	web	servers	existed.	By	late	1993,	more	than	1,000	were	in
service.	By	late	1995,	thousands	of	new	websites	were	coming	online	every	day,
and	HTTP	requests	and	responses	had	overtaken	all	other	TCP/IP	application
traffic.	By	the	end	of	the	decade,	millions	of	websites	and	more	than	a	billion
documents	were	available	on	the	Web.

The	World	Wide	Web	Today
While	the	rapid	growth	in	the	size	of	the	Web	is	amazing,	what	is	even	more
fascinating	is	its	growth	in	scope.	Since	you	are	reading	a	book	about
networking,	you	are	most	likely	a	Web	user	who	is	familiar	with	the	incredible
array	of	different	types	of	information	you	can	find	on	the	Web	today.	Early
hypertext	systems	were	based	on	the	use	of	only	text	documents;	today	the	Web
is	a	world	of	many	media	including	pictures,	sounds,	and	movies.	The	term
hypertext	has	in	many	contexts	been	replaced	with	the	more	generic	hypermedia
—functionally,	if	not	officially.

The	Web	has	also	moved	beyond	providing	simple	document	retrieval	to
providing	a	myriad	of	services.	A	website	can	serve	up	much	more	than	just
documents,	allowing	users	to	run	thousands	of	kinds	of	programs	to	do
everything	from	shop	to	play	music	or	games	online.	Websites	are	also	blurring



everything	from	shop	to	play	music	or	games	online.	Websites	are	also	blurring
the	lines	between	different	types	of	applications,	offering	Web-based	email,
Web-based	Usenet	access,	bulletin	boards,	and	other	interactive	forums	for
discussion.

The	Web	has	had	an	impact	on	both	networking	and	society	as	a	whole	that	even
its	most	enthusiastic	early	fans	could	never	have	anticipated.	In	fact,	the	Web
was	the	ultimate	"killer	application"	for	the	Internet	as	a	whole.	In	the	early
1990s,	big	corporations	viewed	the	Web	as	an	amusing	curiosity;	by	the	end	of
the	decade,	it	was	for	many	a	business	necessity.	Millions	of	individuals	and
families	discovered	the	wealth	of	information	at	their	fingertips,	and	Internet
access	became	for	many	another	necessary	utility,	like	telephone	service.	In	fact,
the	huge	increase	in	Web	traffic	volume	spawned	the	spending	of	billions	of
dollars	on	Internet	infrastructure.

The	dot-com	collapse	of	the	early	twenty-first	century	took	some	of	the	wind	out
of	the	Web's	sails.	The	incredible	growth	of	the	Web	could	not	continue	at	its
original	pace	and	has	slowed	somewhat.	But	the	Web	as	a	whole	continues	to
expand	and	mature,	and	it	will	likely	be	the	most	important	information	and
service	resource	on	the	Internet	for	some	time	to	come.

TIP

KEY	CONCEPT	The	World	Wide	Web	(the	Web	or	WWW)	began	in	1989	as	a	project	designed	to
facilitate	the	representation	of	relationships	between	documents	and	the	sharing	of	information	between
researchers.	The	main	feature	of	the	Web	that	makes	it	so	powerful	is	hypertext,	which	allows	links	to	be
made	from	one	document	to	another.	The	many	benefits	of	the	Web	caused	it	to	grow	in	only	a	few	short
years	from	a	small	application	to	the	largest	and	arguably	most	important	application	in	the	world	of
networking.	It	is	largely	responsible	for	bringing	the	Internet	into	the	mainstream	of	society.



World	Wide	Web	System	Concepts	and
Components
Hypertext	is	the	main	concept	that	makes	the	Web	more	than	just	another
message	transfer	system.	However,	the	idea	behind	hypertext	had	been	around
for	decades	before	the	Web	was	born,	as	had	certain	software	products	based	on
that	idea.	Obviously,	more	than	just	a	concept	is	needed	for	an	idea	to	be
developed	into	a	successful	system.

The	Web	became	a	phenomenon	because	it	combined	the	basic	idea	of	hypertext
with	several	other	concepts	and	technologies	to	create	a	rich,	comprehensive
mechanism	for	interactive	communication.	This	system	today	encompasses	so
many	different	concepts	and	software	elements,	and	is	so	integrated	with	other
technologies,	that	it's	difficult	to	find	any	two	people	who	agree	on	what	exactly
the	Web	comprises,	and	which	parts	are	most	critical.

For	example,	one	of	the	keys	to	the	success	of	the	Web	is	undeniably	the
combination	of	the	TCP/IP	internetworking	protocol	suite	and	the	Internet
infrastructure	that	connects	together	the	computers	of	the	world.	Is	the	Internet
then	an	essential	component	of	the	Web?	In	many	ways,	it	is;	and,	in	fact,	due	to
how	popular	the	Web	is	today,	it	is	common	to	hear	people	refer	to	the	Web	as
the	Internet.	We	know	that	this	is	not	a	precise	use	of	terms,	of	course,	but	it
shows	how	important	the	Web	has	become	and	how	closely	it	is	tied	to	the
Internet.

Major	Functional	Components	of	the	Web
While	the	Internet	and	TCP/IP	are	obviously	important	parts	of	the	Web's
success,	they	are	generic	in	nature.	When	it	comes	to	defining	the	Web	system
itself	more	specifically,	three	particular	components	are	usually	considered	most
essential	(see	Figure	79-1):

Hypertext	Markup	Language	HTML	is	a	text	language	used	to	define
hypertext	documents.	The	idea	behind	HTML	was	to	add	simple	constructs,
called	tags,	to	regular	text	documents,	to	enable	the	linking	of	one	document	to
another,	as	well	as	to	allow	special	data	formatting	and	the	combining	of



different	types	of	media.	HTML	has	become	the	standard	language	for
implementing	information	in	hypertext	and	has	spawned	the	creation	of
numerous	related	languages.

Hypertext	Transfer	Protocol	HTTP	is	the	TCP/IP	application	layer	protocol
that	implements	the	Web,	by	enabling	the	transfer	of	hypertext	documents	and
other	files	between	a	client	and	server.	HTTP	began	as	a	very	crude	protocol	for
transferring	HTML	documents	between	computers,	and	it	has	evolved	to	a	full-
featured	and	sophisticated	messaging	protocol.	It	supports	transfers	of	many
different	kinds	of	documents,	streaming	of	multiple	files	on	a	connection,	and
various	advanced	features	including	caching,	proxying,	and	authentication.

Uniform	Resource	Identifiers	URIs	are	used	to	define	labels	that	identify
resources	on	an	internetwork	so	that	they	can	be	easily	found	and	referenced.
URIs	were	originally	developed	to	provide	a	means	by	which	the	users	of	the
Web	could	locate	hypertext	documents	so	they	could	be	retrieved.	URIs	are
actually	not	specific	to	the	Web,	though	they	are	most	often	associated	with	the
Web	and	HTTP.

Figure	79-1.	Major	functional	components	of	the	World	Wide	Web

NOTE

Uniform	Resource	Locators	(URLs)	are	actually	a	subset	of	Uniform	Resource	Identifiers	(URIs).	The
terms	are	often	used	interchangeably	in	World	Wide	Web	discussions.

All	three	of	these	components	were	created	and	developed	at	around	the	same
time,	and	taken	together	they	represent	the	key	technologies	that	define	the	Web.
In	this	chapter,	I'll	describe	HTML	and	the	use	of	URIs	in	the	context	of	the
Web.	HTTP	is	really	the	heart	of	the	Web	and	is	covered	in	the	remaining	five
chapters	of	this	part	of	the	book.



chapters	of	this	part	of	the	book.

Web	Servers	and	Web	Browsers
These	three	main	Web	components	are	supplemented	by	a	number	of	other
elements	that	play	supporting	roles	in	rounding	out	the	system	as	a	whole.	Chief
among	these	are	the	hardware	and	software	used	to	implement	client/server
communication	that	makes	the	Web	work,	also	illustrated	in	Figure	79-1:	web
servers	and	web	browsers.

Web	servers	are	computers	that	run	special	server	software	that	allows	them	to
provide	hypertext	documents	and	other	files	to	clients	who	request	them.
Millions	of	such	machines	around	the	world	now	serve	as	a	virtual	distributed
repository	of	the	enormous	wealth	of	information	that	the	Web	represents.

Web	browsers	are	HTTP	client	software	programs	that	run	on	TCP/IP	client
computers	to	access	web	documents	on	web	servers.	These	browser	programs
retrieve	hypertext	documents	and	display	them,	and	they	also	implement	many
of	the	Web's	advanced	features,	such	as	caching.	Today's	browsers	support	a
wide	variety	of	media,	allowing	the	Web	to	implement	many	different	functions
aside	from	hypertext	document	transfer.	Examples	include	displaying	images,
playing	sounds,	and	implementing	interactive	programs.

Last,	but	certainly	not	least,	the	users	of	the	Web	are	perhaps	its	most	important
component.	User	involvement	has	had	more	of	a	role	in	shaping	the	development
of	Web	technology	than	any	other	networking	application.	The	Web	began	as	a
simple	means	of	exchanging	documents;	today,	it	has	grown	to	encompass
thousands	of	different	applications	and	services,	largely	as	a	result	of	the
creativity	of	its	users.	Content	providers	have	pushed	the	boundaries	of	what	the
Web	can	do	by	creating	new	ideas	for	information	and	services	to	satisfy	the
insatiable	demands	of	the	end-user	community.

TIP

KEY	CONCEPT	The	World	Wide	Web	is	a	complete	system	comprising	a	number	of	related
components,	of	which	three	are	most	essential.	Hypertext	Markup	Language	(HTML)	describes	how
hypertext	documents	are	constructed.	HTML	allows	links	between	documents	to	be	represented.	The
Hypertext	Transfer	Protocol	(HTTP)	is	the	application	layer	protocol	that	moves	hypertext	and	other
documents	over	the	Web.	The	Uniform	Resource	Identifier	(URI)	mechanism	provides	a	consistent
means	of	identifying	resources,	both	on	the	Web	and	more	generally	on	the	Internet	as	a	whole.





World	Wide	Web	Media	and	the	Hypertext
Markup	Language
I've	said	the	Web	is	based	around	the	central	concept	of	hypertext.	The	prefix
hyper	usually	means	above	or	beyond,	and	thus	hypertext	is	like	text	but	goes
beyond	it	in	terms	of	functionality.	Documents	written	in	hypertext	are	similar	to
regular	text	files	but	include	information	that	implements	hypertext	functions.
These	are	usually	called	hypertext	documents	or	hypertext	files.

The	extra	information	in	a	hypertext	document	is	used	to	tell	the	computer
program	that	displays	the	file	how	to	format	it.	This	information	takes	the	form
of	special	instructions	that	are	interspersed	with	the	actual	text	of	the	document
itself,	which	are	written	according	to	the	syntax	of	a	defining	language.	This
addition	of	extra	elements	to	the	content	of	a	document	is	commonly	called
marking	up	the	document.

Overview	of	HTML
HTML	is	one	of	the	three	primary	system	components	of	the	Web	and	was
invented	in	1990	by	the	creator	of	the	Web,	Tim	Berners-Lee.	It	was	not	created
in	a	vacuum;	rather,	it	is	a	specific	application	of	the	general	concept	of	a
markup	language	that	is	described	in	ISO	standard	8879:1986—the	Standard
Generalized	Markup	Language	(SGML).

A	markup	language	defines	special	items	that	provide	information	to	the
software	displaying	the	document	about	how	it	should	be	presented.	For	the
purposes	of	hypertext,	the	most	basic	type	of	information	in	a	document	is	a
special	instruction	that	specifies	how	one	document	can	be	linked	to	another—
after	all,	this	linking	process	is	the	defining	attribute	of	hypertext.

However,	HTML	goes	far	beyond	just	this;	it	defines	a	full	set	of	text	codes	used
for	describing	nearly	every	aspect	of	how	a	document	is	shown	to	a	user.	This
includes	instructions	for	formatting	text	(such	as	defining	its	color,	size,	and
alignment),	interactive	forms,	methods	for	displaying	tabular	data,	specifications
for	how	to	present	images	and	other	media	along	with	the	document,	and	much
more.	In	theory,	the	language	is	only	supposed	to	define	the	document	and	leave
how	it	should	be	displayed	up	to	the	browser,	but	in	practice,	modern	HTML



how	it	should	be	displayed	up	to	the	browser,	but	in	practice,	modern	HTML
documents	also	usually	contain	rather	specific	instructions	for	how	their
information	should	be	presented.

To	do	justice	to	HTML,	I	would	need	to	devote	several	dozen	pages	to	the
subject.	I	have	decided	not	to	do	this,	because	even	though	HTML	is	an
important	part	of	the	Web,	it	is	actually	not	that	important	in	understanding	how
the	Web	works.	Knowing	HTML	is	essential	if	you	are	writing	Web	content,	and
it	is	also	critical	if	you	want	to	understand	how	to	write	Web	software.	Perhaps
ironically,	though,	to	the	actual	mechanisms	that	make	the	Web	work,	such	as
HTTP,	a	document	is	a	document.	HTTP	is	not	designed	under	the	assumption
that	it	will	transfer	HTML,	and	in	most	cases,	servers	do	not	even	look	at	the
contents	of	an	HTML	file—they	just	transfer	it.

That	said,	a	basic	understanding	of	HTML	is	important,	and	it	just	wouldn't
seem	right	not	to	provide	at	least	an	overview	of	the	language,	so	I	will	do	that
here.	I	encourage	you	to	seek	out	one	of	the	many	good	HTML	resources	if	you
want	to	learn	more—you'll	find	dozens	of	them	on	the	Web	(where	else?).

HTML	Elements	and	Tags
In	simplest	terms,	an	HTML	document	is	a	plain	ASCII	text	file,	like	an	email
message	or	other	text	document.	The	biggest	difference	between	HTML	and
regular	text	is	that	HTML	documents	are	structured;	that	is,	the	document	is
logically	organized	into	a	series	of	elements	that	are	arranged	according	to	the
rules	of	the	language.	Each	element	defines	one	part	of	the	document	as	a	whole.
The	title	of	a	document,	a	paragraph,	a	table,	and	a	hyperlink	to	another
document	are	all	examples	of	elements.

Each	element	is	described	using	special	text	tags	that	follow	a	particular	syntax.
Each	tag	begins	with	the	<	symbol,	which	is	then	followed	by	the	(case-
insensitive)	element	name,	and	optionally,	additional	parameters	that	describe
the	element.	The	tag	ends	with	the	>	symbol.	Here's	how	a	tag	looks	generally:

<element parameter1="value1" parameter2="value2". . .>

Some	elements	are	entirely	described	by	the	presence	of	a	tag,	and	in	such	cases,
that	tag	is	the	entire	element.	More	often,	tags	occur	in	pairs	surrounding	the
actual	content	of	the	element;	the	start	tag	begins	with	the	name	of	the	element,
and	the	end	tag	begins	with	a	slash	symbol	followed	by	the	name	of	the	element.



For	example,	the	title	of	a	document	is	an	element	that	can	be	defined	as	follows:
<title>This Is A Great Story</title>

The	content	of	each	element	can	contain	other	elements,	which	causes	tags	to	be
nested	within	each	other.	For	example,	if	we	wanted	to	highlight	the	word	Great
in	our	title	by	displaying	it	in	bold	letters,	we	can	add	the	<b>	tag	as	follows:

<title>This Is A <b>Great</b> Story</title>

Each	whole	HTML	document	is	defined	as	a	single	element	called	html;	the
whole	document	is	enclosed	in	<html>	and	</html>	tags.	Within	this	element,
the	document	is	divided	into	two	standard	subelements	that	must	be	present	in
each	document:	the	head	and	the	body.	The	head	of	the	document	contains
information	that	describes	the	document	and	how	it	is	to	be	processed;	it	most
commonly	contains	the	title	of	the	document.	The	body	contains	the	actual
content	of	the	document.	These	three	elements	define	the	basic	HTML	document
structure,	as	follows:

<html>
<head>
(head elements go here...)
</head>
<body>
(body elements go here...)
</body>
</html>

The	bulk	of	the	document	consists	of	the	body	elements	that	are	placed	between
the	<body>	and	</body>	tags.	HTML	documents	can	range	from	very	simple
bodies	containing	only	elements	such	as	text	paragraphs	and	perhaps	a	few	links,
to	very	sophisticated	documents	that	are	computer-generated	and	contain
hundreds	or	even	thousands	of	nested	tags	of	various	sorts.

Common	HTML	Elements
Table	79-1	provides	a	brief	description	of	some	of	the	more	common	elements
used	in	the	body	of	an	HTML	message	and	the	tags	that	define	them,	to	give	you
a	feel	for	how	the	language	works.

Table	79-1.	Common	HTML	Elements

Element Example	Element	and	Tags Description



Paragraph <p>Jack and Jill went up the
hill to
fetch a pail of water...</p>

Delineates	a	paragraph	of	text.	Note	that
everything	between	the	start	and	end	tags	will	be
considered	one	paragraph,	even	if	split	onto
multiple	lines	as	I	have	done	here.	Line	breaks	are
not	significant	in	HTML	formatting;	only	tags	are
recognized.

Line
Break

George W. Bush<br>
The White House<br>
1600 Pennsylvania Ave., NW<br>
Washington, DC 20500

Forces	a	line	break.	Used	instead	of	the	paragraph
tag	to	present	lines	close	together,	such	as
addresses.

Heading <h1>First Topic</h1>
<h2>Subtopic</h2>

Defines	section	headings	to	allow	information	in	a
long	document	to	be	displayed	in	hierarchical
form.	Six	sets	of	tags	are	defined,	from	<h1>	and
</h1>	to	<h6>	and	</h6>.	Browsers	will
automatically	display	the	higher-level	headings	in
more	prominent	ways,	by	using	larger	fonts,
underlining	the	text,	or	similar	treatment.

List <p>Shopping list:
<ul>
<li>Milk
<li>Eggs
<li>Sushi
</ul>
</p>

Allows	information	to	be	presented	as	a	list.	The
tag	<ul>	means	unnumbered	list	and	causes	the	list
items	to	be	shown	usually	as	bullet	points.
Alternatively,	<ol>	(ordered	list)	can	be	used	to
show	the	items	preceded	by	1,	2,	3,	and	so	on.

Horizontal
Rule

...end of this part of the
story.</p>
<hr size= "3">
<p>Start of next part of
story...

Draws	a	horizontal	line	across	the	page;	the	size
parameter	controls	its	thickness.	Used	to	separate
logical	sections	in	a	document.

Image <img src="companylogo.gif"
alt="XYZ
Industries Logo"
align="center">

Displays	an	inline	image	in	the	appropriate	section
of	the	text.	The	src	parameter	is	a	relative	or
absolute	URL	for	the	image,	and	numerous	other
parameters	can	be	included	to	define	the	image's
alignment,	size,	alternate	text	to	display	if	the
browser	is	nongraphical	(as	shown	here	with	the
alt	parameter),	and	much	more.

Link <a href="http://
www.PCGuide.com">Click here to
visit
The PC Guide</a>

Hyperlinks	to	another	document.	The	a	in	the	tag
stands	for	anchor,	which	is	the	formal	name	for	a
hyperlink.	The	href	parameter	specifies	the	URL
of	the	link.	Most	browsers	will	underline	or
otherwise	highlight	text	between	the	start	and	end
tags	to	make	it	clear	that	the	text	represents	a



tags	to	make	it	clear	that	the	text	represents	a
hyperlink.	It	is	also	possible	to	give	a	hyperlink	to

an	image	by	combining	the	<img>	and	<a>	tags.

Bookmark <a name="Step4">Step 4: Remove
paint
using scrubbing tool.</a>

Creates	a	bookmark	that	can	be	used	to	hyperlink
to	a	particular	section	in	a	document.	For	example,
if	the	bookmark	in	this	example	was	in	a	document
at	URL
http://www.homefixitup.com/repainting.htm,	the
URL
http://www.homefixitup.com/repainting.htm#Step4
refers	to	this	particular	place	in	the	document.	See
the	discussion	of	URLs	later	in	this	chapter	for
more	details.

Table <table>
<tr>
<td>1st row, 1st column.</td>
<td>1st row, 2nd column.</td>
</tr>
<tr>
<td>2nd row, 1st column.</td>
<td>2nd row, 2nd column.</td>
</tr>
</table>

Displays	information	in	tabular	form.	Each	<tr>
and	</tr>	tag	set	defines	one	row	of	the	table;
within	each	row,	each	<td>	and	</td>	pair	defines
one	table	data	element.	Many	different	parameters
can	be	provided	for	each	of	these	tags	to	control
table	size	and	appearance.

Form <form method="POST"
action="https://
www.myfavesite.com/order.php">
<input type="hidden"
name="PRODUCT"
value="widget">
<input type="text"
name="QUANTITY"
size="3">
<input type="submit"
value="Click
Here to Proceed to the Secure
Processing Site">
</form>

Defines	an	HTML	form,	allowing	various	sorts	of
information	to	be	submitted	by	a	client	to	a
program	on	a	website	designed	to	process	forms.
The	form	consists	of	the	initial	<form>	tag	that
describes	what	action	to	be	taken	when	the
submission	button	is	pressed,	and	other	form	items
such	as	predefined	variables,	text-entry	fields,	and
buttons.	One	example	of	each	of	these	items	is
shown	here.

Script <script language=javascript>
(JavaScript code)
</script>

Allows	instructions	in	a	scripting	language	to	be
included	in	an	HTML	document.	It	is	most	often
used	for	JavaScript.

Common	Text	Formatting	Tags
Numerous	tags	are	used	to	format	the	appearance	of	text	within	a	document;	here

http://www.homefixitup.com/repainting.htm
http://www.homefixitup.com/repainting.htm#Step4


are	some	of	the	more	common	ones:

<b>text</b>	Present	the	enclosed	text	in	boldface.

<i>text</i>	Present	the	enclosed	text	in	italics.

<u>text</u>	Present	the	enclosed	text	underlined.

<font (parameters)>text</font>	Present	the	enclosed	text	using	the
indicated	font	type,	size,	or	color.

This	is	just	the	tip	of	the	iceberg	when	it	comes	to	HTML.	If	you	are	not	familiar
with	HTML,	however,	knowing	these	basic	tags	should	help	you	interpret	basic
HTML	documents	and	learn	how	HTTP	works.

TIP

KEY	CONCEPT	The	language	used	by	World	Wide	Web	hypertext	documents	is	called	HTML.
HTML	documents	are	like	ASCII	text	files,	but	they	are	arranged	using	a	special	structure	of	HTML
elements	that	define	the	different	parts	of	the	document	and	how	they	should	be	displayed	to	the	user.
Each	element	is	described	using	special	text	tags	that	define	it	and	its	characteristics.



World	Wide	Web	Addressing:	HTTP	Uniform
Resource	Locators
The	main	reason	that	hypertext	is	so	powerful	and	useful	is	that	it	allows	related
documents	to	be	linked	together.	In	the	case	of	the	Web,	this	is	done	using	a
special	set	of	HTML	tags	that	specifies	in	one	document	the	name	of	another
document	that	is	related	in	some	important	way.	A	user	can	move	from	one
document	to	the	next	using	a	simple	mouse	click.	The	Web	has	succeeded
largely	on	the	basis	of	this	simple	and	elegant	method	of	referral.

The	notion	of	hyperlinking	has	some	important	implications	on	how	Web
documents	and	other	resources	are	addressed.	Even	though	the	Web	is	at	its
heart	a	message	transfer	protocol	similar	to	FTP,	the	need	to	be	able	to	define
hyperlinks	meant	that	the	traditional	FTP	model	of	using	a	set	of	commands	to
specify	how	to	retrieve	a	resource	had	to	be	abandoned.	Instead,	a	system	was
needed	whereby	a	resource	could	be	uniquely	specified	using	a	simple,	compact
string.

The	result	of	this	need	was	the	definition	of	one	of	the	three	primary	elements	of
the	Web:	the	URI.	URIs	are	divided	into	two	categories:	Uniform	Resource
Locators	(URLs)	and	Uniform	Resource	Names	(URNs).	While	URIs,	URLs,
and	URNs	grew	out	of	the	development	of	the	Web,	they	have	now	been
generalized	to	provide	an	addressing	mechanism	for	a	wide	assortment	of
TCP/IP	application	layer	protocols.	They	are	described	in	detail	in	Chapter	70.
Here,	we	will	look	at	how	they	are	used	specifically	for	the	Web.

Currently,	the	Web	uses	URLs	almost	exclusively;	URNs	are	still	in
development.	Web	URLs	specify	the	use	of	HTTP	for	resource	retrieval	and	are
thus	normally	called	HTTP	URLs.	These	URLs	allow	a	resource	such	as	a
document,	graphical	image,	or	multimedia	file	to	be	uniquely	addressed	by
specifying	the	host	name,	directory	path,	and	filename	where	it	is	located.

TIP

KEY	CONCEPT	Uniform	Resource	Identifiers	(URIs)	were	developed	to	allow	World	Wide	Web
resources	to	be	easily	and	consistently	identified;	they	are	also	now	used	for	other	protocols	and
applications.	The	type	of	URI	currently	used	on	the	Web	is	the	Uniform	Resource	Locator	(URL),	which
identifies	the	use	of	HTTP	to	retrieve	a	resource,	and	provides	information	on	where	and	how	it	can	be



found	and	retrieved.

HTTP	URL	Syntax
HTTP	URLs	may	be	absolute	or	relative	(see	"URL	Relative	Syntax	and	Base
URLs"	in	Chapter	70	for	details	on	the	difference	between	them).	Absolute
URLs	are	usually	used	for	hyperlinks	from	one	website	to	another	or	by	users
requesting	a	new	document	without	any	prior	context.	Absolute	HTTP	URLs	are
based	on	the	following	common	Internet	URL	syntax:

<scheme>://<user>:<password>@<host>:<port>/<urlpath>;<params>?<query>#<fragment>

For	the	Web,	the	scheme	is	http:,	and	the	semantics	of	the	different	URL
elements	are	defined	to	have	meanings	that	are	relevant	to	the	Web.	The	general
structure	of	an	HTTP	URL	looks	like	this:

http://<user>:<password>@<host>:<port>/<url-path>?<query>#<bookmark>

These	syntactic	elements	are	specifically	defined	for	HTTP	absolute	URLs	as
follows:

<user> and <password>	Optional	authentication	information,	for	resources
located	on	password-protected	servers.	This	construct	is	rarely	used	in	practice,
so	most	people	don't	realize	it	is	an	option.	It	has	thus	become	a	target	of	abuse
by	con	artists	who	use	it	to	obscure	undesirable	URLs.

<host>	The	host	name	of	the	web	server	where	the	resource	is	located.	This	is
usually	a	fully	qualified	Domain	Name	System	(DNS)	domain	name,	but	it	may
also	be	an	IP	address.

<port>	The	TCP	port	number	to	use	for	connecting	to	the	web	server.	This
defaults	to	port	80	for	HTTP	and	is	usually	omitted.	In	rare	cases,	you	may	see
some	other	port	number	used,	sometimes	to	allow	two	copies	of	web	server
software	devoted	to	different	uses	on	the	same	IP	address.	Port	8080	is
especially	common	as	an	alternative.

<url-path>	The	path	pointing	to	the	specific	resource	to	be	retrieved	using
HTTP.	This	is	usually	a	full	directory	path	expressing	the	sequence	of	directories
to	be	traversed	from	the	root	directory	to	the	place	where	the	resource	is	located,
and	then	the	resource's	name.	It's	important	to	remember	that	the	path	is	case-



sensitive,	even	though	DNS	domain	names	are	not.

<query>	An	optional	query	or	other	information	to	be	passed	to	the	web	server.
This	feature	is	commonly	used	to	implement	interactive	functions,	because	the
query	value	can	be	specified	by	the	user	and	then	be	passed	from	the	web
browser	to	the	web	server.	The	alternative	method	is	by	using	the	HTTP	POST
method.

<bookmark>	Identifies	a	particular	location	within	an	HTML	document.	This	is
commonly	used	in	very	large	HTML	documents	to	allow	a	user	to	click	a
hyperlink	and	scroll	to	a	particular	place	in	the	document.	See	the	example	near
the	end	of	Table	79-1.

Although	the	URL	syntax	for	the	Web	is	quite	rich	and	potentially	complex,
most	Web	URLs	are	actually	quite	short.	The	vast	majority	of	these	components
are	omitted,	especially	the	user,	password,	port,	and	bookmark	elements.	Queries
are	used	only	for	special	purposes.	This	leaves	the	more	simplified	form	you	will
usually	encounter	for	URLs:

http://<host>/<url-path>

Resource	Paths	and	Directory	Listings
The	<url-path>	used	to	reference	a	particular	document	can	also	be	omitted.
This	provides	a	convenient	way	for	a	user	to	see	what	content	is	offered	on	a
website	without	needing	to	know	what	particular	document	to	request.	For
example,	a	user	who	wants	to	see	the	current	headlines	on	CNN	would	go	to
http://www.cnn.com.	In	this	case,	the	request	is	sent	to	the	web	server	for	the
null	document	(represented	by	/,	which	is	implied	if	it	is	not	specified;
technically,	you	are	supposed	to	specify	http://www.cnn.com/).

How	a	/	request	is	handled	depends	on	the	server.	Technically,	such	a	request	is
actually	asking	the	server,	"Please	show	me	the	contents	of	the	root	directory	of
the	server."	However,	this	is	both	ugly	(a	listing	of	filenames	is	not	the	best	way
to	make	a	first	impression)	and	a	potential	security	issue	(as	anyone	can	see	the
name	of	every	file	on	the	server).	Instead,	most	HTTP	servers	are	set	up	to
recognize	such	requests	automatically	and	return	a	default	document,	often
named	something	like	index.html	or	default.html.	Many	servers	will	similarly
return	a	default	document	of	some	sort	if	any	other	directory	is	specified	in	a

http://www.cnn.com
http://www.cnn.com/


URL;	for	example,	typing	http://www.pcguide.com/ref	in	the	URL	address	bar
of	a	web	browser	actually	returns	http://www.pcguide.com/ref/index.htm.

NOTE

While	it	is	technically	incorrect	to	leave	the	http://	off	an	HTTP	URL,	most	web	browsers	will	add	it
automatically	if	it's	omitted.	As	a	result,	many	Web	users	are	in	the	habit	of	entering	URLs	that	are
simply	a	host	name,	such	as	www.tcpipguide.com.

The	forms	shown	here	apply	to	absolute	HTTP	URLs.	URLs	may	also	be
relative,	which	is	the	norm	for	links	between	closely	related	documents,	such	as
graphics	that	go	with	a	document,	or	between	documents	in	a	set	or	project.	In
this	case,	usually	only	a	fractional	portion	of	a	URL	path	is	specified.	This	is
described	fully	in	Chapter	70.

http://www.pcguide.com/ref
http://www.pcguide.com/ref/index.htm
http://www.tcpipguide.com


Chapter	80.	HTTP	GENERAL
OPERATION	AND	CONNECTIONS

The	Hypertext	Transfer	Protocol	(HTTP)	began	as	an	extremely	basic	protocol,
designed	to	do	just	one	thing:	allow	a	client	to	send	a	simple	request	for	a
hypertext	file	and	receive	it	back	from	the	server.	Modern	HTTP	remains	at	its
heart	a	straightforward	request/reply	protocol,	but	now	includes	many	new
features	and	capabilities	to	support	the	growing	size	of	the	World	Wide	Web	(the
Web)	and	the	ever-increasing	variety	of	ways	that	people	have	found	to	use	the
Web.	Therefore,	the	best	place	to	start	explaining	HTTP	is	by	looking	at	its
operation	as	a	whole	and	how	communication	takes	place	between	a	web	server
and	a	web	client.

In	this	chapter,	I	introduce	HTTP	by	describing	its	operation	in	general	terms.	I
start	with	an	overview	of	HTTP,	discussing	its	versions	and	the	standards	that
define	them.	I	then	discuss	its	operational	model,	which	is	important	to
understanding	how	HTTP	works.	I	explain	the	two	types	of	connections	that	are
supported	between	HTTP	clients	and	servers,	and	the	method	by	which	requests
can	be	pipelined	in	the	current	version	of	HTTP,	HTTP/1.1.	I	then	provide	more
information	about	how	persistent	connections	are	established,	managed,	and
terminated	in	HTTP/1.1.

HTTP	Versions	and	Standards
The	World	Wide	Web	had	humble	beginnings	as	a	research	project	at	the	Swiss
research	institute,	CERN,	the	European	Organization	for	Nuclear	Research.	The
primary	goal	of	the	project	was	to	allow	hypertext	documents	to	be
electronically	linked,	so	selecting	a	reference	in	one	document	to	a	second
document	would	cause	the	reference	document	to	be	retrieved.	To	implement



this	system,	the	researchers	needed	some	sort	of	mechanism	to	allow	a	client
computer	to	tell	a	server	to	send	it	a	document.	To	fill	this	function,	the	early
developers	of	the	Web	created	a	new	TCP/IP	application	layer	protocol:	the
Hypertext	Transfer	Protocol	(HTTP).

This	first	version	is	now	known	as	HTTP/0.9.	Subsequent	versions	are	HTTP/1.0
and	HTTP/1.1.

HTTP/0.9
The	original	version	of	HTTP	was	intended	only	for	the	transfer	of	hypertext
documents,	and	it	was	designed	to	be	very	simple	to	make	implementation	of	the
fledgling	Web	easier.	This	early	HTTP	specifies	that	an	HTTP	client	establishes
a	connection	to	an	HTTP	server	using	the	Transmission	Control	Protocol	(TCP).
The	client	then	issues	a	single	GET	request	specifying	a	resource	to	be	retrieved.
The	server	responds	by	sending	the	file	as	a	stream	of	text	bytes,	and	the
connection	is	terminated.	The	entire	document	defining	this	version	of	HTTP	is
only	a	couple	of	pages	long!

This	first	version	of	HTTP	was	functional	but	extremely	limited	in	its
capabilities.	It	didn't	support	the	transfer	of	any	types	of	data	other	than
hypertext,	and	it	didn't	provide	any	mechanism	for	any	sort	of	intelligent
communication	between	the	client	and	server.	This	early	HTTP	prototype	was
not	up	to	the	task	of	providing	the	basis	for	data	transfer	for	the	future	of	the
Web.	It	was	never	made	an	official	RFC	standard,	and,	in	fact,	never	even	had	a
formal	version	number;	it	is	known	today	as	HTTP	version	0.9,	or	HTTP/0.9,
using	the	HTTP	version	format.	I	believe	this	number	has	no	particular
significance,	other	than	being	a	bit	smaller	than	the	number	of	the	first	official
version	of	the	protocol.

HTTP/1.0
HTTP/0.9's	skeleton	of	functionality	formed	the	basis	for	a	rapid	evolution	of
HTTP	in	the	early	1990s.	As	the	Web	grew	in	size	and	acceptance,	many	new
ideas	and	features	were	incorporated	into	HTTP.	The	result	of	a	great	deal	of
development	effort	was	the	formalization	of	the	first	HTTP	standard:	version
1.0.	The	standard	for	this	much	enhanced	HTTP	was	published	in	May	1996	as
RFC	1945,	"Hypertext	Transfer	Protocol—HTTP/1.0."	It	had	been	in	use	for



RFC	1945,	"Hypertext	Transfer	Protocol—HTTP/1.0."	It	had	been	in	use	for
several	years	prior	to	that	formal	publication	date,	however.

HTTP/1.0	transformed	HTTP	from	a	trivial	request/response	application	to	a	true
messaging	protocol.	It	described	a	complete	message	format	for	HTTP,	and
explained	how	it	should	be	used	for	client	requests	and	server	responses.	One	of
the	most	important	changes	in	HTTP/1.0	was	the	generalization	of	the	protocol
to	handle	many	types	of	different	media,	as	opposed	to	strictly	hypertext
documents.	To	broaden	HTTP's	scope,	its	developers	borrowed	concepts	and
header	constructs	from	the	Multipurpose	Internet	Mail	Extensions	(MIME)
standard	defined	for	email	(discussed	in	Chapter	76).	At	the	same	time	that	it
defined	much	more	capable	web	servers	and	web	clients,	HTTP/1.0	retained
backward-compatibility	with	servers	and	clients	still	using	HTTP/0.9.

HTTP/1.0	was	the	version	of	HTTP	that	was	widely	implemented	in	the	mid-
1990s	as	the	Web	exploded	in	popularity.	After	only	a	couple	of	years,	HTTP
accounted	for	the	majority	of	the	traffic	on	the	burgeoning	Internet.	The
popularity	of	HTTP	was	so	great	that	it	single-handedly	prompted	the
installation	of	a	lot	of	new	hardware	to	handle	the	load	of	browser	requests	and
web	server	replies.

Unfortunately,	much	of	this	huge	load	of	traffic	was	due	to	some	limitations	in
HTTP	itself.	These	only	became	apparent	due	to	the	tremendous	growth	in	the
use	of	the	protocol,	which,	combined	with	the	normal	growing	pains	of	the
Internet,	led	to	many	frustrated	Web	users.	The	inefficiencies	of	HTTP/1.0	were
a	result	of	design	limitations,	such	as	the	following:

The	need	for	each	site	to	be	hosted	on	a	different	server.

The	fact	that	each	HTTP	session	handled	only	one	client	request.

A	general	lack	of	support	for	necessary	performance-enhancing	features	such
as	caching,	proxying,	and	partial	resource	retrieval.

HTTP/1.1
While	impatient	pundits	coined	sarcastic	terms	such	as	the	"World	Wide	Wait,"
the	Internet	Engineering	Task	Force	(IETF)	continued	to	work	to	improve
HTTP.	In	January	1997,	the	first	draft	version	of	HTTP/1.1	appeared,	in	RFC
2068.	This	document	was	later	revised	and	published	as	RFC	2616,	"Hypertext
Transfer	Protocol—HTTP/1.1,"	in	June	1999.	HTTP/1.1	retains	backward-



Transfer	Protocol—HTTP/1.1,"	in	June	1999.	HTTP/1.1	retains	backward-
compatibility	with	both	HTTP/1.0	and	HTTP/0.9.	It	is	accompanied	by	RFC
2617,	"HTTP	Authentication:	Basic	and	Digest	Access	Authentication,"	which
deals	with	security	and	authentication	issues.

HTTP/1.1	introduces	several	significant	improvements	over	version	1.0	of	the
protocol,	most	of	which	specifically	address	the	performance	problems	I	just
described.	Some	of	the	more	important	improvements	in	HTTP1/1	include	the
following:

Multiple	Host	Name	Support	In	HTTP/1.0,	there	was	no	way	to	specify	the
host	name	of	the	server	to	which	the	client	needed	to	connect.	As	a	result,	the
web	server	at	a	particular	IP	address	could	support	only	one	domain	name.	This
was	not	only	inefficient,	but	it	also	was	exacerbating	the	depletion	of	IP
addresses	in	the	1990s,	because	each	new	web	server	to	come	online	required	a
new	IP	address.	HTTP/1.1	allows	one	web	server	to	handle	requests	for	dozens
or	even	hundreds	of	different	virtual	hosts.

Persistent	Connections	HTTP/1.1	allows	a	client	to	send	multiple	requests	for
related	documents	to	a	server	in	a	single	TCP	session.	This	greatly	improves
performance	over	HTTP/1.0,	where	each	request	required	a	new	connection	to
the	server.

Partial	Resource	Selection	In	HTTP/1.1,	a	client	can	ask	for	only	part	of	a
resource,	rather	than	needing	the	get	the	entire	document,	which	reduces	the	load
on	the	server	and	saves	transfer	bandwidth.

Better	Caching	and	Proxying	Support	HTTP/1.1	includes	many	provisions	to
make	caching	and	proxying	more	efficient	and	effective	than	they	were	in
HTTP/1.0.	These	techniques	can	improve	performance	by	providing	clients	with
faster	replies	to	their	requests	while	reducing	the	load	on	servers,	as	well	as
enhancing	security	and	implementing	other	functionality.

Content	Negotiation	HTTP/1.1	has	an	additional	negotiation	feature	that	allows
the	client	and	server	to	exchange	information	to	help	select	the	best	resource	or
version	of	a	resource	when	multiple	variants	are	available.

Better	Security	HTTP/1.1	defines	authentication	methods	and	is	generally	more
security-aware	than	HTTP/1.0	was.

In	addition	to	these	notable	improvements,	many	other	minor	enhancements



In	addition	to	these	notable	improvements,	many	other	minor	enhancements
were	made	in	HTTP/1.1.	Several	of	these	take	the	form	of	new	headers	that	can
be	included	in	client	requests	to	better	control	under	what	circumstances
resources	are	retrieved	from	the	server,	and	headers	in	server	responses	to
provide	additional	information	to	the	client.

Future	HTTP	Versions
HTTP/1.1	continues	to	be	the	current	version	of	HTTP,	even	though	it	is	now
several	years	old.	This	may	seem	somewhat	surprising,	given	how	widely	used
HTTP	is.	Then	again,	it	may	because	so	many	millions	of	servers	and	clients
implement	HTTP/1.1	that	no	new	version	has	been	created.	For	a	while,	there
was	speculation	that	version	1.2	of	HTTP	would	be	developed,	but	this	has	not
happened	yet.

In	the	late	1990s,	work	began	on	a	method	of	expanding	HTTP	through
extensions	to	the	existing	version	1.1.	Development	of	the	HTTP	Extension
Framework	proceeded	for	a	number	of	years,	and	in	1998,	a	proposed	draft	for	a
new	Internet	standard	was	created.	However,	HTTP/1.1	is	so	widely	deployed
and	so	important	that	it	was	very	difficult	to	achieve	consensus	on	any	proposal
to	modify	it.	As	a	result,	when	the	HTTP	Extension	Framework	was	finally
published	in	February	2000	as	RFC	2774,	the	universal	acceptance	required	for	a
new	standard	did	not	exist.	The	framework	was	given	experimental	status	and
never	became	a	formal	standard.

TIP

KEY	CONCEPT	The	engine	of	the	World	Wide	Web	(the	Web)	is	the	application	protocol	that	defines
how	web	servers	and	clients	exchange	information:	the	Hypertext	Transfer	Protocol	(HTTP).	The	first
version	of	HTTP,	HTTP/0.9,	was	part	of	the	early	Web	and	was	a	very	simple	request/response	protocol
with	limited	capabilities	that	could	transfer	only	text	files.	The	first	widely	used	version	was	HTTP/1.0,
which	is	a	more	complete	protocol	that	allows	the	transport	of	many	types	of	files	and	resources.	The
current	version	is	HTTP/1.1,	which	expands	HTTP/1.0's	capabilities	with	several	features	that	improve
the	efficiency	of	transfers	and	address	many	of	the	needs	of	the	rapidly	growing	modern	Web.



HTTP	Operational	Model	and	Client/Server
Communication
While	the	Web	itself	has	many	different	facets,	HTTP	is	concerned	with	only
one	basic	function:	the	transfer	of	hypertext	documents	and	other	files	from	web
servers	to	web	clients.	In	terms	of	actual	communication,	clients	are	chiefly
concerned	with	making	requests	to	servers,	which	respond	to	those	requests.

Thus,	even	though	HTTP	includes	a	lot	of	functionality	to	meet	the	needs	of
clients	and	servers,	when	you	boil	it	down,	you	get	a	very	simple,	client/server,
request/response	protocol.	In	this	respect,	HTTP	more	closely	resembles	a
rudimentary	protocol	like	the	Boot	Protocol	(BOOTP)	or	the	Address	Resolution
Protocol	(ARP)	than	it	does	other	application	layer	protocols	like	the	File
Transfer	Protocol	(FTP)	and	the	Simple	Mail	Transfer	Protocol	(SMTP),	which
involve	multiple	communication	steps	and	command/reply	sequences.

Basic	HTTP	Client/Server	Communication
In	its	simplest	form,	the	operation	of	HTTP	involves	only	an	HTTP	client,
usually	a	web	browser	on	a	client	machine,	and	an	HTTP	server,	more
commonly	known	as	a	web	server.	After	a	TCP	connection	is	created,	the	two
steps	in	communication	are	as	follows	(see	Figure	80-1):

Client	Request	The	HTTP	client	sends	a	request	message	formatted	according
to	the	rules	of	the	HTTP	standard—an	HTTP	Request.	This	message	specifies
the	resource	that	the	client	wishes	to	retrieve	or	includes	information	to	be
provided	to	the	server.

Server	Response	The	server	reads	and	interprets	the	request.	It	takes	action
relevant	to	the	request	and	creates	an	HTTP	Response	message,	which	it	sends
back	to	the	client.	The	response	message	indicates	whether	the	request	was
successful,	and	it	may	also	contain	the	content	of	the	resource	that	the	client
requested,	if	appropriate.



Figure	80-1.	HTTP	client/server	communication	In	its	simplest	form,	HTTP	communication	consists	of
an	HTTP	Request	message	sent	by	a	client	to	a	server,	which	replies	with	an	HTTP	Response	message.

In	HTTP/1.0,	each	TCP	connection	involves	only	one	such	exchange,	as	shown
in	Figure	80-1.	In	HTTP/1.1,	multiple	exchanges	are	possible,	as	you'll	see	soon.
Note	also	that,	in	some	cases,	the	server	may	respond	with	one	or	preliminary
responses	prior	to	sending	the	full	response.	This	may	occur	if	the	server	sends	a
preliminary	response	using	the	100	Continue	status	code	prior	to	the	actual	reply.
See	the	description	of	HTTP	status	codes	in	Chapter	81	for	more	information.

TIP

KEY	CONCEPT	HTTP	is	a	client/server-oriented,	request/reply	protocol.	Basic	communication
consists	of	an	HTTP	Request	message	sent	by	an	HTTP	client	to	an	HTTP	server,	which	returns	an
HTTP	Response	message	back	to	the	client.

Intermediaries	and	the	HTTP	Request/Response
Chain
The	simple	request/response	pair	between	a	client	and	server	becomes	more
complex	when	intermediaries	are	placed	in	the	virtual	communication	path
between	the	client	and	server.	These	are	devices	such	as	proxies,	gateways,	or
tunnels	that	are	used	to	improve	performance,	provide	security,	or	perform	other
necessary	functions	for	particular	clients	or	servers.	Proxies	are	particularly
commonly	used	on	the	Web,	because	they	can	greatly	improve	response	time	for
groups	of	related	client	computers.

When	an	intermediary	is	involved	in	HTTP	communication,	it	acts	as	a
middleman.	Rather	than	the	client	speaking	directly	to	the	server	and	vice	versa,
each	talks	to	the	intermediary.	This	allows	the	intermediary	to	perform	functions
such	as	caching,	translation,	aggregation,	and	encapsulation.	For	example,
consider	an	exchange	through	a	single	intermediary	device.	The	two-step
communication	process	described	in	the	preceding	section	would	become	four
steps:



steps:

1.	 Client	Request	The	HTTP	client	sends	a	request	message	to	the
intermediary	device.

2.	 Intermediary	Request	The	intermediary	processes	the	request,	making
changes	to	it	if	necessary.	It	then	forwards	the	request	to	the	server.

3.	 Server	Response	The	server	reads	and	interprets	the	request,	takes
appropriate	action,	and	then	sends	a	response.	Since	it	received	its	request
from	the	intermediary,	its	reply	goes	back	to	the	intermediary.

4.	 Intermediary	Response	The	intermediary	processes	the	request,	again
possibly	making	changes,	and	then	forwards	it	back	to	the	client.

As	you	can	see,	the	intermediary	acts	as	if	it	were	a	server	from	the	client's
perspective	and	as	a	client	from	the	server's	viewpoint.	Many	intermediaries	are
designed	to	be	able	to	intercept	a	variety	of	TCP/IP	protocols,	by	posing	as	the
server	to	a	client	and	the	client	to	a	server.	Most	protocols	are	unaware	of	the
existence	of	intermediaries.	HTTP,	however,	includes	special	support	for	certain
intermediaries	such	as	proxy	servers,	providing	headers	that	control	how
intermediaries	handle	HTTP	requests	and	replies.	(Proxy	servers	are	discussed	in
Chapter	84.)

It	is	possible	for	two	or	more	intermediaries	to	be	linked	together	between	the
client	and	server.	For	example,	the	client	might	send	a	request	to	intermediary	1,
which	then	forwards	to	intermediary	2,	which	then	talks	to	the	server,	as
illustrated	in	Figure	80-2.	The	process	is	reversed	for	the	reply.	The	HTTP
standard	uses	the	phrase	request/response	chain	to	refer	collectively	to	the	entire
set	of	devices	involved	in	an	HTTP	message	exchange.

Figure	80-2.	HTTP	request/response	chain	using	intermediaries	Instead	of	being	connected	directly,	an
HTTP	client	and	server	may	be	linked	using	one	or	more	intermediary	devices	such	as	proxies.	In	this
example,	two	intermediaries	are	present.	The	HTTP	Request	message	sent	by	the	client	will	actually	be
transferred	three	times:	from	the	client	to	the	first	intermediary,	then	to	the	second,	and	finally	to	the
server.	The	HTTP	Response	message	will	be	created	once	but	transmitted	three	distinct	times.	The	full



set	of	devices	participating	in	the	message	exchange	is	called	the	request/response	chain.

TIP

KEY	CONCEPT	The	simple	client/server	operational	model	of	HTTP	becomes	more	complicated	when
intermediary	devices	such	as	proxies,	tunnels,	or	gateways	are	inserted	in	the	communication	path
between	the	HTTP	client	and	server.	HTTP/1.1	is	specifically	designed	with	features	to	support	the
efficient	conveyance	of	requests	and	responses	through	a	series	of	steps	from	the	client	through	the
intermediaries	to	the	server,	and	back	again.	The	entire	set	of	devices	involved	in	such	a	communication
is	called	the	request/response	chain.

The	Impact	of	Caching	on	HTTP	Communication
The	normal	HTTP	communication	model	is	changed	through	the	application	of
caching	to	client	requests.	Various	devices	on	the	Web	employ	caching	to	store
recently	retrieved	resources	so	they	can	be	quickly	supplied	in	reply	to	a	request.
The	client	itself	will	cache	recently	accessed	web	documents,	so	that	if	the	user
asks	for	them	again,	they	can	be	displayed	without	even	making	a	request	to	a
server.	If	a	request	is	required,	any	intermediary	device	can	satisfy	a	request	for
a	file	if	the	file	is	in	its	cache.

When	a	cache	is	used,	the	device	that	has	the	cached	resource	requested	returns
it	directly,	circumventing	the	normal	HTTP	communication	process.	In	the
example	shown	in	Figure	80-2,	if	intermediary	1	has	the	file	the	client	needs,	it
will	supply	it	to	the	client	directly,	and	intermediary	2	and	the	web	server	that
the	client	was	trying	to	reach	originally	will	not	even	be	aware	that	a	request	was
ever	made.	Chapter	84	provides	details	on	HTTP	caching.

NOTE

Most	requests	for	web	resources	are	made	using	HTTP	URLs	based	on	a	Domain	Name	System	(DNS)
host	name.	The	first	step	in	satisfying	such	requests	is	to	resolve	the	DNS	domain	name	into	an	IP
address,	but	this	process	is	separate	from	the	HTTP	communication	itself.



HTTP	Transitory	and	Persistent	Connections
and	Pipelining
You	just	learned	that	the	basic	HTTP	communication	process	is	a	simple	two-
step	procedure:	A	client	sends	a	request	to	a	server,	and	the	server	replies	back	to
the	client.	Since	this	was	all	that	HTTP	was	intended	to	do,	the	first	version	of
the	protocol	was	designed	so	that	after	a	TCP	connection	was	established
between	the	client	and	server,	a	single	request/response	exchange	was
performed.	After	the	request	was	satisfied,	the	TCP	connection	was	terminated.
These	transitory	connections	were	the	only	type	supported	by	the	original
HTTP/0.9,	and	the	same	model	was	maintained	in	the	more	widely	deployed
HTTP/1.0.

The	advantage	of	this	connection	model	is	its	conceptual	simplicity.	The
problem	with	it	is	that	it	is	inefficient	when	the	client	needs	to	make	many
requests	to	the	same	server.	This	is	often	the	case	with	modern	hypertext
documents,	which	usually	carry	inline	references	to	images	and	other	media.	A
typical	client	request	for	the	home	page	of	a	website	begins	with	a	single	request
for	a	Hypertext	Markup	Language	(HTML)	file,	but	then	leads	to	subsequent
requests	for	each	of	the	other	related	files	that	go	with	that	document.

With	transitory	connections,	each	of	these	requests	made	by	the	client	requires	a
new,	distinct	TCP	connection	to	be	set	up	between	the	client	and	server.	Every
connection	takes	server	resources	and	network	bandwidth,	so	needing	to
establish	a	new	one	for	each	file	is	woefully	inefficient.	Suppose	that	you	were
having	a	conversation	with	someone	whom	you	needed	to	ask	a	series	of
questions.	Now	imagine	that	after	answering	each	question,	the	other	person
hung	up	the	phone,	and	you	had	to	call	her	again!	You	get	the	picture.

There	are	some	people	who	consider	the	temporary	nature	of	HTTP/0.9	and
HTTP/1.0	connections	to	be	a	design	flaw	of	these	early	versions	of	HTTP,	but	I
don't	think	that	this	is	fair.	In	the	early	days,	this	model	of	operation	was	really
not	a	big	issue;	it	became	problematic	only	when	the	use	of	the	Web	and
hypertext	evolved.	For	the	first	few	years	of	its	existence,	hypertext	was
primarily	that:	text.	Having	an	HTTP	session	last	just	long	enough	for	one
request/response	was	generally	sufficient,	since	the	whole	resource	was	in	one



file.	It	was	only	in	the	1990s	that	hypertext	became	hypermedia,	with	a	heavy
emphasis	on	embedded	graphics	and	other	files.	When	web	pages	changed	from
simple	text	to	multimedia	marvels	sporting	dozens	or	even	hundreds	of
embedded	images,	the	limitations	of	HTTP/1.0	became	obvious.

The	solution	to	the	problem	came	in	HTTP/1.1,	which	allows	an	HTTP	client
and	server	to	set	up	a	persistent	connection.

Persistent	Connections
With	persistent	connections,	the	basic	operation	of	HTTP	is	not	changed.	The
main	difference	is	that,	by	default,	the	TCP	connection	is	kept	open	after	each
request/response	set,	so	that	the	next	request	and	response	can	be	exchanged
immediately.	The	session	is	closed	only	when	the	client	is	finished	requesting	all
the	documents	it	needs.

Keeping	the	TCP	connection	between	an	HTTP	client	and	server	alive	between
requests	is	probably	the	single	most	important	way	that	HTTP/1.1	improves
performance	over	HTTP/1.0.	Clients	are	able	to	get	their	files	more	quickly
because	they	don't	need	to	wait	for	a	TCP	connection	before	each	resource	is
retrieved.	Server	load	is	reduced,	and	memory	use	in	busy	servers	is	conserved.
Network	congestion	is	reduced	through	the	elimination	of	unnecessary	TCP
handshaking	segments.

Pipelining
Persistent	connections	offer	another	important	performance-enhancing	option	to
HTTP	clients:	the	ability	to	pipeline	requests.	Suppose	the	client	needs	to	send	a
request	for	Files	A,	B,	and	C	to	a	server.	Since	the	requests	for	all	of	these	files
will	be	sent	in	the	same	TCP	session,	there	is	no	need	for	the	client	to	wait	for	a
response	to	its	request	for	File	A	before	sending	the	request	for	File	B.	The	client
can	send	requests	in	a	rapid-fire	fashion,	one	after	the	other.	This	also	improves
the	efficiency	of	the	server,	which	will	be	able	to	fill	the	requests	in	the	order	in
which	they	are	received,	as	soon	as	it	is	able,	without	needing	to	pause	to	wait
for	each	new	request	to	be	sent.

TIP



KEY	CONCEPT	HTTP/0.9	and	HTTP/1.0	supported	only	transitory	connections	between	an	HTTP
client	and	server,	where	just	a	single	request	and	response	could	be	exchanged	on	a	TCP	connection.
This	is	very	inefficient	for	the	modern	Web,	where	clients	frequently	need	to	make	dozens	of	requests	to
a	server.	By	default,	HTTP/1.1	operates	using	persistent	connections.	This	means	that	once	a	TCP
connection	is	established,	the	client	can	send	many	requests	to	the	server	and	receive	replies	to	each	in
turn.	This	allows	files	to	be	retrieved	more	quickly,	and	conserves	server	resources	and	Internet
bandwidth.	The	client	can	even	pipeline	its	requests,	sending	the	second	request	immediately,	without
needing	to	wait	for	a	reply	to	the	first	request.	HTTP/1.1	still	supports	transitory	connections	for
backward-compatibility,	when	needed.

The	obvious	advantages	of	persistent	connections	make	them	the	default	for
modern	HTTP	communication,	but	they	do	have	one	drawback:	They	complicate
the	process	of	sending	data	from	the	server	to	the	client.	With	transitory
connections,	the	client	knows	that	all	of	the	data	it	receives	back	from	the	server
is	in	reply	to	the	one	request	it	sent.	Once	it	has	all	the	bytes	the	server	sent	and
the	TCP	session	ends,	the	client	knows	the	file	is	complete.

With	persistent	connections,	and	especially	when	pipelining	is	used,	the	server
will	typically	be	sending	one	file	after	the	other	to	the	client,	which	must
differentiate	them.	Remember	that	TCP	sends	data	as	just	a	series	of
unstructured	bytes;	the	application	must	take	care	of	specifying	where	the
dividing	points	are	between	files.	This	means	that	persistent	connections	and
pipelining	lead	to	data	length	issues	that	must	be	specially	addressed	in	HTTP.

To	provide	compatibility	with	older	versions	of	the	software,	HTTP/1.1	servers
still	support	transitory	connections,	and	they	will	automatically	close	the	TCP
connection	after	one	response	if	they	receive	an	HTTP/0.9	or	HTTP/1.0	request.
HTTP/1.1	clients	may	also	specify	in	their	initial	request	that	they	do	not	want	to
use	persistent	connections.

HTTP	Persistent	Connection	Establishment	and
Management
As	with	most	TCP/IP	client/server	protocols,	in	establishing	a	persistent
connection,	the	HTTP	server	plays	the	passive	role	by	listening	for	requests	on	a
particular	port	number.	The	default	port	number	for	HTTP	is	well-known	TCP
port	number	80,	and	is	used	by	web	browsers	for	most	HTTP	requests,	unless	a
different	port	number	is	specified	in	the	Uniform	Resource	Locator	(URL).	The
client	initiates	an	HTTP	connection	by	opening	a	TCP	connection	from	itself	to



client	initiates	an	HTTP	connection	by	opening	a	TCP	connection	from	itself	to
the	server	it	wishes	to	contact.

NOTE

A	DNS	name	resolution	step	may	precede	the	entire	HTTP	connection,	since	most	URLs	contain	a	host
name,	while	HTTP	requires	that	the	client	know	the	server's	IP	address.	This	can	lead	to	confusion,
because	DNS	uses	the	User	Datagram	Protocol	(UDP),	but	HTTP	uses	TCP.	This	causes	some	people	to
think	that	HTTP	uses	UDP.

Once	the	TCP	connection	is	active,	the	client	sends	its	first	request	message.	The
request	specifies	which	version	of	HTTP	the	client	is	using.	If	this	is	HTTP/0.9
or	HTTP/1.0,	the	server	will	automatically	work	in	the	transitory	connection
model,	and	it	will	send	only	one	reply	and	then	close	the	link.	If	it	is	HTTP/1.1,
the	assumption	is	that	a	persistent	connection	is	desired.	An	HTTP/1.1	client	can
override	this	by	including	the	special	Connection:	Close	header	in	its	initial
request,	which	tells	the	server	it	does	not	want	to	keep	the	session	active	after	the
request	it	is	sending	has	been	fulfilled.

Assuming	that	a	persistent	connection	is	being	used,	the	client	may	begin
pipelining	subsequent	requests	after	sending	its	first	request,	while	waiting	for	a
response	from	the	server	to	the	initial	query.	As	the	server	starts	to	respond	to
requests,	the	client	processes	them	and	takes	action,	such	as	displaying	the	data
retrieved	to	the	user.	The	data	received	from	the	server	may	also	prompt	the
client	to	request	more	files	on	the	same	connection,	as	in	the	case	of	an	HTML
document	that	contains	references	to	images.

The	server	will	generally	buffer	a	certain	number	of	pipelined	requests	from	the
client.	In	the	case	where	the	client	sends	too	many	requests	too	quickly,	the
server	may	throttle	back	the	client	using	the	flow-control	mechanism	built	into
TCP.	In	theory,	the	server	could	also	just	decided	to	terminate	the	connection
with	the	client,	but	it	is	better	for	it	to	use	TCP's	existing	features.	Closing	the
connection	will	cause	the	client	to	initiate	a	new	connection,	potentially
exacerbating	any	overloading	problem.

The	flow	of	requests	and	responses	continues	for	as	long	as	the	client	has
requests.	The	connection	can	be	gracefully	terminated	by	the	client	by	including
the	Connection:	Close	header	in	the	last	request	it	needs	to	send	to	the	server.	All
requests	are	filled	in	order,	so	the	server	will	satisfy	all	outstanding	requests,	and
then	close	the	session.



then	close	the	session.

Since	HTTP/1.1	supports	pipelining	of	requests,	there	is	usually	no	need	for	a
client	to	establish	more	than	one	simultaneous	connection	to	the	same	server.
Clients	occasionally	do	this	anyway	to	allow	them	to	get	information	from	a
server	more	quickly.	This	is	considered	by	many	to	be	"antisocial,"	because	it
can	lead	to	a	busy	server's	resources	being	monopolized	by	one	client	to	the
exclusion	of	others	that	want	to	access	it.

Under	special	circumstances,	either	the	client	or	the	server	may	unexpectedly
close	an	active	persistent	connection.	For	example,	if	the	client	detects	that	too
much	time	has	elapsed	since	the	server	last	replied,	it	may	conclude	that	the
server	has	crashed	and	terminate	the	connection.	Similarly,	the	server	might
receive	a	shutdown	command	from	its	administrator	or	for	other	reasons	end	a
session	with	a	client	abruptly.	Servers	normally	avoid	closing	down	a	link	during
the	middle	of	sending	a	response.

Both	clients	and	servers	must	be	able	to	handle	abrupt	session	termination.	For
servers,	there	is	not	much	to	do;	if	the	client	terminates	the	connection,	the
server	simply	cleans	up	any	resources	associated	with	the	connection,	and	then
goes	on	to	service	the	next	client.

Clients	have	more	to	do	when	a	server	prematurely	terminates	a	session,	and	this
is	especially	the	case	when	requests	are	pipelined.	The	client	must	keep	track	of
all	requests	sent	to	the	server	to	ensure	that	each	is	filled.	If	the	server	closes	the
session	unexpectedly,	the	client	will	usually	attempt	to	establish	a	new
connection	to	retransmit	the	unfilled	requests.	Since	an	abrupt	session
termination	is	often	a	sign	of	a	busy	server,	the	HTTP	standard	specifies	that
clients	use	a	binary	exponential	back-off	algorithm	to	wait	a	variable	but
increasing	amount	of	time	before	resubmitting	requests	for	files	(similar	in
concept	to	the	method	used	to	deal	with	collisions	in	Ethernet).	This	helps
prevent	clients	from	piling	on	requests	to	a	device	that	is	already	overwhelmed.



Chapter	81.	HTTP	MESSAGES,
METHODS,	AND	STATUS	CODES

As	you	saw	in	the	previous	chapter,	the	Hypertext	Transfer	Protocol	(HTTP)	is
entirely	oriented	around	the	sending	of	client	requests	and	server	responses.
These	take	the	form	of	HTTP	messages	sent	between	clients	and	servers.	As
with	all	protocols,	HTTP	uses	a	special	format	that	dictates	the	structure	of	both
client	Request	messages	and	server	Response	messages.	Understanding	how
these	messages	work	is	a	big	part	of	comprehending	HTTP	as	a	whole.

In	this	chapter,	I	describe	the	messages	used	by	HTTP	and	the	specific
commands	and	responses	issued	by	clients	and	servers.	I	begin	with	a	look	at	the
generic	HTTP	message	format	and	the	major	components	of	every	HTTP
message.	I	then	discuss	the	specific	formats	used	for	both	Request	and	Response
messages.	I	explain	the	different	types	of	HTTP	methods	(commands)	used	in
client	requests	and	the	HTTP	status	codes	used	in	server	replies.

NOTE

Much	of	the	functionality	of	HTTP	is	implemented	using	header	fields	that	appear	at	the	start	of	each
HTTP	Request	and	Response	message.	Headers	are	covered	in	detail	in	the	next	chapter.

HTTP	Generic	Message	Format
As	you	learned	in	the	previous	chapter,	all	of	the	communication	between
devices	using	HTTP	takes	place	via	HTTP	messages,	of	which	there	are	only
two	types:	Request	and	Response	messages.	Clients	usually	send	requests	and
receive	responses,	while	servers	receive	requests	and	send	responses.
Intermediate	devices	such	as	gateways	or	proxies	may	send	and	receive	both
types	of	messages.



All	HTTP	messages	are	created	to	fit	a	message	structure	that	the	standard	calls
the	generic	message	format.	Like	most	of	the	other	TCP/IP	messaging	protocols,
HTTP	does	not	use	a	binary	message	format;	rather,	the	messages	are	text-based.
HTTP	messages	are	based	loosely	on	the	electronic	mail	(email)	RFC	822	and
2822	message	standards,	as	well	as	the	Multipurpose	Internet	Mail	Extensions
(MIME)	standard	(described	in	Chapter	76).	I	say	"loosely"	because	HTTP
messages	are	similar	in	construction	to	email	messages	but	do	not	strictly	follow
all	of	the	email	or	MIME	format	requirements.	One	difference	is	that	not	all	of
the	RFC	822	and	MIME	headers	are	used;	there	are	other	differences	as	well,
which	we	will	soon	examine.

The	HTTP	generic	message	format	is	as	follows:

<start-line>

<message-headers>

<empty-line>

[<message-body>]

[<message-trailers>]

You	can	see	that	this	is	pretty	much	the	same	as	the	format	used	for	email
messages:	headers,	an	empty	line,	and	then	a	message	body.	All	text	lines	are
terminated	with	the	standard	carriage	return-line	feed	(CRLF)	control	character
sequence.	The	empty	line	contains	just	those	two	characters	and	nothing	else.
The	headers	are	always	sent	as	regular	text.	The	body,	however,	may	be	either
text	or	8-bit	binary	information,	depending	on	the	nature	of	the	data	to	be	sent.
(This	is	another	way	that	HTTP	does	not	adhere	strictly	to	the	RFC	822
standard;	see	the	discussion	of	entities	and	media	types	in	Chapter	83	for	a	full
discussion.)

The	generic	message	format	has	the	following	components:

Start	Line	The	start	line	is	a	special	text	line	that	conveys	the	nature	of	the
message.	In	a	request,	this	line	indicates	the	nature	of	the	request,	in	the	form	of
a	method,	as	well	as	specifying	a	Uniform	Resource	Identifier	(URI)	to	indicate
the	resource	that	is	the	object	of	the	request.	Responses	use	the	start	line	to
indicate	status	information	in	reply	to	a	request.	You	can	find	more	details	on	the
use	of	the	start	line	in	the	following	sections	in	this	chapter	that	detail	HTTP



Request	messages	and	Response	messages.

Message	Headers	Many	dozens	of	message	headers	are	defined	in	HTTP.	These
headers	are	organized	into	groups	by	function,	as	described	in	the	following
sections	in	this	chapter.	Almost	all	of	these	headers	are	optional;	the	one
exception	is	the	Host	header,	which	must	be	present	in	each	request	in
HTTP/1.1.	Headers	may	be	sent	in	any	order,	and	they	all	follow	the	same
header	format	used	in	email	messages:	<header-name>:	<header-value>.

Message	Body	The	message	body	is	optional,	because	it	is	needed	only	for
certain	types	of	messages.	The	body	may	carry	a	set	of	information	to	be
communicated	between	the	client	and	server,	such	as	a	detailed	error	message	in
a	response.	More	commonly,	it	carries	a	file	or	other	resource,	which	is	formally
called	an	entity	in	the	HTTP	standard.	Entities	are	most	often	found	in	the	body
of	a	Response	message,	since	most	client	requests	ask	for	a	server	to	send	a	file
or	other	resource.	However,	they	can	also	be	found	in	certain	Request	messages.
HTTP	supports	many	kinds	of	entities,	as	described	in	detail	in	Chapter	83.

Message	Trailers	As	described	in	the	previous	chapter,	HTTP/1.1	uses
persistent	connections	by	default,	so	messages	are	sent	in	a	steady	stream	from
client	to	server	and	server	to	client.	This	requires	some	means	to	mark	where	one
message	ends	and	the	next	begins,	which	is	usually	accomplished	in	one	of	two
ways.	The	first	is	using	a	special	header	that	indicates	the	length	of	the	message,
so	the	receiving	device	knows	when	the	entire	message	has	been	received.	The
second	is	a	method	called	chunking,	where	a	message	is	broken	into	pieces	for
transmission,	and	the	length	of	each	piece	is	indicated	in	the	message	body.
When	chunking	is	done,	a	set	of	message	trailers	may	follow	the	body	of	the
message.	Trailers	are	actually	the	same	as	headers,	except	for	their	position	in
the	file,	but	they	may	only	be	used	for	entity	headers.	See	Chapter	83	for	more
details	on	trailers	and	chunked	data.

TIP

KEY	CONCEPT	All	HTTP	messages	conform	to	a	structure	called	the	generic	message	format.	This
format	is	based	on	the	RFC	822	and	MIME	electronic	mail	message	standards,	although	HTTP	does	not
follow	those	formats	precisely.	Each	HTTP	message	begins	with	a	start	line,	then	contains	a	number	of
message	headers,	followed	by	an	empty	line	and	optionally	a	message	body.	The	body	of	the	message
may	contain	a	resource	such	as	a	file	to	be	communicated	between	client	and	server,	called	an	entity.



HTTP	Request	Message	Format
The	client	initiates	an	HTTP	session	by	opening	a	TCP	connection	to	the	HTTP
server	with	which	it	wishes	to	communicate.	It	then	sends	HTTP	Request
messages	to	the	server,	each	of	which	specifies	a	particular	type	of	action	that
the	user	of	the	HTTP	client	would	like	the	server	to	take.	Requests	can	be
generated	either	by	specific	user	action	(such	as	clicking	a	hyperlink	in	a	web
browser)	or	indirectly	as	a	result	of	a	prior	action	(such	as	a	reference	to	an
inline	image	in	an	HTML	document	leading	to	a	request	for	that	image).

HTTP	Request	messages	use	a	format	that	is	based	on	the	generic	message
format	described	in	the	previous	section,	but	specific	to	the	needs	of	requests.
The	structure	of	this	format	is	as	follows	(see	Figure	81-1):

<request-line>

<general-headers>

<request-headers>

<entity-headers>

<empty-line>

[<message-body>]

[<message-trailers>]

Figure	81-1.	HTTP	Request	message	format	This	diagram	shows	the	structural	elements	of	an	HTTP
Request	message	and	an	example	of	the	sorts	of	headers	a	Request	message	might	contain.	Like	most
HTTP	requests,	this	one	carries	no	entity,	so	there	are	no	entity	headers	and	the	message	body	is	empty.

See	Figure	81-2	for	the	HTTP	Response	message	format.

Request	Line



The	generic	start	line	that	begins	all	HTTP	messages	is	called	a	request	line	in
Request	messages.	Its	has	three	main	purposes:

To	indicate	the	command	or	action	that	the	client	wants	performed

To	specify	a	resource	on	which	the	action	should	be	taken

To	indicate	to	the	server	what	version	of	HTTP	the	client	is	using

The	formal	syntax	for	the	request	line	is	as	follows:

<METHOD	>	<request-uri>	<HTTP-VERSION>

Each	of	the	request	line	components	is	discussed	in	the	following	sections.

Method
The	method	is	simply	the	type	of	action	that	the	client	wants	the	server	to	take;	it
is	always	specified	in	uppercase	letters.	There	are	eight	standard	methods
defined	in	HTTP/1.1,	of	which	three	are	widely	used:	GET,	HEAD,	and	POST.
They	are	called	methods,	rather	than	commands,	because	the	HTTP	standard
uses	terminology	from	object-oriented	programming.	I	explain	this	and	also
describe	the	methods	themselves	in	the	"HTTP	Methods"	section	later	in	this
chapter.

Request	URI
The	request	URI	is	the	URI	of	the	resource	to	which	the	request	applies.	While
URIs	can	theoretically	refer	to	either	Uniform	Resource	Locators	(URLs)	or
Uniform	Resource	Names	(URNs),	currently,	a	URI	is	almost	always	an	HTTP
URL	that	follows	the	standard	syntax	rules	of	Web	URLs,	as	described	in
Chapter	70.

Interestingly,	the	exact	form	of	the	URL	used	in	the	HTTP	request	line	usually
differs	from	that	used	in	HTML	documents	or	entered	by	users.	This	is	because
some	of	the	information	in	a	full	URL	is	used	to	control	HTTP	itself.	It	is	needed
as	part	of	the	communication	between	the	user	and	the	HTTP	client,	but	not	in
the	request	from	the	client	to	the	server.	The	standard	method	of	specifying	a
resource	in	a	request	is	to	include	the	path	and	filename	in	the	request	line	(as
well	as	any	optional	query	information),	while	specifying	the	host	in	the	special
Host	header	that	must	be	used	in	HTTP/1.1	Request	messages.



For	example,	suppose	the	user	enters	a	URL	such	as
http://www.myfavoritewebsite.com:8080/chatware/chatroom.php.	We
obviously	don't	need	to	send	the	http:	to	the	server.	The	client	would	take	the
remaining	information	and	split	it	so	the	URI	was	specified	as
/chatware/chatroom.php	and	the	Host	line	would	contain
www.myfavoritewebsite.com:8080.	Thus,	the	start	of	the	request	would	look
like	this:

GET /chatware/chatroom.php HTTP/1.1
Host: www.myfavoritewebsite.com:8080

The	exception	to	this	rule	is	when	a	request	is	being	made	to	a	proxy	server.	In
that	case,	the	request	is	made	using	the	full	URL	in	its	original	form,	so	that	it
can	be	processed	by	the	proxy	just	as	the	original	client	processed	it.	The	request
would	look	like	this:

GET http://www.myfavoritewebsite.com:8080/chatware/chatroom.php HTTP/1.1

Finally,	there	is	one	special	case	where	a	single	asterisk	can	be	used	instead	of	a
real	URL.	This	is	for	the	OPTIONS	method,	which	does	not	require	the
specification	of	a	resource.	(Nominally,	the	asterisk	means	the	method	refers	to
the	server	itself.)

HTTP	Version
The	HTTP	version	element	tells	the	server	which	version	the	client	is	using,	so
the	server	knows	how	to	interpret	the	request,	and	what	to	send	and	not	to	send
the	client	in	its	response.	For	example,	a	server	receiving	a	request	from	a	client
using	HTTP/0.9	or	HTTP/1.0	will	assume	that	a	transitory	connection	is	being
used	rather	than	a	persistent	one	(as	explained	in	the	previous	section),	and	the
server	will	avoid	using	HTTP/1.1	headers	in	its	reply.	The	version	token	is	sent
in	uppercase	letters,	as	HTTP/0.9,	HTTP/1.0,	or	HTTP/1.1—just	the	way	I've
been	doing	throughout	my	discussion	of	the	protocol.

Headers
After	the	request	line	come	any	of	the	headers	that	the	client	wants	to	include	in
the	message.	In	these	headers,	details	are	provided	to	the	server	about	the
request.	The	headers	all	use	the	same	structure,	but	are	organized	into	the
following	categories	based	on	the	functions	they	serve	and	whether	they	are
specific	to	one	kind	of	message:



specific	to	one	kind	of	message:

General	Headers	General	headers	refer	mainly	to	the	message	itself,	as	opposed
to	its	contents,	and	they	are	used	to	control	its	processing	or	provide	the	recipient
with	extra	information.	They	are	not	particular	to	either	Request	or	Response
messages,	so	they	can	appear	in	either.	Also,	they	are	not	specifically	relevant	to
any	entity	the	message	may	be	carrying.

Request	Headers	These	headers	convey	to	the	server	more	details	about	the
nature	of	the	client's	request,	and	they	give	the	client	more	control	over	how	the
request	is	handled.	For	example,	special	request	headers	can	be	used	by	the
client	to	specify	a	conditional	request—one	that	is	filled	only	if	certain	criteria
are	met.	Others	can	tell	the	server	which	formats	or	encodings	the	client	is	able
to	process	in	a	Response	message.

Entity	Headers	These	are	headers	that	describe	the	entity	contained	in	the	body
of	the	request,	if	any.

TIP

KEY	CONCEPT	HTTP	Request	messages	are	the	means	by	which	HTTP	clients	ask	servers	to	take	a
particular	type	of	action,	such	as	sending	a	file	or	processing	user	input.	Each	Request	message	begins
with	a	request	line,	which	contains	three	critical	pieces	of	information:	the	method	(type	of	action)	the
client	is	requesting,	the	URI	of	the	resource	on	which	the	client	wishes	the	action	to	be	performed,	and
the	version	of	HTTP	that	the	client	is	using.	After	the	request	line	comes	a	set	of	message	headers	related
to	the	request,	followed	by	a	blank	line,	and	then	optionally,	the	message	body	of	the	request.

Request	headers	are	obviously	used	only	in	Request	messages,	but	both	general
headers	and	entity	headers	can	appear	in	either	a	Request	or	a	Response
message.	Since	there	are	so	many	headers	and	most	are	not	particular	to	one
message	type,	I	describe	them	in	detail	in	the	next	chapter.



HTTP	Response	Message	Format
Each	Request	message	sent	by	an	HTTP	client	to	a	server	prompts	the	server	to
send	back	a	Response	message.	Actually,	in	certain	cases,	the	server	may	send
two	responses:	a	preliminary	response,	followed	by	the	real	one.	Usually	though,
one	request	yields	one	response,	which	indicates	the	results	of	the	server's
processing	of	the	request,	and	a	response	often	also	carries	an	entity	(file	or
resource)	in	the	message	body.

Like	Request	messages,	Response	messages	use	their	own	specific	format	that	is
based	on	the	HTTP	generic	message	format	described	earlier	in	this	chapter.	The
format	Response	message	format	header	is	as	follows	(see	Figure	81-2):

<status-line>

<general-headers>

<response-headers>

<entity-headers>

<empty-line>

[<message-body>]

[<message-trailers>]

Figure	81-2.	HTTP	Response	message	format	This	figure	illustrates	the	construction	of	an	HTTP
Response	message	and	includes	an	example	of	both	message	headers	and	body.	The	status	code	200
indicates	that	this	is	a	successful	response	to	a	request;	it	contains	a	brief	text	HTML	entity	in	the

message	body.	See	Figure	81-1	for	the	HTTP	Request	message	format.



Status	Line
The	status	line	(note	that	this	is	not	called	the	response	line)	is	the	start	line	used
for	Response	messages.	It	has	two	functions:	to	tell	the	client	what	version	of	the
protocol	the	server	is	using	and	to	communicate	a	summary	of	the	results	of
processing	the	client's	request.	The	formal	syntax	for	the	status	line	is	as	follows:

<HTTP-VERSION>	<status-code>	<reason-phrase>

Each	of	the	status	line	components	is	discussed	in	the	following	sections.

HTTP	Version
The	HTTP-VERSION	label	in	the	status	line	serves	the	same	purpose	as	it	does
in	the	request	line	of	a	Request	message	(described	in	the	previous	section).
Here,	it	tells	the	client	the	version	number	that	the	server	is	using	for	its
response.	It	uses	the	same	format	as	in	the	request	line,	with	the	version	in
uppercase	as	HTTP/0.9,	HTTP/1.0,	or	HTTP/1.1.	The	server	is	required	to	return
an	HTTP	version	number	that	is	no	greater	than	the	number	the	client	sent	in	its
request.

Status	Code	and	Reason	Phrase
The	status	code	and	reason	phrase	provide	information	about	the	results	of
processing	the	client's	request	in	two	different	forms.	The	status	code	is	a	three-
digit	number	that	indicates	the	formal	result	that	the	server	is	communicating	to
the	client.	It	is	intended	for	the	client	HTTP	implementation	to	process	so	the
software	can	take	appropriate	action.	The	reason	phrase	is	an	additional,
descriptive	text	string,	which	can	be	displayed	to	the	human	users	of	the	HTTP
client	so	they	can	see	how	the	server	responded.	I	describe	status	codes	and
reason	phrases	later	in	this	chapter,	and	also	list	all	of	the	standard	codes.

Headers
The	Response	message	will	always	include	a	number	of	headers	that	provide
extra	information	about	it.	Response	message	headers	fall	into	three	categories:

General	Headers	General	headers	that	refer	to	the	message	itself	and	are	not
specific	to	Response	messages	or	the	entity	in	the	message	body.	These	are	the
same	as	the	generic	headers	that	can	appear	in	Request	messages	(though	certain



headers	appear	more	often	in	responses,	and	others	are	more	common	in
requests).

Response	Headers	These	headers	provide	additional	data	that	expands	on	the
summary	result	information	in	the	status	line.	The	server	may	also	return	extra
result	information	in	the	body	of	the	message,	especially	when	an	error	occurs.

Entity	Headers	These	are	headers	that	describe	the	entity	contained	in	the	body
of	the	response,	if	any.	These	are	the	same	entity	headers	that	can	appear	in	a
Request	message,	but	they	are	seen	more	often	in	response	messages.

Most	Response	messages	contain	an	entity	in	the	message	body.	In	the	case	of	a
successful	request	to	retrieve	a	resource,	this	is	the	resource	itself.	Responses
indicating	unsuccessful	requests	usually	contain	detailed	error	information,	often
in	the	form	of	an	HTML-formatted	error	message.

NOTE

Entity	headers	may	appear	in	a	Response	message	to	describe	the	resource	that	is	the	subject	of	the
request,	even	if	the	entity	itself	is	not	sent	in	the	message.	This	occurs	when	the	HEAD	method	is	used	to
request	only	the	headers	associated	with	an	entity.

Response	headers	are	used	only	in	Response	messages,	while	the	others	are
general	with	respect	to	message	type.	See	Chapter	82	for	more	details	about
HTTP	headers.

TIP

KEY	CONCEPT	Each	HTTP	Request	message	sent	by	a	client	leads	to	a	server	returning	one	or	more
HTTP	Response	messages.	Each	Response	message	starts	with	a	status	line	that	contains	the	server's
HTTP	version	number,	and	a	numeric	status	code	and	text	reason	phrase	that	indicate	the	result	of
processing	the	client's	request.	The	message	then	contains	headers	related	to	the	response,	followed	by	a
blank	line,	and	then	the	optional	message	body.	Since	most	HTTP	Request	messages	ask	for	a	server	to
return	a	file	or	other	resource,	many	HTTP	Response	messages	carry	an	entity	in	the	message	body.



HTTP	Methods
An	HTTP	Request	message	sent	by	a	client	to	a	server	obviously	requests	that
the	server	do	something.	All	client/server	protocols	provide	a	way	for	the	client
to	prompt	the	server	to	take	action,	generally	by	having	the	client	give	the	server
a	series	of	commands.	HTTP,	in	contrast,	has	methods,	rather	than	commands.
Each	client	Request	message	begins	with	the	specification	of	the	method	that	is
the	subject	of	the	request.

What	is	the	difference	between	a	method	and	a	command?	In	practical	terms,
nothing;	they	are	the	same.	So	why	does	HTTP	use	the	term	method	instead	of
command?	That's	a	good	question.	The	answer	can	be	found	in	the	abstract	of
the	standard	defining	HTTP/1.0,	RFC	1945.	It	states,	in	part,	that	HTTP	is	"a
generic,	stateless,	object-oriented	protocol	which	can	be	used	for	many	tasks…."
In	highly	simplified	terms,	object-oriented	programming	is	a	technique	in	which
software	modules	are	described	not	as	sets	of	procedures,	but	as	objects	that
possess	attributes.	These	modules	send	messages	to	each	other	to	communicate
and	to	cause	actions	to	be	performed,	where	the	action	taken	depends	on	the
nature	of	the	object.	In	object-oriented	programming,	the	procedures	each	object
can	perform	are	called	methods.

HTTP	is	considered	to	be	object-oriented	because,	in	many	cases,	the	action
taken	by	a	server	depends	on	the	object	that	is	the	subject	of	the	request.	For
example,	if	you	ask	a	server	to	retrieve	a	text	document,	it	will	send	that
document;	but	if	you	ask	for	a	directory,	the	server	may	instead	return	a	default
document	for	that	directory.	In	contrast,	a	request	that	specifies	the	name	of	a
program	will	result	in	the	program	being	executed	and	its	output	returned	(as
opposed	to	the	program's	source	code	being	returned).

Common	Methods
Each	method	allows	the	client	to	specify	a	particular	type	of	action	to	be	taken
by	the	server.	Method	names	are	always	in	uppercase	letters.	There	are	three
methods	that	are	commonly	used	in	HTTP:	GET,	HEAD,	and	POST.

GET



The	GET	method	requests	that	server	retrieve	the	resource	specified	by	the	URL
on	the	HTTP	request	line	and	send	it	in	a	response	back	to	the	client.	This	is	the
most	basic	type	of	request	and	the	one	that	accounts	for	the	majority	of	HTTP
traffic.	When	you	enter	a	conventional	URL	or	click	a	link	to	a	document	or
other	file,	you	are	usually	prompting	your	web	browser	to	send	a	GET	request.

The	handling	of	a	GET	request	depends	on	a	number	of	factors.	If	the	URL	is
correct	and	the	server	can	find	the	resource,	it	will	send	back	the	appropriate
response	to	the	client.	The	exact	resource	returned	depends	on	the	nature	of	the
object	requested.	If	the	request	cannot	be	processed	properly,	an	error	message
may	result.	Caching	(discussed	in	Chapter	84)	also	comes	into	play,	as	a	proxy
server	or	even	the	client	itself	might	satisfy	the	request	before	it	gets	to	the
server.

It's	important	to	remember	that	the	meaning	of	a	GET	request	may	change	if
certain	headers,	such	as	If-Modified-Since	or	If-Match,	are	used.	These	tell	the
server	to	send	the	resource	only	if	certain	conditions	are	met.	A	request	of	this
sort	is	sometimes	called	a	conditional	GET.	Similarly,	the	client	may	use	the
Range	header	to	request	that	the	server	send	it	only	part	of	a	resource;	this	is
usually	used	for	large	files.	When	this	header	is	included,	the	request	may	be
called	a	partial	GET.

HEAD
The	HEAD	method	is	identical	to	the	GET	method,	but	it	tells	the	server	not	to
send	the	actual	body	of	the	message.	Thus,	the	response	will	contain	all	of	the
headers	that	would	have	accompanied	a	reply	to	the	equivalent	GET	message,
including	entity	headers	describing	the	entity	that	the	server	would	have	sent	had
the	method	been	GET.	The	client	often	uses	this	method	to	check	the	existence,
status,	or	size	of	a	file	before	deciding	whether	it	wants	the	server	to	send	the
whole	file.

HEAD	requests	are	processed	in	the	same	way	as	GET	requests,	except	that	only
the	headers	are	returned,	not	the	actual	resource.

POST
The	POST	method	allows	the	client	to	send	an	entity	containing	arbitrary	data	to
the	server	for	processing.	It	is	commonly	used	to	enable	a	client	to	submit



information	such	as	an	interactive	HTML	form	to	a	program	on	the	server,
which	then	takes	action	based	on	that	input	and	sends	a	response.	This	capability
is	now	used	for	all	sorts	of	online	programs.	The	URL	in	the	request	specifies
the	name	of	the	program	on	the	server	that	is	to	accept	the	data.	Contrast	this
with	the	PUT	method	described	in	the	next	section.

Other	Methods
The	other	methods	defined	by	the	HTTP	standard	are	not	used	as	often,	but	I	will
describe	them	briefly,	as	you	may	still	encounter	them.	Other	HTTP	methods
include	the	following:

OPTIONS	This	method	allows	the	client	to	request	that	the	server	send	it
information	about	available	communication	options.	A	URI	of	a	resource	may	be
specified	to	request	information	relevant	to	accessing	that	resource,	or	an
asterisk	(*)	may	be	used	to	indicate	that	the	query	is	about	the	server	itself.	The
response	includes	headers	that	give	the	client	more	details	about	how	the	server
may	be	accessed.

PUT	This	method	requests	that	the	server	store	the	entity	enclosed	in	the	body	of
the	request	at	the	URL	specified	in	the	request	line.	In	a	PUT,	the	URI	identifies
the	entity	in	the	request;	thus	a	PUT	allows	a	file	to	be	copied	to	a	server,	in	the
exact	complement	to	how	a	GET	requests	that	a	file	be	copied	to	the	client.	In
contrast,	with	a	POST,	the	URI	identifies	a	program	intended	to	process	the
entity	in	the	request,	so	it's	used	for	interactive	programs.	Now,	would	you	like
people	to	be	able	to	store	files	on	your	server	in	the	same	way	that	they	request
them?	Neither	would	I.	This	is	one	primary	reason	why	PUT	is	not	often	used.	It
has	valid	uses,	such	as	uploading	content	to	a	website,	and	it	must	be	used	with
authentication	in	this	case.	However,	storing	files	on	a	site	is	more	often
accomplished	using	other	means,	like	the	File	Transfer	Protocol	(FTP).

DELETE	This	method	requests	that	the	specified	resource	be	deleted.	This	has
the	same	issues	as	PUT	and	is	not	often	used	for	similar	reasons.

TRACE	This	method	allows	a	client	to	receive	back	a	copy	of	the	request	that	it
sent	to	the	server,	for	diagnostic	purposes.

In	addition	to	these,	the	standard	reserves	the	method	name	CONNECT	for
future	use.	An	earlier	version	of	HTTP/1.1,	RFC	2068,	defined	the	methods



future	use.	An	earlier	version	of	HTTP/1.1,	RFC	2068,	defined	the	methods
PATCH,	LINK,	and	UNLINK.	These	were	removed	in	the	final	version,	but	you
may	still	see	references	to	them.

TIP

KEY	CONCEPT	Each	HTTP	client	request	specifies	a	particular	type	of	action	that	the	server	should
perform;	in	HTTP,	these	are	called	methods,	rather	than	commands.	The	three	most	common	HTTP
methods	are	GET,	which	prompts	a	server	to	return	a	resource;	HEAD,	which	returns	just	the	headers
associated	with	a	resource;	and	POST,	which	allows	a	client	to	submit	data	to	a	server	for	processing.

Safe	and	Idempotent	Methods
As	you've	seen,	methods	vary	greatly	in	the	type	of	behavior	they	cause	the
server	to	take.	The	HTTP	standard	defines	two	characteristics	that	can	be	used	to
differentiate	methods	based	on	the	impact	they	have	on	a	server:

Safe	Methods	These	are	methods	that	an	administrator	of	a	server	can	feel
reasonably	comfortable	permitting	a	client	to	send	because	they	are	very	unlikely
to	have	any	negative	side	effects.	The	methods	usually	put	into	this	category	are
GET,	HEAD,	OPTIONS,	and	TRACE.	The	methods	that	cause	data	to	be
accepted	by	the	server	for	processing,	or	lead	to	changes	on	the	server,	are
deemed	unsafe:	POST,	PUT,	and	DELETE.	(The	fact	that	they	are	considered
unsafe	doesn't	mean	a	server	never	allows	them—just	that	they	require	more	care
and	detail	in	handling	than	the	others.)

Idempotent	Methods	A	method	is	said	to	be	idempotent	if	repeating	the	same
method	request	numerous	times	causes	the	exact	same	results,	as	if	the	method
were	issued	only	once.	For	example,	if	you	load	a	web	page	in	your	browser,	and
then	type	the	same	URL	in	again,	you	get	the	same	result,	at	least	most	of	the
time.	In	general,	all	of	the	methods	in	HTTP	have	this	property	inherently	except
one:	POST.

The	POST	method	is	not	idempotent	because	each	instance	of	a	POST	request
causes	the	receiving	server	to	process	the	data	in	the	Request	message's	body.
Submitting	a	POST	request	two	or	more	times	can	often	lead	to	undesirable
results.	The	classic	example	is	clicking	the	Submit	button	on	a	form	more	than
once,	which	can	lead	to	annoyances	such	as	a	duplicate	message	on	an	Internet
forum	or	a	double	order	at	an	online	store.

There	are	also	situations	where	a	method	that	is	normally	idempotent	may	not



There	are	also	situations	where	a	method	that	is	normally	idempotent	may	not
be.	A	GET	request	for	a	simple	document	is	idempotent,	but	a	GET	for	a	script
can	change	files	on	the	server	and	therefore	is	not	idempotent.	Similarly,	a
sequence	of	idempotent	methods	may	not	be	idempotent.	For	example,	consider
a	situation	where	a	PUT	request	is	followed	by	a	GET	for	the	same	resource.
This	sequence	is	not	idempotent	because	the	second	request	depends	on	the
results	of	the	first.

The	significance	of	nonidempotence	is	that	clients	must	handle	such	requests	or
sequences	specially.	The	client	must	keep	track	of	them,	making	sure	that	they
are	filled	in	order	and	only	once.	The	HTTP	standard	also	specifies	that
nonidempotent	methods	should	not	be	pipelined,	to	avoid	problems	if	an	HTTP
session	is	unexpectedly	terminated.	For	example,	if	two	POST	requests	were
pipelined	and	the	server	got	hung	up	handling	them,	the	client	would	need	to
reissue	them	but	might	not	know	how	many	of	the	original	requests	had	been
successfully	processed.



HTTP	Status	Codes	and	Reason	Phrases
Every	request	sent	by	an	HTTP	client	causes	one	or	more	responses	to	be
returned	by	the	server	that	receives	it.	As	you	saw	earlier	in	the	discussion	of	the
Response	message	format,	the	first	line	of	the	response	is	a	status	line	that
contains	a	summary	of	the	results	of	processing	the	request.	The	purpose	of	this
line	is	to	communicate	quickly	whether	or	not	the	request	was	successful	and
why.

HTTP	status	lines	contain	both	a	numeric	status	code	and	a	text	reason	phrase.
The	reason	for	having	both	a	number	and	a	text	string	is	that	computers	can	more
easily	understand	the	results	of	a	request	by	looking	at	a	number	and	then	can
quickly	respond	accordingly.	Humans,	on	the	other	hand,	find	text	descriptions
easier	to	comprehend.	The	idea	of	using	both	forms	was	taken	directly	from
earlier	application	layer	protocols	such	as	FTP,	the	Simple	Mail	Transfer
Protocol	(SMTP),	and	the	Network	News	Transfer	Protocol	(NNTP).	The
explanation	of	FTP	reply	codes	in	Chapter	72	discusses	more	completely	the
reasons	why	numeric	reply	codes	are	used	in	addition	to	descriptive	text.

Status	Code	Format
HTTP	status	codes	are	three	digits	in	length	and	follow	a	particular	format,
where	the	first	digit	has	particular	significance.	Unlike	the	reply	codes	used	by
FTP	and	other	protocols,	the	second	digit	does	not	stand	for	a	functional
grouping;	the	second	and	third	digits	together	just	make	100	different	options	for
each	of	the	categories	indicated	by	the	first	digit.	Thus,	the	general	form	of	an
HTTP	status	code	is	xyy,	where	the	first	digit,	x,	is	specified	as	shown	in
Table	81-1.

Table	81-1.	HTTP	Status	Code	Format:	First-Digit	Interpretation

Status
Code
Format

Meaning Description

1yy Informational
message

Provides	general	information;	does	not	indicate	success	or	failure
of	a	request.



2yy Success The	method	was	received,	understood,	and	accepted	by	the	server.

3yy Redirection The	request	did	not	fail	outright,	but	additional	action	is	needed
before	it	can	be	successfully	completed.

4yy Client	error The	request	was	invalid,	contained	bad	syntax,	or	could	not	be
completed	for	some	other	reason	that	the	server	believes	was	the
client's	fault.

5yy Server	error The	request	was	valid,	but	the	server	was	unable	to	complete	it	due
to	a	problem	of	its	own.

In	each	of	these	five	groups,	the	code	where	yy	is	00	is	defined	as	a	generic
status	code	for	that	group,	while	other	two-digit	combinations	are	more	specific
responses.	For	example,	404	is	the	well-known	specific	error	message	that
means	the	requested	resource	was	not	found	by	the	server,	and	400	is	the	less
specific	Bad	Request	error.	This	system	was	set	up	to	allow	the	definition	of	new
status	codes	that	certain	clients	might	not	comprehend.	If	a	client	receives	a
strange	code,	it	just	treats	it	as	the	equivalent	of	the	generic	response	in	the
appropriate	category.	So,	if	a	server	response	starts	with	the	code	491,	and	the
client	has	no	idea	what	this	is,	it	treats	it	as	a	400	Bad	Request	reply.

Reason	Phrases
The	reason	phrase	is	a	text	string	that	provides	a	more	meaningful	description	of
the	error	for	people	who	are	bad	at	remembering	what	cryptic	codes	stand	for
(which	would	be	most	of	us!).	The	HTTP	standard	includes	sample	reason
phrases	for	each	status	code,	but	server	administrators	can	customize	these
phrases	if	desired.	When	a	server	returns	a	more	detailed	HTML	error	message
in	the	body	of	its	Response	message,	the	reason	phrase	is	often	used	for	the	title
tag	in	that	message	body.

TIP

KEY	CONCEPT	Each	HTTP	Response	message	includes	both	a	numeric	status	code	and	a	text	reason
phrase,	both	of	which	indicate	the	disposition	of	the	corresponding	client	request.	The	numeric	code
allows	software	programs	to	easily	interpret	the	results	of	a	request,	while	the	text	phrase	provides	more
useful	information	to	human	users.	HTTP	status	codes	are	three	digits	in	length,	with	the	first	digit
indicating	the	general	class	of	the	reply.



Table	81-2	lists	in	numerical	order	the	status	codes	defined	by	the	HTTP/1.1
standard,	along	with	the	standard	reason	phrase	and	a	brief	description	of	each.

Table	81-2.	HTTP	Status	Codes	and	Reason	Phrases

Status
Code

Reason
Phrase

Description

100 Continue The	client	should	continue	sending	its	request.	This	is	a	special	status
code;	see	the	next	section	in	this	chapter	for	details.

101 Switching
Protocols

The	client	has	used	the	Upgrade	header	to	request	the	use	of	an
alternative	protocol	and	the	server	has	agreed.

200 OK This	is	the	generic	successful	Request	message	response,	which	is	the
code	sent	most	often	when	a	request	is	filled	normally.

201 Created The	request	was	successful	and	resulted	in	a	resource	being	created.
This	is	a	typical	response	to	a	PUT	method.

202 Accepted The	request	was	accepted	by	the	server,	but	it	has	not	yet	been
processed.	This	is	an	intentionally	noncommittal	response	that	does
not	tell	the	client	whether	or	not	the	request	will	be	carried	out.	The
client	determines	the	eventual	disposition	of	the	request	in	some
unspecified	way.	It	is	used	only	in	special	circumstances.

203 Non-
Authoritative
Information

The	request	was	successful,	but	some	of	the	information	returned	by
the	server	came	from	a	third	party,	rather	than	from	the	original
server	associated	with	the	resource.

204 No	Content The	request	was	successful,	but	the	server	has	determined	that	it	does
not	need	to	return	to	the	client	an	entity	body.

205 Reset	Content The	request	was	successful;	the	server	is	telling	the	client	that	it
should	reset	the	document	from	which	the	request	was	generated	so
that	a	duplicate	request	is	not	sent.	This	code	is	intended	for	use	with
forms.

206 Partial
Content

The	server	has	successfully	fulfilled	a	partial	GET	request.	See	the
section	on	methods	earlier	in	this	chapter	for	more	details	on	this,	as
well	as	the	description	of	the	Range	header	in	the	next	chapter.

300 Multiple
Choices

The	resource	is	represented	in	more	than	one	way	on	the	server.	The
server	is	returning	information	describing	these	representations,	so
the	client	can	pick	the	most	appropriate	one,	a	process	called	agent-
driven	negotiation	(discussed	in	Chapter	83).



301 Moved
Permanently

The	resource	requested	has	been	moved	to	a	new	URL	permanently.
Any	future	requests	for	this	resource	should	use	the	new	URL.	This	is
the	proper	method	of	handling	situations	where	a	file	on	a	server	is
renamed	or	moved	to	a	new	directory.	Most	people	don't	bother
setting	this	up,	which	is	why	URLs	break	so	often,	resulting	in	404
errors.

302 Found The	resource	requested	is	temporarily	using	a	different	URL.	The
client	should	continue	to	use	the	original	URL.	See	code	307.

303 See	Other The	response	for	the	request	can	be	found	at	a	different	URL,	which
the	server	specifies.	The	client	must	do	a	fresh	GET	on	that	URL	to
see	the	results	of	the	prior	request.

304 Not	Modified The	client	sent	a	conditional	GET	request,	but	the	resource	has	not
been	modified	since	the	specified	date/time,	so	the	server	has	not	sent
it.

305 Use	Proxy To	access	the	requested	resource,	the	client	must	use	a	proxy,	whose
URL	is	given	by	the	server	in	its	response.

306 (unused) Defined	in	an	earlier	version	of	HTTP	and	no	longer	used.

307 Temporary
Redirect

The	resource	is	temporarily	located	at	a	different	URL	than	the	one
the	client	specified.	Note	that	302	and	307	are	basically	the	same
status	code.	Code	307	was	created	to	clear	up	some	confusion	related
to	302	that	occurred	in	earlier	versions	of	HTTP.

400 Bad	Request This	is	a	generic	response	when	the	request	cannot	be	understood	or
carried	out	due	to	a	problem	on	the	client's	end.

401 Unauthorized The	client	is	not	authorized	to	access	the	resource.	This	is	often
returned	if	an	attempt	is	made	to	access	a	resource	protected	by	a
password	or	some	other	means	without	the	appropriate	credentials.

402 Payment
Required

This	is	reserved	for	future	use.	Its	mere	presence	in	the	HTTP
standard	has	caused	a	lot	of	people	to	scratch	their	chins	and	go
"hmm…."

403 Forbidden The	request	has	been	disallowed	by	the	server.	This	is	a	generic	"no
way"	response	that	is	not	related	to	authorization.	For	example,	if	the
maintainer	of	website	blocks	access	to	it	from	a	particular	client,	any
requests	from	that	client	will	result	in	a	403	reply.

404 Not	Found The	most	common	HTTP	error	message,	this	is	returned	when	the
server	cannot	locate	the	requested	resource.	It	usually	occurs	due	to
the	server	having	moved	(or	removed)	the	resource	or	the	client
giving	an	invalid	URL	(usually	due	to	misspellings).



giving	an	invalid	URL	(usually	due	to	misspellings).

405 Method	Not
Allowed

The	requested	method	is	not	allowed	for	the	specified	resource.	The
response	includes	an	Allow	header	that	indicates	which	methods	the
server	will	permit.

406 Not
Acceptable

The	client	sent	a	request	that	specifies	limitations	that	the	server
cannot	meet	for	the	specified	resource.	This	error	may	occur	if	an
overly	restrictive	list	of	conditions	is	placed	into	a	request	such	that
the	server	cannot	return	any	part	of	the	resource.

407 Proxy
Authentication
Required

This	is	similar	to	401,	but	the	client	must	first	authenticate	itself	with
the	proxy.

408 Request
Timeout

The	server	was	expecting	the	client	to	send	a	request	within	a
particular	time	frame	and	the	client	didn't	send	it.

409 Conflict The	request	could	not	be	filled	because	of	a	conflict	of	some	sort
related	to	the	resource.	This	most	often	occurs	in	response	to	a	PUT
method,	such	as	if	one	user	tries	to	PUT	a	resource	that	another	user
has	open	for	editing.

410 Gone The	resource	is	no	longer	available	at	the	server,	which	does	not
know	its	new	URL.	This	is	a	more	specific	version	of	the	404	code
that	is	used	only	if	the	server	knows	that	the	resource	was
intentionally	removed.	It	is	seen	rarely	(if	ever).

411 Length
Required

The	request	requires	a	Content-Length	header	field	and	one	was	not
included.

412 Precondition
Failed

This	indicates	that	the	client	specified	a	precondition	in	its	request,
such	as	the	use	of	an	If-Match	header,	which	evaluated	to	a	false
value.	This	indicates	that	the	condition	was	not	satisfied,	so	the
request	is	not	being	filled.	This	is	used	by	clients	in	special	cases	to
ensure	that	they	do	not	accidentally	receive	the	wrong	resource.

413 Request	Entity
Too	Large

The	server	has	refused	to	fulfill	the	request	because	the	entity	that	the
client	is	requesting	is	too	large.

414 Request-URI
Too	Long

The	server	has	refused	to	fulfill	the	request	because	the	URL
specified	is	longer	than	the	server	can	process.	This	rarely	occurs
with	properly	formed	URLs,	but	may	be	seen	if	clients	try	to	send
gibberish	to	the	server.

415 Unsupported
Media	Type

The	request	cannot	be	processed	because	it	contains	an	entity	using	a
media	type	the	server	does	not	support.

416 Requested The	client	included	a	Range	header	specifying	a	range	of	values	that



416 Requested
Range	Not
Satisfiable

The	client	included	a	Range	header	specifying	a	range	of	values	that
is	not	valid	for	the	resource.	An	example	might	be	requesting	bytes
3000	through	4000	of	a	2400-byte	file.

417 Expectation
Failed

The	request	included	an	Expect	header	that	could	not	be	satisfied	by
the	server.

500 Internal
Server	Error

This	is	a	generic	error	message	indicating	that	the	request	could	not
be	fulfilled	due	to	a	server	problem.

501 Not
Implemented

The	server	does	not	know	how	to	carry	out	the	request,	so	it	cannot
satisfy	it.

502 Bad	Gateway The	server,	while	acting	as	a	gateway	or	proxy,	received	an	invalid
response	from	another	server	it	tried	to	access	on	the	client's	behalf.

503 Service
Unavailable

The	server	is	temporarily	unable	to	fulfill	the	request	for	internal
reasons.	This	is	often	returned	when	a	server	is	overloaded	or	down
for	maintenance.

504 Gateway
Timeout

The	server,	while	acting	as	a	gateway	or	proxy,	timed	out	while
waiting	for	a	response	from	another	server	it	tried	to	access	on	the
client's	behalf.

505 HTTP	Version
Not	Supported

The	request	used	a	version	of	HTTP	that	the	server	does	not
understand.

The	100	(Continue)	Preliminary	Reply
Now,	let's	go	back	to	the	top	of	the	list	in	HTTP	Status	Codes	and	Reason
Phrases	and	look	at	the	special	status	code	100.	Normally,	a	client	sends	a
complete	request	to	the	server	and	waits	for	a	response	to	it	(while	optionally
pipelining	additional	requests,	as	described	in	the	previous	chapter).	In	certain
circumstances,	however,	the	client	might	wish	to	check	in	advance	if	the	server
is	willing	to	accept	the	request	before	it	bothers	sending	the	whole	message.	This
is	not	a	common	occurrence,	because	most	requests	are	quite	small,	so	checking
first	isn't	worth	the	bother.	However,	in	cases	where	a	user	wants	to	submit	a
very	large	amount	of	data	to	an	online	program	or	use	PUT	to	store	a	large	file,
for	example,	checking	with	the	server	first	can	be	a	useful	optimization.

In	this	situation,	the	client	sends	a	request	containing	the	special	header	Expect:
100-Continue.	Assuming	that	the	server	supports	the	feature,	it	will	process	the
request's	headers	and	immediately	send	back	the	100	Continue	preliminary	reply.
This	tells	the	client	to	continue	sending	the	rest	of	the	request.	The	server	then



This	tells	the	client	to	continue	sending	the	rest	of	the	request.	The	server	then
processes	it	and	responds	normally.	If	the	server	doesn't	send	the	100	response
after	a	certain	amount	of	time,	the	client	will	typically	just	send	the	rest	of	the
request	anyway.	Note	that	in	some	cases,	servers	send	these	preliminary	replies
even	when	they	are	not	supposed	to,	so	clients	must	be	prepared	to	deal	with
them	(they	are	simply	discarded,	since	they	contain	no	information).



Chapter	82.	HTTP	MESSAGE
HEADERS

As	you	have	seen	in	the	preceding	two	chapters,	Hypertext	Transfer
Protocol	(HTTP)	communication	takes	place	through	the	relatively	simple
exchange	of	request	and	response	messages.	There	are	only	a	small	number	of
methods	(commands)	supported	by	the	protocol,	which	might	give	you	the
impression	that	the	protocol	is	quite	limited.	Looks	can	be	deceiving,	however.
Much	of	the	functionality	in	HTTP	is	actually	implemented	in	the	form	of
message	headers,	which	convey	important	details	between	clients	and	servers.

Some	headers	can	appear	in	only	HTTP	requests,	some	in	only	HTTP	responses,
and	some	in	either	type	of	message.	Understanding	these	headers	is	important	to
learning	how	HTTP	works.	There	are	literally	dozens	of	them,	and	many	apply
to	both	Request	and	Response	messages.

In	this	chapter,	I	provide	a	description	of	each	of	the	many	headers	used	in
HTTP	Request	and	Response	messages.	The	chapter	is	organized	by	the	four
basic	types	of	HTTP	headers:	general	headers,	request	headers,	response
headers,	and	entity	headers.

TIP

BACKGROUND	INFORMATION	I	assume	here	that	you	have	already	read	the	preceding	chapter
describing	HTTP	message	formats.

NOTE

For	the	purpose	of	determining	how	web	caches	treat	HTTP	messages,	HTTP	headers	are	categorized	as
either	end-to-end	or	hop-by-hop	headers.	The	former	are	meaningful	only	to	the	ultimate	recipient	of	a
message,	while	the	latter	are	relevant	to	each	device	in	the	chain	of	devices	(such	as	proxies)	connecting
a	client	and	server.	To	avoid	unnecessary	complication,	I	have	not	categorized	the	headers	using	these
categories;	see	the	full	discussion	of	caching	in	Chapter	84	for	more	information.	In	the	descriptions	of
the	individual	headers,	I	indicate	which	headers	are	hop-by-hop;	all	others	are	end-to-end.



HTTP	General	Headers
HTTP	general	headers	are	so	named	because,	unlike	headers	in	the	other	three
categories,	they	are	not	specific	to	any	particular	kind	of	message	or	message
component	(request,	response,	or	message	entity).	General	headers	are	used
primarily	to	communicate	information	about	the	message	itself,	as	opposed	to
what	content	it	carries.	They	provide	general	information	and	control	how	a
message	is	processed	and	handled.

Despite	not	being	specific	to	either	requests	or	replies,	some	general	headers	are
used	either	mostly	or	entirely	in	one	or	the	other	type	of	message.	There	are	also
some	general	headers	that	can	appear	in	either	a	Request	or	a	Reply	message,	but
have	a	somewhat	different	meaning	in	each.

Here,	I	describe	the	Cache-Control	and	Warning	headers	and	then	the	other	more
straightforward	headers.

Cache-Control	Headers
A	Cache-Control	header	specifies	directives	that	manage	how	caching	is
performed	either	for	an	HTTP	request	or	response.	These	directives	affect	the
handling	of	a	request	or	response	by	all	devices	in	the	request/response	chain
from	the	HTTP	client,	through	any	present	intermediaries,	to	the	HTTP	server
(or	the	other	way,	from	the	server,	through	intermediaries,	to	the	client).	They
override	any	default	caching	behavior	performed	by	a	device.	See	the	discussion
of	caching	in	Chapter	84	for	a	full	exposition	of	the	subject.

There	are	a	dozen	individual	directives	that	can	appear	in	this	header,	the	full
details	of	which	can	be	found	in	RFC	2616.	Even	though	this	is	a	general	header,
some	directives	can	appear	only	in	a	request	or	a	response.	Some	also	include	an
additional	parameter,	such	as	a	number	of	seconds,	that	control	their
interpretation.	Table	82-1	provides	a	brief	summary	of	the	different	Cache-
Control	options	and	how	they	are	used.

Note	that	only	one	directive	may	appear	in	a	Cache-Control	header,	but	more
than	one	such	header	can	appear	in	a	message.



Table	82-1.	HTTP	Cache-Control	Directives

Cache-
Control
Directive

HTTP
Message
Type

Description

no-cache Request
or
Response

When	present,	forces	a	caching	device	to	forward	any	subsequent
requests	for	the	same	content	to	the	server	for	revalidation;	that	is,	the
cache	must	check	with	the	server	to	ensure	that	the	cached	data	is	still
valid.	Also	see	the	Pragma	header	description,	for	an	alternative	way
of	accomplishing	the	same	thing.

public Response Indicates	that	the	response	may	be	cached	by	any	cache,	including	a
shared	one	(a	cache	used	by	many	clients).	See	Chapter	84	for	more
details	on	shared	caches.

private Response Specifies	that	the	response	is	intended	for	only	a	particular	user	and
should	not	be	placed	into	a	shared	cache.

no-store Request
or
Response

Specifies	that	the	entire	request	or	response	should	not	be	stored	in	a
cache.	This	is	used	sometimes	to	prevent	the	storing	of	sensitive
documents	in	caches	where	unauthorized	people	might	be	able	to
access	them.	However,	as	the	HTTP	standard	points	out,	this	is	really	a
very	rudimentary	security	measure	and	should	not	be	trusted	a	great
deal	(since	a	malicious	cache	operator	could	simply	ignore	the
directive).

max-age Request
or
Response

In	a	request,	indicates	that	the	client	is	willing	to	accept	a	response
whose	age	is	no	greater	than	the	value	specified.	In	a	response,
indicates	the	maximum	age	of	the	response	before	it	is	considered
stale.	This	is	an	alternative	to	the	use	of	the	Expires	header	and	takes
precedence	over	it.

s-maxage Response If	present,	specifies	the	maximum	age	for	shared	caches	receiving	the
response.	Private	caches	(ones	that	serve	only	a	single	client)	use	the
max-age	value	(see	the	preceding	description).

min-fresh Request Specifies	that	the	client	wants	a	response	that	is	not	only	not	stale	at
the	time	the	request	is	received,	but	that	will	remain	fresh	for	the
specified	number	of	seconds.

max-stale Request If	sent	without	a	parameter,	indicates	that	the	client	is	willing	to	accept
a	stale	reply	(one	that	has	expired).	If	a	numeric	parameter	is	included,
it	indicates	how	stale,	in	seconds,	the	response	may	be.

only-if-
cached

Request Used	only	in	special	circumstances,	forces	the	reply	to	come	from	a
cache	only;	the	content	may	not	come	from	the	actual	specified	HTTP



cached cache	only;	the	content	may	not	come	from	the	actual	specified	HTTP
server.

must-
revalidate

Response Instructs	a	cache	to	revalidate	its	cache	entry	for	the	given	response
with	the	original	server	after	it	becomes	stale.	This	is	used	to	prevent
problems	with	certain	types	of	transactions	that	can	occur	if	stale	cache
entries	are	sent	to	a	client	(perhaps	as	a	result	of	the	client	using	the
max-stale	directive).

proxy-
revalidate

Response Similar	to	must-revalidate,	but	applies	only	to	proxies	that	service
many	users.	Private	caches,	such	as	those	on	individual	client
computers,	are	not	affected.

no-
transform

Request
or
Response

Some	caches	will,	by	default,	change	the	form	in	which	certain	cached
entries	are	stored,	to	save	space	or	improve	performance.	In	cases
where	this	might	cause	problems,	the	client	or	server	can	use	this
directive	to	request	that	this	transformation	not	be	performed.

Warning
A	Warning	header	is	used	when	it's	needed	to	provide	additional	information
about	the	status	of	a	message.	Many	of	the	defined	warning	header	types	are
related	to	caching.	More	than	one	Warning	header	may	appear	in	a	message,	and
each	typically	includes	a	three-digit	numeric	code	as	well	as	a	plain	text
message,	following	the	same	basic	format	used	in	HTTP	response	status	codes
(described	in	Chapter	81).	Table	82-2	briefly	lists	the	warnings	defined	in	RFC
2616.

Table	82-2.	HTTP	Warning	Header	Codes

Warning
Code

Warning
Text

Description

110 Response	is
stale

Must	be	included	when	a	response	provided	by	a	cache	is	stale
(that	is,	has	passed	the	expiration	time	set	for	it).

111 Revalidation
failed

A	cache	attempted	to	revalidate	a	cached	entry	but	was
unsuccessful,	so	it	returned	its	(stale)	cached	entry.

112 Disconnected
operation

The	cache	is	disconnected	from	the	rest	of	the	network.

113 Heuristic
expiration

Included	if	the	cache	chose	a	freshness	lifetime	of	more	than	24
hours,	and	the	age	of	the	response	is	also	greater	than	24	hours.



199 Miscellaneous
warning

Catchall	code	for	other,	nonspecific	warnings.

214 Transformation
applied

Warns	the	recipient	that	an	intermediate	cache	or	proxy	applied	a
transformation	of	some	type	to	change	the	content	coding	or	media
type	of	the	message	or	message	body.

299 Miscellaneous
persistent
warning

Similar	to	code	199,	but	indicates	a	persistent	warning.

Other	HTTP	General	Headers
The	following	are	the	other	types	of	HTTP	general	headers:

Connection	Contains	instructions	that	pertain	only	to	this	particular	connection,
and	must	not	be	retained	by	proxies	and	used	for	further	connections.	The	most
common	use	of	this	header	is	with	the	close	parameter,	as	follows:
Connection: close.	This	overrides	the	default	persistent	connection	behavior
of	HTTP/1.1	(described	in	Chapter	80),	forcing	the	connection	to	terminate	after
the	server's	response.	Connection	is	a	hop-by-hop	header.

Date	Indicates	the	date	and	time	when	the	message	originated.	This	is	the	same
as	the	Date	header	in	the	RFC	822	email	format	(described	in	Chapter	76).	A
typical	example	is	Date: Wed, 17 May 2006 16:43:50 GMT.

Pragma	Used	to	enable	implementation-specific	directives	to	be	applied	to	all
devices	in	the	request/response	chain.	One	common	use	of	this	header	is	to
suppress	caching	by	including	Pragma: no-cache	in	a	message.	This	has	the
same	meaning	as	a	Cache-Control: no-cache	header,	and	is	included	in
HTTP/1.1	for	backward-compatibility	with	HTTP/1.0	(which	supports	Pragma
but	not	Cache-Control).

Trailer	When	chunked	transfers	are	used	(as	described	in	Chapter	83),	certain
headers	may	be	placed	as	trailers,	after	the	data	being	sent.	In	this	case,	the
Trailer	header	is	included	before	the	data,	and	it	lists	the	names	of	the	headers
that	are	actually	trailers	in	that	message.	This	warns	the	recipient	to	look	for
them	after	the	data.	Trailer	is	a	hop-by-hop	header.

Transfer-Encoding	Indicates	what	encoding	has	been	used	for	the	body	of	the
message,	to	ensure	that	it	is	able	to	be	transferred	properly	between	devices.	This



header	is	most	often	used	with	the	chunked	transfer	method.	Note	that	this
header	describes	encoding	applied	to	an	entire	message,	and	is	thus	not	the	same
as	the	Content-Encoding	entity	header,	which	specifically	describes	the	entity
carried	in	a	message.	See	Chapter	83	for	a	full	discussion.	This	header	applies
only	to	a	single	transfer,	so	it	is	a	hop-by-hop	header.

Upgrade	Allows	a	client	device	to	specify	which	additional	protocols	it
supports.	If	the	server	also	supports	one	of	the	protocols	the	client	listed,	the
server	may	agree	to	upgrade	the	connection	to	the	alternative	protocol.	It
indicates	the	protocol	to	which	it	is	upgrading	by	including	an	Upgrade	header	in
a	101	(Switching	Protocols)	response	to	the	client.	This	is	a	hop-by-hop	header.

Via	Included	by	intermediary	devices	to	indicate	to	the	recipient	which
gateways,	proxies,	and/or	tunnels	were	used	in	conveying	a	request	or	response.
This	header	allows	easy	tracing	of	the	path	a	message	took	over	a	potentially
complex	chain	of	devices	between	a	client	and	server.

TIP

KEY	CONCEPT	HTTP	general	headers	can	appear	in	either	an	HTTP	Request	or	HTTP	Response
message.	They	are	used	to	communicate	information	about	the	message	itself,	as	opposed	to	its	contents.
General	headers	are	used	for	functions	such	as	specifying	the	date	and	time	of	a	message,	controlling
how	the	message	is	cached,	and	indicating	its	transfer	encoding	method.



HTTP	Request	Headers
HTTP	request	headers,	as	you	might	imagine,	are	used	only	in	HTTP	Request
messages,	where	they	serve	a	number	of	functions.	First,	they	allow	the	client	to
provide	information	about	itself	to	the	server.	Second,	they	give	additional
details	about	the	nature	of	the	request	that	the	client	is	making.	Third,	they	allow
the	client	to	have	greater	control	over	how	its	request	is	processed	and	how	(or
even	if)	a	response	is	returned	by	the	server	or	intermediary.

This	is	the	largest	of	the	four	categories	of	HTTP	headers,	containing	more	than
a	dozen	different	types,	as	follows:

Accept	Allows	the	client	to	tell	the	server	which	Internet	media	types	it	is
willing	to	accept	in	a	response.	The	header	may	list	several	different
Multipurpose	Internet	Mail	Extensions	(MIME)	media	types	and	subtypes	that
the	client	knows	how	to	deal	with.	Each	may	be	prepended	with	a	quality	value
(q	parameter)	to	indicate	the	client's	preference.	If	this	header	is	not	specified,
the	default	is	for	the	server	to	assume	any	media	type	may	be	sent	to	the	client.
See	the	discussion	of	entity	media	types	and	content	negotiation	in	Chapter	83
for	more	information	about	how	this	header	is	used.

Accept-Charset	Similar	to	Accept,	but	specifies	which	character	sets	(charsets)
the	client	is	willing	to	accept	in	a	response,	rather	than	which	media	types.
Again,	the	listed	charsets	may	use	a	q	value,	and	again,	the	default	if	the	header
is	omitted	is	for	the	client	to	accept	any	charset.

Accept-Encoding	Similar	to	Accept	and	Accept-Charset,	but	specifies	which
content	encodings	the	client	is	willing	to	accept.	This	is	often	used	to	control
whether	the	server	may	send	content	in	compressed	form.	(As	you'll	learn	in
Chapter	83,	content	codings	are	not	the	same	as	transfer	encodings.)

Accept-Language	Similar	to	the	preceding	Accept-type	headers,	but	provides	a
list	of	language	tags	that	indicates	which	languages	the	client	supports	or	expects
the	server	to	use	in	its	response.

Authorization	Used	by	the	client	to	present	authentication	information	(called
credentials)	to	the	server	to	allow	the	client	to	be	authenticated.	This	is	required
only	when	the	server	requests	authentication,	often	by	sending	a	401



(Unauthorized)	response	to	the	client's	initial	request.	This	response	will	contain
a	WWW-Authenticate	header	providing	the	client	with	details	on	how	to
authenticate	with	the	server.	See	the	discussion	of	security	and	privacy	in
Chapter	84	for	more	information.

Expect	Indicates	certain	types	of	actions	that	the	client	is	expecting	the	server	to
perform.	Usually,	the	server	will	accept	the	indicated	parameters;	if	not,	it	will
send	back	a	417	(Expectation	Failed)	response.	The	most	common	use	of	this
field	is	to	control	when	the	server	sends	a	100	(Continue)	response.	The	client
indicates	that	it	wants	the	server	to	send	this	preliminary	reply	by	including	the
Expect:	100-Continue	header	in	its	request.	(See	the	discussion	of	status	codes	at
the	end	of	Chapter	81	for	details.)

From	Contains	the	email	address	of	the	human	user	making	the	request.	This	is
optional,	and	since	it	is	easily	spoofed,	should	be	used	only	for	informational
purposes,	and	not	for	any	type	of	access	rights	determination	or	authentication.

Host	Specifies	the	Internet	host	as	a	Domain	Name	System	(DNS)	domain	name
and	may	also	contain	a	port	number	specification	as	well	(typically,	only	if	a	port
other	than	the	HTTP	default	of	80	is	to	be	used).	This	header	is	used	to	allow
multiple	domains	to	be	served	by	the	same	web	server	on	a	particular	Internet
Protocol	(IP)	host.	It	has	the	distinction	of	being	the	only	mandatory	header—it
must	be	present	in	all	HTTP/1.1	requests.

If-Match	Makes	a	method	conditional	by	specifying	the	entity	tag	(or	tags)
corresponding	to	the	specific	entity	that	the	client	wishes	to	access.	This	is
usually	used	in	a	GET	method,	and	the	server	responds	with	the	entity	only	if	it
matches	the	one	specified	in	this	header.	Otherwise,	the	server	sends	a	412
(Precondition	Failed)	reply.

If-Modified-Since	Makes	a	method	conditional	by	telling	the	server	to	return	the
requested	entity	only	if	it	has	been	modified	since	the	time	specified	in	this
header.	Otherwise,	the	server	sends	a	304	(Not	Modified)	response.	This	is	used
to	check	if	a	resource	has	changed	since	it	was	last	accessed,	to	avoid
unnecessary	transfers.

If-None-Match	The	opposite	of	If-Match;	it	creates	a	conditional	request	that	is
only	filled	if	the	specified	tag(s)	do	not	match	the	requested	entity.



If-Range	Used	in	combination	with	the	Range	header	to	effectively	allow	a
client	to	both	check	for	whether	an	entity	has	changed	and	request	that	a	portion
of	it	be	sent	in	a	single	request.	(The	alternative	is	to	first	issue	a	conditional
request,	and	if	it	fails,	issue	a	second	request.)	When	present,	If-Range	tells	the
server	to	send	to	the	client	the	part	of	the	entity	indicated	in	the	Range	header	if
the	entity	has	not	changed.	If	the	entity	has	changed,	the	server	sends	the	entire
entity	in	response.

If-Unmodified-Since	The	logical	opposite	of	the	If-Modified-Since	header;	the
request	is	filled	only	if	the	resource	has	not	been	modified	since	the	specified
time.	Otherwise,	the	server	sends	a	412	reply.

Max-Forwards	Specifies	a	limit	on	the	number	of	times	a	request	can	be
forwarded	to	the	next	device	in	the	request	chain.	This	header	is	used	with	the
TRACE	or	OPTIONS	methods	only,	to	permit	diagnosis	of	forwarding	failures
or	looping.	When	present	in	one	of	these	methods,	each	time	a	device	forwards
the	request,	the	number	in	this	header	is	decremented.	If	a	device	receives	a
request	with	a	Max-Forwards	value	of	0,	it	must	not	forward	it,	but	rather	it
should	respond	back	to	the	client.	(In	a	way,	this	is	somewhat	analogous	to	how
the	Time	to	Live	field	is	used	in	the	IP	datagram	format,	as	described	in
Chapter	21.)

Proxy-Authorization	Like	the	Authorization	header,	but	used	to	present
credentials	to	a	proxy	server	for	authentication,	rather	than	to	the	end	server.	It	is
created	using	information	sent	by	a	proxy	in	a	response	containing	a	Proxy-
Authenticate	header.	This	is	a	hop-by-hop	header,	sent	only	to	the	first	proxy
that	receives	the	request.	If	authentication	is	required	with	more	than	one	proxy,
multiple	Proxy-Authorization	headers	may	be	put	in	a	message,	with	each	proxy
consuming	one	of	the	headers.

Range	Allows	the	client	to	request	that	the	server	send	it	only	a	portion	of	an
entity,	by	specifying	a	range	of	bytes	in	the	entity	to	be	retrieved.	If	the
requested	range	is	valid,	the	server	sends	only	the	indicated	part	of	the	file,	using
a	206	(Partial	Content)	status	code;	if	the	range	requested	cannot	be	filled,	the
reply	is	416	(Requested	Range	Not	Satisfiable).

Referer	Tells	the	server	the	Uniform	Resource	Locator	(URL)	of	the	resource
from	which	the	URL	of	the	current	request	was	obtained.	Typically,	when	a	user



clicks	a	link	on	one	web	page	to	load	another,	the	address	of	the	original	web
page	is	put	into	the	Referer	line	when	the	request	for	the	clicked	link	is	sent.	This
allows	tracking	and	logging	of	how	the	server	is	accessed.	If	a	human	user
manually	enters	a	Uniform	Resource	Identifier	(URI)	into	a	web	browser,	this
header	is	not	included	in	the	request.	Since	this	header	provides	information
related	to	how	web	pages	are	used,	it	has	certain	privacy	implications.

NOTE

The	proper	spelling	of	this	word	is	referrer.	It	was	misspelled	years	ago	in	an	earlier	version	of	the	HTTP
standard,	and	before	this	was	noticed	and	corrected,	this	spelling	became	incorporated	into	so	much
software	that	the	Internet	Engineering	Task	Force	(IETF)	chose	not	to	correct	the	spelling	in	HTTP/1.1.

TE	Provides	information	to	the	server	about	how	the	client	wishes	to	deal	with
transfer	encodings	for	entities	sent	by	the	server.	If	extensions	to	the	standard
HTTP	transfer	encodings	are	defined,	the	client	can	indicate	its	willingness	to
accept	them	in	this	header.	The	client	can	also	use	the	header	TE: trailers	to
indicate	its	ability	to	handle	having	headers	sent	as	trailers	following	data	when
chunking	of	data	is	done.	This	is	a	hop-by-hop	header	and	applies	only	to	the
immediate	connection.

User-Agent	Provides	information	about	the	client	software.	This	is	normally	the
name	and	version	number	of	the	web	browser	or	other	program	sending	the
request.	It	is	used	for	server	access	statistic	logging	and	also	may	be	used	to
tailor	how	the	server	responds	to	the	needs	of	different	clients.	Note	that	proxies
do	not	modify	this	field	when	forwarding	a	request;	rather,	they	use	the	Via
header.

TIP

KEY	CONCEPT	HTTP	request	headers	are	used	only	in	HTTP	Request	messages.	They	allow	a	client
to	provide	information	about	itself	to	a	server,	provide	more	details	about	a	request,	and	allow	control
over	how	the	request	is	carried	out.



HTTP	Response	Headers
The	counterpart	to	request	headers,	response	headers,	appear	only	in	HTTP
responses	sent	by	servers	or	intermediaries.	They	provide	additional	data	that
expands	on	the	summary	information	that	is	present	in	the	status	line	at	the
beginning	of	each	server	reply.	Many	of	the	response	headers	are	sent	only	in
response	to	the	receipt	of	specific	types	of	requests	or	even	to	particular	headers
within	certain	requests.

There	are	nine	response	headers	defined	for	HTTP/1.1:

Accept-Ranges	Tells	the	client	whether	the	server	accepts	partial	content
requests	using	the	Range	request	header,	and	if	so,	what	type.	For	example,
include	Accept-Range: bytes	indicates	the	server	accepts	byte	ranges,	and
Accept-Range: none	indicates	range	requests	are	not	supported.	Note	that	this
is	header	is	different	from	the	other	Accept-	headers,	which	are	used	in	HTTP
requests	to	perform	content	negotiation.

Age	Tells	the	client	the	approximate	age	of	the	resource,	as	calculated	by	the
device	sending	the	response.

ETag	Specifies	the	entity	tag	for	the	entity	included	in	the	response.	This	value
can	be	used	by	the	client	in	future	requests	to	uniquely	identify	an	entity,	using
the	If-Match	(or	similar)	request	header.

Location	Indicates	a	new	URL	that	the	server	is	instructing	the	client	to	use	in
place	of	the	one	the	client	initially	requested.	This	header	is	normally	used	when
the	server	redirects	a	client	request	to	a	new	location,	using	a	301,	302,	or	307
reply.	It	is	also	used	to	indicate	the	location	of	a	created	resource	in	a	201
(Created)	response	to	a	PUT	request.	Note	that	this	is	not	the	same	as	the
Content-Location	entity	header,	which	is	used	to	indicate	the	location	of	the
originally	requested	resource.

Proxy-Authenticate	The	proxy	version	of	the	WWW-Authenticate	header
(described	next).	It	is	included	in	a	407	(Proxy	Authentication	Required)
response,	to	indicate	how	the	proxy	is	requiring	the	client	to	perform
authentication.	The	header	specifies	an	authentication	method,	as	well	as	any
other	parameters	needed	for	authentication.	The	client	will	use	this	to	generate	a



new	request	containing	a	Proxy-Authorization	header.	This	is	a	hop-by-hop
header.

Retry-After	Sometimes	included	in	unsuccessful	requests—such	as	those
resulting	in	a	503	(Service	Unavailable)	response—to	tell	the	client	when	it
should	try	its	request	again.	It	may	also	be	used	with	a	redirection	response	such
as	301,	302,	or	307	to	indicate	how	long	the	client	should	wait	before	sending	a
request	for	the	redirected	URL.	The	Retry-After	header	may	specify	either	a	time
interval	to	wait	(in	seconds)	or	a	full	date/time	when	the	server	suggests	the
client	try	again.

Server	The	server's	version	of	the	User-Agent	request	header.	It	identifies	the
type	and	version	of	the	server	software	generating	the	response.	Note	that
proxies	do	not	modify	this	field	when	forwarding	a	response;	they	put	their
identification	information	into	a	Via	header	instead.

Vary	Specifies	which	request	header	fields	fully	determine	whether	a	cache	is
allowed	to	use	this	response	to	reply	to	subsequent	requests	for	the	same
resource	without	revalidation.	A	caching	device	inspects	the	Vary	header	to
ascertain	which	other	headers	it	needs	to	examine	when	the	client	makes	its	next
request	for	the	resource	in	this	reply,	to	determine	whether	it	can	respond	with	a
cached	entry.	(See	Chapter	84	for	more	information	about	caching,	which	should
make	the	use	of	this	header	easier	to	understand.)

WWW-Authenticate	Included	in	a	401	(Unauthorized)	response	to	indicate
how	the	server	wants	the	client	to	authenticate.	The	header	specifies	an
authentication	method	as	well	as	any	other	parameters	needed	for	authentication.
The	client	will	use	this	to	generate	a	new	request	containing	an	Authorization
header.

TIP

KEY	CONCEPT	HTTP	response	headers	appear	in	HTTP	Response	messages,	where	they	provide
additional	information	about	HTTP	server	capabilities	and	requirements,	and	the	results	of	processing	a
client	request.



HTTP	Entity	Headers
Last,	but	not	least,	we	come	to	the	fourth	group	of	HTTP	headers:	entity	headers.
These	headers	provide	information	about	the	resource	carried	in	the	body	of	an
HTTP	message,	called	an	entity	in	the	HTTP	standards.	They	serve	the	overall
purpose	of	conveying	to	the	recipient	of	a	message	the	information	it	needs	to
properly	process	and	display	the	entity,	such	as	its	type	and	encoding	method.

The	most	common	type	of	entity	is	a	file	or	another	set	of	information	that	has
been	requested	by	a	client,	and	for	this	reason,	entity	headers	most	often	appear
in	HTTP	Response	messages.	However,	they	can	also	appear	in	HTTP	Request
messages,	especially	those	using	the	PUT	and	POST	methods,	which	are	the
ones	that	transfer	data	from	a	client	to	a	server.

At	least	one	entity	header	should	appear	in	any	HTTP	message	that	carries	an
entity.	However,	they	may	also	be	present	in	certain	responses	that	do	not	have
an	actual	entity	in	them.	Most	notably,	a	response	to	a	HEAD	request	will
contain	all	the	entity	headers	associated	with	the	resource	specified	in	the
request;	these	are	the	same	headers	that	would	have	been	included	with	the	entity
had	the	GET	method	been	used	instead	of	the	HEAD	method	on	the	same
resource.	Entity	headers	may	also	be	present	in	certain	error	responses	to	provide
information	to	help	the	client	make	a	successful	follow-up	request.

NOTE

Many	of	the	entity	headers	have	the	same	names	as	certain	MIME	headers,	but	they	are	often	used	in
different	ways.	See	the	topic	on	HTTP	Internet	media	types	in	Chapter	83	for	a	full	discussion	of	the
relationship	between	HTTP	and	MIME.

There	are	ten	entity	headers	defined	for	HTTP/1.1:

Allow	Lists	all	the	methods	that	are	supported	for	a	particular	resource.	This
header	may	be	provided	in	a	server	response	as	a	guide	to	the	client	regarding
what	methods	it	may	use	on	the	resource	in	the	future.	The	header	must	be
included	when	a	server	returns	a	405	(Method	Not	Allowed)	response	to	a
request	containing	an	unsupported	method.

Content-Encoding	Describes	any	optional	method	that	may	have	been	used	to



encode	the	entity.	This	header	is	most	often	used	when	transferring	entities	that
have	been	compressed.	It	tells	the	recipient	which	algorithm	has	been	used	so	the
entity	can	be	uncompressed.	Note	that	this	header	describes	only	transformations
performed	on	the	entity	in	a	message;	the	Transfer-Encoding	header	describes
encodings	done	on	the	message	as	a	whole.	See	the	discussion	of	content
codings	and	transfer	codings	in	Chapter	83	for	more	details.

Content-Language	Specifies	the	natural	(human)	language	intended	for	using
the	entity.	This	is	an	optional	header,	and	it	may	not	be	appropriate	for	all
resource	types.	Multiple	languages	may	be	specified,	if	needed.	This	header	is
intended	to	provide	guidance	so	the	entity	can	be	presented	to	the	correct
audience;	thus,	the	language	should	be	selected	based	on	who	would	best	use	the
material,	which	may	not	necessarily	include	all	of	the	languages	used	in	the
entity.	For	example,	a	German	analysis	of	Italian	operas	would	probably	be	best
tagged	only	with	the	language	de.

Content-Length	Indicates	the	size	of	the	entity	in	octets.	This	header	is
important,	as	it	is	used	by	the	recipient	to	determine	the	end	of	a	message.
However,	it	may	be	included	only	in	cases	where	the	length	of	a	message	can	be
fully	determined	prior	to	transmitting	the	entity.	This	is	not	always	possible	in
the	case	of	dynamically	generated	content,	which	complicates	message-length
calculation;	the	discussion	of	data	length	and	chunked	transfer	encoding	in
Chapter	83	contains	a	full	exploration	of	this	issue.

Content-Location	Specifies	the	resource	location	of	the	entity,	in	the	form	of	an
absolute	or	relative	URL.	This	is	an	optional	header,	and	it	is	normally	included
only	in	cases	where	the	entity	has	been	supplied	from	a	location	different	from
the	one	specified	in	the	request.	This	may	occur	if	a	particular	resource	is	stored
in	multiple	places.

Content-MD5	Contains	a	Message	Digest	5	(MD5)	digest	for	the	entity,	used
for	checking	message	integrity.

Content-Range	Sent	when	a	message	contains	an	entity	that	is	only	part	of	a
complete	resource—for	example,	a	fragment	of	a	file	sent	in	response	to	an
HTTP	GET	request	containing	the	Range	header.	The	Content-Range	header
indicates	which	portion	of	the	overall	file	this	message	contains,	as	well	as	the
total	size	of	the	resource.	This	information	is	given	as	a	byte	range,	with	the	first



byte	numbered	0.	For	example,	if	the	entity	contains	the	first	1200	bytes	of	a
2000-byte	file,	this	header	would	have	a	value	of	0-1199/2000.

Content-Type	Specifies	the	media	type	and	subtype	of	the	entity,	in	a	manner
very	similar	to	how	this	header	is	used	in	MIME.	See	Chapter	83	for	a	full
discussion.

Expires	Specifies	a	date	and	time	after	which	the	entity	in	the	message	should
be	considered	stale.	This	may	be	used	to	identify	certain	entities	that	should	be
held	in	HTTP	caches	for	longer	or	shorter	periods	of	time	than	usual.	This
header	is	ignored	if	a	Cache-Control	header	containing	the	max-age	directive	is
present	in	the	message.

Last-Modified	Indicates	the	date	and	time	when	the	server	believes	the	entity
was	last	changed.	This	header	is	often	used	to	determine	if	a	resource	has	been
modified	since	it	was	last	retrieved.	For	example,	suppose	a	client	machine
already	contains	a	copy	of	a	very	large	file	that	was	obtained	two	months	ago,
and	its	user	wants	to	check	if	an	update	to	the	file	is	available.	The	client	can
send	a	HEAD	request	for	the	file,	and	compare	the	value	of	the	returned	Last-
Modified	header	to	the	date	of	the	copy	of	the	file	it	already	has.	Then	it	needs	to
request	the	entire	file	only	if	it	has	changed.

Note	the	use	of	the	word	"believes"	in	the	preceding	description	of	the	Last-
Modified	header.	The	reason	for	this	wording	is	that	the	server	cannot	always	be
certain	of	the	time	that	a	resource	was	modified.	With	files	this	is	fairly	simple—
it	is	usually	the	last-modified	time	stored	for	the	file	by	the	operating	system.	For
other	more	complex	resources	such	as	database	records	or	virtual	objects,
however,	it	may	be	more	difficult	to	ascertain	when	the	last	change	occurred	to	a
particular	piece	of	information.	In	the	case	of	dynamically	generated	content,	the
Last-Modified	date/time	may	be	the	same	as	that	of	the	message	as	a	whole,	as
specified	in	the	Date	field.

TIP

KEY	CONCEPT	HTTP	entity	headers	appear	in	either	Request	or	Response	messages	that	carry	an
entity	in	the	message	body.	They	describe	the	nature	of	the	entity,	including	its	type,	language,	and
encoding,	to	facilitate	the	proper	processing	and	presentation	of	the	entity	by	the	device	receiving	it.



Chapter	83.	HTTP	Entities,
Transfers,	Coding	Methods,	and
Content	Management

Hypertext	Transfer	Protocol	(HTTP)	message	headers	are	very	important,
because	they	are	the	mechanism	that	HTTP	uses	to	allow	devices	to	specify	the
details	of	client	requests	and	server	responses.	These	headers,	however,	are	only
the	means	to	an	end,	which	is	the	transfer	of	resources	(such	as	files,	form	input,
and	program	output)	from	one	device	to	another.	When	a	resource	is	carried	in
the	body	of	an	HTTP	message,	it	is	called	an	entity.	HTTP	defines	special	rules
for	how	these	entities	are	identified,	encoded,	and	transferred.

In	this	chapter,	I	explain	how	HTTP	handles	entities.	I	begin	with	a	discussion	of
entities	in	general	terms	and	a	look	at	how	their	contents	are	identified.	This
includes	an	examination	of	the	relationship	between	HTTP	and	Multipurpose
Internet	Mail	Extensions	(MIME).	I	discuss	the	issues	behind	the	transfer	of
entities	between	clients	and	servers,	and	the	difference	between	content
encodings	and	transfer	encodings.	I	describe	the	special	issues	associated	with
identifying	the	length	of	entities	in	HTTP	messages,	and	detail	the	special
chunked	transfer	coding	and	message	trailers.	Finally,	I	describe	the	methods	by
which	devices	can	perform	content	negotiation	and	how	quality	values	allow
clients	to	intelligently	select	different	variations	of	a	resource.

HTTP	Entities	and	Internet	Media	Types
The	presence	of	the	word	text	in	the	name	Hypertext	Transfer	Protocol	is	a
reminder	of	the	legacy	of	HTTP.	As	I	explained	in	Chapter	80,	HTTP	was
originally	created	to	allow	text	documents	to	be	linked	together.	This	made



sense,	because	at	the	time	that	the	Web	was	being	created,	most	computing	was
being	done	with	text.	Accordingly,	the	first	version	of	HTTP	(HTTP/0.9)
supported	only	one	type	of	message	body:	a	plain	ASCII	text	document.

In	the	early	1990s,	the	rapid	increase	in	computing	power	and	networking
performance	transformed	the	world	of	information	technology	from	text	to
multimedia.	These	were	also	the	Web's	formative	years,	and	it	did	not	take	long
before	many	users	wanted	to	exploit	the	power	of	the	Web	to	share	not	only	text
files,	but	also	pictures,	drawings,	sound	clips,	movies,	and	much	more.	Thus,
HTTP	had	to	evolve	as	well.	Starting	with	HTTP/1.0,	the	protocol's	developers
made	significant	changes	to	allow	HTTP	to	transport	and	process	much	more
than	just	text.	Today,	HTTP	really	would	be	better	described	as	dealing	with
hypermedia	than	hypertext.

One	drawback	of	supporting	many	types	of	files	in	HTTP	is	added	complexity.
Previously,	every	message	recipient	knew	the	body	contained	ASCII	text;	now
any	message	can	contain	any	of	many	kinds	of	data.	When	HTTP	was	expanded
to	support	flexible	media,	it	needed	a	system	that	would	address	two	specific
issues:	encoding	entities	of	various	types	into	an	HTTP	message	body	and
clearly	identifying	the	entity's	characteristics	for	the	recipient	of	the	message.

At	the	same	time	that	HTTP	was	being	changed	to	support	nontext	entities,
another	important	TCP/IP	application	was	also	moving	away	from	its	decades-
long	role	as	a	text-messaging	medium	to	one	that	could	transport	multimedia:
electronic	mail	(email).	This	was	accomplished	using	a	technology	called	MIME
(introduced	in	Chapter	76),	which	define	a	mechanism	for	encoding	and
identifying	nontext	data—exactly	what	HTTP	needed	to	do.	Since	TCP/IP
developers	wisely	reuse	technologies	that	work,	the	creators	of	HTTP	borrowed
many	concepts	from	MIME,	including	many	of	the	MIME	email	headers	that	are
used	to	identify	the	contents	of	a	MIME	message.

Media	Types	and	Subtypes
The	most	important	concept	that	HTTP	adopted	from	MIME	was	the	use	of
standardized	Internet	media	types,	which	describe	the	contents	of	an	HTTP
entity.	The	formal	syntax	of	an	HTTP	media	type	is	the	same	as	that	used	in
MIME:



<type>/<subtype>	[;	parameter1	;	parameter2	…	;	parameterN	]

Each	media	type	consists	of	a	top-level	media	type	that	defines	its	general	nature
and	a	more	specific	subtype	that	indicates	its	form	or	structure.	For	example,	text
documents	use	the	top-level	media	type	text,	with	subtypes	such	as	plain	for
regular	unformatted	text	and	html	for	HTML	documents.	So,	an	HTML
document	of	the	type	commonly	transported	using	HTTP	will	be	identified	with
a	media	type	of	text/html.	Similarly,	image	is	a	top-level	media	type,	with
subtypes	such	as	jpeg,	gif,	and	tiff.	Photographs	usually	are	identified	as
image/jpeg,	while	line	drawings	are	often	seen	as	image/gif.	Additional
parameters	may	also	be	supplied	to	provide	more	information	to	help	a	recipient
interpret	the	entity.

HTTP's	Use	of	Media	Types
In	HTTP,	media	types	are	most	often	seen	in	a	special	Content-Type	entity
header,	which	is	present	in	any	HTTP	message	that	carries	an	entity.	This	header
uses	the	same	format	as	the	header	of	the	same	name	in	MIME:

Content-Type:	<type>/<subtype>	[;	parameter1	;	parameter2	…	;	parameterN	]

TIP

RELATED	INFORMATION	I	provide	a	more	complete	description	of	both	the	Content-Type	header
and	Internet	media	types,	including	a	description	of	many	types	and	subtypes,	in	Chapter	76.	HTTP	can
also	support	composite	media	types,	such	as	the	multipart	media	type.

The	other	place	where	media	types	are	used	in	HTTP	is	in	the	Accept	request
header,	which	may	appear	in	an	HTTP	request	sent	by	a	client.	If	present,	the
purpose	of	this	header	is	to	tell	the	server	what	sorts	of	media	types	the	client
can	handle,	so	the	server	will	not	send	a	response	that	cannot	be	processed.	For
example,	if	a	client	can	process	only	text	documents,	it	might	send	a	request
specifying	this	in	an	Accept	header.	This	is	part	of	the	overall	content
negotiation	process	supported	by	HTTP,	which	I	describe	in	the	"HTTP	Content
Negotiation	and	Quality	Values"	section	later	in	this	chapter.

When	a	media	type	is	specified	in	an	Accept	header,	either	the	subtype	or	both
the	type	and	subtype	can	be	replaced	by	the	asterisk	(*)	wildcard	to	represent



any	acceptable	type.	For	example,	in	an	Accept	header,	the	specification
text/html	refers	to	an	HTML	document,	while	text/*	means	any	text	type.
The	string	*/*	means	any	type	of	media;	this	is	usually	used	in	combination	with
a	q	value,	as	explained	in	the	discussion	of	the	HTTP	content	negotiation	process
later	in	this	chapter.

TIP

KEY	CONCEPT	While	HTTP	is	most	often	associated	with	hypertext,	its	messages	can	transport	a
large	variety	of	different	types	of	files,	including	images,	audio,	video,	and	much	more.	To	indicate	the
type	of	entity	contained	in	an	HTTP	message,	its	sender	must	identify	its	media	type	and	subtype.	This	is
done	using	the	HTTP	Content-Type	header,	which	was	borrowed	from	the	Multipurpose	Internet	Mail
Extensions	(MIME)	specification.

Differences	in	HTTP	and	MIME	Constructs
In	addition	to	media	types,	HTTP	also	borrows	from	MIME	in	several	other
ways,	such	as	MIME's	notion	of	content	codings	and	the	use	of	a	header	to
indicate	the	length	of	an	entity.	It's	important	to	recognize,	however,	that	even
though	HTTP's	handling	of	Internet	media	is	very	similar	to	that	of	MIME,	it	is
not	identical.	In	fact,	there	was	an	early	proposal	that	HTTP	use	MIME	exactly
as	defined,	but	HTTP's	developers	specifically	decided	not	to	do	this.	We	will
explore	a	possible	reason	why	HTTP	is	not	strictly	MIME-compliant	in	the	next
section.

The	bottom	line	is	that	HTTP's	developers	chose	to	adopt	concepts	from	MIME
that	made	sense	and	to	leave	other	parts	out.	As	a	result,	HTTP	messages	are	not
MIME-compliant,	even	though	you	may	see	several	headers	in	HTTP	messages
starting	with	MIME's	Content-	prefix.	For	example,	even	though	HTTP	has	a
Content-Encoding	header,	its	use	is	quite	different	from	that	of	MIME's.	The	fact
that	HTTP	does	not	use	the	MIME-Version	header	that	is	required	in	MIME
messages	confirms	the	difference	between	HTTP	and	MIME.

TIP

KEY	CONCEPT	Even	though	HTTP	borrows	several	concepts	and	header	types	from	MIME,	the
protocol	is	not	MIME-compliant.



HTTP	Content	and	Transfer	Encodings
Two	specific	issues	that	HTTP	must	address	in	order	to	carry	a	wide	variety	of
media	types	in	its	messages	are	encoding	the	data	and	identifying	its	type	and
characteristics.	HTTP	borrows	from	MIME	the	notion	of	media	types	and	the
Content-Type	header	to	handle	type	identification,	as	explained	in	the	previous
section.	It	similarly	borrows	concepts	and	headers	from	MIME	to	deal	with	the
encoding	issue.	Here,	however,	we	run	into	some	of	the	important	differences
between	HTTP	and	MIME.

Encoding	was	a	significant	issue	for	MIME,	because	it	was	created	for	the
specific	purpose	of	sending	nontext	data	using	the	old	RFC	822	email	message
standard	(discussed	in	Chapter	76).	RFC	822	imposes	several	significant
restrictions	on	the	messages	it	carries,	the	most	important	of	which	is	that	data
must	be	encoded	using	7-bit	ASCII.	RFC	822	messages	are	also	limited	to	lines
of	no	more	than	1,000	characters	that	end	in	a	carriage	return/line	feed	(CRLF)
sequence.

These	limitations	mean	that	arbitrary	binary	files,	which	have	no	concept	of	lines
and	consist	of	bytes	that	can	each	contain	a	value	from	0	to	255,	cannot	be	sent
using	RFC	822	in	their	native	format.	In	order	for	MIME	to	transfer	binary	files,
they	must	be	encoded	using	a	method	such	as	base64	(described	in	Chapter	76),
which	converts	three	8-bit	characters	to	a	set	of	four	6-bit	characters	that	can	be
represented	in	ASCII.	When	this	sort	of	transformation	is	done,	the	MIME
Content-Transfer-Encoding	header	is	included	in	the	message,	so	the	recipient
can	reverse	the	encoding	to	return	the	data	to	its	normal	form.	Although	this
technique	works,	it	is	less	efficient	than	sending	the	data	directly	in	binary,
because	base64	encoding	increases	the	size	of	the	message	by	33	percent	(three
bytes	are	encoded	using	four	ASCII	characters,	each	of	which	takes	one	byte	to
transmit).

HTTP	messages	are	transmitted	directly	between	the	client	and	server	over	a
Transmission	Control	Protocol	(TCP)	connection,	and	they	do	not	use	the	RFC
822	standard.	Thus,	binary	data	can	be	sent	between	HTTP	clients	and	servers
without	the	need	for	base64	encoding	or	other	transformation	techniques.	Since
it	is	more	efficient	to	send	the	data	unencoded,	this	may	be	one	reason	why
HTTP's	developers	decided	not	to	make	the	protocol	strictly	MIME-compliant.



HTTP's	developers	decided	not	to	make	the	protocol	strictly	MIME-compliant.

HTTP's	Two-Level	Encoding	Scheme
So,	encoding	would	seem	to	be	an	area	where	HTTP	is	simpler	than	MIME.
There	is	no	need	to	encode	the	entity,	and	thus	no	need	for	the	Content-Transfer-
Encoding	header,	so	we	have	one	less	thing	to	worry	about.	It	is	true	that	HTTP
could	have	been	designed	so	that	all	entities	were	just	sent	one	byte	at	a	time
with	no	need	to	specify	encodings,	but	the	developers	of	the	protocol	recognized
that	this	would	have	made	the	protocol	inflexible.	There	are	situations	where	it
might	be	useful	to	transform	or	encode	an	entity	or	message	for	transmission,
and	then	reverse	the	operation	on	receipt.

This	effort	to	make	HTTP	flexible	resulted	in	a	system	of	representing	encodings
that	is	actually	more	complicated	than	MIME's!	The	key	to	understanding	it	is	to
recognize	that	HTTP/1.1	actually	splits	MIME's	notion	of	content	transfer
encoding	into	two	different	encoding	levels:

Content	Encoding	This	encoding	is	applied	specifically	to	the	entity	carried	in
an	HTTP	message,	to	prepare	or	package	it	prior	to	transmission.	Content
encodings	are	said	to	be	end-to-end,	because	the	encoding	of	the	entity	is	done
once	before	it	sent	by	the	client	or	server,	and	decoded	only	on	receipt	by	the
ultimate	recipient:	server	or	client.	When	this	type	of	encoding	is	done,	the
method	is	identified	in	the	special	Content-Encoding	entity	header.	A	client	may
also	specify	which	content	encodings	it	can	handle,	using	the	Accept-Encoding
header,	as	you	will	see	in	the	section	on	content	negotiation	later	in	this	chapter.

Transfer	Encoding	This	encoding	is	done	specifically	for	the	purpose	of
ensuring	that	data	can	be	safely	transferred	between	devices.	It	is	applied	across
an	entire	HTTP	message	and	not	specifically	to	the	entity.	This	type	of	encoding
is	hop-by-hop,	because	a	different	transfer	encoding	may	be	used	for	each	hop	of
a	message	that	is	transmitted	through	many	intermediaries	in	the
request/response	chain.	The	transfer	encoding	method,	if	any,	is	indicated	in	the
Transfer-Encoding	general	header.

Use	of	Content	and	Transfer	Encodings
Since	the	content	and	transfer	encodings	are	applied	at	different	levels,	it	is
possible	for	both	to	be	used	at	the	same	time.	A	content	encoding	may	be	applied



possible	for	both	to	be	used	at	the	same	time.	A	content	encoding	may	be	applied
to	an	entity	and	then	placed	into	a	message.	On	some	or	all	of	the	hops	that	are
used	to	move	the	message	containing	that	entity,	a	transfer	encoding	may	be
applied	to	the	entire	message	(including	the	entity).	The	transfer	encoding	is
removed	first,	and	then	the	content	encoding	is	removed.

So,	what	are	these	types	of	encodings	used	for	in	practice?	The	answer	is	not	a
great	deal.	The	HTTP	standard	defines	a	small	number	of	content	and	transfer
encodings,	and	specifies	that	additional	methods	may	be	registered	with	the
Internet	Assigned	Numbers	Authority	(IANA).	Currently,	only	the	ones	defined
in	the	HTTP/1.1	standard	are	in	use.

Content	encodings	are	used	only	to	implement	compression.	This	is	a	good
example	of	an	encoding	that,	while	not	strictly	necessary,	can	be	useful	since	it
improves	performance	dramatically	for	some	types	of	data.	RFC	2616	defines
three	different	encoding	algorithms:

gzip,	which	is	the	compression	used	by	the	UNIX	gzip	program,	described
in	RFC	1952

compress,	which	also	represents	the	compression	method	used	by	the	UNIX
program	of	that	name

deflate,	which	is	a	method	defined	in	RFCs	1950	and	1951

NOTE

It	is	also	possible	to	apply	compression	to	an	entire	HTTP	message	as	a	transfer	encoding.	Obviously,	if
the	entity	is	already	compressed	using	content	encoding,	this	will	result	in	some	duplication	of	effort.
Since	the	size	of	HTTP	headers	is	not	that	large	compared	to	some	entities	that	HTTP	messages	carry,	it
is	usually	simpler	just	to	compress	the	entity	using	content	encoding.

Since	transfer	encodings	are	intended	to	be	used	to	make	data	safe	for	transfer,
and	we've	already	discussed	the	fact	that	HTTP	can	handle	arbitrary	binary	data,
this	suggests	that	transfer	encodings	are	not	really	necessary.	However,	there	is
one	situation	where	safe	transport	does	become	an	issue:	the	matter	of
identifying	the	end	of	a	message.	This	issue	is	the	subject	of	the	next	section.

TIP

KEY	CONCEPT	HTTP	supports	two	levels	of	codings	for	data	transfer.	The	first	is	content	encoding,
which	is	used	in	certain	circumstances	to	transform	the	entity	carried	in	an	HTTP	message.	The	second	is



transfer	encoding,	which	is	used	to	encode	an	entire	HTTP	message	to	ensure	its	safe	transport.	Content
encodings	are	often	employed	when	entities	are	compressed	to	improve	communication	efficiency.
Transfer	encoding	is	used	primarily	to	deal	with	the	problem	of	identifying	the	end	of	a	message.



HTTP	Data	Length	Issues,	Chunked	Transfers,
and	Message	Trailers
As	you've	learned,	two	different	levels	of	encodings	are	used	in	HTTP:	content
encodings,	which	are	applied	to	HTTP	entities,	and	transfer	encodings,	which
are	used	over	entire	HTTP	messages.	Content	encodings	are	used	for
convenience	to	package	entities	for	transmission.	Transfer	encodings	are	hop-
specific,	and	they	are	intended	for	use	in	situations	where	data	needs	to	be	made
safe	for	transfer.

However,	we've	already	seen	that	HTTP	can	transport	arbitrary	binary	data,	so
unlike	the	situation	where	MIME	needed	to	make	binary	data	safe	(as	defined	in
RFC	822),	this	is	not	an	issue	with	HTTP.	Therefore,	why	are	transport
encodings	needed	at	all?	In	theory,	they	are	not,	and	HTTP/1.0	did	not	even	have
a	Transfer-Encoding	header	(though	it	did	use	content	encodings).	The	concept
of	transfer	encoding	became	important	in	HTTP/1.1	due	to	another	key	feature
of	that	version	of	HTTP:	persistent	connections	(described	in	Chapter	80).

Dynamic	Data	Length
Recall	that	HTTP	uses	TCP	for	connections.	One	of	the	key	characteristics	of
TCP	is	that	it	transmits	all	data	as	a	stream	of	unstructured	bytes	(see
Chapter	46).	TCP	itself	does	not	provide	any	way	of	differentiating	between	the
end	of	one	piece	of	data	and	the	start	of	the	next;	this	is	left	up	to	each
application.	In	HTTP/1.0	(and	HTTP/0.9),	this	was	not	a	problem,	because	those
versions	used	only	transitory	connections.	Each	HTTP	session	consisted	of	only
one	request	and	one	response.	Since	the	client	and	server	each	sent	only	one
piece	of	data,	there	was	no	need	to	worry	about	differentiating	HTTP	messages
on	a	connection.

HTTP/1.1's	persistent	connections	improve	performance	by	letting	devices	send
requests	and	responses	one	after	the	other	over	a	single	TCP	connection.
However,	the	fact	that	messages	are	sent	in	sequence	makes	differentiating	them
a	concern.	There	are	two	usual	approaches	to	dealing	with	this	sort	of	data	length
issue:	using	an	explicit	delimiter	to	mark	the	end	of	the	message,	or	including	a
length	header	or	field	to	tell	the	recipient	how	long	each	message	is.	The	first
approach	could	not	really	have	been	done	easily	while	maintaining	compatibility



approach	could	not	really	have	been	done	easily	while	maintaining	compatibility
with	older	versions	of	the	protocol.	This	left	the	second	approach.	Since	HTTP
already	had	a	Content-Length	entity	header,	the	solution	was	to	use	this	to
indicate	the	length	of	each	message	at	transmission	time.

Using	the	Content-Length	header	works	fine	in	cases	where	the	size	of	the	entity
to	be	transferred	is	known	in	advance,	such	as	when	transmitting	a	text
document,	an	image,	or	an	executable	program	needs.	However,	there	are	many
types	of	resources	that	are	generated	dynamically.	In	those	cases,	the	total	size	of
such	a	resource	is	not	known	until	it	has	been	completely	processed.

While	not	typical	in	HTTP's	early	days,	dynamic	resources	account	for	a	large
percentage	of	Web	traffic	today.	Many	web	pages	are	often	not	static	Hypertext
Markup	Language	(HTML)	files,	but	instead	are	created	as	output	from	scripts
or	programs	based	on	user	input;	discussion	forums	are	a	good	example.	Even
modern	HTML	files	are	often	not	static.	They	usually	contain	program	elements
such	as	server-side	includes	(SSIs)	that	cause	code	to	be	generated	on	the	fly,	so
their	exact	size	cannot	be	determined	in	advance.

The	problem	of	unknown	message	length	could	be	resolved	by	buffering	the
entire	resource	before	transmission.	However,	this	would	be	wasteful	of	server
memory	and	would	delay	the	transmission	of	the	entity	unnecessarily,	since	no
part	could	be	sent	until	the	entire	entity	was	ready.	Instead,	a	special	transfer
encoding	method	was	developed	to	handle	the	particular	problem	of	not	knowing
the	length	of	a	file.	The	method	is	called	chunking.

Chunked	Transfers	and	Message	Trailers
When	the	chunking	technique	is	used,	instead	of	sending	an	entity	as	a	raw
sequence	of	bytes,	it	is	broken	into,	well,	chunks.	This	allows	HTTP	to	send	a
dynamically	generated	resource,	such	as	output	from	a	script,	a	piece	at	a	time	as
the	data	becomes	available	from	the	software	processing	it.	To	indicate	that	this
method	has	been	used,	the	special	header	Transfer-Encoding: chunked	is
placed	in	the	message.	A	special	format	is	also	used	for	the	body	of	the	HTTP
message	to	delineate	the	chunks:

<chunk-1-length>

<chunk-1-data>



<chunk-2-length>

<chunk-2-data>

…

0

<message-trailers>

Basically,	instead	of	putting	the	whole	entity	in	the	body	and	indicating	its
length	in	a	Content-Length	header,	each	chunk	is	placed	in	the	body
sequentially,	each	preceded	by	the	length	of	the	chunk.	The	length	is	specified	in
hexadecimal	and	represented	using	ASCII	characters.	All	chunk	lengths	and
chunk	data	are	terminated	with	a	CRLF	sequence.	The	recipient	knows	it	has
received	the	last	chunk	when	it	sees	a	chunk	length	of	zero.

NOTE

An	HTTP/1.1	client	can	specify	that	it	does	not	want	to	use	persistent	connections	by	including	the
Connection: close	header	in	its	request.	In	this	case,	the	server	does	not	have	to	use	chunking	in	its
response.	Since	the	server	will	close	the	connection	after	the	first	response	message,	the	client	knows
that	everything	it	receives	from	the	server	is	part	of	that	response.	However,	some	servers	may	use
chunked	transfers	anyway,	even	in	this	situation.

When	chunked	transfer	encoding	is	used,	the	sender	of	the	message	may	also
choose	to	specify	one	or	more	message	trailers.	These	are	the	same	as	entity
headers,	describing	the	contents	of	the	message	body,	but	appear	after	the	entity,
rather	than	before	it.	Message	trailers	provide	flexibility	in	the	same	way	that
chunking	itself	does:	They	allow	a	device	to	include	an	HTTP	header	that	may
contain	information	that	was	not	available	when	the	HTTP	message	transmission
began.	A	good	example	would	be	an	integrity	check	field	calculated	based	on	the
byte	values	of	the	entire	entity.

Trailers	are	optional,	and	they	will	not	always	be	needed.	When	they	are	used,
they	are	processed	just	like	regular	entity	headers.	To	give	the	recipient	of	a
message	a	"heads	up"	that	trailers	have	been	used,	the	special	Trailer	header	is
included	at	the	start	of	the	message,	which	lists	the	names	of	each	header	that
appears	as	a	trailer.

Yes,	I	really	did	say	that	headers	can	actually	be	trailers,	in	which	case,	a	header
called	Trailer	lists	each	header	that	is	actually	a	trailer.	An	example	will	help



clarify	matters	somewhat.	Suppose	we	have	a	server	that	contains	a	program
that,	when	supplied	with	a	filename,	returns	a	simple	HTML	response	that
contains	the	size	and	last	modification	date	of	the	file.	This	is	obviously	dynamic
content,	so	the	length	of	the	response	cannot	be	determined	in	advance.	If	the
server	were	to	buffer	the	entire	output	of	this	program	(since	it	is	small),	it	could
construct	a	conventional	HTTP	response	using	the	Content-Length	header,	as
shown	in	the	sample	output	of	Example	83-1.

Example	83-1.	Example	of	an	HTTP	Response	using	a	Content-Length	header
HTTP/1.1 200 OK
Date: Tue, 22 Mar 2005 11:15:03 GMT
Content-Type: text/html
Content-Length: 129
Expires: Sun, 27 Mar 2005 21:12:00 GMT
 
<html><body><p>The file you requested is 3,400 bytes long and was last modified:
Sun, 20 Mar 2005 21:12:00 GMT.</p></body></html>

Using	chunking	instead	allows	the	server	to	send	out	parts	of	the	response	as
soon	as	they	become	available	from	the	program.	The	equivalent	output	of	the
example	shown	in	Example	83-1	using	chunked	transfers	is	shown	in
Example	83-2.

Example	83-2.	Example	of	an	HTTP	Response	using	chunked	transfer	encoding
HTTP/1.1 200 OK
Date: Tue, 22 Mar 2005 11:15:03 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Trailer: Expires
 
29
<html><body><p>The file you requested is
5
3,400
23
 bytes long and was last modified:
1d
Sun, 20 Mar 2005 21:12:00 GMT
13
.</p></body></html>
0
Expires: Sun, 27 Mar 2005 21:12:00 GMT

In	Example	83-2,	notice	that	the	Expires	header	is	now	a	trailer,	so	it	can	be
calculated	based	on	the	output	of	the	program,	and	this	is	indicated	by	the
Trailer:	Expires	header.	Remember	that	the	Content-Length	header	specifies	the



length	as	a	decimal	number	while	chunking	specifies	chunk	lengths	in
hexadecimal;	the	chunks	in	this	example	are	41,	5,	35,	29,	and	19	decimal	bytes,
respectively.

TIP

KEY	CONCEPT	Since	HTTP/1.1	uses	persistent	connections	that	allow	multiple	requests	and
responses	to	be	sent	over	a	TCP	connection,	clients	and	servers	need	some	way	to	identify	where	one
message	ends	and	the	next	begins.	The	easier	solution	is	to	use	the	Content-Length	header	to	indicate	the
size	of	a	message,	but	this	works	only	when	the	length	of	a	message	can	be	determined	in	advance.	For
dynamic	content	or	other	cases	where	message	length	cannot	be	easily	computed	before	sending	the	data,
the	special	chunked	transfer	encoding	can	be	used,	where	the	message	body	is	sent	as	a	sequence	of
chunks,	each	preceded	by	the	length	of	the	chunk.	When	chunked	transfer	encoding	is	used,	the	sender
of	the	message	may	move	certain	headers	from	the	start	of	the	message	to	the	end,	where	they	are	known
as	trailers.	Trailers	are	interpreted	in	the	same	way	as	normal	headers	by	the	recipient.	The	special
Trailer	header	is	used	in	such	messages	to	tell	the	recipient	to	look	for	trailers	after	the	body	of	the
message.



HTTP	Content	Negotiation	and	Quality	Values
Many	Internet	resources	have	only	one	representation,	meaning	a	single	way	in
which	they	are	stored	or	made	available.	In	this	situation,	a	client	request	to	a
server	is	an	all-or-nothing	proposition.	The	client	may	specify	conditions	under
which	it	would	like	the	server	to	send	the	resource,	using	the	If-	series	of	request
headers	described	in	the	previous	chapter.	If	the	condition	is	met,	the	resource
will	be	sent	in	the	server's	response	in	the	one	form	in	which	it	exists;	if	the
condition	is	not	met,	no	entity	will	be	returned.

Other	resources,	however,	may	have	multiple	representations.	The	most	common
example	is	a	document	that	is	available	in	multiple	languages,	or	one	that	is
stored	using	more	than	one	character	set.	Similarly,	a	graphical	image	might
exist	in	two	different	formats:	a	Tagged	Image	File	Format	(TIFF)	file,	for	those
who	want	maximum	image	quality	despite	the	large	size	of	TIFF	images,	and	a
more	compact	JPEG	file,	for	those	who	need	to	see	the	image	quickly	and	don't
care	as	much	about	its	quality	level.

To	provide	flexibility	in	allowing	clients	to	obtain	the	best	version	of	resources
that	exist	in	multiple	forms,	HTTP/1.1	defines	a	set	of	features	that	are
collectively	called	content	negotiation.

Content	Negotiation	Techniques
The	HTTP/1.1	standard	defines	two	basic	methods	by	which	this	negotiation
may	be	performed.

Server-Driven	Negotiation	In	this	technique,	the	client	includes	headers	in	its
request	that	provide	guidance	to	the	server	about	its	desired	representation	for
the	resource.	The	server	uses	an	algorithm	that	processes	this	information	and
provides	the	version	of	the	resource	that	it	feels	best	matches	the	client's
preferences.

Agent-Driven	Negotiation	This	method	puts	the	client	in	charge	of	the
negotiation	process.	It	first	sends	a	preliminary	request	for	the	resource	to	the
server.	If	the	resource	is	available	in	multiple	forms,	the	server	typically	sends
back	a	300	(Multiple	Choices)	response,	which	contains	a	list	of	the	various



representations	in	which	the	resource	is	available.	The	client	then	sends	a	second
request	for	the	one	that	it	prefers.

To	draw	an	analogy,	suppose	a	co-worker	offers	to	go	out	at	lunchtime	to	pick
up	lunch	for	the	two	of	you.	He	is	going	to	a	new	restaurant,	where	neither	of
you	have	eaten	before.	You	could	provide	him	with	some	parameters	regarding
what	you	like	to	eat—"I	like	roast	beef	sandwiches,	fish	and	chips,	and	pizza,
but	not	chicken"—and	then	trust	him	to	pick	something	you	will	like.
Alternatively,	he	could	go	to	the	restaurant,	call	you	on	his	cell	phone,	read	the
menu	to	you,	and	let	you	make	a	selection.	This	former	approach	is	like	server-
driven	negotiation;	the	latter	is	like	agent-driven	negotiation.

This	analogy	not	only	points	out	the	differences	between	the	two	methods,	but	it
also	highlights	the	key	advantages	and	disadvantages	of	each.	Trusting	your	co-
worker	with	your	lunch	selection	is	simple	and	efficient,	but	not	foolproof.	It's
possible	that	the	restaurant	may	not	have	any	of	the	items	you	specified,	or	that
your	friend	may	get	you	something	containing	another	ingredient	that	you	don't
like	but	forgot	to	mention.	Similarly,	server-based	negotiation	is	a	best-guess
process	that	does	not	guarantee	that	the	client	will	receive	the	resource	in	the
format	it	wants.	This	is	exacerbated	by	the	fact	that	there	are	only	so	many	ways
for	the	client	to	specify	its	preferences	using	a	handful	of	request	headers.

Agent-based	negotiation,	on	the	other	hand,	allows	the	client	to	select	exactly
what	it	wants	from	the	available	choices,	just	as	you	can	choose	your	favorite
dish	from	the	menu	of	the	restaurant.	The	problem	here	is	that	it	is	inefficient,
because	two	requests	and	responses	are	required	for	each	resource	access.
(Would	you	really	want	to	read	a	restaurant's	menu	over	the	phone	to	someone
so	he	could	choose	his	ideal	dish?)

In	practice,	server-based	negotiation	is	the	type	that	is	most	commonly	used
today.	The	client	specifies	its	preferences	using	a	set	of	four	request	headers	that
indicate	what	it	would	prefer	in	the	representation	of	the	resource.	The	headers
each	represents	one	characteristic	of	a	resource:	Accept	(media	type),	Accept-
Charset	(character	set),	Accept-Encoding	(content	encoding),	and	Accept-
Language	(resource	language).	Any	or	all	of	these	may	be	included	in	the
request.	Each	Accept-	header	contains	a	list	of	acceptable	values	that	is
appropriate	to	the	characteristic	that	it	specifies,	separated	by	a	comma.	For
example,	the	Accept	header	lists	media	types	the	client	considers	acceptable,	and



example,	the	Accept	header	lists	media	types	the	client	considers	acceptable,	and
Accept-Language	contains	language	tags.

For	example,	suppose	you	have	a	friend	who	is	trilingual	in	English,	French,	and
Spanish.	She	can	read	a	particular	document	in	any	of	these	languages,	so	she
might	instruct	her	browser	to	include	the	following	header	in	her	requests:

Accept-Language: en, fr, sp

TIP

KEY	CONCEPT	HTTP	includes	a	feature	called	content	negotiation	that	allows	the	selection	of	a
particular	variation	of	a	resource	that	has	more	than	one	representation.	There	are	two	negotiation
techniques:	server-driven,	where	the	client	includes	headers	in	its	request	that	indicate	what	it	wants	and
the	server	does	its	best	to	select	the	most	appropriate	variant,	and	agent-driven,	where	the	server	sends
the	client	a	list	of	the	available	resource	alternatives	and	the	client	chooses	one.

Quality	Values	for	Preference	Weights
To	improve	the	results	of	server-driven	negotiation,	HTTP	allows	the	client	to
weight	each	of	the	items	in	such	a	list,	to	indicate	which	is	preferred	of	the
alternatives.	The	client	specifies	weights	by	adding	a	decimal	quality	value	after
each	parameter	using	the	syntax	q=<value>,	which	represents	the	relative
priority	of	that	parameter	relative	to	others.	The	highest	priority	is	1,	and	the
lowest	priority	is	0.	The	default	if	no	value	is	indicated	is	1.	A	value	of	0	means
that	the	client	will	not	accept	documents	with	that	characteristic.

For	example,	suppose	your	trilingual	friend	knows	English,	French,	and	Spanish,
but	her	French	is	a	bit	rusty.	Furthermore,	she	may	need	to	share	the	document
she	is	requesting	with	a	friend	of	hers	who	knows	only	a	little	Spanish,	so	it
would	be	best	if	she	got	the	document	in	English.	Finally,	she	knows	there	is	a
German	version	of	the	resource	that	she	definitely	does	not	want.	This	could	be
represented	as	follows:

Accept-Language: en, fr;q=0.3, sp;q=0.7, de;q=0

Translated	to	English,	this	means,	"I	would	prefer	if	you	sent	me	the	document
in	English.	If	not,	Spanish	is	okay,	or	French	if	that	is	all	you	have,	but	definitely
don't	send	it	to	me	in	German."

Incidentally,	the	name	quality	value	is	the	one	used	in	the	HTTP	standard,	but	it
is	really	a	poor	choice	of	terminology	(a	point	which,	to	be	fair,	is	also



mentioned	in	the	standard).	These	values	do	not	have	anything	to	do	with
quality;	for	all	we	know,	the	German	version	of	this	document	may	be	the
original	and	the	others	could	be	lousy	translations.	The	q	values	specify	only	the
relative	preference	of	the	client	making	the	request.

Finally,	the	asterisk	(*)	wildcard	can	be	used	in	the	Accept	family	of	headers	to
represent	any	value	or	everything	else.	This	is	often	used	to	tell	the	server,	"If
you	can't	find	what	I	specifically	asked	for,	then	here	are	my	preferences	for	the
alternatives."	Let's	take	an	example	using	the	Accept	header:

Accept: text/html, text/*;q=0.6, */*;q=0.1

This	header	represents	the	client	saying,	"My	preference	(q=1,	the	default	since
no	q	value	is	indicated)	is	an	HTML	text	document.	If	not	available,	I	would
prefer	some	other	type	of	text	document.	Failing	that,	you	may	send	me	any
other	type	of	document	relevant	to	the	requested	resource."

TIP

KEY	CONCEPT	Server-driven	content	negotiation	is	the	type	most	often	used	in	HTTP.	A	client
sending	a	request	can	include	up	to	four	different	headers	that	provide	information	about	how	the	server
should	fill	its	request.	These	may	include	optional	quality	values	that	specify	the	client's	relative
preference	among	a	set	of	alternative	resource	characteristics	such	as	media	type,	language,	character	set,
and	encoding.



Chapter	84.	HTTP	FEATURES,
CAPABILITIES,	AND	ISSUES

The	previous	chapters	covered	the	fundamental	concepts	and	basic	operation	of
the	Hypertext	Transfer	Protocol	(HTTP).	Modern	HTTP,	however,	goes	beyond
the	simple	mechanics	by	which	HTTP	requests	and	responses	are	exchanged.	It
includes	a	number	of	features	and	capabilities	that	extend	the	basic	protocol	to
improve	performance	and	meet	the	various	needs	of	organizations	using	modern
TCP/IP	internetworks.

In	this	chapter,	I	complete	my	description	of	HTTP	by	discussing	several
important	matters	that	are	essential	to	the	operation	of	the	modern	World	Wide
Web.	I	begin	with	an	overview	of	HTTP	caching,	which	is	the	single	most
important	feature	that	promotes	efficiency	in	web	transactions.	I	discuss	the
different	uses	of	proxies	in	HTTP	and	some	of	the	issues	associated	with	them.	I
briefly	examine	the	issues	related	to	security	and	privacy	in	HTTP	and	conclude
with	a	discussion	of	the	matter	of	state	management	and	how	it	is	implemented
despite	HTTP	being	an	inherently	stateless	protocol.

HTTP	Caching	Features	and	Issues
The	explosive	growth	of	the	Web	was	a	marvel	for	its	users	but	a	nightmare	for
networking	engineers.	The	biggest	problem	that	the	burgeoning	Web	created	was
an	overloading	of	the	internetworks	over	which	it	ran.	Many	of	the	features	that
were	added	to	HTTP/1.1	were	designed	specifically	to	improve	the	efficiency	of
the	protocol	and	reduce	unnecessary	bandwidth	consumed	by	HTTP	requests
and	responses.	Arguably,	the	most	important	of	these	is	a	set	of	features
designed	to	support	caching.

The	subject	of	caching	comes	up	again	and	again	in	discussions	of	computers
and	networking,	because	of	a	phenomenon	that	is	widely	observed	in	these



and	networking,	because	of	a	phenomenon	that	is	widely	observed	in	these
technologies:	Whenever	a	user,	hardware	device,	or	software	process	requests	a
particular	piece	of	data,	there	is	a	good	chance	it	will	ask	for	that	same	data
again	in	the	near	future.	Thus,	by	storing	recently	retrieved	items	in	a	cache,	we
can	eliminate	duplicated	effort.	This	is	the	reason	that	caching	plays	an
important	role	in	the	efficiency	of	protocols	such	as	the	Address	Resolution
Protocol	(ARP)	and	the	Domain	Name	System	(DNS).

Benefits	of	HTTP	Caching
Caching	is	important	to	HTTP	because	Web	users	tend	to	request	the	same
documents	over	and	over	again.	For	example,	in	writing	this	section	on	HTTP,	I
made	reference	to	RFC	2616	many,	many	times.	Each	time,	I	loaded	it	from	a
particular	web	server.	Since	the	document	never	changes,	it	would	have	been
more	efficient	to	just	load	it	from	a	local	cache	rather	than	needing	to	retrieve	it
from	the	distant	web	server	each	time.

However,	caching	is	even	more	essential	to	HTTP	than	to	most	other	protocols
or	technologies	where	it	used.	The	reason	is	that	web	documents	tend	to	be
structured	so	that	a	request	for	one	resource	leads	to	a	request	for	many	others.
Even	if	you	load	a	number	of	different	documents,	they	may	each	refer	to
common	elements	that	do	not	change	between	your	requests.	Thus,	caching	can
be	of	benefit	in	HTTP	even	if	a	user	never	asks	for	the	same	document	twice,	or
if	a	single	document	changes	over	time	so	that	caching	the	document	itself
would	be	of	little	value.

For	example,	suppose	that	each	morning,	you	load	CNN's	website	to	see	what	is
going	on	in	the	world.	Obviously,	the	headlines	will	be	different	every	day,	so
caching	of	the	main	CCN.com	home	page	won't	be	of	much	value.	However,
many	of	the	graphical	elements	on	the	page	(CNN's	logo,	dividing	bars,	perhaps
a	"breaking	news"	graphic,	and	so	on)	will	be	the	same	every	day,	and	these	can
be	cached.	Another	example	would	be	a	set	of	discussion	forums	on	a	website.
As	you	load	different	topics	to	read,	each	one	is	different,	but	they	have	common
elements	(such	as	icons	and	other	images)	that	would	be	wasteful	to	need	to
retrieve	over	and	over	again.

Caching	in	HTTP	yields	two	main	benefits:



Reduced	bandwidth	use,	by	eliminating	unneeded	transfers	of	requests	and
responses

Faster	response	time	for	the	user	loading	a	resource

Consider	that	on	many	web	pages	today,	the	image	files	are	much	larger	than	the
HTML	page	that	references	them.	Caching	these	graphics	will	allow	the	entire
page	to	load	far	more	quickly.	Figure	84-1	illustrates	how	caching	reduces
bandwidth	and	speeds	up	resource	retrieval	by	short-circuiting	the
request/response	chain.

Figure	84-1.	Impact	of	caching	on	the	HTTP	request/response	chain	This	diagram	illustrates	the	impact
of	caching	on	the	request/response	chain	of	(see	Figure	80-2	in	Chapter	80).	In	this	example,

intermediary	2	is	able	to	satisfy	the	client's	request	from	its	cache.	This	short-circuits	the	communication
chain	after	two	transfers,	which	means	the	client	gets	its	resource	more	quickly,	and	the	HTTP	server	is

spared	the	need	to	process	the	client's	request.

The	obvious	advantages	of	caching	have	made	it	a	part	of	the	Web	since	pretty
much	the	beginning.	However,	it	was	not	until	HTTP/1.1	that	the	importance	of
caching	was	really	recognized	in	the	protocol	itself,	and	many	features	were
added	to	support	it.	Where	the	HTTP/1.0	standard	makes	passing	mention	of
caching	and	some	of	the	issues	related	to	it,	HTTP/1.1	devotes	26	full	pages	to
caching	(more	than	20	percent	of	the	main	body	of	the	document!).

Cache	Locations
HTTP	caching	can	be	implemented	in	a	variety	of	places	in	the	request/response
chain.	The	choice	of	location	involves	the	fundamental	trade-off	that	always
occurs	in	caching:	proximity	versus	universality.	Simply	put,	the	closer	the	cache
is	to	the	requester	of	the	information,	the	more	savings	that	result	when	data	is
pulled	from	the	cache,	rather	than	being	fetched	from	the	source.	However,	the
further	the	cache	is	from	the	requester	(and	thus	closer	to	the	source),	the	greater
the	number	of	devices	that	can	benefit	from	the	cache.	Let's	see	how	this
manifests	itself	in	the	three	classes	of	devices	where	caches	may	be	found:	the



web	client,	intermediary,	and	web	server.

Caching	on	the	Web	Client
The	cache	with	which	most	Internet	users	are	familiar	is	that	found	on	the	local
client.	It	is	usually	built	into	the	web	browser	software,	and	for	this	reason,	it's
called	a	web	browser	cache.	This	cache	stores	recent	documents	and	files
accessed	by	a	particular	user,	so	that	they	can	be	made	quickly	available	if	that
user	requests	them	again.

Since	the	cache	is	in	the	user's	own	machine,	a	request	for	an	item	that	the	cache
contains	is	filled	instantly,	resulting	in	no	network	transaction	and	instant
gratification	for	the	user.	However,	that	user	is	the	only	one	who	can	benefit
from	the	cache,	so	it's	sometimes	called	a	private	cache.

Caching	on	the	Intermediary
Devices	such	as	proxy	servers	that	reside	between	web	clients	and	servers	are
also	often	equipped	with	a	cache.	If	users	want	documents	that	are	not	in	their
local	client	cache,	the	intermediary	may	be	able	to	provide	it,	as	shown	in
Figure	84-1.	This	is	not	as	efficient	as	retrieving	from	the	local	cache,	but	far
better	than	going	back	to	the	web	server.

An	advantage	is	that	all	devices	using	the	intermediary	can	benefit	from	its
cache,	which	may	be	termed	a	public	or	shared	cache.	This	can	be	useful,
because	members	of	an	organization	often	access	similar	documents.	For
example,	in	an	organization	developing	a	hardware	product	to	be	used	on	Apple
computers,	many	different	people	might	be	accessing	documents	on	Apple's
website.	With	a	shared	cache,	a	request	from	User	A	would	often	result	in	items
being	cached	that	could	be	used	by	User	B	as	well.

Caching	on	the	Web	Server
Web	servers	themselves	may	also	implement	a	cache.	While	it	may	seem	a	bit
strange	to	have	a	server	maintain	a	cache	of	its	own	documents,	this	can	be	of
benefit	in	some	circumstances.	A	resource	might	require	a	significant	amount	of
server	resources	to	create.	For	example,	consider	a	web	page	that	is	generated
using	a	complex	database	query.	If	this	page	is	retrieved	frequently	by	many
clients,	there	can	be	a	large	benefit	to	creating	it	periodically	and	caching	it,
rather	than	generating	it	on	the	fly	for	each	request.



rather	than	generating	it	on	the	fly	for	each	request.

Since	the	web	server	cache	is	the	farthest	from	the	users,	this	results	in	the	least
savings	for	a	cache	hit,	as	the	client	request	and	server	response	must	still	travel
the	full	path	over	the	network	between	the	client	and	server.	However,	this
distance	from	the	client	also	means	that	all	users	of	the	server	can	benefit	from
the	cache.

TIP

KEY	CONCEPT	The	most	important	feature	that	improves	the	efficiency	of	operation	of	HTTP	is
caching—the	storing	of	recently	requested	resources	in	a	temporary	area.	If	the	same	resource	is	then
needed	again	a	short	time	later,	it	can	be	retrieved	from	the	cache	rather	than	requiring	a	fresh	request	to
the	server,	resulting	in	a	savings	of	both	time	and	bandwidth.	Caching	can	be	performed	by	web	clients,
web	servers,	and	intermediaries.	The	closer	the	cache	is	to	the	user,	the	greater	the	efficiency	benefits;
the	farther	from	the	user,	the	greater	the	number	of	users	who	can	benefit	from	the	cache.

Cache	Control
Caching	in	clients	and	servers	is	controlled	in	the	same	manner	as	most	other
types	of	control	are	implemented	in	HTTP:	through	the	use	of	special	headers.
The	most	important	of	these	is	the	Cache-Control	general	header,	which	has	a
number	of	directives	that	allow	the	operation	of	caches	to	be	managed.	There	are
other	important	caching-related	headers,	including	Expires	and	Vary.	For	a	great
deal	of	more	specific	information	related	to	HTTP	caching,	see	RFC	2616,
section	13.

Important	Caching	Issues
While	the	performance	advantages	of	caching	are	obvious,	caching	has	one
significant	drawback:	it	complicates	the	operation	of	HTTP	in	a	number	of	ways.
The	following	are	some	of	the	more	important	issues	that	HTTP/1.1	clients,
servers,	and	intermediaries	need	to	address.	This	list	is	not	exhaustive,	but	it
gives	you	an	idea	of	what	is	involved	with	caching	in	HTTP.

Cache	Aging	and	Staleness	When	users	retrieve	a	document	directly	from	its
original	source	on	the	server,	they	are	assured	of	getting	the	current	version	of
that	resource.	When	caching	is	used,	that	is	no	longer	the	case.	While	many
resources	change	infrequently,	almost	all	will	change	at	some	point.	For
example,	at	CNN's	website,	it	is	probable	that	the	CNN	logo	won't	change	very



often,	but	it's	possible	that	the	site	may	be	redesigned	periodically	and	the	logo
modified	in	some	way,	such	as	its	size	or	color.	For	this	reason,	a	device	cannot
keep	items	in	an	HTTP	cache	indefinitely.	The	longer	an	item	is	held	in	a	cache
—a	process	called	aging—the	more	likely	it	is	that	the	resource	on	the	server	has
changed	and	the	cache	has	become	stale.	To	make	matters	even	more	complex,
some	resources	become	stale	more	quickly	than	others.	As	a	result,	much	of	the
caching-related	functionality	of	HTTP	involves	dealing	with	this	matter	of	cache
aging.

Cache	Expiration	and	Validation	One	of	the	ways	that	HTTP	deals	with	the
cache	aging	issue	is	through	headers	and	logic	that	allow	caches,	clients,	and
servers	to	specify	how	long	items	should	be	cached	before	they	expire	and	must
be	refreshed.	A	validation	process	allows	a	cache	to	check	with	a	server	at
appropriate	times	to	see	if	an	item	it	has	stored	has	been	modified.

Communication	of	Cache	Status	to	the	User	In	most	cases,	the	fact	that	an
item	has	been	retrieved	from	a	cache	rather	than	its	source	is	transparent	to	users
(though	they	may	notice	that	the	resource	loads	faster	than	expected).	In	certain
cases,	however,	the	user	may	need	to	be	informed	that	a	resource	came	from	a
cache	and	not	its	original	source.	This	is	especially	true	when	a	cached	item	may
be	stale;	in	which	case,	the	client	should	warn	the	user	that	the	information	might
be	out-of-date.

Header	Caching	Caching	in	HTTP	is	complicated	by	the	fact	that	it	can	occur
in	multiple	places,	and	some	HTTP	headers	are	treated	differently	than	others.
HTTP	headers	are	divided	into	two	general	categories:	end-to-end	headers	that
are	intended	to	accompany	a	resource	all	the	way	to	its	ultimate	recipient,	and
hop-by-hop	headers	that	are	used	only	for	a	particular	communication	between
two	devices	(by	the	client,	server,	or	intermediary	device).	End-to-end	headers
must	be	stored	with	a	cached	resource.	Hop-by-hop	headers	have	meaning	only
for	a	particular	transfer	and	are	not	cached.

Impact	of	Resource	Updates	Some	HTTP	methods	(discussed	in	Chapter	81)
will	automatically	cause	cache	entries	to	become	invalidated,	because	they
inherently	cause	a	change	to	the	underlying	resource.	For	example,	if	a	user
performs	a	PUT	on	a	resource	that	was	previously	retrieved	using	GET,	any
cached	copies	of	that	resource	should	be	automatically	invalidated	to	prevent	the



old	version	from	being	supplied	from	the	cache.

Privacy	Concerns	In	the	case	of	shared	caches	(such	as	might	exist	in	a	proxy),
there	are	potential	privacy	issues.	In	most	cases,	having	User	A's	cached
resource	be	made	available	to	User	B	is	advantageous,	but	we	must	be	careful
not	to	cache	any	items	that	might	be	specific	to	User	A,	which	User	B	should	not
see.



HTTP	Proxy	Servers	and	Proxying
In	my	overview	of	the	HTTP	operational	model	in	Chapter	80,	I	described	how
HTTP	was	designed	to	support	not	just	communication	between	a	client	and
server,	but	also	the	inclusion	of	intermediaries	that	may	sit	in	the	communication
path	between	them.	One	of	the	most	important	types	of	intermediary	is	a	device
called	a	proxy	server,	or	more	simply,	just	a	proxy.

A	proxy	is	a	middleman	that	acts	as	both	a	client	and	a	server.	It	accepts	requests
from	a	client	as	if	it	were	a	server,	then	forwards	those	requests	(possibly
modifying	them)	to	the	real	server,	which	sees	the	proxy	as	a	client.	The	server
responds	back	to	the	proxy,	which	forwards	the	reply	back	to	the	client.	Proxies
can	be	either	transparent,	meaning	that	they	do	not	modify	requests	and
responses,	or	nontransparent,	if	they	do	modify	messages	in	order	to	provide	a
particular	service.

NOTE

The	term	transparent	proxy	can	also	be	used	to	refer	to	a	proxy	that	is	interposed	automatically	between
a	client	and	server—such	as	an	organization-wide	firewall—as	opposed	to	one	that	a	user	manually
configures.

Benefits	of	Proxies
Since	proxies	have	the	ability	to	fully	process	all	client	requests	and	server
responses,	they	can	be	extremely	useful	in	a	number	of	circumstances.	They	can
be	used	to	implement	or	enhance	many	important	capabilities,	such	as	the
following:

Security	Proxies	can	be	set	up	to	examine	both	outgoing	requests	and	incoming
responses,	to	address	various	security	concerns.	For	example,	filtering	can	be	set
up	to	prevent	users	from	requesting	objectionable	content	or	to	screen	out
harmful	replies,	such	as	files	containing	hidden	viruses.

Caching	As	you	saw	earlier,	it	can	be	advantageous	to	set	up	a	shared	cache	that
is	implemented	on	an	intermediary,	so	resources	requested	by	one	client	can	be
made	available	to	another.	This	can	be	done	within	a	proxy	server.



Performance	In	some	circumstances,	using	a	proxy	server	can	significantly
improve	performance,	particularly	by	reducing	latency.

An	excellent	example	of	how	a	proxy	server	can	improve	performance	is	how
proxying	is	used	by	my	own	satellite	Internet	connection.	Due	to	the	distance
from	the	Earth	to	the	satellite,	it	takes	more	than	500	milliseconds	for	a	round-
trip	request/response	cycle	between	my	PC	and	my	Internet	server	provider
(ISP).	If	I	loaded	a	web	page	containing	images,	I	would	need	to	wait	500+
milliseconds	to	get	the	HTML	page,	and	then	my	browser	would	need	to
generate	new	requests	for	each	graphical	element,	meaning	another	500+
millisecond	delay	for	each.	Instead,	my	ISP	has	a	proxy	server	to	which	I	send
my	requests	for	web	pages.	The	proxy	server	looks	through	the	HTML	of	these
pages	and	automatically	requests	any	elements	such	as	graphics	for	me.	It	then
sends	them	straight	back	to	my	machine,	thus	drastically	reducing	the	time
required	to	display	a	full	web	page.

TIP

KEY	CONCEPT	One	of	the	most	important	types	of	intermediary	devices	in	HTTP	is	a	proxy	server,
which	acts	as	a	middleman	between	the	client	and	server,	handling	both	requests	and	responses.	A	proxy
server	may	transport	messages	unchanged	or	may	modify	them	to	implement	certain	features	and
capabilities.	Proxies	are	often	used	to	increase	the	security	and/or	performance	of	Web	access.

Comparing	Proxies	and	Caches
Proxying	and	caching	are	concepts	that	have	a	number	of	similarities,	especially
in	terms	of	the	impact	that	they	have	on	basic	HTTP	operation.	Like	caching,
proxying	has	become	more	important	in	recent	years,	and	it	also	complicates
HTTP	in	a	number	of	ways.	The	HTTP/1.1	standard	includes	a	number	of
specific	features	to	support	proxies,	and	it	also	addresses	a	number	of	concerns
related	to	proxying.

The	fact	that	both	proxying	and	caching	represent	ways	in	which	basic	HTTP
client/server	communication	is	changed,	combined	with	the	ability	of	proxies	to
perform	caching,	sometimes	leads	people	to	think	caches	and	proxies	are	the
same,	which	is	not	true.	A	proxy	is	a	separate	element	that	resides	in	the	HTTP
request/response	chain.	Caches	can	be	implemented	within	any	device	in	that
chain,	including	a	proxy.



Another	key	way	that	caches	and	proxies	differ	is	that	caches	are	used
automatically	when	they	are	enabled,	but	proxies	are	not.	To	use	a	proxy,	client
software	must	be	told	to	use	the	proxy	and	supplied	with	its	IP	address	or
domain	name.	The	client	then	sends	all	requests	to	the	proxy,	rather	than	to	the
actual	server	that	the	user	specifies.

NOTE

Most	of	my	explanations	here	have	focused	on	hardware	proxy	servers,	but	proxies	are	also	commonly
implemented	as	software	in	a	client	device.	A	software	proxy	performs	the	same	tasks	of	processing
requests	and	responses.	A	software	proxy	is	much	cheaper	to	implement	than	a	hardware	proxy,	but	it
cannot	be	shared	by	many	devices.

Important	Proxying	Issues
As	with	caching,	issues	arise	when	proxies	are	used	in	HTTP.	The	following	are
some	of	the	more	important	ones.	(For	much	more	information	about	proxying,
refer	to	RFC	2616).

Capability	Inconsistencies	Issues	arise	when	a	client	and	server	don't	use	the
same	version	of	HTTP	or	don't	support	the	same	features.	For	example,	some
servers	may	not	support	all	of	the	methods	that	a	client	may	try	to	use.	This
becomes	more	complex	when	a	proxy	enters	the	picture.	Of	particular	concern	is
the	situation	where	a	client	and	server	may	agree	on	a	particular	feature	that	the
proxy	does	not.	The	proxy	must	make	sure	that	it	passes	along	headers	or	other
elements	that	it	may	not	comprehend.

Authentication	Requirements	The	use	of	proxy	servers	often	introduces	new
authentication	or	security	requirements.	In	addition	to	authenticating	with	an	end
server,	the	proxy	may	specify	that	the	client	needs	to	present	separate
authentication	credentials	to	it	as	well.	This	is	done	using	the	HTTP	Proxy-
Authorization	and	Proxy-Authenticate	headers,	as	discussed	in	the	next	section
in	this	chapter.

Caching	Interaction	Not	only	do	both	caching	and	proxying	both	complicate
HTTP,	they	can	complicate	each	other.	Many	of	the	issues	in	handling	caching
—such	as	header	caching,	expiration,	and	validation—become	more	complex
when	proxies	are	involved.	Some	of	the	Cache-Control	general	header	directives



are	specific	to	proxying.	Another	issue	is	that	the	use	of	proxying	and	caching
together	can	lead	to	distortions	in	the	apparent	number	of	times	that	a	web
resource	is	accessed.	This	is	important	in	situations	where	web	pages	are
supported	by	advertising,	based	on	the	number	of	times	the	page	is	accessed.	In
some	cases,	special	codes	called	cache	busters	are	placed	in	URLs	to	force	pages
not	to	be	stored	in	shared	caches.

Encodings	Content	encodings	(discussed	in	Chapter	83)	are	applied	end-to-end
and	so	should	not	be	affected	by	proxies.	Transfer	encoding	is	done	hop-by-hop,
so	a	proxy	may	use	different	encodings	in	handling	different	transfers	of	a	single
request	or	response.

Tracing	Proxy	Handling	It	is	useful	in	some	circumstances,	especially	when
multiple	proxies	may	be	in	the	request/response	chain,	to	be	able	to	trace	which
proxies	have	processed	a	particular	message.	To	this	end,	HTTP/1.1	requires	that
each	proxy	that	handles	a	message	identify	itself	in	the	Via	header.



HTTP	Security	and	Privacy
Many	TCP/IP	protocols	lack	security	measures,	largely	because	they	were
developed	when	security	wasn't	a	big	concern.	As	the	Internet	has	developed,
security	has	become	extremely	important,	however.	In	the	case	of	the	Web,	the
issue	is	even	more	important	due	to	the	significance	of	the	changes	that	have
occurred	in	the	content	of	HTTP	messages	since	the	protocol	was	first
developed.

HTTP	has	become	the	vehicle	for	transporting	any	and	every	kind	of
information,	including	a	large	amount	of	personal	data.	HTTP	was	initially
designed	to	carry	academic	documents	such	as	memos	about	research	projects.
Today,	an	HTTP	message	is	more	likely	to	carry	someone's	mortgage
application,	credit	card	number,	or	medical	details.	Thus,	not	only	does	HTTP
have	the	usual	security	issues	such	as	preventing	unauthorized	access,	but	it	also
needs	to	deal	with	privacy	concerns.

HTTP	Authentication	Methods
The	main	HTTP/1.1	standard,	RFC	2616,	does	not	deal	extensively	with	security
matters.	These	are	addressed	in	detail	instead	in	the	companion	document,	RFC
2617,	which	explains	the	two	methods	of	HTTP	authentication:

Basic	Authentication	This	is	a	conventional	user	name/password	type	of
authentication.	When	a	client	sends	a	request	to	a	server	that	requires
authentication	to	access	a	resource,	the	server	sends	a	response	to	the	client's
initial	request	that	contains	a	WWW-Authenticate	header.	The	client	then	sends
a	new	request	containing	the	Authorization	header,	which	carries	a	base64-
encoded	user	name	and	password	combination.	Basic	authentication	is	not
considered	strong	security	because	it	sends	credentials	unencrypted,	which
means	that	they	can	be	intercepted.

Digest	Authentication	Digest	authentication	uses	the	same	headers	as	basic
authentication,	but	employs	more	sophisticated	techniques,	including	encryption,
that	protect	against	a	malicious	person	snooping	credentials	information.	Digest
authentication	is	not	considered	as	strong	as	public	key	encryption,	but	it	is	a	lot
better	than	basic	authentication.	It's	also	a	lot	more	complicated.	The	full	details



of	how	it	works	are	in	RFC	2617.

Security	and	Privacy	Concerns	and	Issues
Both	RFC	2616	and	2617	address	some	of	the	specific	security	concerns	and
threats	that	can	potentially	affect	HTTP	clients	and	servers.	These	include
actions	such	as	spoofing,	counterfeit	servers,	replay	attacks,	and	much	more.
One	concern	addressed	is	the	potential	for	man-in-the-middle	attacks,	where	an
attacker	interposes	between	the	client	and	server.	Since	proxies	are	inherently
middlemen,	they	represent	a	security	concern	in	this	area.	The	same
authentication	methods	used	for	servers	can	also	be	applied	to	authentication
with	proxies.	In	this	case,	the	Proxy-Authenticate	and	Proxy-Authorization
headers	are	used	instead	of	WWW-Authenticate	and	Authorization	headers.

The	HTTP	standards	also	discuss	a	number	of	privacy	issues.	The	following	are
particularly	worthy	of	examining.

Sensitive	Information	Handling	The	HTTP	protocol	can	carry	any	type	of
information,	and	it	does	not	inherently	protect	the	privacy	of	data	in	HTTP
message	entities.	To	ensure	the	privacy	of	sensitive	information,	other
techniques	must	be	used	(as	described	in	the	next	section).

Information	in	URLs	One	issue	that	sometimes	arises	in	HTTP	is	that	poorly
designed	websites	may	inadvertently	encode	private	information	into	URLs.
These	URLs	may	be	recorded	in	web	logs,	where	they	could	fall	into	the	hands
of	people	who	could	abuse	them.	An	example	of	this	is	a	website	that	submits	a
user	name	and	password	to	a	server	by	encoding	them	as	parameters	of	a	GET
request	such	as	this:	GET http://www.somesite.com/login?
name=xxx&password=yyy.	The	POST	method	should	be	used	instead	for	this
sort	of	functionality,	because	it	transmits	its	data	in	the	body	of	the	message
instead	of	putting	it	into	the	URL.

Information	in	Accept	Headers	While	this	may	seem	strange	at	first,	it	is
possible	that	private	information	about	the	user	could	be	transmitted	through	the
use	of	certain	Accept	headers	used	for	content	negotiation.	For	example,	some
users	might	not	want	others	to	know	what	languages	they	speak,	so	they	may	be
concerned	about	who	looks	at	the	Accept-Language	header.



Information	in	Referer	Headers	The	Referer	(yes,	that's	how	it's	spelled;	see
my	note	in	Chapter	82)	request	header	is	a	double-edged	sword.	It	can	be	very
useful	to	those	who	operate	websites	because	it	lets	them	see	the	sources	of	links
to	their	resources.	At	the	same	time,	it	can	be	abused	by	those	who	might	employ
it	to	study	users'	Web-access	patterns.	There	are	also	potential	privacy	issues	that
the	HTTP	standard	raises.	For	example,	a	user	might	not	want	the	name	of	a
private	document	that	references	a	public	web	page	to	be	transmitted	in	a	Referer
header.

Methods	for	Ensuring	Privacy	in	HTTP
As	mentioned	earlier,	HTTP	does	not	include	any	mechanism	to	protect	the
privacy	of	transmitted	documents	or	messages.	There	are	two	different	methods
by	which	this	is	normally	accomplished:

Encryption	The	simplest	way	is	to	encrypt	the	resource	on	the	server	and	supply
valid	decryption	keys	only	to	authorized	users.	Even	if	the	entire	message	is
intercepted,	the	entity	itself	will	still	be	secured.	The	level	of	protection	here
depends	on	the	quality	of	the	encryption.

Secure	Sockets	Layer	(SSL)	Another	more	common	method	is	to	use	a	protocol
designed	specifically	to	ensure	the	privacy	of	HTTP	transactions.	The	one	often
used	today	is	called	Secure	Sockets	Layer	(SSL).	Servers	employ	SSL	to	protect
sensitive	resources,	such	as	those	associated	with	financial	transactions.	They	are
accessed	by	using	the	URL	scheme	https	rather	than	http	in	a	web	browser	that
supports	the	protocol.	SSL	was	originally	developed	by	Netscape	and	is	now
widely	used	across	the	Web.



HTTP	State	Management	Using	Cookies
Even	though	modern	HTTP	has	a	lot	of	capabilities	and	features,	it	is	still,	at	its
heart,	a	simple	request/reply	protocol.	One	of	the	unfortunate	problems	that
results	from	this	is	that	HTTP	is	entirely	stateless.	This	means	that	each	time	a
server	receives	a	request	from	a	client,	it	processes	the	request,	sends	a	response,
and	then	forgets	about	the	request.	The	next	request	from	the	client	is	treated	as
independent	of	any	previous	ones.

NOTE

The	persistent	connection	feature	of	HTTP/1.1	(described	in	Chapter	80)	does	not	change	the	stateless
nature	of	the	protocol.	Even	though	multiple	requests	and	responses	can	be	sent	on	a	single	Transmission
Control	Protocol	(TCP)	connection,	they	are	still	not	treated	as	being	related	in	any	way.

So	why	is	HTTP	being	stateless	a	problem?	Isn't	this	what	we	would	expect	of	a
protocol	designed	to	allow	a	client	to	quickly	and	efficiently	retrieve	resources
from	a	server?	Well,	this	is,	yet	again,	another	place	where	HTTP's	behavior	was
well	suited	to	its	original	intended	uses	but	not	to	how	the	Web	is	used	today.
Sure,	if	all	we	want	to	do	is	to	say,	"Hey	server,	please	give	me	that	file	over
there,"	then	the	server	doesn't	need	to	care	about	whether	or	not	it	may	have
previously	provided	that	client	with	any	other	files	in	the	past.	This	is	how	HTTP
was	originally	intended	to	be	used.

Today,	the	Web	is	much	more	than	a	simple	resource-retrieval	protocol.	If	you
go	to	an	online	store,	you	want	to	be	able	to	select	a	number	of	items	to	put	into
a	"shopping	cart"	and	have	the	store's	server	remember	them.	You	might	also
want	to	participate	in	a	discussion	forum,	which	requires	you	to	provide	a	user
name	and	password	in	order	to	post	a	message.	Ideally,	the	server	should	let	you
log	in	once,	and	then	remember	who	you	are	so	you	can	post	many	messages,
without	needing	to	enter	your	login	information	each	and	every	time.	(I	have
used	forums	where	the	latter	is	required—it	gets	old	very	quickly,	believe	me.)

For	these	and	other	interactive	applications,	the	stateless	nature	of	HTTP	is	a
serious	problem.	The	solution	was	the	addition	of	a	new	technology	called	state
management,	which	allows	the	state	of	a	client	session	with	a	server	to	be
maintained	across	a	series	of	HTTP	transactions.	Initially	developed	by



Netscape,	this	technique	was	later	made	a	formal	Internet	standard	in	RFC	2109,
later	revised	in	RFC	2965,	"HTTP	State	Management	Mechanism."	This	feature
is	actually	not	part	of	HTTP;	it	is	an	optional	element,	but	one	that	has	been
implemented	in	most	web	browsers	due	to	its	usefulness.

The	idea	behind	state	management	is	very	simple.	When	a	server	implements	a
function	that	requires	state	to	be	maintained	across	a	set	of	transactions,	it	sends
a	small	amount	of	data	called	a	cookie	to	the	web	client.	The	cookie	contains
important	information	relevant	to	the	particular	web	application,	such	as	a
customer	name,	items	in	a	shopping	cart,	or	a	user	name	and	password.	The
client	stores	the	information	in	the	cookie,	and	then	uses	it	in	subsequent
requests	to	the	server	that	set	the	cookie.	The	server	can	then	update	the	cookie
based	on	the	information	in	the	new	request	and	send	it	back	to	the	client.	In	this
manner,	state	information	can	be	maintained	indefinitely,	allowing	the	client	and
server	to	have	a	memory	that	persists	over	a	period	of	time.

NOTE

Cookie	may	seem	like	an	odd	term,	but	it	is	used	in	a	few	contexts	to	refer	to	a	small	piece	of	significant
data.	Another	example	is	found	in	the	Boot	Protocol	(BOOTP)	and	Dynamic	Host	Configuration
Protocol	(DHCP)	message	format.	Today,	most	knowledgeable	web	users	would	blink	at	you	if	you
mentioned	the	"HTTP	state	management	mechanism,"	but	they	usually	know	what	cookies	are.

Issues	with	Cookies
Cookies	sound	like	a	great	idea,	right?	Cookies	are	absolutely	essential	for	many
of	the	applications	that	make	the	Web	the	powerhouse	it	is	today.	Online
shopping	and	discussion	forums	are	just	two	of	the	many	interactive	applications
that	benefit	from	cookies.	Most	of	the	time,	cookies	are	used	for	these	sorts	of
useful	and	benign	purposes.	Unfortunately,	some	people	have	turned	cookies	to
the	"dark	side"	by	finding	ways	to	abuse	them.	There	can	even	be	potential
problems	with	cookies	when	there	is	no	nefarious	intent.	For	this	reason,	cookies
are	rather	controversial.

Here	are	some	of	the	issues	with	cookies:

Transmission	of	Sensitive	Information	Suppose	you	use	an	online	banking
system.	You	log	in	to	the	server,	which	then	stores	your	user	name	and	password



(which	controls	access	to	your	account)	in	a	cookie.	If	the	application	is	not
implemented	carefully,	the	message	containing	that	cookie	could	be	intercepted,
giving	someone	access	to	your	account.	Even	if	it	is	not	intercepted,	someone
knowledgeable	who	gained	access	to	your	computer	could	retrieve	the
information	from	the	file	where	cookies	are	stored.

Undesirable	Use	of	Cookies	In	theory,	cookies	should	be	a	help	to	the	user,	not
a	hindrance.	However,	any	server	can	set	a	cookie	for	any	reason.	In	some	cases,
a	server	could	set	a	cookie	for	the	purpose	of	tracking	the	websites	that	a	user
visits,	which	some	people	consider	a	violation	of	their	privacy.	Since	some	web
browsers	do	not	inform	the	user	when	a	cookie	is	being	set,	the	user	may	not
even	be	aware	that	this	is	happening.

Third-Party	or	Unintentional	Cookies	While	most	people	think	of	cookies	as
being	set	in	the	context	of	a	resource	they	specifically	request,	a	cookie	may	be
set	by	any	server	to	which	a	request	is	sent,	whether	the	user	realizes	it	or	not.
Suppose	you	send	a	request	to	http://www.myfavoritesite.com/index.htm/,	and
that	page	contains	a	reference	to	a	tiny	image	that	is	on	the	server
http://www.bigbrotherishere.com/.	The	second	site	can	set	a	cookie	on	your
machine	even	though	you	never	intended	to	visit	it.	This	is	called	a	third-party
cookie.

TIP

KEY	CONCEPT	HTTP	is	an	inherently	stateless	protocol,	because	a	server	treats	each	request	from	a
client	independently,	forgetting	about	all	prior	requests.	This	characteristic	of	HTTP	is	not	an	issue	for
most	routine	uses	of	the	Web,	but	is	a	problem	for	interactive	applications	such	as	online	shopping	where
the	server	needs	to	keep	track	of	a	user's	information	over	time.	To	support	these	applications,	most
HTTP	implementations	include	an	optional	feature	called	state	management.	When	enabled,	a	server
sends	to	a	client	a	small	amount	of	information	called	a	cookie,	which	is	stored	on	the	client	machine.
The	data	in	the	cookie	is	returned	to	the	server	with	each	subsequent	request,	allowing	the	server	to
update	it	and	send	it	back	to	the	client	again.	Cookies	thus	enable	servers	to	remember	user	data	between
requests.	However,	they	are	controversial,	because	of	certain	potential	privacy	and	security	concerns
related	to	their	use.

Managing	Cookie	Use
The	RFCs	describing	the	cookie	state	management	technique	deal	extensively
with	these	and	other	issues,	but	there	is	no	clear-cut	resolution	to	these	concerns.
Like	most	security	and	privacy	matters,	the	most	important	determinant	of	how

http://www.myfavoritesite.com/index.htm/
http://www.bigbrotherishere.com/


Like	most	security	and	privacy	matters,	the	most	important	determinant	of	how
significant	potential	cookie	abuse	may	be	is	your	own	personal	comfort	level.
Millions	of	people	browse	the	Web	every	day	letting	any	and	all	sites	set
whatever	cookies	they	want	and	never	have	a	problem.	Others	consider	cookies
an	offensive	idea	and	disable	all	cookies,	which	eliminates	the	privacy	concerns
but	can	cause	problems	with	useful	applications	like	interactive	websites.	As
usual,	the	best	approach	is	usually	something	in	the	middle,	where	you	choose
when	and	how	you	will	allow	cookies	to	be	set.

The	degree	to	which	cookie	control	is	possible	depends	greatly	on	the	quality
and	feature	set	of	your	web	client	software.	Many	browsers	do	not	provide	a
great	deal	of	control	in	how	and	when	cookies	are	set;	others	are	much	better	in
this	regard.	Some	browsers	allow	cookies	to	be	disabled,	but	come	with	them
turned	on	by	default.	Since	many	people	are	not	even	aware	of	the	issues
associated	with	cookies,	they	do	not	realize	when	cookies	are	being	sent.	Most
notable	in	this	regard	is	the	popular	Microsoft	Internet	Explorer,	which	normally
comes	set	by	default	to	accept	all	cookies	without	complaint	or	even	comment.

Internet	Explorer	does	allow	you	to	disable	cookies,	but	you	must	do	it	yourself.
It	also	allows	you	to	differentiate	between	first-party	and	third-party	cookies,	but
again,	you	must	turn	on	this	feature.	Other	browsers	have	more	sophisticated
settings,	which	will	let	you	dictate	conditions	under	which	cookies	may	be	set
and	others	when	they	may	not.	Some	browser	will	even	let	you	allow	certain
websites	to	send	cookies	while	prohibiting	them	from	others.	Better	browsers
will	also	let	you	visually	inspect	cookies,	and	selectively	clear	the	ones	you	do
not	want	on	your	machine.

Third-party	cookies	can	be	used	by	online	advertising	companies	and	others	to
track	the	sites	that	a	Web	user	visits.	For	this	reason,	they	are	considered	by
many	people	to	fall	into	the	general	category	of	undesirable	software	called
spyware.	There	are	numerous	tools	that	will	allow	you	to	identify	and	remove
tracking	cookies	from	your	computer;	many	are	available	free	on	the	Web.



Part	III-9.	OTHER	FILE	AND	MESSAGE
TRANSFER	APPLICATIONS
Chapter	85

Chapter	86

The	previous	three	parts	of	this	book	have	examined	several	of	the	most	widely
used	TCP/IP	file	and	message	transfer	protocols:	the	File	Transfer	Protocol
(FTP),	the	Trivial	File	Transfer	Protocol	(TFTP),	electronic	mail	(email),	and	the
World	Wide	Web.	Of	course,	hundreds	of	other	applications	are	in	use	on	the
Internet	today,	and	we	couldn't	possibly	examine	them	all	here.	However,	there
are	a	couple	of	other	protocols	that	are	considered	part	of	the	group	of	classic
applications	of	TCP/IP	like	FTP,	email,	and	the	Web	that	I	feel	are	worth
discussing.

This	part	contains	two	chapters	that	cover	these	other	file	and	message	transfer
applications.	The	first	chapter	describes	Usenet	(network	news),	which	is	one	of
the	original	methods	of	group	communication	on	the	Internet.	The	second
chapter	describes	the	Gopher	protocol,	which	while	no	longer	widely	used	today
is	worth	a	brief	discussion,	especially	due	to	its	role	as	a	historical	precursor	of
the	Web.



Chapter	85.	USENET	(NETWORK
NEWS)	AND	THE	TCP/IP
NETWORK	NEWS	TRANSFER
PROTOCOL	(NNTP)

Electronic	mail	(email)	is	one	of	the	stalwarts	of	message	transfer	on	the	modern
Internet,	but	it	is	really	designed	only	for	communication	within	a	relatively
small	group	of	specific	users.	There	are	many	situations	in	which	email	is	not
ideally	suited,	such	as	when	information	needs	to	be	shared	among	a	large
number	of	participants,	not	all	of	whom	may	necessarily	even	know	each	other.
One	classic	example	of	this	is	sharing	news.	In	this	case,	the	person	providing
news	often	wants	to	make	it	generally	available	to	anyone	who	is	interested,
rather	than	specifying	a	particular	set	of	recipients.

For	distributing	news	and	other	types	of	general	information	over	internetworks,
a	messaging	system	called	both	Usenet	and	network	news	was	created.	Like
email,	this	application	allows	messages	to	be	written	and	read	by	large	numbers
of	users.	However,	it	is	designed	using	a	very	different	model	than	email—one
that	is	focused	on	public	sharing	and	feedback.	In	Usenet,	anyone	can	write	a
message	that	can	be	read	by	any	number	of	recipients,	and	anyone	can	respond
to	messages	written	by	others.	Usenet	was	one	of	the	first	widely	deployed
internetwork-based	group	communication	applications,	and	it	has	grown	into	one
of	the	largest	online	communities	in	the	world,	used	by	millions	of	people	for
sharing	information,	asking	questions,	and	discussing	thousands	of	different
topics.

In	this	chapter,	I	describe	Usenet	and	network	news	in	detail,	discussing	how



they	are	used	and	how	they	work.	I	provide	an	overview	and	history	of	Usenet,	a
high-level	look	at	its	model	of	communication	and	how	messages	are	created
and	manipulated,	an	explanation	of	Usenet	newsgroups,	and	a	description	of	the
Usenet	message	format	and	headers.	Then	I	provide	a	detailed	description	of	the
operation	of	the	Network	News	Transfer	Protocol	(NNTP),	the	means	used	for
transferring	messages	on	modern	Usenet.	Starting	as	usual	with	an	overview	of
the	protocol,	I	then	explain	the	two	fundamentals	ways	that	NNTP	is	used:	for
the	propagation	of	news	articles	between	servers	and	for	client	article	posting
and	access.	From	there,	I	move	on	to	the	technical	details	of	NNTP	commands,
command	extensions,	responses,	and	response	codes.

TIP

BACKGROUND	INFORMATION	Several	aspects	of	how	Usenet	works	are	closely	related	to	the
standards	and	techniques	used	for	email.	If	you	have	not	read	Part	III-7,	which	covers	email,	I	suggest
that	you	at	least	review	the	overview	of	the	email	system	in	Chapter	74	and	the	discussion	of	the	email
message	format	in	Chapter	76,	since	Usenet	messages	are	based	on	the	RFC	822	email	message
standard.

Usenet	Overview,	History,	and	Operation
Where	email	is	the	modern	equivalent	of	the	handwritten	letter	or	the	interoffice
memo,	Usenet	is	the	updated	version	of	the	company	newsletter,	the	cafeteria
bulletin	board,	the	coffee	break	chat,	and	the	watercooler	gossip	session,	all
rolled	into	one.	Spread	worldwide	over	the	Internet,	Usenet	newsgroup	messages
provide	a	means	for	people	with	common	interests	to	form	online	communities
to	discuss	happenings,	solve	problems,	and	provide	support	to	each	other,	as	well
as	to	engage	in	plain	old	socializing	and	entertainment.

We	are	by	nature	both	highly	social	and	creative	animals,	and	as	a	result,	we	are
always	finding	new	ways	to	communicate.	It	did	not	take	long	after	computers
were	first	connected	together	for	it	to	be	recognized	that	those	interconnections
provided	the	means	to	link	together	people	as	well.	The	desire	to	use	computers
to	create	an	online	community	led	to	the	creation	of	Usenet	more	than	two
decades	ago.

History	of	Usenet



Like	almost	everything	associated	with	networking,	Usenet	had	very	humble
beginnings.	In	1979,	Tom	Truscott	was	a	student	at	Duke	University	in	North
Carolina,	and	he	spent	the	summer	as	an	intern	at	Bell	Laboratories,	the	place
where	the	UNIX	operating	system	was	born.	He	enjoyed	the	experience	so	much
that	when	he	returned	to	school	that	autumn,	he	missed	the	intensive	UNIX
environment	at	Bell	Labs.	He	used	the	Unix-to-Unix	Copy	Protocol	(UUCP)	to
send	information	from	his	local	machine	to	other	machines	and	vice	versa,
including	establishing	electronic	connectivity	back	to	Bell	Labs.

Building	on	this	idea,	Truscott	and	a	fellow	Duke	student,	Jim	Ellis,	teamed	up
with	other	UNIX	enthusiasts	at	Duke	and	the	nearby	University	of	North
Carolina	(UNC)	at	Chapel	Hill,	to	develop	the	idea	of	an	online	community.	The
goal	was	to	create	a	system	where	students	could	use	UNIX	to	write	and	read
messages,	to	allow	them	to	obtain	both	technical	help	and	maintain	social
contacts.	They	designed	the	system	based	on	an	analogy	to	an	online	newsletter
that	was	open	to	all	users	of	a	connected	system.	To	share	information,	messages
were	posted	to	newsgroups,	where	any	user	could	access	the	messages	to	read
them	and	respond	to	them.

The	early	work	at	Duke	and	UNC	resulted	in	the	development	of	both	the	initial
message	format	and	the	software	for	the	earliest	versions	of	this	system,	which
became	known	both	as	network	news	(net	news)	and	Usenet	(a	contraction	of
User's	network).	At	first,	the	system	had	just	two	computers,	sharing	messages
posted	in	a	pair	of	different	newsgroups.	The	value	of	the	system	was
immediately	recognized,	however,	and	soon	many	new	sites	were	added	to	the
system.	These	sites	were	arranged	in	a	structure	to	allow	messages	to	be
efficiently	passed	using	direct	UUCP	connections.	The	software	used	for	passing
news	articles	also	continued	to	evolve	and	become	more	capable,	as	did	the
software	for	reading	and	writing	articles.

The	newsgroups	themselves	also	changed	over	time.	Many	new	newsgroups
were	created,	and	a	hierarchical	structure	was	defined	to	help	keep	the
newsgroups	organized	in	a	meaningful	way.	As	more	sites	and	users	joined
Usenet,	more	areas	of	interest	were	identified.	Today,	there	are	a	staggering
number	of	Usenet	newsgroups:	more	than	100,000.	While	many	of	these	groups
are	not	used,	many	thousands	of	active	ones	discuss	nearly	every	topic
imaginable—from	space	exploration,	to	cooking,	to	biochemistry,	to	PC



imaginable—from	space	exploration,	to	cooking,	to	biochemistry,	to	PC
troubleshooting,	to	raising	horses.	There	are	also	regional	newsgroups	devoted	to
particular	areas;	for	example,	there	is	a	set	of	newsgroups	for	discussing	events
in	Canada	and	another	for	discussing	happenings	in	the	New	York	area,	and	so
on.

Usenet	Operation	and	Characteristics
Usenet	begins	with	a	user	writing	a	message	to	be	distributed.	After	the	message
is	posted	to	say,	the	group	on	TCP/IP	networking,	it	is	stored	on	that	user's	local
news	server,	and	special	software	sends	copies	of	it	to	other	connected	news
servers.	The	message	eventually	propagates	around	the	world,	where	anyone
who	chooses	to	read	the	TCP/IP	networking	newsgroup	can	see	the	message.

The	real	power	of	Usenet	is	that	after	reading	a	message,	any	user	can	respond	to
it	on	the	same	newsgroup.	Like	the	original	message,	the	reply	will	propagate	to
each	connected	system,	including	the	one	used	by	the	author	of	the	original
message.	This	makes	Usenet	very	useful	for	sharing	information	about	recent
happenings,	for	social	discussions,	and	especially	for	receiving	assistance	with
problems,	such	as	resolving	technical	glitches	or	getting	help	with	a	diet
program.

What	is	particularly	interesting	about	Usenet	is	that	it	is	not	a	formalized	system
in	any	way,	and	it	is	not	based	on	any	formally	defined	standards.	It	is	a	classic
example	of	the	development	of	a	system	in	an	entirely	ad	hoc	manner:	The
software	was	created,	people	started	using	it,	the	software	was	refined,	and
things	just	took	off	from	there.	Certain	standards	have	been	written	to	codify
how	Usenet	works—such	as	RFC	1036,	which	describes	the	Usenet	message
format—but	these	serve	more	as	historical	documents	than	as	prescriptive
standards.

There	is	likewise	no	central	authority	that	is	responsible	for	Usenet's	operation,
even	though	new	users	often	think	there	is	one.	Unlike	a	dial-up	bulletin	board
system	or	Web-based	forum,	Usenet	works	simply	by	virtue	of	cooperation
between	sites;	there	is	no	manager	in	charge.	For	this	reason,	Usenet	is
sometimes	called	an	anarchy,	but	this	is	not	accurate.	It	isn't	the	case	that	there
are	no	rules.	It	is	up	to	the	managers	of	participating	systems	to	make	policy
decisions	such	as	which	newsgroups	to	support.	There	are	also	certain	dictatorial
aspects	of	the	system,	in	that	only	certain	people	(usually	system	administrators)



aspects	of	the	system,	in	that	only	certain	people	(usually	system	administrators)
can	decide	whether	to	create	some	kinds	of	new	newsgroups.	The	system	also
has	socialistic	elements	in	that	machine	owners	are	expected	to	share	messages
with	each	other.	So,	the	simplified	political	labels	really	don't	apply	to	Usenet.

Every	community	has	a	culture,	and	the	same	is	true	of	online	communities,
including	Usenet.	There	is	an	overall	culture	that	prescribes	acceptable	behavior
on	Usenet,	and	also	thousands	of	newsgroup-specific	cultures	in	Usenet,	each	of
which	has	evolved	through	the	writings	of	thousands	of	participants	over	the
years.	There	are	even	newsgroups	devoted	to	explaining	how	Usenet	itself
operates,	where	you	can	learn	about	newbies	(new	users),	netiquette	(rules	of
etiquette	for	posting	messages),	and	related	subjects.

Usenet	Transport	Methods
As	I	said	earlier,	Usenet	messages	were	originally	transported	using	UUCP,
which	was	created	to	let	UNIX	systems	communicate	directly,	usually	using
telephone	lines.	For	many	years,	all	Usenet	messages	were	simply	sent	from
machine	to	machine	using	computerized	telephone	calls	(just	as	email	once	was).
Each	computer	joining	the	network	would	connect	to	one	already	on	Usenet	and
receive	a	feed	of	messages	from	it	periodically.	The	owner	of	that	computer	had
to	agree	to	provide	messages	to	other	computers.

Once	TCP/IP	was	developed	in	the	1980s	and	the	Internet	grew	to	a	substantial
size	and	scope,	it	made	sense	to	start	using	it	to	carry	Usenet	messages	rather
than	UUCP.	The	Network	News	Transfer	Protocol	(NNTP)	was	developed
specifically	to	describe	the	mechanism	for	communicating	Usenet	messages	over
the	Transmission	Control	Protocol	(TCP).	It	was	formally	defined	in	RFC	977,
published	in	1986,	with	NNTP	extensions	described	in	RFC	2980,	published	in
October	2000.

For	many	years,	Usenet	was	carried	using	both	NNTP	and	UUCP,	but	NNTP	is
now	the	mechanism	used	for	the	vast	majority	of	Usenet	traffic,	and	for	this
reason	is	the	primary	focus	of	my	Usenet	discussion.	NNTP	is	employed	not
only	to	distribute	Usenet	articles	to	various	servers,	but	also	for	other	client
actions,	such	as	posting	and	reading	messages.	It	is	thus	used	for	most	of	the
steps	in	Usenet	message	communication.



NOTE

Many	people	often	equate	the	Usenet	system	as	a	whole	with	the	NNTP	protocol	that	is	used	to	carry
Usenet	messages	on	the	Internet.	They	are	not	the	same	however;	Usenet	predates	NNTP,	which	is
simply	a	protocol	for	conveying	Usenet	messages.

It	is	because	of	the	critical	role	of	NNTP	and	the	Internet	in	carrying	messages	in
today's	Usenet	that	the	concepts	are	often	confused.	It's	essential	to	remember,
however,	that	Usenet	does	not	refer	to	any	type	of	physical	network	or
internetworking	technology;	rather,	it	is	a	logical	network	of	users.	That	logical
network	has	evolved	from	UUCP	data	transfers	to	NNTP	and	TCP/IP,	but
Usenet	itself	is	the	same.

Today,	Usenet	faces	competition	from	many	other	group	messaging	applications
and	protocols,	including	Web-based	bulletin	board	systems	and	chat	rooms.
After	a	quarter	of	a	century,	however,	Usenet	has	established	itself	and	is	used
by	millions	of	people	every	day.	While	to	some,	the	primarily	text-based
medium	seems	archaic,	it	is	a	mainstay	of	global	group	communication	and
likely	to	continue	to	be	so	for	many	years	to	come.

TIP

KEY	CONCEPT	One	of	the	very	first	online	electronic	communities	was	set	up	in	1979	by	university
students	who	wanted	to	keep	in	touch	and	share	news	and	other	information.	Today,	Usenet	(for	User's
network),	also	called	network	news,	has	grown	into	a	logical	network	that	spans	the	globe.	By	posting
messages	to	a	Usenet	newsgroup,	people	can	share	information	on	a	variety	of	subjects	of	interest.
Usenet	was	originally	implemented	in	the	form	of	direct	connections	established	between	participating
hosts.	Today,	the	Internet	is	the	vehicle	for	message	transport.



Usenet	Communication	Model
When	the	students	at	Duke	University	decided	to	create	their	online	community,
email	was	already	in	wide	use,	and	there	were	many	mailing	lists	in	operation	as
well.	Email	was	usually	transported	using	UUCP—the	same	method	that	Usenet
was	designed	to	employ—during	these	pre-Internet	days.	Then	why	not	simply
use	email	to	communicate	between	sites?

The	main	reason	is	that	email	is	not	designed	to	facilitate	the	creation	of	an
online	community	where	information	can	be	easily	shared	in	a	group.	The	main
issue	with	email	in	this	respect	is	that	only	the	individuals	who	are	specified	as
recipients	of	a	message	can	read	it.	There	is	no	facility	whereby	someone	can
write	a	message	and	put	it	in	an	open	place	where	anyone	who	wants	to	can	read
it,	analogous	to	posting	a	newsletter	in	a	public	place.

Another	problem	with	email	in	large	groups	is	related	to	efficiency.	Consider
that	if	you	put	1,000	people	on	a	mailing	list,	each	message	sent	to	that	list	must
be	duplicated	and	delivered	1,000	times.	Early	networks	were	limited	in
bandwidth	and	resources,	so	using	email	for	wide-scale	group	communication
was	possible,	but	far	from	ideal.

TIP

KEY	CONCEPT	While	email	can	be	used	for	group	communications,	it	has	two	important	limitations.
First,	a	message	must	be	specifically	addressed	to	each	recipient,	making	public	messaging	impossible.
Second,	each	recipient	requires	delivery	of	a	separate	copy	of	the	message,	so	sending	a	message	to
many	recipients	requires	the	use	of	a	large	number	of	resources.

Usenet's	Public	Distribution	Orientation
To	avoid	the	problems	of	using	email	for	group	messaging,	Usenet	was	designed
using	a	rather	different	communication	and	message-handling	model	than	email.
The	defining	difference	between	the	Usenet	communication	model	and	that	used
for	email	is	that	Usenet	message	handling	is	oriented	around	the	concept	of
public	distribution,	rather	than	private	delivery	to	an	individual	user.	This	affects
every	aspect	of	how	Usenet	communication	works,	as	follows:

Addressing	Messages	are	not	addressed	from	a	sender	to	any	particular	recipient



or	set	of	recipients,	but	rather	to	a	group,	which	is	identified	with	a	newsgroup
name.

Storage	Messages	are	not	stored	in	individual	mailboxes,	but	rather	in	a	central
location	on	a	server,	where	any	user	of	the	server	can	access	them.

Delivery	Messages	are	not	conveyed	from	the	sender's	system	to	the	recipient's
system,	but	rather	are	spread	over	the	Internet	to	all	connected	systems	so
anyone	can	read	them.

Usenet	Communication	Process
To	help	illustrate	in	more	detail	how	Usenet	communication	works,	let's	take	a
look	at	the	steps	involved	in	writing,	transmitting,	and	reading	a	typical	Usenet
message	(also	called	an	article—the	terms	are	used	interchangeably).	Let's
suppose	the	process	begins	with	a	user,	Ellen,	posting	a	request	for	help	with	a
sick	horse	to	the	newsgroup	misc.rural.	Since	she	is	posting	the	message,	she
would	be	known	as	the	message	poster.	Simplified,	the	steps	in	the	process
(illustrated	in	Figure	85-1)	are	as	follows:

1.	 Article	Composition	Ellen	begins	by	creating	a	Usenet	article,	which	is
structured	according	to	the	special	message	format	required	by	Usenet.
This	message	is	similar	to	an	email	message	in	that	it	has	a	header	and	a
body.	The	body	contains	the	actual	message	to	be	sent,	while	the	header
contains	header	lines	that	describe	the	message	and	control	how	it	is
delivered.	For	example,	one	important	header	line	specifies	for	which
newsgroup(s)	the	article	is	intended.

2.	 Article	Posting	and	Local	Storage	After	completing	her	article,	Ellen
submits	the	article	to	Usenet,	a	process	called	posting.	A	client	software
program	on	Ellen's	computer	transmits	Ellen's	message	to	her	local	Usenet
server.	The	message	is	stored	in	an	appropriate	file	storage	area	on	that
server.	It	is	now	immediately	available	to	all	other	users	of	that	server	who
decide	to	read	misc.rural.

3.	 Article	Propagation	At	this	point,	Ellen's	local	server	is	the	only	one	that
has	a	copy	of	her	message.	The	article	must	be	sent	to	other	sites,	a	process
called	distribution,	or	more	commonly,	propagation.	Ellen's	message



travels	from	her	local	Usenet	server	to	other	servers	to	which	her	server
directly	connects.	It	then	propagates	from	those	servers	to	others	they
connect	to,	and	so	on,	until	all	Usenet	servers	that	want	it	have	a	copy	of
the	message.

4.	 Article	Access	and	Retrieval	Since	Usenet	articles	are	stored	on	central
servers,	in	order	to	read	them,	they	must	be	accessed	on	the	server.	This	is
done	using	a	Usenet	newsreader	program.	For	example,	some	other	reader
of	misc.rural	named	Jane	might	access	that	group	and	find	Ellen's	message.
If	Jane	were	able	to	help	Ellen,	she	could	reply	to	Ellen	by	posting	an
article	of	her	own.	This	would	then	propagate	back	to	Ellen's	server,	where
she	could	read	it	and	reply.	All	other	readers	of	misc.rural	could	jump	into
the	conversation	at	any	time	as	well,	which	is	what	makes	Usenet	so	useful
for	group	communication.

Figure	85-1.	Usenet	(network	news)	communication	model	This	figure	illustrates	the	method	by	which
messages	are	created,	propagated,	and	read	using	NNTP	on	modern	Usenet;	it	is	similar	in	some

respects	to	the	email	model	diagram	(Figure	74-1	in	Chapter	74).	In	this	example,	a	message	is	created
by	the	poster,	Ellen,	and	read	by	a	reader,	Jane.	The	process	begins	with	Ellen	creating	a	message	in	an
editor	and	posting	it.	Her	NNTP	client	sends	it	to	her	local	NNTP	server.	It	is	then	propagated	from	that
local	server	to	adjacent	servers,	usually	including	its	upstream	server,	which	is	used	to	send	the	message
around	the	Internet.	Other	NNTP	servers	receive	the	message,	including	the	one	upstream	from	Jane's
local	server.	It	passes	the	message	to	Jane's	local	server,	and	Jane	accesses	and	reads	the	message	using
an	NNTP	client.	Jane	could	respond	to	the	message;	in	which	case,	the	same	process	would	repeat,	but
going	in	the	opposite	direction,	back	to	Ellen	(and	also	back	to	thousands	of	other	readers,	not	shown

here).



TIP

KEY	CONCEPT	Usenet	communication	consists	of	four	basic	steps.	A	message	is	first	composed	and
then	posted	to	the	originator's	local	server.	The	third	step	is	propagation,	where	the	message	is
transmitted	from	its	original	server	to	others	on	the	Usenet	system.	The	last	step	in	the	process	is	article
retrieval,	where	other	members	of	the	newsgroup	access	and	read	the	article.	The	Network	News
Transfer	Protocol	(NNTP)	is	the	technology	used	for	moving	Usenet	articles	from	one	host	to	the	next.

Message	Propagation	and	Server	Organization
Propagation	is	definitely	the	most	complex	part	of	the	Usenet	communication
process.	In	the	past,	UUCP	was	used	for	propagation.	Each	Usenet	server	would
be	programmed	to	regularly	dial	up	another	server	and	give	it	all	new	articles	it
had	received	since	the	last	connection.	Articles	would	flood	across	Usenet	from
one	server	to	another.	This	was	time-consuming	and	inefficient,	and	it	worked
only	because	the	volume	of	articles	was	relatively	small.

As	I	noted	in	the	previous	section,	in	modern	Usenet,	NNTP	is	used	for	all	stages
of	transporting	messages	between	devices.	Articles	are	posted	using	an	NNTP
connection	between	a	client	machine	and	a	local	server,	which	then	uses	the
same	protocol	to	propagate	the	articles	to	other	adjacent	NNTP	servers.	The
client	newsreader	software	also	uses	NNTP	to	retrieve	messages	from	a	server.

NNTP	servers	are	usually	arranged	in	a	hierarchy	of	sorts,	with	the	largest	and
fastest	servers	providing	service	to	smaller	servers	downstream	from	them.
Depending	on	how	the	connections	are	arranged,	an	NNTP	server	may	establish
a	connection	to	immediately	send	a	newly	posted	article	to	an	upstream	server
for	distribution	to	the	rest	of	Usenet,	or	the	server	may	passively	wait	for	a
connection	from	the	upstream	server	to	ask	if	there	are	any	new	articles	to	be
sent.	With	the	speed	of	the	modern	Internet,	it	typically	takes	only	a	few	minutes
(or	seconds)	for	articles	to	propagate	from	one	server	to	another,	even	across
continents.

It	is	also	possible	to	restrict	the	propagation	of	a	Usenet	message,	a	technique
often	used	for	discussions	that	are	of	relevance	only	in	certain	regions	or	on
certain	systems.	Discussing	rural	issues	such	as	horses	is	of	general	interest,	and
Ellen	might	find	help	anywhere	around	the	world,	so	global	propagation	of	her
message	makes	sense.	However,	if	Ellen	lived	in	the	Boston	area	and	was



interested	in	knowing	the	location	of	a	good	local	restaurant,	posting	a	query	to
ne.food	(New	England	food	discussions)	with	only	local	distribution	would
make	more	sense.	There	are	also	companies	that	use	Usenet	to	provide	"in-
house"	newsgroups	that	are	not	propagated	off	the	local	server	at	all.	However,
because	so	many	news	providers	are	now	national	or	international,	limiting	the
distribution	of	messages	has	largely	fallen	out	of	practice.

Usenet	Addressing:	Newsgroups
A	key	concept	in	Usenet	communication	is	the	newsgroup.	Newsgroups	are	the
addressing	mechanism	for	Usenet,	and	sending	a	Usenet	article	to	a	newsgroup
is	equivalent	to	sending	email	to	an	email	address.	Newsgroups	are	analogous	to
other	group	communication	venues	such	as	mailing	lists,	chat	rooms,	Internet
Relay	Chat	(IRC)	channels,	or	bulletin	board	system	(BBS)	forums	(though
calling	a	newsgroup	a	list,	room,	channel,	or	BBS	is	likely	to	elicit	a	negative
reaction	from	Usenet	old-timers!).

Like	any	addressing	mechanism,	newsgroups	must	be	uniquely	identifiable.
Each	newsgroup	has	a	newsgroup	name	that	describes	the	topic	of	the
newsgroup	and	differentiates	it	from	other	newsgroups.	Since	there	are	many
thousands	of	different	newsgroups,	they	are	arranged	into	sets	called	hierarchies.
Each	hierarchy	contains	a	tree	structure	of	related	newsgroups.

The	Usenet	Newsgroup	Hierarchies
The	total	collection	of	newsgroup	hierarchies	is	in	many	ways	similar	to	the
domain	name	tree	structure	used	in	the	Domain	Name	System	(DNS).	Each
Usenet	hierarchy	is	like	a	collection	of	all	the	domain	names	within	a	DNS	top-
level	domain.	Just	as	a	domain	name	like	www.pcguide.com	is	formed	by
appending	the	label	of	the	top-level	domain	.com	to	the	second-level	domain
name	pcguide	and	the	subdomain	www,	newsgroup	names	are	created	in	the
same	way.	They	are	created	from	a	top-level	newsgroup	hierarchy	name,	to
which	are	attached	a	set	of	descriptive	labels	that	describes	the	newsgroup's
place	in	the	hierarchy.

One	difference	between	DNS	and	Usenet	hierarchies	is	that	while	DNS	names
are	created	from	right	to	left	as	you	go	down	the	tree,	Usenet	newsgroup	names
are	formed	in	the	more	natural	(for	English	speakers)	left-to-right	order.	For

http://www.pcguide.com/


example,	one	of	the	main	Usenet	hierarchies	is	the	comp	hierarchy,	devoted	to
computer	topics.	Within	comp	is	a	subhierarchy	on	data	communications	called
dcom,	and	within	that	is	a	group	that	discusses	data	cabling.	This	group	is	called
comp.dcom.cabling.	Almost	all	newsgroups	are	structured	in	this	manner.

The	"Big	Eight"	Newsgroup	Hierarchies
One	problem	with	the	decentralized	nature	of	Usenet	is	ensuring	coordination	in
certain	areas	where	we	want	everyone	to	be	on	the	same	page,	and	one	of	these
is	newsgroup	naming.	If	we	let	just	anyone	create	a	newsgroup,	we	might	end	up
with	many	groups	that	all	discuss	the	same	topic.	Imagine	that	someone	had	a
question	on	data	cabling	and	didn't	realize	that	comp.dcom.cabling	existed,	so	he
created	a	new	group	called	comp.datacomm.cabling.	The	two	groups	could
coexist,	but	this	would	lead	to	both	confusion	and	fragmenting	of	the	pool	of
people	interested	in	this	topic.

To	avoid	problems	with	newsgroup	creation,	administrators	of	large	Usenet
systems	collaborated	on	a	system	for	organizing	many	of	the	more	commonly
used	Usenet	groups	into	eight	hierarchies,	and	devised	a	specific	procedure	for
creating	new	newsgroups	within	them.	Today,	these	are	called	the	Big	Eight
Usenet	hierarchies,	which	are	summarized	in	Table	85-1.

Table	85-1.	Usenet	Big	Eight	Newsgroup	Hierarchies

Hierarchy Description

comp.* Newsgroups	discussing	computer-related	topics,	including	hardware,	software,
operating	systems,	and	techniques

humanities.* Newsgroups	discussing	the	humanities,	such	as	literature	and	art

misc.* Newsgroups	discussing	miscellaneous	topics	that	don't	fit	into	other	Big	Eight
hierarchies

news.* Newsgroups	discussing	Usenet	itself	and	its	administration

rec.* Newsgroups	discussing	recreation	topics,	such	as	games,	sports,	and	activities

sci.* Science	newsgroups,	covering	specific	areas	such	as	physics	and	chemistry,
research	topics,	and	so	forth

soc.* Society	and	social	discussions,	including	groups	on	specific	cultures



soc.* Society	and	social	discussions,	including	groups	on	specific	cultures

talk.* Newsgroups	primarily	oriented	around	discussion	and	debate	of	current	events
and	happenings

These	eight	hierarchies	contain	many	of	the	most	widely	used	groups	on	Usenet
today.	For	example,	professional	baseball	is	discussed	in	rec.sport.baseball,	Intel
computers	in	comp.sys.intel,	and	Middle	East	politics	in	talk.politics.mideast.

The	Big	Eight	hierarchies	are	rather	tightly	controlled	in	terms	of	their	structure
and	the	newsgroups	they	contain.	The	process	to	create	a	new	Big	Eight
newsgroup	is	democratic	and	open.	Anyone	can	propose	a	new	group,	and	if
there	is	enough	support,	it	will	be	created	by	the	cooperating	system
administrators	who	agree	to	follow	the	Big	Eight	system.	However,	this	creation
process	is	rather	complex	and	time-consuming.	Some	people	find	this
unacceptable	and	even	object	to	the	entire	concept	of	this	restricted	process.
Others	consider	the	system	advantageous,	as	it	keeps	the	Big	Eight	hierarchies
relatively	orderly	by	slowing	the	rate	of	change	to	existing	newsgroups	and	the
number	of	new	groups	added.

Alt	and	Other	Newsgroup	Hierarchies
For	those	who	prefer	a	more	freewheeling	environment	and	do	not	want	to
submit	to	the	Big	Eight	procedures,	there	is	an	alternative	Usenet	hierarchy,
which	begins	with	the	hierarchy	name	alt.	This	hierarchy	includes	many
thousands	of	groups.	Some	are	quite	popular,	but	many	are	not	used	at	all;	this	is
a	side	effect	of	the	relative	ease	with	which	an	alt	group	can	be	created.

In	addition	to	these	nine	hierarchies,	there	are	dozens	of	additional,	smaller
hierarchies.	Many	of	these	are	regional	or	even	company-specific.	For	example,
the	ne.	hierarchy	contains	a	set	of	newsgroups	discussing	issues	of	relevance	to
New	England;	fr.*	covers	France,	and	de.*	pertains	to	Germany.	Microsoft	has
its	own	set	of	public	newsgroups	in	the	microsoft.*	hierarchy.	Figure	85-2	shows
the	Big	Eight	hierarchies	and	some	of	the	other	hierarchies	that	exist.



Figure	85-2.	Usenet	newsgroup	hierarchies	Usenet	newsgroups	are	arranged	into	tree-like	structures
called	hierarchies.	Eight	of	these	are	centralized,	widely	used,	general-purpose	hierarchies,	which	are
today	called	the	Big	Eight.	The	alternate	(alt)	hierarchy	is	a	very	loosely	structured	set	of	thousands	of
groups	covering	every	topic	imaginable.	In	addition	to	these,	there	are	many	hundreds	of	regional,

private,	and	special-purpose	hierarchies.

TIP

KEY	CONCEPT	Usenet	messages	are	not	addressed	to	individual	users;	rather,	they	are	posted	to
newsgroups.	Each	newsgroup	represents	a	topic.	Those	with	an	interest	in	the	subject	of	a	group	can	read
messages	in	it	and	reply	to	them	as	well.	Usenet	newsgroups	are	arranged	into	tree-like	hierarchies	that
are	similar	in	structure	to	DNS	domains.	Many	of	the	most	widely	used	newsgroups	are	found	in	a
collection	of	general-interest	hierarchies	called	the	Big	Eight.	An	alternate	(alt)	hierarchy	offers	an
alternative	to	the	Big	Eight.	There	are	also	many	regional	and	special-purpose	hierarchies.

Unmoderated	and	Moderated	Newsgroups
Most	newsgroups	are	open	to	all	to	use	and	are	called	unmoderated	because	a
message	sent	to	them	goes	directly	out	to	the	whole	Usenet	server	internetwork.
In	contrast,	a	small	percentage	of	newsgroups	is	moderated,	which	means	that	all
messages	sent	to	the	group	are	screened	and	only	the	ones	that	are	approved	by	a
moderator	(or	moderator	team)	are	really	posted.

The	purpose	of	moderated	groups	is	to	ensure	that	discussions	in	a	particular
group	remain	on-topic.	They	are	often	created	to	handle	topics	that	are
controversial,	to	ensure	that	debates	remain	constructive	and	disruption	is
avoided.	For	example,	rec.guns	is	moderated	to	ensure	that	discussions	focus	on
the	use	of	guns	and	not	on	endless	political	arguments	related	to	gun	control	and
the	like	(which	has	a	place,	in	talk.politics.guns).	Moderated	groups	are	also
sometimes	used	for	specialty	groups	intended	only	for	announcements,	or	for
groups	where	the	content	is	restricted.	For	example,	rec.food.recipes	is
moderated	so	that	it	contains	only	recipes	and	recipe	requests,	which	helps



moderated	so	that	it	contains	only	recipes	and	recipe	requests,	which	helps
people	find	recipes	easily	without	needing	to	wade	through	a	lot	of	discussion.
Finally,	moderated	versions	of	unmoderated	groups	are	sometimes	created	when
a	few	disruptive	elements	choose	to	post	large	volumes	in	the	unmoderated
groups,	making	normal	discussion	difficult.

Cross-Posting	to	Multiple	Newsgroups
It	is	possible	for	a	single	article	to	be	posted	to	multiple	newsgroups.	This
process,	called	cross-posting,	is	used	when	a	message	pertains	to	two	topics,	or
to	allow	a	sender	to	reach	a	wider	audience.	For	example,	if	you	live	in	the
Seattle	area	and	have	a	problem	with	your	house,	you	might	legitimately	cross-
post	to	seattle.general	and	misc.consumers.house.

Cross-posting	is	more	efficient	than	posting	the	same	message	to	each	group
independently	for	two	reasons:

Only	one	copy	of	the	message	will	be	stored	on	each	Usenet	server	rather
than	two.

Usenet	participants	who	happen	to	read	both	groups	won't	see	the	message
twice.

However,	cross-posting	to	very	large	numbers	of	newsgroups	is	usually
considered	disruptive	and	a	breach	of	Usenet	etiquette.



Usenet	Message	Format	and	Special	Headers
Usenet	is	designed	to	permit	users	to	exchange	information	in	the	form	of
messages	that	are	sent	from	one	computer	to	another.	As	is	necessary	with	any
message-based	networking	application,	all	Usenet	client	software	and	server
software	agree	to	use	a	common	message	format.	This	ensures	that	all	devices
and	programs	are	able	to	interpret	all	Usenet	articles	in	a	consistent	manner.

While	Usenet	was	created	as	an	alternative	to	email,	and	there	are	obviously
differences	in	how	each	treats	messages,	there	are	also	many	similarities.	Both
are	text-oriented	messaging	systems	with	similar	needs	for	communicating
content	and	control	information.	The	creators	of	Usenet	realized	that	there	would
be	many	advantages	to	basing	the	Usenet	message	format	on	the	one	used	for
email,	rather	than	creating	a	new	format	from	scratch.	The	email	message	format
was	already	widely	used,	and	adopting	it	for	Usenet	would	save	implementation
time	and	effort.	It	would	also	enhance	compatibility	between	email	and	Usenet
messages,	allowing	software	designed	to	process	or	display	email	to	also	work
with	Usenet	articles.	For	this	reason,	the	Usenet	message	format	was	defined
based	on	the	RFC	822	standard	for	email	messages	(introduced	in	Chapter	76).

RFC	822	messages	begin	with	a	set	of	headers	that	contain	control	and
descriptive	information	about	the	message,	followed	by	a	blank	line	and	then	the
message	body,	which	contains	the	actual	content.

One	important	attribute	of	the	RFC	822	standard	is	the	ability	to	define	custom
headers	that	add	to	the	regular	set	of	headers	defined	in	the	standard	itself.
Usenet	articles	require	some	types	of	information	not	needed	by	email,	and	these
can	be	included	in	specially	defined	headers	while	still	adhering	to	the	basic
RFC	822	format.	At	the	same	time,	headers	specific	to	email	that	are	not	needed
for	Usenet	can	be	omitted.	Thus,	there	is	no	structural	difference	at	all	between	a
Usenet	article	and	an	email	message.	They	differ	only	in	the	kinds	of	headers
they	contain	and	the	values	for	those	headers.	For	example,	a	Usenet	message
will	always	contain	a	header	specifying	the	newsgroup(s)	to	which	the	article	is
being	posted,	but	will	not	carry	a	"To:"	line	as	an	email	message	would.

TIP



KEY	CONCEPT	Usenet	articles	use	the	same	RFC	822	message	format	as	email	messages.	The	only
difference	between	a	Usenet	article	and	an	email	message	is	in	the	header	types	and	values	used	in	each.

Usenet	Header	Categories	and	Common
Headers
All	Usenet	headers	are	defined	according	to	the	standard	header	format	specified
in	RFC	822:	<header	name>:	<header	value>.	As	with	email	messages,	headers
may	extend	onto	multiple	lines,	following	the	indenting	procedure	described	in
the	RFC	822	standard.

The	current	standard	for	Usenet	messages,	RFC	1036,	describes	the	header	types
for	Usenet	messages.	The	headers	are	divided	into	two	categories:	mandatory
headers	(see	Table	85-2)	and	optional	headers	(see	Table	85-3).	Some	are	the
same	as	headers	of	the	equivalent	name	used	for	email,	some	are	similar	to	email
headers	but	used	in	a	slightly	different	way,	and	others	are	unique	to	Usenet.

Table	85-2.	Usenet	Mandatory	Headers

Header
Name

Description

From: The	email	address	of	the	user	sending	the	message,	as	for	email.

Date: The	date	and	time	that	the	message	was	originally	posted	to	Usenet.	This	is
usually	the	date/time	that	the	user	submitted	the	article	to	his	or	her	local	NNTP
server.

Newsgroups: Indicates	the	newsgroup	or	set	of	newsgroups	to	which	the	message	is	being
posted.	Multiple	newsgroups	are	specified	by	separating	them	with	a	comma;	for
example:	Newsgroups:	news.onegroup,rec.secondgroup.

Subject: Describes	the	subject	or	topic	of	the	message.	Note	that	this	header	is	mandatory
on	Usenet	despite	being	optional	for	email;	it	is	important	because	it	is	used	by
readers	to	decide	what	messages	to	open.

Message-ID: Provides	a	unique	code	for	identifying	a	message;	normally	generated	when	a
message	is	sent.	The	message	ID	is	very	important	in	Usenet,	arguably	more	so
than	in	email.	The	reason	is	that	delivery	of	email	is	performed	based	on
recipient	email	addresses,	while	the	propagation	of	Usenet	messages	is
controlled	using	the	message	ID	header.

Path: An	informational	field	that	shows	the	path	of	servers	that	a	particular	copy	of	a



Path: An	informational	field	that	shows	the	path	of	servers	that	a	particular	copy	of	a
message	followed	to	get	to	the	server	where	it	is	being	read.	Each	time	a	server
forwards	a	Usenet	article,	it	adds	its	own	name	to	the	list	in	the	Path	header.	The
entries	are	usually	separated	by	exclamation	points.	For	example,	if	a	user	on
Usenet	Server	A	posts	a	message,	and	it	is	transported	from	Server	A	to	Server
G,	then	Server	X,	then	Server	F,	and	finally	to	Server	Q,	where	a	second	user
reads	it,	the	person	on	Server	Q	would	see	something	like	this	in	the	Path
header:	"Q!F!X!G!A."

Table	85-3.	Usenet	Optional	Headers

Header
Name

Description

Reply-To: It	is	possible	to	reply	back	to	a	Usenet	article	author	using	email,	which	by
default,	goes	to	the	address	in	the	From:	line.	If	this	header	is	present,	the
address	it	contains	is	used	instead	of	the	default	From:	address.

Sender: Indicates	the	email	address	of	the	user	who	is	sending	the	message,	if	different
from	the	message	originator.	This	is	functionally	the	same	as	the	Sender:	header
in	email	messages,	but	is	used	in	a	slightly	different	way.	Normally,	when	a
Usenet	message	is	posted,	the	sender's	email	address	is	automatically	filled	in	to
the	From:	line.	If	the	user	manually	specifies	a	different	From:	line,	the	address
from	which	the	message	was	actually	sent	is	usually	included	in	the	Sender:
line.	This	is	used	to	track	the	true	originating	point	of	articles.

Followup-
To:

A	reply	to	a	Usenet	message	is	usually	made	back	to	Usenet	itself	and	is	called
a	follow-up.	By	default,	a	follow-up	goes	to	the	newsgroup(s)	specified	in	the
original	message's	Newsgroups:	header.	However,	if	the	Followup-To:	header	is
included,	follow-ups	to	that	message	go	to	the	newsgroups	specified	in	the
Followup-To:	header	instead.	This	header	is	sometimes	used	to	route	replies	to
a	message	to	a	particular	group.	Note,	however,	that	when	a	user	replies	to	a
message,	this	field	controls	only	what	appears	in	the	new	message's
Newsgroups:	line	by	default.	The	user	can	override	the	Newsgroups:	header
manually.

Expires: All	Usenet	messages	are	maintained	on	each	server	for	only	a	certain	period	of
time,	due	to	storage	limitations.	The	expiration	interval	for	each	newsgroup	is
controlled	by	the	administrator	of	each	site.	If	present,	this	line	requests	a
different	expiration	for	a	particular	message;	it	is	usually	used	only	for	special
articles.	For	example,	if	a	weekly	announcement	is	posted	every	Monday
morning,	each	article	might	be	set	to	expire	the	following	Monday	morning,	to
make	sure	that	people	see	the	most	current	version.

References: Lists	the	message	IDs	of	prior	messages	in	a	conversation.	For	example,	if
someone	posts	a	question	to	a	newsgroup	with	message	ID	AA207,	and	a	reply
to	that	message	is	made,	the	software	will	automatically	insert	the	line



to	that	message	is	made,	the	software	will	automatically	insert	the	line
"References:	AA207"	into	the	reply.	This	is	used	by	software	to	group	together
articles	into	conversations	(called	threads)	to	make	it	easier	to	follow

discussions	on	busy	newsgroups.

Control: Indicates	that	the	article	is	a	control	message	and	specifies	a	control	action	to	be
performed,	such	as	creating	a	new	newsgroup.

Distribution: By	default,	most	messages	are	propagated	on	Usenet	worldwide.	If	specified,
this	line	restricts	the	distribution	of	a	message	to	a	smaller	area,	either
geographical	or	organizational.

Organization: Describes	the	organization	to	which	the	article	sender	belongs.	Often	filled	in
automatically	with	the	name	of	the	user's	Internet	service	provider	(ISP).

Keywords: Contains	a	list	of	comma-separated	keywords	that	may	be	of	use	to	the	readers
of	the	message.	Keywords	can	be	useful	when	searching	for	messages	on	a
particular	subject	matter.	This	header	is	not	often	used.

Summary: A	short	summary	of	the	message.	This	is	rarely	used	in	practice.

Approved: Added	by	the	moderator	of	a	moderated	newsgroup	to	tell	the	Usenet	software
that	the	message	has	been	approved	for	posting.

Lines: A	count	of	the	number	of	lines	in	the	message.

Xref: While	Usenet	articles	are	identified	by	message	ID,	they	are	also	given	a
number	by	each	Usenet	server	as	they	are	received.	These	article	numbers,
which	differ	from	one	system	to	the	next,	are	usually	listed	in	this	cross-
reference	header.	This	information	is	used	when	a	message	is	cross-posted	to
multiple	groups.	In	that	case,	as	soon	as	a	user	reads	the	message	in	one	group,
it	is	marked	as	having	been	read	in	all	the	others	where	it	was	posted.	This	way,
if	the	user	later	reads	one	of	those	other	groups,	that	user	will	not	see	the
message	again.

Additional	Usenet	Headers
Usenet	messages	may	also	contain	additional	headers,	just	as	is	the	case	with
email	messages.	Some	of	these	are	custom	headers	included	by	individual	users
to	provide	extra	information	about	an	article.	Others	are	used	in	many	current
Usenet	articles	and	have	become	almost	de	facto	standard	headers	through
common	use.	Many	of	these	custom	headers	are	preceded	by	X-,	indicating	that
they	are	experimental	or	extra	headers.

Some	of	the	more	frequently	encountered	additional	Usenet	headers	are	shown



in	Table	85-4.

Table	85-4.	Common	Additional	Usenet	Headers

Header
Name

Description

NNTP-
Posting-
Host:

Specifies	the	IP	address	or	the	DNS	domain	name	of	the	host	used	to	originally
post	the	message.	This	is	usually	either	the	address	of	the	client	that	the	author
used	for	posting	the	message	or	the	sender's	local	NNTP	server.

User-Agent:
(or)	X-
Newsreader:

The	name	and	version	number	of	the	software	used	to	post	the	message.

X-Trace: Provides	additional	information	that	can	be	used	to	trace	the	message.

X-
Complaints-
To:

An	email	address	to	use	to	report	abusive	messages.	This	header	is	now	included
automatically	by	many	ISPs.

Usenet	MIME	Messages
Since	Usenet	follows	the	RFC	822	standard,	Multipurpose	Internet	Mail
Extensions	(MIME)	can	be	used	to	format	Usenet	messages.	When	this	is	done,
you	will	see	the	usual	MIME	headers	(such	as	MIME-Version,	Content-Type,
and	so	forth)	in	the	message.

Note	that	the	use	of	MIME	in	Usenet	messages	is	somewhat	controversial.	Some
newsreaders	are	not	MIME-compliant	and	make	a	mess	when	trying	to	display
some	of	these	messages,	and	many	Usenet	veterans	object	to	the	use	of	anything
but	plain	text	in	Usenet	messages.	Despite	this,	MIME	messages	are	becoming
more	common,	for	better	or	worse.



NNTP	Overview	and	General	Operation
As	I	explained	earlier	in	this	chapter,	Usenet	started	out	as	an	informal	network
of	UNIX	computers	using	dial-up	UUCP	connections	to	transmit	messages
between	servers.	This	arrangement	arose	out	of	necessity,	and	it	worked	fairly
well,	though	it	had	a	number	of	problems.	Once	the	Internet	became	widely	used
in	the	1980s,	it	provided	the	ideal	opportunity	for	a	more	efficient	means	of
distributing	Usenet	articles.	NNTP	was	developed	as	a	special	TCP/IP	protocol
for	sending	these	messages.	Now	NNTP	carries	billions	of	copies	of	Usenet
messages	from	computer	to	computer	every	day.

TIP

BACKGROUND	INFORMATION	NNTP	is	similar	to	the	Simple	Mail	Transfer	Protocol	(SMTP)	in
many	ways,	including	its	basic	operation	and	command	set	and	reply	format.	You	may	find	the
information	about	NNTP	easier	to	understand	if	you	are	familiar	with	SMTP,	covered	in	Chapter	77.

Usenet	began	as	a	logical	internetwork	of	cooperating	hosts	that	contacted	each
other	directly.	In	the	early	Usenet,	a	user	would	post	a	message	to	her	local
server,	where	it	would	stay	until	that	server	either	contacted	or	was	contacted	by
another	server.	The	message	would	then	be	transferred	to	the	new	server,	where
it	would	stay	until	the	second	server	contacted	a	third	one,	and	so	on.	This
transport	mechanism	was	functional,	but	seriously	flawed	in	a	number	of	ways.

Servers	were	not	continually	connected	to	each	other;	they	could	communicate
only	by	making	a	telephone	call	using	an	analog	modem.	Thus,	messages	would
often	sit	for	hours	before	they	could	be	propagated.	Modems	in	those	days	were
also	very	slow	by	today's	standards—2400	bits	per	second	or	even	less—so	it
took	a	long	time	to	copy	a	message	from	one	server	to	another.	Worst	of	all,
unless	two	sites	were	in	the	same	city,	these	phone	calls	were	long	distance,
making	them	quite	expensive.

Why	was	this	system	used	despite	all	of	these	problems?	The	answer	is	simply
because	there	was	no	alternative.	In	the	late	1970s	and	early	1980s,	there	was	no
Internet	as	we	know	it,	and	no	other	physical	infrastructure	existed	to	link
Usenet	sites	together.	It	was	either	use	UUCP	over	telephone	lines	or	nothing.

That	all	changed	as	the	fledgling	ARPAnet	grew	into	the	modern	Internet.	As	the



That	all	changed	as	the	fledgling	ARPAnet	grew	into	the	modern	Internet.	As	the
Internet	expanded,	more	and	more	sites	connected	to	it,	including	many	sites	that
were	participating	in	Usenet.	Once	both	sites	in	an	exchange	were	on	the
Internet,	it	was	an	easy	decision	to	use	the	Internet	to	send	Usenet	articles,	rather
than	relying	on	slow,	expensive	phone	calls.	Over	time,	more	and	more	Usenet
sites	joined	the	Internet,	and	it	became	clear	that	just	as	email	had	moved	from
UUCP	to	the	TCP/IP	Internet,	the	future	of	Usenet	was	on	the	Internet	as	well.

The	shifting	of	Usenet	from	UUCP	connections	to	TCP/IP	internetworking
meant	that	some	rethinking	was	required	as	to	how	Usenet	articles	were	moved
from	server	to	server.	On	the	Internet,	Usenet	was	just	one	of	many	applications,
and	the	transfer	of	messages	had	to	be	structured	using	TCP	or	the	User
Datagram	Protocol	(UDP).	Thus,	like	other	applications,	Usenet	required	an
application-level	protocol	to	describe	how	to	carry	Usenet	traffic	over	TCP/IP.
Just	as	Usenet	had	borrowed	its	message	format	from	email's	RFC	822,	it	made
sense	to	model	its	message	delivery	protocol	on	the	one	used	by	email:	SMTP.
The	result	was	the	creation	of	NNTP,	published	as	RFC	977	in	February	1986.

The	general	operation	of	NNTP	is	indeed	very	similar	to	that	of	SMTP.	NNTP
uses	TCP,	with	servers	listening	on	well-known	TCP	port	119	for	incoming
connections,	either	from	client	hosts	or	other	NNTP	servers.	As	in	SMTP,	when
two	servers	communicate	using	NNTP,	the	one	that	initiates	the	connection
plays	the	role	of	client	for	that	exchange.

After	a	connection	is	established,	communication	takes	the	form	of	commands
sent	by	the	client	to	the	server	and	replies	returned	from	the	server	to	the	client
device.	NNTP	commands	are	sent	as	plain	ASCII	text,	just	like	those	used	by
SMTP,	the	File	Transfer	Protocol	(FTP),	the	Hypertext	Transfer	Protocol
(HTTP),	and	other	protocols.	NNTP	responses	take	the	form	of	three-digit	reply
codes	as	well	as	descriptive	text,	again	just	like	SMTP	(which,	in	turn,	borrowed
this	concept	from	FTP).

NNTP	was	designed	to	be	a	comprehensive	vehicle	for	transporting	Usenet
messages.	It	is	most	often	considered	as	a	delivery	protocol	for	moving	Usenet
articles	from	one	server	to	another,	but	it	is	also	used	for	connections	from	client
hosts	to	Usenet	servers	for	posting	and	reading	messages.	Thus,	the	NNTP
command	set	is	quite	extensive	and	includes	commands	to	handle
communications	between	servers	and	between	clients	and	servers.	For	message
propagation,	a	set	of	commands	allows	a	server	to	request	new	articles	from



propagation,	a	set	of	commands	allows	a	server	to	request	new	articles	from
another	server	or	to	send	new	articles	to	another	server.	For	message	posting	and
access,	commands	allow	a	client	to	request	lists	of	new	newsgroups	and
messages,	and	to	retrieve	messages	for	display	to	a	user.

The	commands	defined	in	RFC	977	were	the	only	official	ones	for	over	a
decade.	However,	even	as	early	as	the	late	1980s,	implementers	of	NNTP	server
and	client	software	were	adding	new	commands	and	features	to	make	NNTP
both	more	efficient	and	useful	to	users.	These	NNTP	extensions	were	eventually
documented	in	RFC	2980,	published	in	2000.	I	describe	them	in	more	detail	later
in	this	chapter,	in	the	"NNTP	Commands	and	Command	Extensions"	section.

TIP

KEY	CONCEPT	The	Network	News	Transfer	Protocol	(NNTP)	is	the	protocol	used	to	implement
message	communication	in	modern	Usenet.	It	is	used	for	two	primary	purposes:	to	propagate	messages
between	NNTP	servers	and	to	permit	NNTP	clients	to	post	and	read	articles.	It	is	a	stand-alone	protocol,
but	shares	many	characteristics	with	email's	Simple	Mail	Transfer	Protocol	(SMTP).

NNTP	is	used	for	all	of	the	transfer	steps	in	the	modern	Usenet	communication
process.	However,	NNTP	is	most	often	associated	with	the	process	of	Usenet
article	propagation.	This	is	arguably	the	most	important	function	of	NNTP:
providing	an	efficient	means	of	moving	large	volumes	of	Usenet	articles	from
one	server	to	another.	It	is	thus	a	sensible	place	to	start	looking	at	the	protocol.



NNTP	Interserver	Communication	Process:
News	Article	Propagation
To	understand	how	NNTP	propagation	works,	we	must	begin	with	a	look	at	the
way	that	the	modern	Usenet	network	itself	is	organized.	Usenet	sites	are	now	all
on	the	Internet,	and	theoretically,	any	NNTP	server	can	contact	any	other	to	send
and	receive	Usenet	articles.	However,	it	would	be	ridiculous	to	have	a	new
article	submitted	to	a	particular	server	need	to	be	sent	via	separate	NNTP
connections	to	each	and	every	other	NNTP	server.	For	this	reason,	the	Usenet
logical	network	continues	to	be	very	important,	even	in	the	Internet	era.

The	Usenet	Server	Structure
In	theory,	all	that	is	required	of	the	Usenet	structure	is	that	each	site	be
connected	to	at	least	one	other	site	in	some	form.	The	logical	network	could	be
amorphous	and	without	any	formal	structure	at	all,	as	long	as	every	site	could
form	a	path	through	some	sequence	of	intermediate	servers	to	each	other	one.
However,	the	modern	Usenet	is	very	large,	with	thousands	of	servers	and
gigabytes	of	articles	being	posted	every	day.	This	calls	for	a	more	organized
structure	for	distributing	news.

For	this	reason,	the	modern	Usenet	logical	network	is	structured	loosely	in	a
hierarchy.	A	few	large	Internet	service	providers	(ISPs)	and	big	companies	with
high-speed	Internet	connections	and	large	servers	are	considered	to	be	at	the	top
of	the	hierarchy,	in	what	is	sometimes	called	the	Usenet	backbone.	Smaller
organizations	connect	to	the	servers	run	by	these	large	organizations;	these
organizations	are	considered	to	be	downstream	from	the	backbone	groups.	In
turn,	still	smaller	organizations	may	connect	further	downstream	from	the	ones
connected	to	the	large	organizations.

This	hierarchical	structure	means	that	most	Usenet	servers	maintain	a	direct
connection	only	to	their	upstream	neighbor	and	to	any	downstream	sites	to
which	they	provide	service.	A	server	is	said	to	receive	a	news	feed	from	its
upstream	connection,	since	that	is	the	place	from	which	it	will	receive	most	of	its
news	articles.	It	then	provides	a	news	feed	to	all	the	servers	downstream	from	it.
I	illustrated	this	structure	earlier	in	Figure	85-1.



As	an	example,	suppose	Company	A	runs	a	large	Usenet	server	called
Largenews	that	is	connected	to	the	backbone.	Downstream	from	this	server	is	the
NNTP	server	Mediumnews.	That	server	provides	service	to	the	server	named
Smallnews.	If	a	user	posts	an	article	to	Mediumnews,	it	will	be	placed	on	that
server	immediately.	That	server	will	send	the	article	downstream,	to	Smallnews,
so	that	it	can	be	read	by	that	server's	users.	Mediumnews	will	also,	at	some
point,	send	the	article	to	Largenews.	From	Largenews,	the	message	will	be
distributed	to	other	backbone	sites,	which	will	pass	the	message	down	to	their
own	downstream	sites.	In	this	way,	all	sites	eventually	get	a	copy	of	the
message,	even	though	Mediumnews	needs	to	connect	directly	to	only	two	other
servers.

The	term	used	to	describe	how	news	is	propagated	with	NNTP	is	flooding.	This
is	because	of	the	way	that	a	message	begins	in	one	server	and	floods	outward
from	it,	eventually	reaching	the	backbone	sites,	and	then	going	down	all	the
downstream	"rivers"	to	reach	every	site	on	Usenet.

Even	though	I	described	the	logical	Usenet	network	as	a	hierarchy,	it	is	not	a
strict	hierarchy.	For	redundancy,	many	NNTP	servers	maintain	connections	to
multiple	other	servers	to	ensure	that	news	propagates	quickly.	The	transmission
of	articles	can	be	controlled	by	looking	at	message	IDs	to	avoid	duplication	of
messages	that	may	be	received	simultaneously	by	one	server	from	more	than	one
neighbor.

Basic	NNTP	Propagation	Methods
Now	let's	look	at	how	messages	are	actually	propagated	between	servers	using
NNTP.	There	are	two	techniques	by	which	this	can	be	done:

In	the	push	model,	as	soon	as	a	server	receives	a	new	message,	it	immediately
tells	its	upstream	and	downstream	neighbors	about	the	message	and	asks
them	if	they	want	a	copy	of	it.

In	the	pull	model,	servers	do	not	offer	new	articles	to	their	neighbors.	The
neighboring	servers	must	ask	for	a	list	of	new	messages	if	they	want	to	see
what	has	arrived	since	the	last	connection	was	established,	and	then	request
that	the	new	messages	be	sent	to	them.

Both	techniques	have	advantages	and	disadvantages,	but	pushing	is	the	model



Both	techniques	have	advantages	and	disadvantages,	but	pushing	is	the	model
most	commonly	used	today.

TIP

KEY	CONCEPT	One	important	role	that	NNTP	plays	is	its	propagation	of	articles	between	Usenet
servers,	which	is	what	makes	the	entire	system	possible.	Two	models	are	used	for	article	propagation:
the	push	model,	in	which	a	server	that	receives	a	new	message	offers	it	to	connected	servers
immediately,	and	the	pull	model,	where	servers	that	receive	new	messages	hold	them	until	they	are
requested	by	other	servers.	The	push	model	is	usually	preferred	since	it	allows	for	quicker
communication	of	messages	around	the	system.

Article	Propagation	Using	the	Push	Model
Using	the	push	model,	when	the	administrators	of	an	NNTP	server	establish	a
service	relationship	with	an	upstream	Usenet	service	provider,	they	furnish	the
provider	with	a	list	of	newsgroups	that	the	downstream	server	wants	to	carry.
Whenever	a	new	article	arrives	at	the	upstream	server	within	that	list	of	groups,
it	is	automatically	sent	to	the	downstream	site.	This	saves	the	downstream	server
from	constantly	having	to	ask	whether	anything	has	arrived.

In	the	classic	NNTP	protocol	as	defined	in	RFC	977,	the	exchange	of	articles	is
based	on	the	push	model	and	performed	using	the	IHAVE	command.	Returning
to	the	example	in	the	previous	section,	suppose	three	new	messages	arrive	at	the
Largenews	server.	It	would	establish	an	NNTP	connection	to	the	Mediumnews
server	and	use	IHAVE	to	provide	the	message	IDs	of	each	of	the	three	new
messages,	one	at	a	time.	(NNTP	commands	are	described	later	in	this	chapter.)
The	Mediumnews	server	would	respond	to	each	one,	indicating	whether	or	not	it
already	had	that	message.	If	not,	Largenews	would	send	it	the	message.	An
example	of	an	article	transaction	using	the	push	model	of	propagation	is
illustrated	in	Figure	85-3.



Figure	85-3.	NNTP	article	propagation	using	the	push	model	This	example	shows	how	Usenet	articles
are	moved	between	servers	using	the	conventional	push	model	of	propagation.	Here,	the	device	acting
as	an	NNTP	client	(which	may,	in	fact,	be	an	NNTP	server)	has	two	messages	available	to	offer	to	the
server.	It	sends	the	IHAVE	command	specifying	the	message	ID	of	the	first	message,	but	the	server

already	has	that	message,	so	it	sends	a	435	(Do	Not	Send)	reply.	The	client	then	issues	an	IHAVE	with
the	second	message	ID.	The	server	wants	this	one,	so	it	sends	a	335	reply.	The	client	sends	the	Usenet

message,	ending	with	a	single	period	on	a	line	by	itself.	The	server	indicates	that	it	received	the
message,	and	the	client,	finished	with	its	transactions,	quits	the	session.

The	main	advantage	of	this	technique	is	that	it	ensures	that	a	server	is	not	sent	a
duplicate	copy	of	a	message	that	it	already	has.	The	problem	with	it	in	modern
Usenet	is	that	it	is	slow,	because	the	server	must	respond	to	the	IHAVE
command	before	the	message	or	the	next	command	can	be	sent	by	the	client.

Improving	Propagation	Efficiency	with	Streaming	Mode
One	of	the	more	important	NNTP	extensions	is	streaming	mode,	which	changes
how	news	pushing	is	done.	(NNTP	command	extensions	are	described	later	in
this	chapter.)	When	this	mode	is	enabled,	the	client	machine	uses	the	CHECK



command	instead	of	IHAVE	to	ask	the	server	if	it	wants	a	particular	message.
The	server	responds	to	indicate	if	it	wants	the	message;	if	it	does,	the	client
sends	the	message	with	the	TAKETHIS	command.

The	benefit	of	CHECK/TAKETHIS	is	that	the	client	does	not	need	to	wait	for	a
reply	to	CHECK	before	sending	the	next	command.	While	the	client	is	waiting
for	a	reply	to	the	first	CHECK	command,	it	can	do	something	else,	like	sending
the	next	CHECK	command,	allowing	commands	to	be	streamed	for	greater
efficiency.	So,	the	client	could	send	a	CHECK	command	for	the	first	new
message,	then	a	CHECK	for	the	second,	while	waiting	for	a	reply	from	the
server	to	the	first	one.	Many	CHECK	commands	could	be	sent	in	a	stream,	and
then	TAKETHIS	commands	sent	for	each	reply	received	to	CHECK	commands
sent	earlier	indicating	that	the	message	was	wanted	by	the	server.

Article	Propagation	Using	the	Pull	Model
The	pull	model	is	implemented	using	the	NEWNEWS	and	ARTICLE
commands.	The	client	connects	to	the	server	and	sends	the	NEWNEWS
command	with	a	date	specifying	the	date	and	time	that	it	last	checked	for	new
messages.	The	server	responds	with	a	set	of	message	IDs	for	new	articles	that
have	arrived	since	that	date.	The	client	then	requests	each	new	message	using	the
ARTICLE	command.

Note	that	the	push	and	pull	models	can	be	combined	in	a	single	session.	A	client
can	connect	to	a	server,	use	NEWNEWS	to	check	for	new	messages	on	that
server,	and	then	IHAVE	or	CHECK	inform	the	server	about	new	messages	the
client	wants	to	send.	In	practice,	it	is	more	common	for	only	one	or	the	other	of
the	models	to	be	used	between	a	pair	of	servers	for	any	given	exchange.

In	addition	to	propagating	new	messages,	NNTP	is	also	used	to	allow	servers	to
communicate	information	about	new	newsgroups	that	have	been	created.	This	is
done	using	the	NEWGROUPS	command,	which	is	specified	with	a	date	and
time	like	NEWNEWS.	In	response,	the	server	sends	to	the	client	a	list	of	new
newsgroups	that	have	been	created	since	the	specified	date	and	time.



NNTP	Client-Server	Communication	Process:
News	Posting	and	Access
One	critical	area	where	NNTP	differs	from	its	progenitor,	SMTP,	is	that	NNTP
is	not	just	used	for	interserver	communication.	It	is	also	used	for	the	initial
posting	of	Usenet	messages,	as	well	as	reading	the	messages.	In	fact,	the
majority	of	NNTP	commands	deals	with	the	interaction	between	user	client
machines	and	NNTP	servers,	not	communication	between	servers.

An	NNTP	client	is	any	software	program	that	knows	the	NNTP	protocol	and	is
designed	to	provide	user	access	to	Usenet.	NNTP	clients	are	usually	called
newsreaders,	and	they	provide	two	main	capabilities	to	a	user:	posting	and
reading	Usenet	messages.	Usenet	newsreaders	exist	for	virtually	all	hardware
and	software	platforms,	and	they	range	greatly	in	terms	of	capabilities,	user
interface,	and	other	characteristics.	Most	people	today	use	a	Usenet	newsreader
on	a	client	computer	that	must	make	NNTP	connections	to	a	separate	NNTP
server	to	read	and	post	news.	These	programs	are	analogous	to	email	clients,
and,	in	fact,	many	email	clients	also	function	as	NNTP	clients.

News	Posting,	Access,	and	Reading
Posting	a	Usenet	message	is	the	first	step	in	the	overall	Usenet	communication
process	(although	many	Usenet	articles	are	actually	replies	to	other	articles,	so
it's	a	bit	of	a	chicken-and-egg	situation).	Article	posting	is	quite	straightforward
with	NNTP.	The	client	establishes	a	connection	to	the	server	and	issues	the
POST	command.	If	the	server	is	willing	to	accept	new	articles,	it	replies	with	a
prompt	for	the	client	to	send	it	the	article.	The	article	is	then	transmitted	by	the
client	to	the	server.	Some	newsreaders	may	batch	new	articles,	so	they	can	be
sent	in	a	single	NNTP	session,	rather	than	submitting	them	one	at	a	time.

Newsreaders	also	establish	an	NNTP	connection	to	a	server	to	read	Usenet
articles.	NNTP	provides	a	large	number	of	commands	to	support	a	variety	of
different	article	access	and	retrieval	actions	that	may	be	taken	by	a	user.	The	first
step	in	reading	is	sometimes	to	examine	the	list	of	available	newsgroups.	Using
the	LIST	command,	the	client	requests	from	the	server	a	list	of	the	newsgroups
available	for	reading	and	posting.	RFC	977	defines	the	basic	LIST	command,
which	returns	a	list	of	all	groups	to	the	client.	RFC	2980	defines	numerous



which	returns	a	list	of	all	groups	to	the	client.	RFC	2980	defines	numerous
extensions	to	the	command	to	allow	a	client	to	retrieve	only	certain	types	of
information	about	groups	on	the	server.	Since	the	number	of	Usenet	newsgroups
is	so	large	today,	this	listing	of	newsgroups	is	usually	skipped	unless	the	user
specifically	requests	it.

The	next	step	in	Usenet	message	access	is	typically	to	select	a	newsgroup	to	read
from	the	list	of	groups	available.	Again,	since	there	are	so	many	groups	today,
most	newsreaders	allow	a	user	to	search	for	a	group	name	using	a	pattern	or
partial	name	string.	The	GROUP	command	is	then	sent	to	the	server	with	the
name	of	the	selected	group.	The	server	returns	the	first	and	last	current	article
numbers	for	the	group	to	the	client.

Messages	are	identified	in	two	ways:	one	absolute	and	the	other	site-specific.
The	article's	message	ID	is	a	fixed	identifier	that	can	be	used	to	uniquely
represent	it	across	Usenet;	this	is	what	is	used	in	interserver	communication	to
determine	whether	each	site	has	a	copy	of	a	given	message.	In	contrast,	article
numbers	are	server-specific;	they	represent	the	numbers	assigned	to	those
articles	as	they	arrived	at	that	server	and	are	used	as	a	shorthand	to	more	easily
refer	to	articles	in	a	newsgroup.	Thus,	the	same	message	will	have	a	different
article	number	on	each	NNTP	server.	Article	numbers	are	used	for	convenience,
since	they	are	much	shorter	than	message	IDs.	During	a	session,	the	NNTP
server	also	maintains	a	current	article	pointer,	which	can	be	used	for	stepping
sequentially	through	a	newsgroup.

News	Access	Methods
There	are	several	different	ways	that	the	newsreader	can	access	messages	in	a
group,	depending	on	how	it	is	programmed	and	what	the	user	of	the	software
wants.	The	news	access	methods	include	the	following:

Full	Newsgroup	Retrieval	The	brute-force	technique	is	for	the	client	to	simply
request	that	the	server	send	it	all	the	messages	in	the	group.	The	client	issues	the
ARTICLE	command	to	select	the	first	current	message	in	the	group,	using	the
first	article	number	returned	by	the	GROUP	command.	This	sets	the	server's
internal	pointer	for	the	session	to	point	to	the	first	article,	so	it	can	be	retrieved.
The	NEXT	command	is	then	used	to	advance	the	pointer	to	the	next	message,



and	the	ARTICLE	command	is	used	to	retrieve	it.	This	continues	until	the	entire
group	has	been	read.	Figure	85-4	illustrates	the	process.	The	retrieved	messages
are	stored	by	the	newsreader	and	available	for	instant	access	by	the	user.	This
method	is	most	suitable	for	relatively	small	newsgroups	and/or	users	with	fast
Internet	connections.

Newsgroup	Header	Retrieval	Since	downloading	an	entire	newsgroup	is	time-
consuming,	many	newsreaders	compromise	by	downloading	the	headers	of	all
messages	instead	of	the	full	message.	The	process	is	the	same	as	for	full
newsgroup	retrieval,	but	the	HEAD	command	is	used	to	retrieve	just	an	article's
headers.	This	takes	less	time	than	retrieving	each	message	in	its	entirety	using
the	ARTICLE	command.	The	XHDR	command	extension	can	also	be	used,	if
the	server	supports	it,	to	more	efficiently	retrieve	only	a	subset	of	the	headers	for
the	messages,	such	as	the	subject	line	and	author.

Individual	Article	Retrieval	It	is	also	possible	to	retrieve	a	single	message	from
a	group,	using	the	ARTICLE	command	and	specifying	the	article's	message
identifier.

TIP

KEY	CONCEPT	While	NNTP	is	best	known	for	its	role	in	interserver	propagation,	it	is	also	used	by
Usenet	clients	to	write	and	read	articles.	Different	commands	provide	flexibility	in	how	articles	can	be
read	by	a	client	device.	A	client	can	retrieve	an	entire	newsgroup,	only	a	set	of	newsgroup	headers,	or
individual	articles.	Other	commands	also	support	various	administrative	functions.

Other	Client/Server	Functions
In	addition	to	reading	and	posting,	NNTP	includes	commands	to	support	other
miscellaneous	tasks	that	a	Usenet	user	may	wish	to	perform.	The	client	can	ask
the	server	for	help	information	by	using	the	HELP	command	or	get	a	list	of	new
newsgroups	by	using	the	NEWGROUPS	command.

Most	modern	newsreaders	include	capabilities	that	go	far	beyond	the	basic
posting	and	reading	functions	previously	described.	Most	maintain	their	own	sets
of	configuration	files	that	allow	a	user	to	maintain	a	set	of	favorite	subscribed
newsgroups,	rather	than	needing	to	choose	a	group	to	read	from	the	master	list
each	time	Usenet	is	accessed.	Newsreaders	also	keep	track	of	which	articles	have
been	read	by	a	user	in	each	subscribed	newsgroup,	so	users	do	not	need	to	wade



been	read	by	a	user	in	each	subscribed	newsgroup,	so	users	do	not	need	to	wade
through	a	whole	newsgroup	to	see	new	messages	that	have	been	posted.

Figure	85-4.	NNTP	full	newsgroup	retrieval	process	There	are	many	ways	that	an	NNTP	client	can
access	and	read	Usenet	messages	on	a	server.	One	common	method	is	to	retrieve	the	entire	contents	of	a

newsgroup.	In	this	example,	the	client	uses	the	GROUP	command	to	select	the	newsgroup
comp.protocols.tcp-ip	for	reading;	the	server	responds	with	a	211	(Group	Selected)	reply,	which

includes	important	statistics	about	the	group.	The	client	uses	the	ARTICLE	command	with	the	number
of	the	first	article	in	the	group,	177,	to	read	it	from	the	server.	The	server	then	sends	the	message	line	by
line,	ending	it	with	a	single	period	on	a	line.	The	client	uses	the	NEXT	command	to	tell	the	server	to
advance	its	internal	article	pointer	to	the	next	message,	which	often	will	not	be	the	next	consecutive
number	after	the	one	just	read;	here	it	is	179.	The	client	can	then	read	that	message	by	sending	the
ARTICLE	command	by	itself.	Since	no	parameters	are	given,	the	server	returns	the	current	message

(179).

Article	Threading
One	particularly	useful	enhancement	to	basic	Usenet	article	reading	is	threading.
This	feature	allows	a	newsreader	to	display	articles	not	strictly	in	either



alphabetical	or	chronological	order,	but	rather	grouped	into	conversations	using
the	information	in	the	articles'	References	headers.	Threading	is	especially	useful
in	busy	newsgroups,	as	it	allows	users	to	see	all	the	articles	in	a	particular
discussion	at	once,	rather	than	trying	to	juggle	messages	from	many
conversations	simultaneously.

A	problem	with	threading	is	that	it	takes	a	long	time	for	a	newsreader	to	sift
through	all	those	References	lines	and	construct	the	article	threads.	To	speed	up
this	process,	many	servers	now	cache	extra	threading	or	overview	information
for	newsgroups,	which	can	be	retrieved	by	the	client	to	save	time	when	a
newsgroup	is	opened.	This	is	done	using	the	XTHREAD	or	XOVER	NNTP
command	extensions.



NNTP	Commands	and	Command	Extensions
One	of	the	great	strengths	of	the	open,	cooperative	process	used	to	develop
Internet	standards	is	that	new	protocols	are	usually	designed	by	building	on	older
ones.	This	saves	development	time	and	effort,	and	promotes	compatibility
between	technologies.	As	I	explained	earlier	in	the	chapter,	NNTP	was	based	in
many	ways	on	principles	from	SMTP;	SMTP,	in	turn,	borrowed	ideas	from
earlier	protocols:	Telnet	and	FTP.	This	legacy	can	be	seen	in	the	similarities
between	NNTP	commands	and	those	of	these	earlier	protocols.

Command	Syntax
As	in	SMTP,	all	NNTP	commands	are	ASCII	text	that	are	sent	over	the	NNTP
TCP	connection	to	an	NNTP	server,	from	the	device	acting	as	the	client	(which
may	be	a	newsreader	client	or	an	NNTP	server	itself).	These	are	standard	text
strings	adhering	to	the	Telnet	Network	Virtual	Terminal	(NVT)	format,
terminated	by	the	two-character	carriage	return/line	feed	(CRLF)	sequence.	As	is
the	case	with	SMTP	and	FTP,	you	can	conduct	an	interactive	session	with	an
NNTP	server	by	using	Telnet	to	connect	to	it	on	port	119.

The	basic	syntax	of	an	NNTP	command	is	<command-code>	<parameters>.
Unlike	SMTP,	NNTP	commands	are	not	restricted	to	a	length	of	four	characters.
The	parameters	that	follow	the	command	are	separated	by	one	or	more	space
characters,	and	are	used	to	provide	necessary	information	to	allow	the	server	to
execute	the	command.	NNTP	commands	are	not	case-sensitive.

Base	Command	Set
The	main	NNTP	specification,	RFC	977,	describes	the	base	set	of	commands
supported	by	NNTP	clients	and	servers.	They	are	not	broken	into	categories,	but
rather	listed	alphabetically,	as	I	have	done	in	Table	85-5.	(The	details	on	how
many	of	these	commands	are	used	for	news	article	propagation	and	news
posting/access	were	provided	earlier	in	this	chapter.)

Table	85-5.	NNTP	Base	Commands

Command Command Parameters Description



Code

ARTICLE Retrieve
Article

Message	ID
or	server
article
number

Tells	the	server	to	send	the	client	a	particular
Usenet	article.	The	article	to	be	retrieved	may	be
specified	using	either	its	absolute,	universal
message	ID	or	its	locally	assigned	article
number.	When	the	command	is	issued	with	an
article	number,	this	causes	the	server's	internal
message	pointer	to	be	set	to	the	specified	article.
If	the	message	pointer	is	already	set	to	a
particular	article,	the	ARTICLE	command	can
be	issued	without	an	article	number,	and	the
current	message	will	be	retrieved.

HEAD Retrieve
Article
Headers

Message	ID
or	server
article
number

Same	as	the	ARTICLE	command,	but	retrieves
only	the	article's	headers.

BODY Retrieve
Article
Body

Message	ID
or	server
article
number

Same	as	the	ARTICLE	command,	but	returns
only	the	body	of	the	article.

STAT Retrieve
Article
Statistics

Server	article
number

Conceptually	the	same	as	the	ARTICLE
command,	but	does	not	return	any	message	text,
only	the	message	ID	of	the	article.	This
command	is	usually	used	for	setting	the	server's
internal	message	pointer,	so	STAT	is	normally
invoked	only	with	an	article	number	(and	not	a
message	ID).

GROUP Select
Newsgroup

Newsgroup
name

Tells	the	server	the	name	of	the	newsgroup	that
the	client	wants	to	access.	Assuming	the	group
specified	exists,	the	server	returns	to	the	client
the	numbers	of	the	first	and	last	articles	currently
in	the	group,	along	with	an	estimate	of	the
number	of	messages	in	the	group.	The	server's
internal	article	pointer	is	also	set	to	the	first
message	in	the	group.

HELP Get	Help
Information

None Prompts	the	server	to	send	the	client	help
information,	which	usually	takes	the	form	of	a
list	of	valid	commands	that	the	server	supports.

IHAVE Offer
Article	to
Server

Message	ID Used	by	the	client	in	an	NNTP	session	to	tell	the
server	that	it	has	a	new	article	that	the	server
may	want.	The	server	will	check	the	message	ID



Server may	want.	The	server	will	check	the	message	ID
provided	and	respond	to	the	client,	indicating
whether	or	not	it	wants	the	client	to	send	the
article.

LAST Go	to	Last
Message

None Tells	the	server	to	set	its	current	article	pointer	to
the	last	message	in	the	newsgroup.

LIST List
Newsgroups

None Asks	the	server	to	send	a	list	of	the	newsgroups
that	it	supports,	along	with	the	first	and	last
article	number	in	each	group.	The	command	as
described	in	RFC	977	is	simple,	supporting	no
parameters	and	causing	the	full	list	of
newsgroups	to	be	sent	to	the	client.	NNTP
command	extensions	significantly	expand	the
syntax	of	this	command,	as	described	in	the
following	section	of	this	chapter.

NEWGROUPS List	New
Newsgroups

Date	and
time,	and
optional
distribution
specification

Prompts	the	server	to	send	a	list	of	new
newsgroups	created	since	the	date	and	time
specified.	The	client	may	also	restrict	the
command	to	return	only	new	newsgroups	within
a	particular	regional	distribution.

NEWNEWS List	New
News
Articles

Date	and
time,	and
optional
distribution
specification

Requests	a	list	from	the	server	of	all	new	articles
that	have	arrived	since	a	particular	date	and	time.
Like	the	NEWGROUPS	command,	this	may	be
restricted	in	distribution.	The	server	responds
with	a	list	of	message	IDs	of	new	articles.

NEXT Go	to	Next
Message

None Advances	the	server's	current	article	pointer	to
the	next	message	in	the	newsgroup.

POST Post	Article None Tells	the	server	that	the	client	would	like	to	post
a	new	article.	The	server	responds	with	either	a
positive	or	negative	acknowledgment.	Assuming
that	posting	is	allowed,	the	client	then	sends	the
full	text	of	the	message	to	the	server,	which
stores	it	and	begins	the	process	of	propagating	it
to	other	servers.

QUIT End	Session None Terminates	the	NNTP	session.	To	be	"polite,"
the	client	should	issue	this	command	prior	to
closing	the	TCP	connection.

SLAVE Set	Slave
Status

None Intended	for	use	in	special	configurations	where
one	NNTP	server	acts	as	a	subsidiary	to	others.
It	is	not	often	used	in	practice.



TIP

KEY	CONCEPT	The	main	NNTP	standard	defines	a	number	of	base	NNTP	commands	that	are	used	by
the	device	initiating	an	NNTP	connection	to	accomplish	article	propagation,	posting,	and	reading
functions.	NNTP	commands	consist	of	a	command	code	and,	optionally,	parameters	that	specify	how	the
command	is	to	be	carried	out.

NNTP	Command	Extensions
The	base	command	set	described	in	RFC	977	was	sufficient	to	enable	client-
server	and	interserver	functionality,	but	in	many	ways,	it	was	quite	basic	and
limited	in	efficiency	and	usefulness.	As	Usenet	grew	larger	and	more	popular	in
the	late	1980s,	NNTP	needed	changes	to	improve	its	usability.	In	1991,	work
began	on	a	formal	revision	to	the	NNTP	standard,	but	was	never	completed.
Despite	this,	many	of	the	concepts	from	that	effort	were	adopted	informally	in
NNTP	implementations	in	subsequent	years.	In	addition,	some	Usenet	software
authors	created	their	own	nonstandard	features	to	improve	the	protocol,	and
some	of	these	features	also	became	de	facto	standards	through	widespread
adoption.

As	a	result,	by	the	late	1990s,	most	Usenet	software	actually	implemented
variations	of	NNTP	with	capabilities	far	exceeding	what	was	documented	in	the
standard.	Naturally,	not	all	NNTP	software	supported	the	same	extra	features,
leading	to	potential	compatibility	difficulties	between	servers	and	clients.	RFC
2980,	"Common	NNTP	Extensions,"	was	published	in	October	2000	to
formalize	many	of	these	extensions	to	the	base	NNTP	standard	as	defined	in
RFC	977.

The	NNTP	extensions	primarily	consist	of	new	NNTP	commands	that	are	added
to	the	basic	NNTP	command	set,	as	well	as	some	minor	changes	to	how	other
commands	and	functions	of	NNTP	work.	The	extensions	generally	fall	into	three
categories:

Extensions	that	improve	the	efficiency	of	NNTP	message	transport	between
servers

Extensions	that	make	NNTP	more	effective	for	client	message	access

Miscellaneous	extensions,	which	don't	fall	into	either	of	the	preceding	groups



NNTP	Transport	Extensions
The	first	group	is	called	the	NNTP	transport	extensions	and	consists	of	a	small
group	of	related	commands	that	are	designed	to	improve	interserver	message
propagation.	Most	of	these	implement	NNTP's	stream	mode,	which	provides	a
more	effective	way	of	moving	large	numbers	of	articles	from	one	server	to
another,	as	described	in	the	discussion	of	interserver	communication	earlier	in
this	chapter.	Table	85-6	describes	the	new	transport	commands.

Table	85-6.	NNTP	Transport	Extensions

Command
Code

Command Parameters Description

MODE
STREAM

Set	Stream
Mode

None Used	to	tell	the	server	that	the	client	wants	to
operate	in	stream	mode,	using	the	CHECK	and
TAKETHIS	commands.

CHECK Check	If
Article
Exists

Message	ID Used	in	stream	mode	by	a	server	acting	as	a	client	to
ask	another	server	if	it	has	a	copy	of	a	particular
article.	The	server	responds	back	indicating	whether
or	not	it	wishes	to	be	sent	a	copy	of	the	article.	This
command	is	similar	to	IHAVE,	except	that	the	client
does	not	need	to	wait	for	a	reply	before	sending	the
next	command.

TAKETHIS Send
Article	to
Server

Message	ID When	a	server	responds	to	a	CHECK	command
indicating	that	it	wants	a	copy	of	a	particular
message,	the	client	sends	it	using	this	command.

XREPLIC Replicate
Articles

List	of
newsgroups
and	article
numbers

Created	for	the	special	purpose	of	copying	large
numbers	of	articles	from	one	server	to	another.	It	is
not	widely	used.

NNTP	Newsreader	Extensions
The	second	group	of	extensions	defined	by	RFC	2980	consists	of	newsreader
extensions,	which	focus	primarily	on	commands	used	by	newsreader	clients	in
interactions	with	NNTP	servers.	These	extensions	consist	of	several	new
commands,	as	well	as	significant	enhancements	to	one	important	command	that
was	very	limited	in	its	functionality	in	RFC	977:	LIST.



The	original	LIST	command	has	no	parameters	and	only	allows	a	client	to
retrieve	the	entire	list	of	newsgroups	a	server	carries.	This	may	have	been
sufficient	when	there	were	only	a	few	hundred	Usenet	newsgroups,	but	there	are
now	tens	of	thousands.	RFC	2980	defines	a	number	of	new	variations	of	the
LIST	command	to	allow	the	client	much	more	flexibility	in	the	types	of
information	the	server	returns.	Table	85-7	shows	the	new	LIST	command
variations.

Table	85-7.	NNTP	LIST	Command	Extensions

Command	Code Command Parameters Description

LIST	ACTIVE List	Active
Newsgroups

Newsgroup
name	or
pattern

Provides	a	list	of	active	newsgroups	on	the
server.	This	is	semantically	the	same	as	the
original	LIST	command,	but	the	client	may
provide	a	newsgroup	name	or	a	pattern	to
restrict	the	number	of	newsgroups	returned.
For	example,	the	client	can	ask	for	a	list	of
only	the	newsgroups	that	contain	"football"
in	them.

LIST
ACTIVE.TIMES

List	Active
Newsgroup
Creation
Times

None Prompts	the	server	to	send	the	client	its
active.times	file,	which	contains	information
about	when	the	newsgroups	carried	by	the
server	were	created.

LIST
DISTRIBUTIONS

List
Distributions

None Causes	the	server	to	sent	the	client	the
contents	of	the	distributions	file,	which
shows	what	regional	distribution	strings	the
server	recognizes	(for	use	in	the	Distribution
header	of	a	message).

LIST
DISTRIB.PATS

List
Distribution
Patterns

None Asks	the	server	for	its	distribution.pats	file,
which	is	like	the	distributions	file	but	uses
patterns	to	summarize	distribution
information	for	different	newsgroups.

LIST
NEWSGROUPS

List
Newsgroups

Newsgroup
name	or
pattern

Provides	a	list	of	newsgroup	names	and
descriptions.	This	differs	from	LIST
ACTIVE	in	that	only	the	newsgroup	name
and	description	are	returned,	not	the	article
numbers	for	each	newsgroup.	It	is
functionally	the	same	as	XGTITLE	(see
Table	85-8)	and	is	usually	employed	by	a
user	to	locate	a	newsgroup	to	be	added	to	his



user	to	locate	a	newsgroup	to	be	added	to	his
or	her	subscribed	list.

LIST
OVERVIEW.FMT

Display
Overview
Format

None Prompts	the	server	to	display	information
about	the	format	of	its	overview	file.	See	the
XOVER	command	description	in	Table	85-8
for	more	information.

LIST
SUBSCRIPTIONS

Retrieve
Default
Subscription
List

None Asks	the	server	to	send	the	client	a	default
list	of	subscribed	newsgroups.	This	is	used
to	set	up	a	new	user	with	a	suggested	list	of
newsgroups.	For	example,	if	an	organization
has	an	internal	support	newsgroup,	it	could
put	this	group	on	the	default	subscription	list
so	all	new	users	learn	about	it	immediately
when	they	first	start	up	their	newsreader.

In	addition	to	these	changes	to	the	LIST	command,	many	new	newsreader-
related	command	extensions	are	defined,	which	are	described	in	Table	85-8.

Table	85-8.	NNTP	Newsreader	Extensions

Command
Code

Command Parameters Description

LISTGROUP List	Article
Numbers	In
Newsgroup

Newsgroup
name

Causes	the	server	to	return	a	list	of	local	article
numbers	for	the	current	messages	in	the
newsgroup.	The	server's	current	article	pointer	is
also	set	to	the	first	message	in	the	group.

MODE
READER

Set
Newsreader
Mode

None Tells	the	server	that	the	device	acting	as	a	client	is
a	client	newsreader	and	not	another	NNTP	server.
While	technically	not	required—all	commands
can	be	sent	by	any	device	acting	as	client—some
servers	may	be	optimized	to	respond	to
newsreader-oriented	commands	if	given	this
command.

XGTITLE Retrieve
Newsgroup
Descriptions

Newsgroup
name	or
pattern

Used	to	list	the	descriptions	for	a	newsgroup	or	a
set	of	newsgroups	matching	a	particular	text
pattern.	This	command	is	functionally	the	same	as
the	LIST	NEWSGROUP	command	extension	(see
Table	85-7).	It	is	therefore	recommended	that
XGTITLE	no	longer	be	used.

XHDR Retrieve
Article

Header	name
and

Allows	a	client	to	ask	for	only	a	particular	header
from	a	set	of	messages.	If	only	the	header	name	is



Article
Headers

and
optionally,
either	a
message	ID
or	a	range	of
article
numbers

from	a	set	of	messages.	If	only	the	header	name	is
provided,	the	header	is	returned	for	all	messages
in	the	current	group.	Otherwise,	the	header	is
provided	for	the	selected	messages.	This	extension
provides	a	newsreader	client	with	a	more	efficient
way	of	retrieving	and	displaying	important
headers	in	a	newsgroup	to	a	user.

XINDEX Retrieve
Index
Information

Newsgroup
name

Retrieves	an	index	file,	used	by	the	newsreader
called	TIN	to	improve	the	efficiency	of	newsgroup
perusal.	TIN	now	supports	the	more	common
overview	format,	so	the	XOVER	command	is
preferred	to	this	one.

XOVER Retrieve
Overview
Information

Article
number	or
range	of
article
numbers	in	a
newsgroup

Retrieves	the	overview	for	an	article	or	set	of
articles.	Servers	supporting	this	feature	maintain	a
special	database	for	their	newsgroups	that	contains
information	about	current	articles	in	a	format	that
can	be	used	by	a	variety	of	newsreaders.
Retrieving	the	overview	information	allows
features	like	message	threading	to	be	performed
more	quickly	than	if	the	client	had	to	retrieve	the
headers	of	each	message	and	analyze	them
manually.

XPAT Retrieve
Article
Headers
Matching	a
Pattern

Header
name,
pattern,	and
either	a
message	ID
or	a	range	of
article
numbers

Similar	to	XHDR	in	that	it	allows	a	particular
header	to	be	retrieved	for	a	set	of	messages.	The
difference	is	that	the	client	can	specify	a	pattern
that	must	be	matched	for	the	header	to	be
retrieved.	This	allows	the	client	to	have	the	server
search	for	and	return	certain	messages,	such	as
those	with	a	subject	line	indicating	a	particular
type	of	discussion,	rather	than	requiring	the	client
to	download	all	the	headers	and	search	through
them.

XPATH Retrieve
File	Name
Information

Message	ID Allows	a	client	to	ask	for	the	name	of	the	actual
file	in	which	a	particular	message	is	stored	on	the
server.

XROVER Retrieve
Overview
Reference
Information

Article
number	or
range	of
article
numbers	in	a
newsgroup

Like	the	XOVER	command,	but	specifically
retrieves	information	in	the	References	header	for
the	indicated	articles.	This	is	the	header	containing
the	data	needed	to	create	threaded	conversations.

XTHREAD Retrieve Optional Similar	to	XINDEX,	but	retrieves	a	special



XTHREAD Retrieve
Threading
Information

Optional
DBINIT
parameter

Similar	to	XINDEX,	but	retrieves	a	special
threading	information	file	in	the	format	used	by
the	newsreader	named	TRN.	Like	TIN,	TRN	now
supports	the	common	overview	format,	so
XOVER	is	preferred	to	this	command.	The
DBINIT	parameter	can	be	used	to	check	for	the
existence	of	a	thread	database.

Other	NNTP	Extensions
The	last	extension	group	contains	the	miscellaneous	extensions	not	strictly
related	to	either	interserver	or	client-server	NNTP	interaction.	There	are	two
commands	in	this	group:	AUTHINFO	and	DATE.	The	latter	is	a	simple
command	that	causes	the	server	to	tell	the	client	its	current	date	and	time.
AUTHINFO	is	more	interesting.	It	is	used	by	a	client	to	provide	authentication
data	to	a	server.

You	may	have	noticed	that	there	are	no	commands	related	to	security	described
in	the	RFC	977	protocol.	That's	because	the	original	NNTP	had	no	security
features	whatsoever.	Like	many	protocols	written	before	the	modern	Internet	era,
security	was	not	considered	a	big	issue	back	in	the	early	1980s.	Most	news
servers	were	used	only	by	people	within	the	organization	owning	the	server,	and
simple	security	measures	were	used,	such	as	restricting	access	to	servers	by	IP
address	or	through	the	use	of	access	lists.

One	of	the	more	important	changes	made	by	many	NNTP	software
implementations	as	soon	as	Usenet	grew	in	size	was	to	require	authentication.
Modern	clients	will	usually	issue	AUTHINFO	as	one	of	their	first	commands	on
establishing	a	connection	to	a	server,	because	the	server	will	refuse	to	accept
most	other	commands	before	this	is	done.	A	special	reply	code	is	also	added	to
NNTP	for	a	server	to	use	if	it	rejects	a	command	due	to	improper	authentication.

The	AUTHINFO	command	can	be	invoked	in	several	different	ways.	The
original	version	of	the	command	required	the	client	to	issue	an	AUTHINFO
USER	command	with	a	user	name,	followed	by	AUTHINFO	PASS	with	a
password.	This	is	simple	user/password	login	authentication.	A	variation	of	this
is	the	AUTHINFO	SIMPLE	command,	where	the	client	needs	to	send	just	a
password.

A	client	and	server	can	also	agree	to	use	more	sophisticated	authentication
methods	by	employing	the	AUTHINFO	GENERIC	command.	The	client



methods	by	employing	the	AUTHINFO	GENERIC	command.	The	client
provides	to	the	server	the	name	of	the	authentication	method	it	wants	to	use,
along	with	any	arguments	required	for	authentication.	The	client	and	server	then
exchange	messages	and	authentication	information	as	required	by	the	particular
authenticator	they	are	using.

TIP

KEY	CONCEPT	A	number	of	limitations	in	its	base	command	set	led	to	a	proliferation	of	nonstandard
enhancements	to	NNTP	during	the	1980s	and	1990s.	These	were	eventually	documented	in	a	set	of
NNTP	command	extensions	that	formally	supplement	the	original	RFC	977	commands.	The	extensions
are	conceptually	divided	into	three	groups:	transport	extensions	that	refine	how	NNTP	propagates
messages,	newsreader	extensions	that	improve	client	article	access,	and	miscellaneous	extensions.	The
most	important	miscellaneous	extension	is	AUTHINFO,	which	adds	security	to	NNTP.



NNTP	Status	Responses	and	Response	Codes
Each	time	the	device	acting	as	a	client	in	an	NNTP	connection	sends	a
command,	the	server	sends	back	a	response.	The	response	serves	to	acknowledge
receipt	of	the	command,	to	inform	the	client	of	the	results	of	processing	the
command,	and	possibly	to	prompt	for	additional	information.	Since	NNTP
commands	are	structured	and	formatted	in	a	way	very	similar	to	that	of	SMTP
commands,	I'm	sure	it	will	come	as	no	great	surprise	that	NNTP	responses	are
very	similar	to	those	of	SMTP	(described	in	Chapter	77).	In	turn,	SMTP
responses	are	based	on	the	system	designed	for	replies	in	FTP.

The	first	line	of	an	NNTP	response	consists	of	a	three-digit	numerical	response
code,	as	well	as	a	line	of	descriptive	text	that	summarizes	the	response.	These
response	codes	are	structured	so	that	each	digit	has	a	particular	significance,
which	allows	the	client	to	quickly	determine	the	status	of	the	command	to	which
the	reply	was	sent.	After	the	initial	response	line,	depending	on	the	reply,	a
number	of	additional	response	lines	may	follow.	For	example,	a	successful	LIST
command	results	in	a	215	response	code,	followed	by	a	list	of	newsgroups.

TIP

BACKGROUND	INFORMATION	The	discussion	of	FTP	reply	codes	in	Chapter	72	explains	the
reasons	why	numeric	reply	codes	are	used	in	addition	to	descriptive	text.

As	with	SMTP	and	FTP,	NNTP	reply	codes	can	be	considered	to	be	of	the	form
xyz,	where	x	is	the	first	digit,	y	the	second,	and	z	the	third.	The	first	reply	code
digit	(x)	indicates	the	success,	failure,	or	progress	of	the	command	in	general
terms;	whether	a	successful	command	is	complete	or	incomplete;	and	the	general
reason	why	an	unsuccessful	command	did	not	work.	The	values	of	this	digit	are
defined	slightly	differently	than	they	are	in	SMTP	and	FTP.	In	some	cases,	the
terminology	is	just	simplified;	for	example,	the	second	category	is	Command
OK,	instead	of	the	more	cryptic	Positive	Completion	Reply.	Table	85-9	shows
the	specific	meaning	of	the	possible	values	of	this	digit.

Table	85-9.	NNTP	Reply	Code	Format:	First	Digit	Interpretation

Reply Meaning Description



Reply
Code
Format

Meaning Description

1yz Informative
Message

General	information;	used	for	help	information	and	debugging.

2yz Command	OK The	command	was	completed	successfully.

3yz Command	OK
So	Far;	Send	the
Rest

An	intermediate	reply,	sent	to	prompt	the	client	to	send	more
information.	Typically	used	for	replies	to	commands	such	as
IHAVE	or	POST,	where	the	server	acknowledges	the	command,
and	then	requests	that	an	article	be	transmitted	by	the	client.

4yz Command	Was
Correct,	but
Couldn't	Be
Performed

The	command	was	valid	but	could	not	be	performed.	This	type	of
error	usually	occurs	due	to	bad	parameters,	a	transient	problem
with	the	server,	a	bad	command	sequence,	or	similar	situations.

5yz Command
Unimplemented
or	Incorrect,	or
Serious	Program
Error

The	command	was	invalid	or	a	significant	program	error	prevented
it	from	being	performed.

The	second	reply	code	digit	(y)	is	used	to	categorize	messages	into	functional
groups.	This	digit	is	used	in	the	same	general	way	as	in	SMTP	and	FTP,	but	the
functional	groups	are	different,	as	described	in	Table	85-10.

Table	85-10.	NNTP	Reply	Code	Format:	Second	Digit	Interpretation

Reply
Code
Format

Meaning Description

x0z Connection,
Setup,	and
Miscellaneous

Generic	and	miscellaneous	replies.

x1z Newsgroup
Selection

Messages	related	to	commands	used	to	select	a	newsgroup.

x2z Article
Selection

Messages	related	to	commands	used	to	select	an	article.

x3z Distribution
Functions

Messages	related	to	the	transfer	of	messages.



Functions

x4z Posting Messages	related	to	posting	messages.

x5z Authentication Messages	related	to	authentication	and	the	AUTHINFO	command
extension.	(This	category	is	not	officially	listed	in	the	standard,	but
these	responses	have	a	middle	digit	of	5.)

x8z Nonstandard
Extensions

Reserved	for	private,	nonstandard	implementation	use.

x9z Debugging Debugging	output	messages.

The	third	reply	code	digit	(z)	indicates	a	specific	type	of	message	within	each	of
the	functional	groups	described	by	the	second	digit.	The	third	digit	allows	each
functional	group	to	have	ten	different	reply	codes	for	each	reply	type	given	by
the	first	code	digit.

As	in	FTP	and	SMTP,	these	x,	y,	and	z	digit	meanings	are	combined	to	make
specific	reply	codes.	For	example,	the	reply	code	435	is	sent	by	the	server	if	a
client	issues	the	IHAVE	command	but	the	server	doesn't	want	the	article	being
offered.	The	command	was	correct	but	the	reply	is	negative,	thus	it	starts	with	4,
and	the	message	is	related	to	message	distribution,	so	the	middle	digit	is	3.

Table	85-11	contains	a	list	of	some	of	the	more	common	NNTP	reply	codes	in
numerical	order,	along	with	typical	reply	text	from	the	standard	and	additional
descriptive	information.

Table	85-11.	NNTP	Reply	Codes

Reply
Code

Reply	Text Description

100 help	text	follows Precedes	response	to	HELP	command.

111 (date	and	time) Response	to	DATE	command	extension.

199 (debugging	output) Debugging	information.

200 server	ready	-
posting	allowed

Sent	by	the	server	on	initiation	of	the	session,	if	the	client	is
allowed	to	post	messages.

201 server	ready	-	no
posting	allowed

Sent	by	the	server	on	initiation	of	the	session,	if	the	client	is	not
allowed	to	post	messages.



202 slave	status	noted Response	to	the	SLAVE	command.

203 streaming	is	ok Successful	response	to	MODE	STREAM	command.

205 closing	connection
-	goodbye!

Goodbye	message	sent	in	response	to	a	QUIT	message.

211 n	f	l	s	group
selected

Successful	response	to	the	GROUP	command,	indicating	the
estimated	number	of	messages	in	the	group	(n),	first	and	last
article	numbers	(f	and	l)	and	group	name	(s).

215 list	of	newsgroups
follows	(OR)
information	follows

Successful	response	to	LIST	command.	The	second	form	is	for
variations	of	LIST	defined	as	NNTP	command	extensions.

218 tin-style	index
follows

Successful	response	to	XINDEX	command	extension.

220 n	<a>	article
retrieved	-	head	and
body	follow

Successful	response	to	the	ARTICLE	command,	indicating	the
article	number	and	message	ID	of	the	article.

221 n	<a>	article
retrieved	-	head
follows

Successful	response	to	the	HEAD	command,	indicating	the
article	number	and	message	ID	of	the	article.

222 n	<a>	article
retrieved	-	body
follows

Successful	response	to	the	BODY	command,	indicating	the
article	number	and	message	ID	of	the	article.

223 n	<a>	article
retrieved	-	request
text	separately

Successful	response	to	the	STAT	command,	indicating	the	article
number	and	message	ID	of	the	article.

224 overview
information	follows

Successful	response	to	the	XOVER	command	extension.

230 list	of	new	articles
by	message-id
follows

Successful	response	to	the	NEWNEWS	command.

235 article	transferred
ok

Successful	response	to	the	IHAVE	command,	after	the	article	has
been	sent.

239 article	transferred
ok

Successful	response	to	the	TAKETHIS	command.

240 article	posted	ok Successful	response	to	the	POST	command,	after	the	article	has



240 article	posted	ok Successful	response	to	the	POST	command,	after	the	article	has
been	posted.

250	or
281

authentication
accepted

Successful	authentication	using	the	AUTHINFO	command
extension.

282 list	of	groups	and
descriptions
follows

Positive	response	to	the	XGTITLE	command	extension.

288 binary	data	to
follow

Successful	response	to	the	XTHREAD	command	extension.

335 send	article	to	be
transferred

Preliminary	response	to	the	IHAVE	command.

340 send	article	to	be
posted

Preliminary	response	to	the	POST	command.

381 more	authentication
information
required

Preliminary	response	to	the	AUTHINFO	command	extension.

400 service
discontinued

Session	is	being	terminated,	perhaps	due	to	user	request.

411 no	such	newsgroup Invalid	newsgroup	name	specified.

412 no	newsgroup	has
been	selected

Attempt	to	issue	a	command	that	refers	to	the	current	newsgroup
before	one	has	been	selected	using	GROUP.

420 no	current	article
has	been	selected

Attempt	to	issue	a	command	that	refers	to	the	current	article
using	the	server's	current	article	pointer,	before	the	pointer	has
been	set	through	article	selection.

421 no	next	article	in
this	group

Response	to	NEXT	command	when	at	the	last	article	of	a
newsgroup.

422 no	previous	article
in	this	group

Possible	response	to	LAST	(I	have	no	idea	why	the	word
"previous"	is	in	there).

423 no	such	article
number	in	this
group

Command	with	invalid	article	number.

430 no	such	article
found

Article	not	found;	it	may	have	been	deleted.

435 article	not	wanted	- Negative	response	to	IHAVE	if	server	doesn't	need	the	article.



435 article	not	wanted	-
do	not	send	it

Negative	response	to	IHAVE	if	server	doesn't	need	the	article.

436 transfer	failed	-	try
again	later

Temporary	failure	of	article	transfer;	retry.

437 article	rejected	-	do
not	try	again

Article	refused	for	whatever	reason.

438 already	have	it,
please	don't	send	it
to	me

Same	as	reply	code	435,	but	for	the	CHECK	command
extension.

440 posting	not	allowed POST	command	issued	when	posting	is	not	allowed.

441 posting	failed POST	command	failed.

450 authorization
required	for	this
command

Response	sent	when	server	requires	authentication	but	client	has
not	yet	authenticated.

452 authorization
rejected

Failed	authentication.

480 transfer	permission
denied

Response	to	CHECK	if	transfer	is	not	allowed.

500 command	not
recognized

Bad	command.

501 command	syntax
error

Bad	syntax	in	command.

502 access	restriction	or
permission	denied

Permission	denied;	sent	if	the	client	has	not	properly
authentication	but	the	server	requires	it.

503 program	fault	-
command	not
performed

General	fatal	error	message.

TIP

KEY	CONCEPT	Each	command	sent	by	the	device	acting	as	the	client	in	an	NNTP	connection	results
in	the	server	returning	a	reply.	NNTP	replies	consist	of	a	three-digit	reply	code	and	a	string	of
descriptive	text.	These	codes	are	modeled	after	those	of	SMTP,	and	in	turn,	FTP.



Chapter	86.	GOPHER	PROTOCOL
(GOPHER)

Let's	suppose	that	I	told	you	I	was	going	to	describe	a	TCP/IP	application	layer
protocol	designed	for	the	specific	purpose	of	distributed	document	search	and
retrieval.	This	protocol	uses	a	client/server	model	of	operation,	where	servers
provide	links	to	related	resources	such	as	files	or	programs	that	users	access	with
client	software	that	displays	options	for	the	user	to	select.	You	might	think	that	I
was	talking	about	the	World	Wide	Web,	and	for	good	reason.	However,	in	this
case,	I	am	actually	talking	about	one	of	the	Web's	predecessors:	the	Gopher
Protocol.

In	this	chapter,	I	briefly	describe	Gopher's	history,	operation,	differences	from
the	World	Wide	Web,	and	role	in	the	modern	Internet.

Gopher	Overview	and	General	Operation
A	good	place	to	start	our	discussion	of	this	protocol	is	with	its	name,	which	is
well	chosen	for	a	number	of	reasons.	The	Gopher	Protocol	was	developed	at	the
University	of	Minnesota,	whose	sports	teams	are	called	the	Golden	Gophers
(Minnesota	is	known	as	the	Gopher	State).	This	is	the	direct	origin	of	the	name,
but	it	is	also	appropriate	because	the	rodent	that	shares	it	is	known	for
burrowing,	just	as	the	protocol	is	designed	to	"burrow"	through	the	Internet.	And
of	course,	the	term	gopher	also	applies	to	a	person	who	performs	errands,	such
as	retrieving	documents	(they	"go	fer"	this	and	"go	fer"	that).

The	Gopher	Protocol	was	developed	in	the	late	1980s	to	provide	a	mechanism
for	organizing	documents	for	easy	access	by	students	and	faculty	at	the
university.	The	core	principle	that	guided	the	development	of	the	system	was
simplicity.	Gopher	is	designed	on	the	basis	of	a	small	number	of	core	principles,



and	it	uses	a	very	straightforward	mechanism	for	passing	information	between
client	and	server	devices.	It	is	described	in	RFC	1436,	published	in	March	1993.

Information	Storage	on	Gopher	Servers
Information	accessible	by	Gopher	is	stored	as	files	on	Gopher	servers.	It	is
organized	in	a	hierarchical	manner	similar	to	the	file	system	tree	of	a	computer
such	as	a	Windows	PC	or	UNIX	workstation.

Just	as	a	file	system	consists	of	a	top-level	directory	(or	folder)	that	contains	files
and	subdirectories	(subfolders),	Gopher	servers	present	information	as	a	top-
level	directory	that	contains	resources	such	as	files,	and/or	subdirectories
containing	additional	resources.	Resources	on	different	servers	can	be	linked
together	by	having	them	mentioned	in	each	others'	resource	hierarchies.	It	is	also
possible	for	virtual	resources	to	be	created	that	act	as	if	they	were	files,	such	as
programs	that	allow	Gopher	servers	to	be	searched.

Gopher	Client/Server	Operation
Typical	use	of	Gopher	begins	with	a	user	on	a	client	machine	creating	a	TCP
connection	to	a	Gopher	server	using	well-known	TCP	port	number	70.	After	the
connection	is	established,	the	server	waits	for	the	client	to	request	a	particular
resource	by	sending	the	server	a	piece	of	text	called	a	selector	string.	Often,
when	a	user	first	accesses	a	server,	he	does	not	know	what	resource	to	request,
so	a	null	(empty)	selector	string	is	sent.	This	causes	the	server	to	send	back	to	the
client	a	list	of	the	resources	available	at	the	top	(root)	directory	of	the	server's
file	system	tree.

A	directory	list	sent	by	the	server	consists	of	a	set	of	lines,	each	of	which
describes	one	available	resource	in	that	directory.	Each	line	contains	the
following	elements,	each	separated	by	a	tab	character:

Type	Character	and	Resource	Name	The	first	character	of	the	line	tells	the
client	software	what	sort	of	resource	the	line	represents.	The	most	common	type
characters	are	0	(zero)	for	a	file,	1	for	a	subdirectory,	and	7	for	a	search	service.
The	rest	of	the	characters	up	to	the	first	tab	character	contain	the	name	of	the
resource	to	be	presented	to	the	user.

Selector	String	The	string	of	text	to	be	sent	to	the	server	to	retrieve	this



resource.

Server	Name	The	name	of	the	server	where	the	resource	is	located.

Server	Port	Number	The	port	number	to	be	used	for	accessing	this	resource's
server;	normally	70.

Each	line	ends	with	a	carriage	return/line	feed	(CRLF)	character	sequence
consistent	with	the	Telnet	Network	Virtual	Terminal	(NVT)	specification.	Upon
sending	the	directory	listing	(or	any	other	response)	the	connection	between	the
client	and	server	is	closed.

After	receiving	this	sort	of	directory	list,	the	Gopher	client	software	will	display
a	menu	to	the	user	containing	all	the	resource	names	the	server	provided.	The
user	then	selects	his	desired	item	from	the	menu,	and	the	client	retrieves	it	by
making	a	connection	to	the	appropriate	server	and	port	number,	and	sending	the
selector	string	of	that	resource.	If	this	itself	represents	a	subdirectory,	the	server
will	send	a	new	directory	listing	for	that	subdirectory;	if	it	represents	some	other
type	of	resource,	it	will	be	accessed	according	to	the	requirements	of	the
resource	type.

For	example,	suppose	this	line	were	sent	from	the	server	to	the	client:
0Gopher Introduction<Tab>intro<Tab>gopher.someserver.org<Tab>70

This	would	be	presented	to	the	user	as	the	file	called	Gopher	Introduction	in	a
menu	containing	other	options.	If	the	user	chose	it,	the	client	would	initiate	a
connection	to	the	Gopher	server	gopher.someserver.org	at	port	70,	and	then	send
the	selector	string	intro	to	that	server	to	retrieve	the	document.



Important	Differences	Between	Gopher	and	the
Web
As	I	hinted	at	the	start	of	this	discussion,	both	Gopher	and	the	Web	are	intended
for	the	same	basic	purpose:	providing	access	to	repositories	of	information,	with
links	between	related	documents	and	resources.	However,	they	take	a	very
different	approach	to	how	that	information	is	accessed,	especially	in	two	key
areas:	user	interface	and	resource	linking.

Gopher's	presentation	to	the	user	is	entirely	oriented	around	its	hierarchical	file
system.	As	a	result,	Gopher	is	inherently	menu-based,	and	the	user	interface	is
usually	based	on	a	simple	text	presentation	of	those	menus.	In	contrast,
information	on	web	servers	can	be	organized	in	any	manner	and	presented	to	the
user	in	whatever	form	or	fashion	the	owner	of	the	server	desires.	The	Web	is
much	more	free-form,	and	there	is	no	need	to	use	a	directory	structure	unless	that
is	advantageous	in	some	way.

Linking	in	the	Web	is	done	directly	between	documents,	most	often	using
Hypertext	Markup	Language	(HTML)	tags.	When	someone	writing	Document	A
mentions	something	relevant	to	Document	B,	she	puts	a	link	to	Document	B
directly	in	Document	A.	Gopher,	on	the	other	hand,	is	not	designed	to	use	links
in	this	way.	Instead,	linking	is	intended	to	be	done	using	the	directory	tree	I
described	earlier.



Gopher's	Role	in	the	Modern	Internet
There	are	some	people	who	believe	that	Gopher	is	technically	superior	to	the
Web	in	a	number	of	respects.	They	consider	it	cleaner	to	have	servers	do	the
linking,	rather	than	having	links	embedded	in	documents.	An	argument	can	also
be	made	that	the	text	orientation	of	Gopher	is	efficient,	better	able	to	ensure
compatibility	between	platforms,	and	also	more	suited	to	special	needs	situations
such	as	low-bandwidth	links	and	access	by	those	with	visual	impairments.	Some
Gopher	enthusiasts	thus	consider	it	to	be	a	purer	hypertext	system	than	the	Web.

However,	history	shows	us	that	despite	Gopher	predating	the	Web,	the	Web
overtook	it	in	popularity	in	only	a	few	short	years.	Today,	the	Web	is	the	900-
pound	gorilla	of	the	Internet,	while	most	people	have	never	even	heard	of
Gopher.	What	happened?

I	believe	the	main	reason	why	Gopher	lost	out	to	the	Web	is	that	the	Web	is	far
more	flexible.	Gopher's	use	of	text	hyperlinks	and	server	directory	structures
may	be	efficient,	but	it	is	limiting.	In	contrast,	the	Web	allows	information	to	be
presented	in	a	wide	variety	of	ways.	The	open,	unstructured	nature	of	the	Web
makes	it	an	ideal	vehicle	for	the	creativity	of	information	providers	and
application	developers.	In	the	mid-1990s,	the	Web	was	also	perfectly	poised	to
support	the	transition	of	computing	from	text	to	graphics,	and	Gopher	was	not.

Simply	put,	you	can	do	more	with	the	Web	than	you	can	with	Gopher,	and	most
people	care	more	about	functionality	and	breadth	of	options	than	straight
efficiency.	Once	the	Web	started	to	gain	momentum,	it	very	quickly	snowballed.
It	took	only	a	couple	of	years	before	Web	use	was	well	entrenched,	and	Gopher
was	unable	to	compete.

For	its	part,	the	University	of	Minnesota	likely	hastened	Gopher's	demise	with	its
controversial	decision	to	charge	licensing	fees	to	companies	that	wanted	to	use
Gopher	for	commercial	purposes.	I	do	not	believe	there	was	anything	nefarious
about	this.	The	university	was	on	a	limited	budget	and	wanted	companies	that
could	afford	it	to	pay	a	small	fee	to	support	development	of	Gopher	software.
However,	computing	history	has	shown	time	and	time	again	that	there	is	no
faster	way	to	kill	a	protocol	or	standard	than	to	try	to	charge	licensing	or	royalty
fees	for	it,	no	matter	what	the	reason.



By	the	late	1990s,	Gopher	was	well	on	its	way	to	obsolescence.	As	use	of	the
protocol	dwindled,	many	organizations	could	no	longer	justify	the	cost	of
continuing	to	run	Gopher	servers.	Even	the	University	of	Minnesota	itself
eventually	shut	down	its	own	Gopher	servers	due	to	low	utilization.	The	final
nail	in	the	coffin	for	Gopher	occurred	in	2002,	when	a	security	vulnerability
related	to	Gopher	was	discovered	in	Internet	Explorer,	and	Microsoft	chose	to
simply	remove	Gopher	support	from	the	product	rather	than	fix	the	problem.
Today,	Gopher	is	still	around,	but	it	is	a	niche	protocol	used	only	by	a	relatively
small	group	of	enthusiasts	and	a	handful	of	organizations	that	have	a	past	history
of	using	it.

TIP

KEY	CONCEPT	The	Gopher	Protocol	is	a	distributed	document	search	and	retrieval	protocol	that	was
developed	at	the	University	of	Minnesota	in	the	late	1980s.	Resources	are	stored	on	Gopher	servers,
which	organize	information	using	a	hierarchical	directory	structure.	Gopher	clients	access	servers	to
retrieve	directory	listings	of	available	resources,	which	are	presented	to	the	user	as	a	menu	from	which
an	item	may	be	selected	for	retrieval.	Gopher's	chief	advantage	is	simplicity	and	ease	of	use,	but	it	lacks
flexibility	in	presentation	and	the	ability	to	effectively	present	graphics	and	multimedia.	For	this	reason,
despite	Gopher	predating	the	World	Wide	Web,	the	Web	has	almost	entirely	replaced	it,	and	Gopher	is
now	a	niche	protocol.



Part	III-10.	INTERACTIVE	AND	ADMINISTRATIVE
UTILITIES	AND	PROTOCOLS
Chapter	87

Chapter	88

File	and	message	transfer	applications	include	the	File	Transfer	Protocol	(FTP),
electronic	mail	(email),	and	the	World	Wide	Web,	which	makes	file	and
message	transfer	the	most	important	category	of	classic	TCP/IP	applications.
However,	those	applications	do	not	represent	the	only	ways	that	TCP/IP
internetworks	are	used.	While	not	as	glamorous	as	some	of	the	application
protocols	we	have	examined	so	far	in	this	section,	interactive	and	administrative
protocols	are	also	important	and	worth	understanding.

This	final	part	of	the	book	covers	a	couple	other	categories	of	TCP/IP
applications.	The	first	chapter	describes	interactive	and	remote	application
protocols,	which	are	used	traditionally	to	allow	a	user	of	one	computer	to	access
another,	or	to	permit	the	real-time	exchange	of	information.	The	second	chapter
discusses	TCP/IP	administration	and	troubleshooting	utilities,	which	can	be
employed	by	both	administrators	and	end	users	to	manage	TCP/IP	networks	and
diagnose	problems	with	them.



Chapter	87.	TCP/IP	INTERACTIVE
AND	REMOTE	APPLICATION
PROTOCOLS

When	it	comes	to	TCP/IP	applications,	file	and	message	transfer	applications	get
the	most	attention,	because	they	are	the	ones	used	most	often	on	modern
internetworks.	Another	category	of	TCP/IP	application	protocols	that	is	less	well
known	is	the	group	that	allows	users	to	interactively	access	and	use	other
computers	directly	over	an	internetwork,	such	as	the	public	Internet.	These
applications	are	not	often	employed	by	end	users	today,	but	they	are	still
important—both	from	a	historical	perspective	and	because	of	their	usefulness	in
certain	circumstances,	especially	to	network	administrators.

In	this	chapter,	I	provide	a	brief	description	of	the	classic	interactive	and	remote
application	protocols	used	in	TCP/IP.	I	first	describe	the	Telnet	Protocol,	one	of
the	earliest	and	most	conceptually	important	application	protocols	in	TCP/IP.
This	discussion	includes	a	description	of	Telnet	client/server	communication,	the
Telnet	Network	Virtual	Terminal	(NVT),	and	Telnet's	protocol	commands	and
options.	I	then	describe	the	Berkeley	remote	access	family,	often	called	the	r
commands	or	protocols	because	their	command	names	begin	with	that	letter.
Finally,	I	provide	a	brief	overview	of	the	Internet	Relay	Chat	(IRC)	protocol,	the
original	interactive	chat	application	of	the	Internet	and	one	still	used	widely
today.

Telnet	Protocol
In	the	very	earliest	days	of	internetworking,	one	of	the	most	important	problems
that	computer	scientists	needed	to	solve	was	how	to	allow	someone	operating



one	computer	to	access	and	use	another	as	if	that	remote	user	were	connected	to
it	locally.	The	protocol	created	to	meet	this	need	was	called	Telnet,	and	the	effort
to	develop	it	was	tied	closely	to	that	of	the	Internet	and	TCP/IP	as	a	whole.	Even
though	most	Internet	users	today	never	invoke	the	Telnet	Protocol	directly,	they
use	some	of	its	underlying	principles	indirectly	all	the	time.	Every	time	you	send
a	piece	of	email,	use	the	File	Transfer	Protocol	(FTP)	to	transfer	a	file,	or	load	a
web	page,	you	are	using	technology	based	on	Telnet.	For	this	reason,	the	Telnet
Protocol	can	make	a	valid	claim	to	the	title	of	the	most	historically	important
application	protocol	in	TCP/IP.

TIP

BACKGROUND	INFORMATION	A	basic	comprehension	of	the	Transmission	Control	Protocol
(TCP),	especially	its	sliding	window	mechanism	and	flow	control	features,	will	be	helpful	in
understanding	Telnet.	Those	topics	are	covered	in	Chapters	Chapter	48	and	Chapter	49.

Telnet	Overview,	History,	and	Standards
The	history	of	Telnet	actually	goes	back	over	a	decade	before	the	modern
TCP/IP	protocol	suite	that	we	know	today.	As	I	mentioned	in	my	overview	of
FTP,	the	early	developers	of	TCP/IP	internetworking	technologies	identified	two
overall	application	needs	for	networks	to	fill:	enabling	direct	access	to	resources
and	also	allowing	indirect	access	to	resources.	FTP	was	created	for	indirect
access,	by	allowing	users	to	retrieve	a	resource	from	a	remote	host,	use	it	locally,
and	if	desired,	copy	it	back	to	its	source.	Telnet	was	designed	for	direct	access,
by	allowing	users	to	access	a	remote	machine	and	use	it	as	if	they	were
connected	to	it	locally.

Telnet	History
Telnet	was	initially	developed	in	the	late	1960s.	This	was	well	before	the	era	of
the	small	personal	computers	that	so	many	of	us	use	exclusively	today.	All
computers	of	that	period	were	large	and	usually	shared	by	many	users.	To	work
on	a	computer,	you	had	to	access	a	physical	terminal	connected	to	that	machine,
which	was	usually	specially	tailored	to	the	needs	and	requirements	of	the	host.
Two	specific	issues	resulted	from	this	situation:

If	an	organization	had	several	different	computers,	each	user	needed	a



separate	terminal	to	access	each	computer	that	he	or	she	used.	This	was
expensive	and	inefficient.	I	can	recall	reading	a	quote	from	a	book	that
compared	this	situation	to	having	a	room	containing	a	number	of	television
sets,	each	of	which	could	only	display	a	single	channel.

Perhaps	a	more	significant	issue	was	the	difficulty	in	allowing	a	user	at	one
site	to	access	and	use	a	machine	at	another	site.	The	only	method	at	the	time
for	accomplishing	this	was	to	install	a	dedicated	data	circuit	from	the	site	of
the	computer	to	the	site	of	the	user,	to	connect	the	user's	terminal	to	the
remote	machine.	Again,	each	circuit	would	enable	access	to	only	one
machine.	Every	combination	of	user	and	computer	required	a	separate,
expensive	circuit	to	be	installed	and	maintained.

The	solution	to	both	of	these	issues	was	to	create	a	more	general	way	of	allowing
any	terminal	to	access	any	computer.	The	underlying	internetwork	provided	the
mechanism	for	communicating	information	between	computers.	This	became	the
physical	network	connecting	sites	and	the	TCP/IP	protocol	suite	connecting
networks.	On	top	of	this	ran	an	application	protocol	that	allowed	a	user	to
establish	a	session	to	any	networked	computer	and	use	it.	That	application
protocol	is	Telnet.

Telnet	was	the	first	application	protocol	demonstrated	on	the	fledgling
ARPAnet,	in	1969.	The	first	RFC	specifically	defining	Telnet	was	RFC	97,
"First	Cut	at	a	Proposed	Telnet	Protocol,"	published	in	February	1971.
Development	of	Telnet	continued	throughout	the	1970s,	with	quite	a	number	of
different	RFCs	devoted	to	revisions	of	the	protocol	and	discussions	of	issues
related	to	it.	It	took	many	years	to	refine	Telnet	and	resolve	all	the	difficulties
that	were	associated	with	its	development.	The	final	version	of	the	protocol,
"Telnet	Protocol	Specification,"	was	published	as	RFC	854	in	May	1983.	Over
the	years,	other	RFCs	have	been	published	to	clarify	the	use	of	the	protocol	and
address	various	issues	such	as	authentication.	There	are	also	a	number	of	other
RFCs	that	define	Telnet	options,	as	discussed	in	the	"Telnet	Options	and	Option
Negotiation"	section	later	in	this	chapter.

Fundamental	Telnet	Concepts
At	first	glance,	it	may	be	surprising	that	Telnet	took	so	long	to	develop,	because
in	theory,	it	should	be	a	very	simple	protocol	to	define.	All	it	needs	to	do	is	send



keystrokes	and	program	output	over	the	network	like	any	other	protocol.	Its
definition	would	be	simple	if	every	terminal	and	computer	used	the	same
communication	method,	but	they	do	not.	Telnet	becomes	complicated	because	it
needs	to	allow	a	terminal	from	one	manufacturer	to	be	able	to	talk	to	a	computer
that	may	use	a	very	different	data	representation.

Telnet	solves	this	problem	by	defining	a	method	that	ensures	compatibility
between	terminal	types	and	computers,	while	allowing	special	features	to	be
used	by	computers	and	terminals	that	agree	to	support	them.	The	protocol	is	built
on	a	foundation	of	three	main	concepts.

Network	Virtual	Terminal	(NVT)	Telnet	defines	a	standardized,	fictional
terminal	called	the	Network	Virtual	Terminal	(NVT)	that	is	used	for	universal
communication	by	all	devices.	A	Telnet	client	takes	input	from	a	user	and
translates	it	from	its	native	form	to	the	NVT	format	to	send	to	a	Telnet	server
running	on	a	remote	computer.	The	server	translates	from	NVT	to	whatever
representation	the	computer	being	accessed	requires.	The	process	is	reversed
when	data	is	sent	from	the	remote	computer	back	to	the	user.	This	system	allows
clients	and	servers	to	communicate	even	if	they	use	entirely	different	hardware
and	internal	data	representations.	Special	Telnet	commands	are	interspersed	with
the	data	to	allow	the	client	and	server	devices	to	perform	various	functions
needed	to	manage	the	operation	of	the	protocol.

Options	and	Option	Negotiation	Having	Telnet	clients	and	servers	act	as	NVTs
avoids	incompatibilities	between	devices,	but	does	so	by	stripping	all	terminal-
specific	functionality	to	provide	a	common	base	representation	that	is
understood	by	everyone.	Since	there	are	many	cases	where	more	intelligent
terminals	and	computers	may	wish	to	use	more	advanced	communication
features	and	services,	Telnet	defines	a	rich	set	of	options	and	a	mechanism	by
which	a	Telnet	client	and	server	can	negotiate	their	use.	If	the	client	and	server
agree	on	the	use	of	an	option,	it	can	be	enabled;	if	not,	they	can	always	fall	back
on	the	NVT	to	ensure	basic	communication.

Symmetric	Operation	While	Telnet	is	a	client/server	protocol,	it	is	specifically
designed	to	not	make	assumptions	about	the	nature	of	the	client	and	server
software.	Once	a	Telnet	session	is	established,	the	computers	can	each	send	and
receive	data	as	equals.	They	can	also	each	initiate	the	negotiation	of	options.



This	makes	the	protocol	extremely	flexible	and	has	led	to	its	use	in	a	variety	of
places,	as	discussed	in	the	next	section.

Telnet	Applications
Telnet	is	most	often	associated	with	remote	login,	which	is	its	common
traditional	use.	A	user	typically	uses	a	Telnet	client	program	to	open	a	Telnet
connection	to	a	remote	server,	which	then	treats	the	Telnet	client	like	a	local
terminal,	allowing	the	user	to	log	in	and	access	the	server's	resources	as	if	he
were	using	a	directly	attached	terminal.	Telnet	is	still	used	this	way	quite
extensively	by	UNIX	users,	who	often	need	to	log	in	to	remote	hosts	from	their
local	machines	(I	use	Telnet	in	this	manner	every	day	to	access	a	machine
hundreds	of	miles	away).	However,	this	use	of	Telnet	is	not	nearly	as	common
among	the	majority	of	Internet	users	who	work	on	Windows	or	Apple
computers,	where	network	resources	are	accessed	not	through	direct	login,	but
by	other	means.

Although	remote	login	is	a	big	part	of	what	Telnet	is	about,	the	protocol	was	not
inherently	designed	for	that	specific	function.	When	Telnet	is	used	to	access	a
remote	device,	the	protocol	itself	is	used	only	to	set	up	the	connection	between
the	client	and	server	machines,	encode	data	to	be	transmitted	according	to	the
rules	of	the	Telnet	NVT,	and	facilitate	the	negotiation	and	use	of	options.	The
client	and	server	devices	decide	whether	Telnet	is	used	for	remote	access	or	for
some	other	purpose.

This	flexibility,	combined	with	Telnet's	age	in	the	TCP/IP	suite,	has	led	to	its
being	adopted	for	a	variety	of	other	protocols.	Since	Telnet	doesn't	make
assumptions	about	what	a	client	is	and	what	a	server	is,	any	program	or
application	can	use	it.	Many	of	the	file	and	message	transfer	applications—such
as	FTP,	Simple	Mail	Transfer	Protocol	(SMTP),	Network	News	Transfer
Protocol	(NNTP),	and	Hypertext	Transfer	Protocol	(HTTP)—communicate	by
sending	text	commands	and	messages,	and	use	Telnet's	NVT	specification	to
ensure	the	compatibility	of	communication	between	devices.	They	don't	actually
establish	Telnet	sessions	or	use	features	like	option	negotiation;	they	just	send
data	in	a	manner	consistent	with	how	Telnet	works.	Thus,	even	though	modern
Internet	users	may	never	intentionally	invoke	Telnet	specifically,	they	use	it
indirectly	every	time	they	send	or	receive	email	or	browse	the	Web.
Administrators	can	even	use	Telnet	client	software	to	access	devices	such	as



Administrators	can	even	use	Telnet	client	software	to	access	devices	such	as
FTP	and	HTTP	servers,	and	send	those	devices	commands	manually.

TIP

KEY	CONCEPT	Telnet	is	one	of	the	oldest	protocols	in	the	TCP/IP	suite,	first	developed	in	the	1960s
to	allow	a	user	on	one	computer	system	to	directly	access	and	use	another.	It	is	most	often	used	for
remote	login,	with	Telnet	client	software	on	a	user's	machine	establishing	a	session	with	a	Telnet	server
on	a	remote	host	to	let	the	user	work	with	the	host	as	if	connected	directly.	To	ensure	compatibility
between	terminals	and	hosts	that	use	different	hardware	and	software,	communication	between	Telnet
client	and	server	software	is	based	on	a	simplified,	fictional	data	representation,	called	the	Network
Virtual	Terminal	(NVT),	which	can	be	enhanced	through	the	negotiation	of	options.

Telnet	Connections	and	Client/Server	Operation
Telnet's	overall	function	is	to	define	a	means	by	which	a	user	or	process	on	one
machine	can	access	and	use	another	machine	as	if	it	were	locally	connected.	This
makes	Telnet	inherently	client/server	in	operation,	like	so	many	other	application
protocols	in	TCP/IP.	Usually,	the	Telnet	client	is	a	piece	of	software	that	acts	as
an	interface	to	the	user,	processing	keystrokes	and	user	commands	and
presenting	output	from	the	remote	machine.	The	Telnet	server	is	a	program
running	on	a	remote	computer	that	has	been	set	up	to	allow	remote	sessions.

TCP	Sessions	and	Client/Server	Communication
Telnet	is	used	for	the	interactive	communication	of	data	and	commands	between
a	client	and	server	over	a	prolonged	period	of	time,	and	is	thus	strongly	based	on
the	concept	of	a	session.	For	this	reason,	Telnet	runs	over	the	connection-
oriented	Transmission	Control	Protocol	(TCP).	Telnet	servers	listen	for
connections	on	well-known	TCP	port	number	23.	When	a	client	wants	to	access
a	particular	server,	it	initiates	a	TCP	connection	to	the	appropriate	server,	which
responds	to	set	up	a	TCP	connection	using	the	standard	TCP	three-way
handshake	(described	in	Chapter	47).

The	TCP	connection	is	maintained	for	the	duration	of	the	Telnet	session,	which
can	remain	alive	for	hours,	days,	or	even	weeks	at	a	time.	The	quality	of	service
features	of	TCP	guarantee	that	data	is	received	reliably	and	in	order,	and	ensure
that	data	is	not	sent	at	too	high	a	rate	for	either	client	or	server.	A	machine
offering	Telnet	service	can	support	multiple	simultaneous	sessions	with	different
users,	keeping	each	distinct	by	identifying	it	using	the	IP	address	and	port



users,	keeping	each	distinct	by	identifying	it	using	the	IP	address	and	port
number	of	the	client.

Since	TCP	is	a	full-duplex	protocol,	both	the	client	and	server	can	send
information	at	will	over	the	Telnet	session.	By	default,	both	devices	begin	by
using	the	standard	NVT	method	for	encoding	data	and	control	commands	(which
we	will	explore	fully	a	little	later	in	this	chapter).	They	can	also	negotiate	the	use
of	Telnet	options	to	provide	greater	functionality	for	the	session.	While	option
negotiation	can	occur	at	any	time,	it	is	normal	for	there	to	be	a	burst	of	such
option	exchanges	when	a	Telnet	session	is	first	established	and	only	occasional
option	command	exchanges	thereafter.

With	the	TCP	connection	in	place	and	the	Telnet	session	active,	the	client	and
server	software	begin	their	normal	jobs	of	interfacing	the	user	to	the	remote	host.
To	the	user,	the	Telnet	session	appears	fundamentally	the	same	as	sitting	down
at	a	terminal	directly	connected	to	the	remote	host.	In	most	cases,	the	server	will
begin	the	user's	session	by	sending	a	login	prompt	to	ask	for	a	user	name	and
password.	The	Telnet	client	will	accept	this	information	from	the	user	and	send
it	to	the	server.	Assuming	the	information	is	valid,	the	user	will	be	logged	in	and
can	use	the	host	in	whatever	manner	her	account	authorizes.

As	mentioned	in	the	Telnet	overview,	even	though	the	protocol	is	commonly
used	for	remote	login,	it	does	not	need	to	be	used	in	this	manner.	The
administrator	of	the	computer	that	is	running	the	Telnet	server	determines	how	it
is	to	be	used	on	that	machine.	As	just	one	example,	a	Telnet	server	can	be
interfaced	directly	to	a	process	or	program	providing	a	service.	I	can	recall	years
ago	using	an	Internet	server	that	provided	weather	information	to	the	public
using	Telnet.	After	using	the	protocol	to	connect	to	that	machine,	users	were
presented	not	with	a	login	prompt,	but	with	a	menu	of	weather	display	options.
Today,	the	Web	has	replaced	most	of	such	facilities,	as	it	is	far	better	suited	to
this	type	of	information	retrieval.

TIP

KEY	CONCEPT	Telnet	is	a	client/server	protocol	that	uses	TCP	to	establish	a	session	between	a	user
terminal	and	a	remote	host.	The	Telnet	client	software	takes	input	from	the	user	and	sends	it	to	the
server,	which	feeds	it	to	the	host	machine's	operating	system.	The	Telnet	server	takes	output	from	the
host	and	sends	it	to	the	client	to	display	to	the	user.	While	Telnet	is	most	often	used	to	implement	remote
login	capability,	it	is	not	specifically	designed	for	logins.	The	protocol	is	general	enough	to	allow	it	to	be



used	for	a	variety	of	functions.

Use	of	Telnet	to	Access	Other	Servers
The	Telnet	NVT	representation	is	used	by	a	variety	of	other	protocols	such	as
SMTP	and	HTTP.	This	means	that	the	same	Telnet	client	that	allows	you	to
access	a	Telnet	server	can	be	used	to	directly	access	other	application	servers.
All	you	need	to	do	is	specify	the	port	number	corresponding	to	the	service.	For
example,	the	following	command	will	allow	you	to	directly	interface	to	a	web
server:

telnet www.someserversomewhere.org 80

You	will	not	receive	a	login	prompt,	but	instead	the	server	will	wait	for	you	to
send	an	HTTP	Request	message,	as	if	you	were	a	web	browser.	If	you	enter	a
valid	request,	the	server	will	send	you	an	HTTP	Response	message.	Used	in	this
way,	Telnet	can	be	very	valuable	as	a	diagnostic	tool.

TIP

KEY	CONCEPT	The	Telnet	Network	Virtual	Terminal	(NVT)	data	representation	has	been	adopted	by
a	host	of	other	TCP/IP	protocols	as	the	basis	for	their	messaging	systems.	Telnet	client	software	can	thus
be	used	not	only	to	connect	to	Telnet	servers,	but	also	to	connect	to	servers	of	protocols	such	as	SMTP
and	HTTP,	which	is	useful	for	diagnostic	purposes.

Telnet	Communications	Model	and	the	Network
Virtual	Terminal	(NVT)
At	its	heart,	Telnet	is	a	rather	simple	protocol.	Once	a	TCP	connection	is	made
and	the	Telnet	session	begins,	the	only	real	task	for	the	client	and	server	software
is	to	capture	input	and	output,	and	redirect	it	over	the	network.	So,	when	the	user
presses	a	key	on	his	local	terminal,	the	Telnet	client	software	captures	it	and
sends	it	over	the	network	to	the	remote	machine.	There,	the	Telnet	server
software	sends	the	keypress	to	the	operating	system,	which	treats	it	as	if	it	had
been	typed	locally.	When	the	operating	system	produces	output,	the	process	is
reversed:	Telnet	server	software	captures	the	output	and	sends	it	over	the
network	to	the	user's	client	program,	which	displays	it	on	the	printer	or	monitor.

To	invoke	two	well-known	clichés,	I	could	say	that	this	looks	good	on	paper,	but
that	the	devil	is	in	the	details.	This	simplified	implementation	would	work	only



that	the	devil	is	in	the	details.	This	simplified	implementation	would	work	only
if	every	computer	and	terminal	used	the	exact	same	hardware,	software,	and	data
representation.	Of	course,	this	is	far	from	the	case	today,	and	was	even	worse
when	Telnet	was	being	developed.	Computers	back	in	the	"good	old	days"	were
highly	proprietary	and	not	designed	to	interoperate.	They	differed	in	numerous
ways—from	the	type	of	keyboard	a	terminal	used	and	the	keystrokes	it	could
send,	to	the	number	of	characters	per	line	and	lines	per	screen	on	a	terminal,	to
the	character	set	used	to	encode	data	and	control	functions.	In	short,	Computer	A
was	designed	to	accept	input	in	a	particular	form	from	its	own	terminals,	and	not
those	of	Computer	B.

This	is	actually	a	fairly	common	issue	in	the	world	of	networking,	and	one	to
which	I	can	draw	a	real-world	analogy	to	help	explain	the	problem	and	how	it
may	be	solved.	Suppose	that	an	important	international	conference	was	attended
by	30	ambassadors	from	different	nations,	each	of	which	had	one	assistant.
Every	ambassador	and	assistant	pair	spoke	only	their	own	language	and	thus
could	only	speak	to	each	other—just	like	a	computer	and	terminal	designed	to
interface	only	to	each	other.	To	allow	the	assistant	from	one	country	to	speak	to
the	ambassador	from	the	others,	one	solution	would	be	to	train	the	assistants	to
speak	the	languages	of	all	the	other	attending	nations.	Back	in	the	computing
world,	this	would	be	like	defining	the	Telnet	Protocol	so	that	every	Telnet	client
software	implementation	understood	how	to	speak	to	every	computer	in
existence.	This	would	work,	but	it	would	be	quite	impractical	and	difficult	to	do.

An	alternative	approach	is	to	define	a	single	common	language	and	have	all	the
ambassadors	and	assistants	learn	it.	While	this	would	require	some	work,	it
would	be	a	lot	less	than	requiring	people	to	learn	dozens	of	languages.	Each
ambassador	and	assistant	would	speak	both	a	native	language	and	this	chosen
common	language.	Each	could	communicate	with	all	of	the	others	using	this
common	language,	without	needing	to	know	all	of	the	languages	that	might	be
used	by	anyone	at	the	conference.	Even	more	important,	if	an	ambassador	and
assistant	showed	up	at	the	conference	speaking	a	new,	31st	language,	all	the
other	delegates	wouldn't	need	to	learn	it.

Telnet	uses	a	very	similar	approach	for	dealing	with	its	problem	of	hardware	and
software	compatibility.	Rather	than	having	terminals	and	hosts	communicate
using	their	various	native	languages,	all	Telnet	clients	and	servers	agree	to	send



data	and	commands	that	adhere	to	a	fictional,	virtual	terminal	type	call	the	NVT.

The	NVT
The	NVT	defines	a	set	of	rules	for	how	information	is	formatted	and	sent,	such
as	character	set,	line	termination,	and	how	information	about	the	Telnet	session
itself	is	sent.

Each	Telnet	client	running	on	a	terminal	understands	both	its	native	language
and	the	NVT	language.	When	users	enter	information	on	their	local	terminal,	it
is	converted	to	NVT	form	for	transmission	over	the	network.	When	the	Telnet
server	receives	this	information,	it	translates	it	from	NVT	form	to	the	format	that
the	remote	host	expects	to	receive	it.	The	identical	process	is	performed	for
transmissions	from	the	server	to	the	client,	in	reverse.	This	is	illustrated	in
Figure	87-1.

Figure	87-1.	Telnet	communication	and	the	Network	Virtual	Terminal	(NVT)	Telnet	uses	the	Network
Virtual	Terminal	(NVT)	representation	to	allow	a	user	terminal	and	remote	host	that	use	different

internal	formats	to	communicate.

TIP

KEY	CONCEPT	The	Telnet	Network	Virtual	Terminal	(NVT)	is	a	uniform	data	representation	that
ensures	the	compatibility	of	communication	between	terminals	and	hosts	that	may	use	very	different
hardware,	software,	and	data	formats.	The	Telnet	client	translates	user	input	from	the	terminal's	native
form	to	NVT	form	for	transport	to	the	Telnet	server,	where	it	is	converted	to	the	host's	internal	format.
The	process	is	reversed	for	output	from	the	host	to	the	user.

The	NVT	is	defined	to	consist	of	a	logical	keyboard	for	input	and	a	logical
printer	for	output	(the	age	of	the	protocol	is	reflected	in	these	terms;	decades	ago



there	were	no	monitors,	all	output	was	on	paper).	NVT	uses	the	7-bit	United
States	ASCII	(US-ASCII)	character	set.	Each	character	is	encoded	using	one	8-
bit	byte.

However,	a	client	and	server	can	use	Telnet	options	to	negotiate	other	data
representations,	including	the	transmission	of	either	extended	ASCII	or	even	full
8-bit	binary	data.

NVT	ASCII	Control	Codes
Regular	ASCII	consists	of	95	regular,	printable	characters	(codes	32	through
126)	and	33	control	codes	(0	through	31	and	127).	The	Telnet	standard	specifies
that	the	output	device	must	be	able	to	handle	all	the	printable	characters,	and	it
mandates	how	several	of	the	other	common	ASCII	control	codes	should	be
interpreted.	Of	these	codes,	three	(0,	10,	and	13)	are	required	to	be	accepted	by
all	Telnet	software;	five	others	are	optional,	but	if	supported,	must	be	interpreted
in	a	manner	consistent	with	the	Telnet	specification.	Table	87-1	describes	the
standard	Telnet	NVT	ASCII	control	codes.

Table	87-1.	Interpretation	of	Standard	Telnet	NVT	ASCII	Control	Codes

ASCII
Value
(Decimal)

ASCII
Character
Code

ASCII
Character

Description Support
Optional/Mandatory

0 NUL Null No	operation	(no	effect	on
output).

Mandatory

7 BEL Bell Produces	an	audible	or	visible
signal	on	the	output	without
moving	the	print	head.	This
notification	may	be	used	to	get
the	user's	attention,	as	in	the
case	of	an	error.

Optional

8 BS Backspace Moves	the	print	position	one
character	to	the	left.

Optional

9 HT Horizontal
Tab

Moves	the	printer	to	the	next
horizontal	tab	stop.	The
standard	does	not	specify	how
devices	agree	on	tab	stop
positions;	this	can	be

Optional



positions;	this	can	be
negotiated	using	Telnet
options.

10 LF Line	Feed Moves	the	printer	to	the	next
line,	keeping	the	print	position
the	same.

Mandatory

11 VT Vertical
Tab

Moves	the	print	line	to	the
next	vertical	tab	stop.	As	with
the	HT	character,	devices	must
use	an	option	to	come	to	an
agreement	on	vertical	tab	stop
positions.

Optional

12 FF Form	Feed Moves	the	printer	to	the	top	of
the	next	page	(or	on	a	display,
clears	the	screen	and	positions
the	cursor	at	the	top).

Optional

13 CR Carriage
Return

Moves	the	printer	to	the	left
margin	of	the	current	print
line.

Mandatory

The	Telnet	NVT	scheme	defines	the	combination	of	the	carriage	return	(CR)	and
line	feed	(LF)	characters	to	represent	the	end	of	a	line	of	ASCII	text.	The	literal
meaning	of	these	two	characters	is	return	to	the	left	margin	(the	CR)	and	go	to
the	next	line	(the	LF).	However,	NVT	treats	the	CRLF	sequence	as	more	than
just	two	independent	characters;	they	are	taken	collectively	to	define	a	logical
end-of-line	character.	This	is	necessary	because	not	all	terminal	types	define	an
end	of	line	using	both	CR	and	LF.	Translation	of	end-of-line	characters	between
the	native	and	NVT	formats	is	one	of	the	functions	that	Telnet	client	and	server
software	must	perform	to	ensure	compatibility	between	terminals	and	hosts.

TIP

KEY	CONCEPT	The	Telnet	NVT	format	is	based	on	7-bit	US-ASCII,	with	each	byte	carrying	one
character.	The	standard	specifies	that	devices	must	handle	all	standard	printable	ASCII	characters,	as
well	as	three	mandatory	control	characters.	Two	of	these	are	the	carriage	return	(CR)	and	line	feed	(LF)
characters;	when	combined,	these	define	the	logical	end	of	a	line	of	text.	The	Telnet	standard	also
describes	the	interpretation	of	five	other	optional	ASCII	control	characters.

Half-Duplex	and	Full-Duplex	Modes



Another	artifact	of	the	age	of	Telnet	is	that	for	maximum	compatibility,	the	NVT
specification	is	designed	under	the	assumption	of	half-duplex	operation:	only
one	device	can	transmit	at	a	time.	A	device	that	is	sending	data	is	supposed	to
end	its	transmission	with	the	special	Telnet	Go	Ahead	command,	telling	the
other	device	that	it	may	now	transmit	(the	next	section	describes	Telnet	protocol
commands).	This	is	similar	to	how	people	using	walkie-talkies	end	each
transmission	with	"Over,"	to	tell	their	partners	that	they	may	now	respond.

Of	course,	modern	networks	operate	in	a	full-duplex	mode,	and	using	half-
duplex	communication	would	be	needlessly	inefficient.	In	most	cases,	the	Telnet
client	and	server	agree	to	use	an	option	(Suppress	Go	Ahead)	that	eliminates	the
need	to	send	this	command.	However,	having	this	as	the	default	is	a	good
example	of	how	NVT	acts	as	a	least	common	denominator	in	Telnet,	in	case	the
simpler	operating	mode	is	needed	by	either	device.

Telnet	Protocol	Commands
Most	of	the	input	that	users	enter	at	a	terminal	takes	the	form	of	data	and
commands	that	are	sent	to	the	application	program	they	are	using.	However,
computer	systems	also	provide	a	means	by	which	users	can	instruct	the	terminal
to	send	certain	commands	that	control	how	the	terminal	itself	operates,	and	how
it	interacts	with	the	computer	to	which	it	is	connected.	The	best	example	of	this
is	the	command	to	interrupt	a	process,	which	is	usually	sent	by	pressing	a	special
key	or	key	combination	on	the	user	terminal.

Telnet	needs	to	have	a	way	to	allow	such	commands	to	be	entered	by	the	user.
However,	here	we	run	into	the	same	problem	that	arises	in	the	communication	of
data	between	terminals	and	computers:	a	lack	of	uniformity	in	representation.
While	all	terminals	and	computers	support	the	ability	to	interrupt	a	running
program,	for	example,	they	may	each	use	a	different	keystroke	to	invoke	it.	For
example,	on	most	UNIX	systems,	the	key	combination	ctrl-C	interrupts	a
program,	but	typing	this	on	a	Windows	system	will	not	(it	usually	represents	the
copy	data	function!).

Since	the	problem	is	the	same	as	the	one	we	ran	into	in	representing	data	flow,
it's	not	too	surprising	that	the	solution	is	the	same:	the	use	of	a	universal
representation	for	a	set	of	standard	commands	to	be	passed	between	the	terminal
and	host	computer.	All	keystrokes	that	represent	these	commands	are	translated



and	host	computer.	All	keystrokes	that	represent	these	commands	are	translated
to	the	standard	Telnet	codes	for	transmission,	and	then	translated	to	the	specific
needs	of	the	host	computer.	So,	if	a	user	presses	ctrl-C	on	a	UNIX	terminal
where	this	is	defined	as	the	interrupt	function,	instead	of	sending	that	exact
keystroke,	the	Telnet	client	sends	the	special	Telnet	Interrupt	Process	command,
which	is	translated	by	the	Telnet	server	to	the	command	code	appropriate	for	the
connected	host.

The	Telnet	standard	includes	a	number	of	these	special	codes	to	allow	a	user	to
control	the	operation	of	the	remote	computer.	It	also	defines	a	set	of	commands
that	are	specific	to	the	Telnet	Protocol	itself;	these	let	the	Telnet	client	and
Telnet	server	software	communicate.	Collectively,	these	are	called	Telnet
protocol	commands.

All	Telnet	commands	are	sent	in	the	same	communication	stream	as	regular	data.
They	are	represented	using	special	byte	values	in	the	range	from	240	to	254.	To
differentiate	between	data	bytes	of	these	values	and	Telnet	commands,	every
command	is	preceded	by	a	special	escape	character,	given	the	name	Interpret	As
Command	(IAC).	IAC	has	a	value	of	255;	when	the	recipient	sees	this	character,
it	knows	the	next	byte	is	a	command,	not	data.	So,	since	the	Telnet	Interrupt
Process	command	has	the	value	244,	to	send	this	command,	the	Telnet	client
would	transmit	the	byte	255	and	then	244.	If	the	actual	data	byte	value	255	needs
to	be	sent,	it	is	transmitted	as	two	255	bytes.	Some	Telnet	commands	also
include	additional	bytes	of	data,	which	are	sent	after	the	command	code	itself.	A
good	example	is	the	use	of	parameters	in	Telnet	option	negotiation,	as	you	will
see	in	the	"Telnet	Options	and	Option	Negotiation"	section	later	in	this	chapter.

TIP

KEY	CONCEPT	The	Telnet	Protocol	defines	a	set	of	protocol	commands	that	are	used	for	two
purposes:	first,	to	represent	standard	control	functions	that	need	to	be	sent	between	a	terminal	and	host,
such	as	the	command	to	interrupt	a	process,	and	second,	to	enable	protocol	communication	between	the
Telnet	client	and	server	software.	Protocol	commands	are	sent	in	the	normal	data	communication	stream
over	the	Telnet	session's	TCP	connection.	Each	is	represented	by	a	byte	value	from	240	to	254,	and	is
preceded	by	the	Interpret	As	Command	(IAC)	command,	byte	value	255,	which	tells	the	recipient	that
the	next	byte	in	the	stream	is	a	command.

You	may	be	wondering	at	this	point	why	the	IAC	character	is	needed	at	all.
After	all,	Telnet	uses	US-ASCII,	which	is	7-bit	data	in	the	byte	range	of	0	to
127,	and	the	Telnet	commands	have	values	higher	than	127.	One	general



127,	and	the	Telnet	commands	have	values	higher	than	127.	One	general
rationale	for	using	the	IAC	escape	character	is	to	be	explicit	that	a	command	is
being	sent.	A	more	specific	reason	is	to	accommodate	the	optional	sending	of	8-
bit	binary	data	over	Telnet,	which	the	client	and	server	can	negotiate.	If	this
mode	were	enabled	and	commands	were	not	preceded	by	the	IAC	character,	this
would	require	all	data	bytes	with	values	from	240	to	255	to	be	marked	somehow
so	they	would	be	interpreted	as	data	and	not	commands.	It	is	more	efficient	to
include	an	extra	byte	for	commands	than	data,	since	commands	are	sent	less
frequently.	By	escaping	commands,	only	data	byte	value	255	requires	two	bytes
to	be	sent.

Table	87-2	lists	the	Telnet	protocol	commands	in	numerical	byte	value	order,
showing	for	each	its	command	code	and	name,	and	describing	its	meaning	and
use.

Table	87-2.	Telnet	Protocol	Commands

Command
Byte
Value
(Decimal)

Command
Code

Command Description

240 SE Subnegotiation
End

Marks	the	end	of	a	Telnet	option	subnegotiation,
used	with	the	SB	code	to	specify	more	specific
option	parameters.	See	the	"Telnet	Options	and
Option	Negotiation"	section	later	in	this	chapter
for	details.

241 NOP No	Operation Null	command;	does	nothing.

242 DM Data	Mark Used	to	mark	the	end	of	a	sequence	of	data	that	the
recipient	should	scan	for	urgent	Telnet	commands.
See	the	discussion	of	Telnet	interrupt	handling	in
the	following	section	for	details.

243 BRK Break Represents	the	pressing	of	the	"break"	or
"attention"	key	on	the	terminal.

244 IP Interrupt
Process

Tells	the	recipient	to	interrupt,	abort,	suspend,	or
terminate	the	process	currently	in	use.

245 AO Abort	Output Instructs	the	remote	host	to	continue	running	the
current	process	but	discard	all	remaining	output



current	process	but	discard	all	remaining	output
from	it.	This	may	be	needed	if	a	program	starts	to
send	unexpectedly	large	amounts	of	data	to	the
user.

246 AYT Are	You	There May	be	used	to	check	that	the	remote	host	is	still
"alive."	When	this	character	is	sent,	the	remote
host	returns	some	type	of	output	to	indicate	that	it
is	still	functioning.

247 EC Erase
Character

Instructs	the	recipient	to	delete	the	last	undeleted
character	from	the	data	stream.	Used	to	undo	the
sending	of	a	character.

248 EL Erase	Line Tells	the	recipient	to	delete	all	characters	from	the
data	stream	back	to	(but	not	including)	the	last
end-of-line	(CRLF)	sequence.

249 GA Go	Ahead Used	in	Telnet	half-duplex	mode	to	signal	the
other	device	that	it	may	transmit.

250 SB Subnegotiation Marks	the	beginning	of	a	Telnet	option
subnegotiation,	used	when	an	option	requires	the
client	and	server	to	exchange	parameters.	See	the
"Telnet	Options	and	Option	Negotiation"	section
later	in	this	chapter	for	a	full	description.

251 WILL Will	Perform In	Telnet	option	negotiation,	indicates	that	the
device	sending	this	code	is	willing	to	perform	or
continue	performing	a	particular	option.

252 WONT Won't	Perform In	Telnet	option	negotiation,	indicates	that	the
device	sending	this	code	is	either	not	willing	to
perform	a	particular	option	or	is	now	refusing	to
continue	to	perform	it.

253 DO Do	Perform In	Telnet	option	negotiation,	requests	that	the	other
device	perform	a	particular	option	or	confirms	the
expectation	that	the	other	device	will	perform	that
option.

254 DONT Don't	Perform In	Telnet	option	negotiation,	specifies	that	the
other	party	not	perform	an	option	or	confirms	a
device's	expectation	that	the	other	party	not
perform	an	option.

255 IAC Interpret	As
Command

Precedes	command	values	240	through	254	as
described	in	the	preceding	descriptions.	A	pair	of
IAC	bytes	in	a	row	represents	the	data	value	255.



IAC	bytes	in	a	row	represents	the	data	value	255.

Perhaps	ironically,	the	Telnet	commands	are	not	used	as	much	today	as	they
were	when	Telnet	was	in	its	early	days,	because	many	of	the	compatibility	issues
that	we	discussed	earlier	no	longer	exist.	ASCII	has	become	the	standard
character	set	of	the	computing	world,	so	many	of	the	functions	such	as	aborting
output	or	interrupting	a	process	no	longer	require	the	use	of	Telnet	commands.
They	are	still	widely	used,	however,	for	internal	Telnet	operations	such	as	option
negotiation.

Telnet	Interrupt	Handling
All	the	bytes	of	data	sent	from	a	Telnet	client	to	a	server	are	received	in	the	order
that	they	were	sent,	and	vice	versa.	This	is	the	way	that	we	expect	an	application
to	operate.	In	fact,	ensuring	that	data	is	not	received	out	of	order	is	one	of	the
jobs	that	we	assume	of	the	reliable	transport	protocol	TCP,	over	which	Telnet
runs.	However,	this	can	cause	a	problem	for	Telnet	because	of	the	way	Telnet
sends	both	data	and	commands	over	the	same	connection.

The	most	important	case	where	this	issue	arises	is	when	a	user	needs	to	interrupt
a	process.	Suppose	that	you	are	using	Telnet	to	run	an	interactive	program	that
takes	user	input,	processes	it,	and	then	produces	output.	You	are	merrily	typing
away	when	you	notice	that	you	haven't	seen	any	output	from	the	program	for	a
while.	It	has	apparently	hung	up	due	to	a	programming	error	or	other	glitch.

If	you	were	using	the	program	on	a	directly	connected	terminal,	you	would
simply	use	the	key	or	keystroke	command	appropriate	to	that	terminal	to
interrupt	or	abort	the	process	and	restart	it.	Instead,	you	are	using	Telnet,	so	you
enter	the	appropriate	keystroke,	which	gets	converted	to	the	special	Telnet
Interrupt	Process	command	code	(byte	value	244,	preceded	by	the	Telnet
Interpret	As	Command	code,	255).

Since	Telnet	uses	only	a	single	stream	for	commands	and	data,	that	code	is
placed	into	the	TCP	data	stream	to	be	sent	over	to	the	Telnet	server.	Since	you
were	entering	data	for	a	while,	that	Telnet	Interrupt	Process	code	will	be	sitting
behind	a	bunch	of	regular	data	bytes.	Now	the	remote	process	has	stopped
reading	this	data,	which	means	the	TCP	receive	buffer	on	the	server	will	start	to
fill	up.	The	Interrupt	Process	command	will	thus	remain	stuck	in	the	buffer,



waiting	to	be	read.	In	fact,	if	the	number	of	data	bytes	in	front	of	the	command	is
high	enough,	the	TCP	buffer	on	the	server	may	fill	entirely,	causing	the	server	to
close	the	client's	TCP	send	window.	This	means	the	Interrupt	Process	command
will	wait	in	the	client's	outgoing	TCP	queue	and	never	be	sent	to	the	remote
host!

What	we	need	here	is	some	way	to	be	able	to	flag	the	Interrupt	Process
command,	so	that	it	can	be	sent	to	the	remote	host	regardless	of	the	number	of
data	bytes	outstanding	in	front	of	it.	If	you've	already	perused	the	chapters
devoted	to	TCP,	you	may	be	thinking	that	you	have	already	read	about	a	feature
of	that	protocol	that	seems	ideally	suited	for	this	exact	problem,	and	you	would
be	correct!	The	TCP	urgent	function	(described	in	Chapter	48)	allows	an
important	piece	of	data	to	be	marked	so	that	it	is	given	priority	over	regular	data,
a	process	sometimes	called	out-of-band	signaling	(because	the	signal	is	outside
the	normal	data	stream).	Telnet	uses	this	feature	of	TCP	to	define	what	it	calls
the	synch	function.

When	needed,	the	synch	function	is	invoked	by	the	client	sending	the	special
Telnet	Data	Mark	(DM)	protocol	command,	while	instructing	its	TCP	layer	to
mark	that	data	as	urgent.	The	URG	bit	in	the	TCP	segment	carrying	this
command	causes	it	to	bypass	TCP's	normal	flow	control	mechanism	so	it	is	sent
over	to	the	remote	host.	The	Telnet	server	software,	seeing	the	synch	in	the	data
stream,	searches	through	all	of	the	data	in	its	buffer	looking	only	for	Telnet
control	commands	such	as	Interrupt	Process,	Abort	Output,	and	Are	You	There.
These	commands	are	then	executed	immediately.	The	server	continues	to	search
for	important	commands	up	to	the	point	where	the	Data	Mark	command	is	seen.
All	intervening	data	is	discarded;	it	will	need	to	be	retransmitted.	After	the	Data
Mark	is	processed,	the	server	returns	to	normal	operation.

It	is	also	possible	for	the	server	to	use	the	synch	function	in	communication	with
the	user	on	the	client	device.	For	example,	if	the	user	sends	the	Abort	Output
command	to	the	server,	she	is	telling	the	server	to	discard	all	remaining	output
from	the	current	process.	The	server	will	stop	sending	that	output,	and	can	also
use	the	synch	function	to	clear	all	outstanding	data	that	is	waiting	in	buffers	to	be
sent	to	the	client	machine	(since	it	causes	data	to	be	discarded).



TIP

KEY	CONCEPT	Telnet	protocol	commands	are	sent	in	the	same	stream	with	user	data,	which	means	a
problem	with	the	remote	host	that	stops	the	flow	of	data	might	cause	user	commands	to	become	backed
up	and	never	received	by	the	host.	Since	this	may	include	commands	issued	by	the	user	to	try	to	fix	the
problem	on	the	host,	this	can	be	a	serious	problem.	To	alleviate	this	situation,	Telnet	includes	the	synch
function,	which	uses	TCP's	urgent	data	transmission	feature	to	force	the	receipt	of	essential	commands,
even	when	regular	data	is	not	being	processed.

Telnet	Options	and	Option	Negotiation
The	basic	Telnet	NVT	specification	solves	the	problem	of	compatibility	between
different	terminal	and	computer	types	by	defining	a	common	representation	for
data	and	commands	that	every	Telnet	client	and	server	uses.	The	price	for	this
universal	representation,	however,	is	very	high:	All	of	the	advanced	or	special
capabilities	of	terminals	and	hosts	are	stripped	off.	The	result	is	a	language	that
everyone	can	speak	but	that	is	not	capable	of	much	more	than	basic
conversation.

The	creators	of	Telnet	recognized	that,	while	it	was	important	to	define	NVT	as
a	common	base	to	ensure	cross-device	compatibility,	it	was	also	essential	that
some	means	be	provided	by	which	clients	and	servers	could	agree	to	use	more
advanced	means	of	communication.	They	defined	a	set	of	Telnet	options	and	a
mechanism	by	which	a	Telnet	client	and	server	can	negotiate	which	options	they
want	to	use.

Most	Telnet	options	are	used	for	improving	the	efficiency	of	how	data	is
transferred	between	devices.	For	example,	by	default,	the	NVT	assumes	half-
duplex	operation	with	each	device,	requiring	it	to	use	the	Go	Ahead	command
after	each	transmission.	However,	virtually	all	hardware	now	supports	full-
duplex	communication,	so	devices	will	usually	agree	to	use	the	Suppress	Go
Ahead	option	to	eliminate	the	need	to	send	this	character.	Similarly,	it	is	possible
for	devices	to	negotiate	the	sending	of	8-bit	binary	data	instead	of	the	standard	7-
bit	ASCII	of	the	Telnet	NVT.

The	process	of	Telnet	option	negotiation	is	described	in	the	main	Telnet	standard
document,	RFC	854,	as	well	as	a	companion	document,	RFC	855,	"Telnet
Option	Specifications."	The	options	themselves	are	described	in	a	separate	set	of



Internet	standards.	Several	of	these	were	published	at	the	same	time	as	RFCs	854
and	855;	others	were	defined	earlier	as	part	of	previous	versions	of	Telnet;	and
still	others	have	been	added	over	the	years.	There	are	now	several	dozen
different	Telnet	options	in	existence.	A	master	list	is	maintained	by	Internet
Assigned	Numbers	Authority	(IANA),	just	as	it	maintains	other	TCP/IP
parameters.	An	up-to-date	listing	of	all	Telnet	options	can	be	found	on	the	IANA
website	at	http://www.iana.org/assignments/telnet-options/.

Common	Telnet	Options
Each	Telnet	option	is	identified	using	a	decimal	byte	code	with	a	possible	value
of	0	to	254.	The	value	255	is	reserved	to	extend	the	option	list	should	more	than
255	options	ever	be	needed.	Each	option	also	has	a	text	code	string	associated
with	it,	which	is	often	used	as	a	symbol	in	place	of	the	code	number	in	both
protocol	discussions	and	diagnostic	output.	Table	87-3	lists	some	of	the	more
interesting	Telnet	options	and	provides	a	brief	description	of	each.

Table	87-3.	Common	Telnet	Options

Option
Number

Option	Code Option
Name

Description Defining
RFC

0 TRANSMIT-
BINARY

Binary
Transmission

Allows	devices	to	send	data	in
8-bit	binary	form	instead	of	7-
bit	ASCII.

856

1 ECHO Echo Allows	devices	to	negotiate	any
of	a	variety	of	different	echo
modes.	(When	you	press	a	key
on	a	terminal,	you	also	expect	to
see	the	character	you	entered
appear	on	the	terminal	screen	as
output;	this	is	called	echoing	the
input.)

857

3 SUPPRESS-GO-
AHEAD

Suppress	Go
Ahead

Allows	devices	not	operating	in
half-duplex	mode	to	no	longer
need	to	end	transmissions	using
the	Telnet	Go	Ahead	command.

858

5 STATUS Status Lets	a	device	request	the	status
of	a	Telnet	option.
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http://www.iana.org/assignments/telnet-options/


6 TIMING-MARK Timing	Mark Allows	devices	to	negotiate	the
insertion	of	a	special	timing
mark	into	the	data	stream,	which
is	used	for	synchronization.

860

10 NAOCRD Output
Carriage
Return
Disposition

Lets	the	devices	negotiate	how
carriage	returns	will	be	handled.

652

11 NAOHTS Output
Horizontal
Tab	Stops

Allows	the	devices	to	determine
what	horizontal	tab	stop
positions	will	be	used	for	output
display.

653

12 NAOHTD Output
Horizontal
Tab	Stop
Disposition

Allows	the	devices	to	negotiate
how	horizontal	tabs	will	be
handled	and	by	which	end	of	the
connection.

654

13 NAOFFD Output	Form
Feed
Disposition

Allows	the	devices	to	negotiate
how	form	feed	characters	will
be	handled.

655

14 NAOVTS Output
Vertical	Tab
Stops

Used	to	determine	what	vertical
tab	stop	positions	will	be	used
for	output	display.

656

15 NAOVTD Output
Vertical	Tab
Disposition

Lets	devices	negotiate	the
disposition	of	vertical	tab	stops.

657

16 NAOLFD Output	Line
Feed
Disposition

Allows	devices	to	decide	how
line	feed	characters	should	be
handled.

658

17 EXTEND-ASCII Extended
ASCII

Lets	devices	agree	to	use
extended	ASCII	for
transmissions	and	negotiate	how
it	will	be	used.

698

24 TERMINAL-TYPE Terminal
Type

Allows	the	client	and	server	to
negotiate	the	use	of	a	specific
terminal	type.	If	they	agree,	this
allows	the	output	from	the
server	to	be	ideally	customized
to	the	needs	of	the	particular
terminal	the	user	is	using.

1091



terminal	the	user	is	using.

31 NAWS Negotiate
About
Window	Size

Permits	communication	of	the
size	of	the	terminal	window.

1073

32 TERMINAL-SPEED Terminal
Speed

Allows	devices	to	report	on	the
current	terminal	speed.

1079

33 TOGGLE-FLOW-
CONTROL

Remote	Flow
Control

Allows	flow	control	between	the
client	and	the	server	to	be
enabled	and	disabled.

1372

34 LINEMODE Line	Mode Allows	the	client	to	send	data
one	line	at	a	time	instead	of	one
character	at	a	time.	This
improves	performance	by
replacing	a	large	number	of	tiny
TCP	transmissions	with	a
smaller	number	of	larger	ones.

1184

37 AUTHENTICATION Authentication Lets	the	client	and	server
negotiate	a	method	of
authentication	to	secure
connections.
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TIP

KEY	CONCEPT	The	Telnet	NVT	specification	ensures	that	all	devices	using	Telnet	can	talk	to	each
other,	but	accomplishes	this	communication	at	the	lowest	level.	To	allow	the	use	of	more	sophisticated
formats	and	services,	Telnet	defines	a	number	of	options.	If	a	client	and	server	both	implement	a
particular	option,	they	can	enable	its	use	through	a	process	of	negotiation.

Telnet	Option	Negotiation
The	first	stage	in	Telnet	option	negotiation	is	for	the	client	and	server	to	decide
whether	they	want	to	enable	a	particular	option.	One	of	the	aspects	of	Telnet's
symmetry	of	operation	is	that	either	device	may	choose	to	initiate	the	use	of	an
option.	The	initiating	device	may	either	specify	that	it	wants	to	start	using	an
option	or	that	it	wants	the	other	device	to	start	using	it.	The	responding	device
may	agree	or	disagree.	An	option	can	be	enabled	only	if	both	devices	agree	to	its
use.

This	negotiation	is	performed	using	four	Telnet	protocol	commands:	WILL,
WONT,	DO,	and	DONT.



WONT,	DO,	and	DONT.

To	specify	that	it	wants	to	start	using	an	option,	the	initiator	sends	the	WILL
command	to	the	other	device.	There	are	two	possible	replies	by	the	responding
device:

DO	Sent	to	indicate	agreement	that	the	initiator	should	use	the	option;	it	is	then
considered	enabled.

DONT	Sent	to	specify	that	the	initiator	must	not	use	the	option.

If	the	initiator	wants	the	other	device	to	start	using	an	option,	it	sends	the	DO
command.	That	device	may	respond	in	two	ways:

WILL	Sent	to	specify	that	the	responding	device	will	agree	to	use	the	option;
the	option	is	enabled.

WONT	Sent	to	tell	the	initiator	that	the	responder	will	not	use	the	option
requested.

The	symmetry	of	Telnet	and	the	fact	that	both	DO	and	WILL	can	be	used	either
to	initiate	a	negotiation	or	respond	to	one	make	Telnet's	option	negotiation
potentially	complicated.	Since	either	device	can	initiate	negotiation	of	an	option
at	any	time,	this	could	result	in	acknowledgment	loops	if	both	devices	were	to
try	to	enable	an	option	simultaneously	or	each	kept	responding	to	the	other's
replies.	For	this	reason,	the	Telnet	standard	specifies	restrictions	on	when	the
WILL	and	DO	commands	are	used.	One	is	that	a	device	may	send	a	negotiation
command	only	to	request	a	change	in	the	status	of	an	option;	it	cannot	send	DO
or	WILL	just	to	confirm	or	reinforce	the	current	state	of	the	option.	Another	is
that	a	device	receiving	a	request	to	start	using	an	option	it	is	already	using	should
not	acknowledge	it	using	DO	or	WILL.

Since	an	option	may	be	activated	only	if	both	devices	agree	to	use	it,	either	may
disable	the	use	of	an	option	at	any	time	by	sending	one	of	these	commands:

WONT	Sent	by	a	device	to	indicate	that	it	is	going	to	stop	using	an	option.	The
other	device	must	respond	with	DONT	as	a	confirmation.

DONT	Sent	by	a	device	to	indicate	that	it	wants	the	other	device	to	stop	using	an
option.	The	other	device	must	respond	with	WONT.

TIP



KEY	CONCEPT	Either	device	may	choose	to	negotiate	the	use	of	a	Telnet	option.	The	initiator	uses	the
WILL	command	to	specify	that	it	wants	to	start	using	a	particular	option;	if	the	other	device	agrees,	it
responds	with	DO;	otherwise,	it	sends	DONT.	Alternatively,	the	initiator	can	use	the	DO	command	to
indicate	that	it	wants	the	other	device	to	start	using	an	option;	that	device	responds	with	WILL	if	it
agrees	to	do	so	or	WONT	if	it	does	not.	Either	device	may	disable	the	use	of	an	option	at	any	time	by
sending	the	other	a	WONT	or	DONT	command.

Option	Subnegotiation
All	of	the	DO/DONT/WILL/WONT	negotiation	just	described	serves	only	to
enable	or	disable	an	option.	Some	options,	such	as	the	binary	transmission
option	(TRANSMIT-BINARY),	are	either	only	off	or	on;	in	which	case,	this
option	negotiation	is	sufficient.	Other	options	require	that	after	they	are	enabled,
the	client	and	server	exchange	parameters	to	control	how	the	option	works.	For
example,	the	TERMINAL-TYPE	option	requires	some	way	for	the	client	to	send
the	server	the	name	of	the	terminal.	Telnet	allows	the	client	and	server	to	send	an
arbitrary	amount	of	data	related	to	the	option	using	a	process	called	option
subnegotiation.

A	device	begins	the	subnegotiation	process	by	sending	a	special	sequence	of
Telnet	protocol	commands	and	data.	First,	the	device	sends	the	SB
(subnegotiation)	command,	followed	by	the	option	number	and	parameters	as
defined	by	the	particular	option,	and	then	ending	the	subnegotiation	data	by
sending	the	SE	(subnegotiation	end)	command.	Both	SB	and	SE	must	be
preceded	by	the	Interpret	As	Command	(IAC)	command	byte.

Let's	take	the	terminal	type	negotiation	as	an	example.	Suppose	the	server
supports	this	option	and	would	like	the	client	to	use	it.	The	server	starts	option
negotiation	by	sending	the	DO	command:

IAC DO TERMINAL-TYPE

Assuming	the	client	agrees,	it	will	respond	with	the	WILL	command:
IAC WILL TERMINAL-TYPE

Now	the	terminal	type	option	is	in	effect,	but	the	server	still	doesn't	know	which
terminal	the	client	is	using.	It	can	prompt	the	client	to	provide	that	information
by	sending	this	command:

IAC SB TERMINAL-TYPE SEND IAC SE

The	client	receiving	this	option	subnegotiation	command	will	respond	with	the



The	client	receiving	this	option	subnegotiation	command	will	respond	with	the
following:

IAC SB TERMINAL-TYPE IS <some_terminal_type> IAC SE

TIP

KEY	CONCEPT	The	WILL	and	DO	commands	only	turn	on	a	Telnet	option	that	a	client	and	server
agree	to	use.	In	some	cases,	an	option	requires	additional	information	to	be	sent	between	the	client	and
server	device	for	it	to	function	properly.	This	is	accomplished	through	a	process	of	option
subnegotiation.	Either	device	sends	the	other	a	set	of	data	relevant	to	the	option,	bracketed	by	the	SB
(subnegotiation)	and	SE	(subnegotiation	end)	Telnet	protocol	commands.



Berkeley	Remote	(r)	Commands
TCP/IP	has	achieved	success	in	large	part	due	to	its	universality—it	has	been
implemented	on	virtually	every	major	computing	platform.	While	the	suite	is
thus	not	specific	to	any	operating	system,	there	is	no	denying	that	its	history	is
closely	tied	to	a	particular	one—UNIX.	Most	of	the	computers	on	the	early
Internet	used	UNIX,	and	the	development	of	TCP/IP	has	paralleled	that	of	UNIX
in	a	number	of	respects.

One	of	the	most	important	organizations	involved	in	the	development	of	UNIX,
and	thus	TCP/IP	indirectly,	was	the	University	of	California	at	Berkeley	(UCB).
The	USB-developed	well-known	Berkeley	Software	Distribution	(BSD)	UNIX
has	been	in	widespread	use	for	over	20	years.	They	also	developed	a	set	of
commands	for	BSD	UNIX	to	facilitate	various	remote	operation	functions	over	a
TCP/IP	internetwork.	Each	of	these	programs	begins	with	the	letter	r	(for
remote),	so	they	have	come	to	be	known	as	both	the	Berkeley	remote	commands
(or	utilities)	and	also	simply	the	r	commands.	Since	their	initial	creation,	they
have	been	adopted	for	most	variations	of	UNIX	and	some	other	operating
systems	as	well.

TIP

BACKGROUND	INFORMATION	This	section	will	probably	make	much	more	sense	to	those	who
have	some	understanding	of	the	UNIX	operating	system	than	those	who	do	not..

Berkeley	Remote	Login	(rlogin)
The	head	of	the	Berkeley	remote	protocol	family	is	the	remote	login	command,
rlogin.	As	the	name	clearly	implies,	the	purpose	of	this	program	is	to	allow	a
user	on	a	UNIX	host	to	log	in	to	another	host	over	a	TCP/IP	internetwork.	Since
Telnet	is	also	often	used	for	remote	login,	rlogin	and	Telnet	are	sometimes
considered	alternatives	to	each	other	for	TCP/IP	remote	login.	While	they	can	be
used	in	a	similar	way,	they	are	quite	different	in	a	few	respects.

From	a	conceptual	standpoint,	Telnet	is	designed	as	a	protocol	to	enable
terminal/host	communication.	As	I	mentioned	in	the	Telnet	overview	earlier	in
this	chapter,	that	protocol	was	not	designed	specifically	for	the	purpose	of



remote	login.	In	contrast,	rlogin	was	intended	for	that	specific	purpose,	and	this
is	reflected	in	its	operation.

The	protocol	requires	rlogin	server	software	to	be	running	on	the	host	that	is
going	to	allow	remote	access;	it	is	usually	called	rlogind	(for	rlogin	daemon,
the	latter	word	being	the	standard	UNIX	term	for	a	background	server	process).
The	server	listens	for	incoming	connection	requests	on	TCP	port	513.	Users	who
want	to	remotely	log	in	to	the	server	run	the	rlogin	command	on	their	local	host
and	specify	the	name	of	the	server.	The	client	makes	a	TCP	connection	to	the
server	and	then	sends	to	the	server	a	string	containing	the	following	information:

The	login	name	of	the	user	on	the	client	machine

The	login	name	that	the	user	wants	to	use	on	the	server	(which	is	often	the
same	as	the	user's	login	name	on	the	client,	but	not	always)

Control	information	such	as	the	type	and	speed	of	the	terminal

The	server	processes	this	information	and	begins	the	login	process.	It	will
normally	prompt	the	user	for	a	password	to	log	in	to	the	remote	host.	Assuming
the	password	is	correct,	the	user	will	be	logged	in	to	the	remote	host	and	can	use
it	as	if	the	user	were	locally	connected.

From	a	practical	standpoint,	the	rlogin	command	is	much	simpler	than	Telnet;
it	does	not	support	Telnet's	full	command	structure,	nor	capabilities	such	as
option	negotiation.	It	does	include	a	small	set	of	commands,	however.	The	client
is	able	to	send	to	the	server	one	key	piece	of	information:	the	current	size	of	the
terminal	window	in	use.	The	server	is	able	to	tell	the	client	to	turn	on	or	off	flow
control,	request	that	the	client	send	it	the	current	window	size,	or	ask	the	client	to
flush	pending	output	that	the	server	has	sent,	up	to	a	certain	point	in	the	data
stream.

Some	organizations	have	many	different	UNIX	hosts	that	are	used	every	day,
and	needing	to	constantly	type	passwords	when	using	rlogin	can	be	somewhat
of	a	chore.	On	these	systems,	it	is	possible	for	administrators	to	set	up	control
files	that	specify	combinations	of	host	names,	user	names,	and	passwords.	If	set
up	correctly,	this	enables	an	authorized	user	to	use	rlogin	to	remotely	access	a
host	automatically,	without	needing	to	enter	either	a	login	name	or	password.

As	originally	designed,	rlogin	is	a	classic	example	of	a	protocol	from	the	early



days	of	TCP/IP,	since	it	emphasizes	simplicity	and	usability	over	security.	This
is	especially	true	of	the	automated	login	process	just	described.	The	original
schemes	used	by	rlogin	for	authentication	are	considered	inadequate	for
modern	TCP/IP	internetworks,	especially	those	connected	to	the	Internet.	Later
versions	of	rlogin	have	been	enhanced	with	more	secure	authorization	methods.
There	is	also	a	newer	program	called	slogin	(for	secure	login)	that	uses	stronger
authentication	and	encryption,	which	is	intended	to	replace	rlogin	on	newer
systems.

TIP

KEY	CONCEPT	The	Berkeley	remote,	or	r,	commands	facilitate	remote	operations	between	UNIX
hosts	on	a	TCP/IP	internetwork.	The	base	command	of	the	family	is	the	remote	login	command,	rlogin,
which	allows	a	device	on	one	host	to	access	and	use	another	as	if	it	were	locally	connected	to	it.	rlogin	is
often	used	as	an	alternative	to	Telnet.	It	is	simpler	than	Telnet,	both	conceptually	and	practically.

Berkeley	Remote	Shell	(rsh)
A	user	would	normally	use	rlogin	when	he	needs	to	log	in	to	a	server	to
perform	a	number	of	tasks.	There	are	some	situations,	however,	where	a	user
needs	to	only	enter	one	command	on	a	remote	host.	With	rlogin,	the	user	would
need	to	log	in	to	the	host,	execute	the	command,	and	then	log	back	out	again.
This	isn't	exactly	an	earth-shattering	amount	of	inconvenience,	especially	when
the	correct	configuration	files	are	set	up	to	allow	automatic	login.	Over	the
course	of	time,	however,	all	the	extra	logging	in	and	out	can	become	tedious.	As
a	convenience,	a	variation	of	rlogin,	called	rsh	(for	remote	shell),	allows	a	user
to	access	a	remote	host	and	execute	a	single	command	on	it	without	requiring	the
login	and	logout	steps.

NOTE

Shell	is	the	standard	term	used	in	UNIX	to	refer	to	the	user	interface	that	accepts	commands	from	the
user	and	displays	output	on	the	screen.

The	rsh	command	is	based	on	rlogin	and	works	in	much	the	same	way,	except
that	it	is	oriented	around	executing	a	command	rather	than	establishing	a
persistent	login	session.	The	server	process	on	the	remote	host	is	usually	called



rshd	(for	remote	shell	daemon)	and	listens	for	incoming	rsh	requests.	When	one
is	received,	the	user	is	logged	in	through	the	same	mechanism	as	rlogin.	The
command	runs	on	the	remote	host,	and	then	the	user	is	automatically	logged	out.

rsh	is	most	useful	when	automatic	login	is	employed,	so	that	the	program	can	be
run	without	the	need	for	the	user	to	enter	a	login	name	or	password.	In	that	case,
it	is	possible	to	have	programs	use	rsh	to	automatically	run	commands	on
remote	hosts	without	the	need	for	human	intervention,	which	opens	up	a	number
of	possibilities	for	UNIX	users.	The	normal	UNIX	user	interface	concepts	of
standard	input	(stdin),	standard	output	(stdout),	and	standard	error	(stderr)	also
apply	to	rsh,	so	you	can	use	it	to	execute	a	remote	command	and	redirect	the
output	to	a	local	file.	For	example,	the	following	command	would	let	a	user	get	a
listing	of	his	home	directory	on	the	host	server	and	store	it	in	the	local	file
named	remotelist:

rsh <somehost> ls -l >remotelist

TIP

KEY	CONCEPT	The	rsh	(remote	shell)	command	is	similar	to	the	Berkeley	rlogin	command,	but
instead	of	opening	a	login	session	on	a	remote	host,	it	executes	a	single,	user-provided	command.	rsh
can	be	helpful	for	users	who	need	to	perform	a	quick	operation	on	a	remote	host,	and	it	can	also	be
employed	by	other	programs	to	automate	network	tasks.

Since	rsh	is	based	on	rlogin,	all	of	the	concerns	that	apply	to	rlogin	are	also
relevant	here,	especially	with	regard	to	security.	(We	really	don't	want
unauthorized	users	running	commands	on	our	servers!)	As	with	rlogin,	newer
versions	of	rsh	support	more	advanced	authentication	options	than	the	original
software.	Also,	just	as	slogin	is	a	newer,	more	secure	version	of	rlogin,	there
is	a	program	called	ssh	(for	secure	shell)	that	replaces	rsh	on	many	systems.

NOTE

On	some	systems,	if	rsh	is	entered	without	a	command	specified	to	execute,	an	interactive	remote
session	is	established,	exactly	as	if	the	rlogin	command	had	been	entered	instead	of	rsh.

Other	Berkeley	Remote	Commands
The	rlogin	and	rsh	commands	are	the	generic	members	of	the	Berkeley	r



family	of	programs	that	allow	remote	access	to	a	host.	To	complement	these,	the
developers	also	defined	a	small	number	of	specific	remote	commands.	These	are
essentially	remote	versions	of	some	of	the	more	common	UNIX	functions.
Instead	of	the	command	being	applied	to	only	one	system,	however,	it	is	used
between	two	systems	or	across	all	systems	on	a	TCP/IP	network.

All	of	these	commands	are	based	on	rlogin	in	the	same	way	as	rsh	is.	They
work	in	the	same	way,	but	instead	of	opening	a	session	or	passing	a	user-
specified	command	to	the	remote	host,	they	execute	a	particular	function.	The
following	are	the	most	common	of	these	remote	commands:

Remote	Copy	(rcp)	This	is	the	remote	version	of	the	UNIX	copy	(cp)
command.	It	allows	a	file	to	be	copied	between	the	local	host	and	the	remote
host	or	between	two	remote	hosts.	The	usual	syntax	is	basically	the	same	as	the
regular	cp	command,	but	the	source	and/or	destination	is	specified	as	being	on	a
remote	host.	The	rcp	command	can	be	used	in	a	manner	similar	to	FTP,	but	is
much	simpler	and	less	capable.	Or,	to	put	it	another	way,	rcp	is	to	FTP	what
rlogin	is	to	Telnet.	(That's	not	a	perfect	analogy,	but	it's	pretty	close.)

Remote	Uptime	(ruptime)	The	UNIX	command	uptime	displays	how	long	a
computer	has	been	running	since	it	was	last	booted,	along	with	information
related	to	its	current	load.	ruptime	is	the	remote	version	of	this	command;	it
displays	the	current	status	of	each	machine	on	the	network	(up	or	down),	how
long	each	up	machine	has	been	up	since	its	last	boot,	and	its	load	statistics.

Remote	Who	(rwho)	This	is	the	remote	version	of	the	who	command.	Where
who	shows	all	the	users	logged	on	to	the	host	where	it	is	run,	rwho	shows	all
users	logged	on	to	all	machines	on	the	network.

The	ruptime	and	rwho	commands	both	rely	on	the	presence	of	the	rwhod	(for
remote	who	daemon)	running	in	the	background	on	networked	machines.	These
processes	routinely	share	information	with	each	other	about	host	uptime	and	who
is	logged	on	to	each	system,	so	it	can	be	quickly	displayed	when	either	ruptime
or	rwho	is	run.

On	some	operating	systems,	other	remote	commands	may	also	be	implemented.
As	with	rlogin	and	rsh,	security	issues	may	apply	to	these	commands,	and
there	may	be	efficiency	concerns	with	others	(such	as	rwho).	For	these	reasons,



on	many	networks,	these	commands	are	no	longer	used.



Internet	Relay	Chat	Protocol	(IRC)
The	primary	advantage	that	electronic	mail	(email)	offers	over	conventional	mail
is	speed.	Instead	of	needing	to	wait	for	days	or	weeks	for	a	message	to	be
delivered,	it	usually	arrives	in	minutes	or	even	seconds.	This	makes	email	far
more	useful	than	the	regular	postal	service	for	most	types	of	information
transfer.	There	are	some	cases,	however,	where	speed	of	delivery	is	not
sufficient	to	make	email	an	ideal	mechanism	for	communication.	One	such	case
is	where	a	dialogue	is	required	between	two	parties.

Consider	that	even	though	email	may	be	delivered	very	quickly,	it	uses	a
decoupled	model	of	communication.	Say	that	Ellen	sends	an	email	to	Jane.	The
message	may	show	up	in	Jane's	inbox	in	a	matter	of	seconds,	but	Jane	may	not
be	around	to	read	it	at	the	time	it	arrives.	Jane	might	not	see	the	message	until
hours	later.	Then	Jane	would	send	a	response	to	Ellen,	who	might	not	see	it	for	a
while.	If	the	subject	they	are	discussing	requires	several	dozen	iterations	of	this
sort,	it	could	take	a	very	long	time	before	the	exchange	is	completed.

In	the	real	world,	of	course,	most	of	us	would	never	use	email	for	such	a
conversation,	preferring	instead	that	high-tech	communication	device	that	we
call	the	telephone.	Many	people	using	computers	realized	that	it	would	be	useful
to	have	a	way	for	two	or	more	people	to	interactively	discuss	issues	in	a	manner
similar	to	a	telephone	conversation.	In	the	online	world,	this	is	commonly	called
chatting,	and	one	of	the	first	and	most	important	application	protocols	designed
to	implement	it	in	TCP/IP	was	the	Internet	Relay	Chat	(IRC)	Protocol.

Prior	to	the	widespread	use	of	the	Internet,	people	with	computers	would	often
communicate	by	dialing	in	to	a	bulletin	board	system	(BBS)	or	other	proprietary
service.	IRC	was	originally	created	by	a	gentleman	from	Finland	named	Jarkko
Oikarinen,	based	on	his	experience	with	chat	applications	on	BBSes.	He	wrote
the	first	client	and	server	software	in	1988.	The	protocol	was	later	formally
defined	in	RFC	1459,	"Internet	Relay	Chat	Protocol,"	published	May	1993.	In
April	2000,	the	IRC	standard	was	revised	and	enhanced	with	several	new
extended	capabilities,	and	published	as	a	set	of	four	smaller	documents:	RFCs
2810	through	2813.	Each	of	these	focuses	on	one	particular	area	of	IRC
functionality.



NOTE

RFC	1459	has	the	experimental	RFC	status,	and	the	RFC	2810	to	2813	group	is	designated
Informational.	This	makes	IRC	optional;	it	does	not	need	to	be	implemented	on	TCP/IP	devices.

IRC	Communication	Model	and	Client/Server
Operation
IRC	is	an	interesting	protocol	in	that	it	is	not	based	strictly	on	the	standard
client/server	model	of	TCP/IP	protocol	operation.	IRC	servers	are	TCP/IP
machines	that	run	IRC	server	software.	They	are	configured	with	information
that	allows	them	to	establish	TCP	connections	to	each	other.	IRC	uses	TCP
because	the	connections	are	maintained	over	a	long	period	of	time,	and	reliable
transport	of	data	is	required.	Server	connections	are	used	to	exchange	control
information	and	user	data,	forming	a	logical	IRC	network	at	the	application
level,	which	allows	any	server	to	send	to	any	other	server,	using	intermediate
servers	as	conduits.	Servers	are	managed	by	IRC	operators	(IRCops)	who	have
special	privileges	that	allow	them	to	ensure	that	everything	runs	smoothly	on	the
network.

The	IRC	network	forms	the	backbone	of	the	IRC	communication	service.	A	user
can	access	the	network	by	running	IRC	client	software	on	any	TCP/IP-enabled
device.	The	user	enters	the	name	of	one	of	the	servers	on	the	network	and
establishes	a	TCP	connection	to	that	server.	This	causes	the	user	to	be	connected
directly	to	one	server,	and	thus,	indirectly	to	all	of	the	others	on	the	network.
This	allows	that	user	to	send	and	receive	messages	to	and	from	all	other	users
connected	either	to	the	user's	server	or	other	servers.

Messaging	and	IRC	Channels
The	most	common	type	of	communication	in	IRC	is	group	messaging,	which	is
accomplished	using	IRC	channels.	A	channel	is	a	virtual	meeting	place	of	sorts
and	is	also	sometimes	called	a	chat	room	(though	IRC	purists	scoff	at	the	use	of
that	term).	Every	IRC	network	has	hundreds	or	even	thousands	of	different
channels,	each	of	which	is	dedicated	to	a	particular	type	of	discussion,	ranging
from	the	serious	to	the	silly.	For	example,	a	group	of	people	interested	in	talking



about	meteorology	could	establish	a	channel	called	#weather,	where	they	would
meet	regularly	to	discuss	various	aspects	of	climatology	and	interesting	weather
events.

IRC	is	an	inherently	text-based	protocol	(though	it	is	also	possible	to	use	IRC
clients	to	transfer	arbitrary	files	between	users,	including	images	and	executable
programs).	To	communicate	in	a	channel,	all	a	user	needs	to	do	is	enter	text	in
the	appropriate	spot	in	the	IRC	client	program,	and	then	the	program
automatically	sends	this	text	to	every	other	member	of	the	channel.	The	IRC
network	handles	the	relaying	of	these	messages	in	real	time	from	the	sender's
connected	server	to	other	servers	in	the	network,	and	then	to	all	user	machines
on	those	servers.	When	other	users	see	the	first	user's	message,	they	can	reply
with	messages	of	their	own,	which	will,	in	turn,	be	propagated	across	the
network.	Each	IRC	user	chooses	a	nickname	(often	abbreviated	nick)	that	is	like
a	handle	used	for	communication	while	connected	to	the	network.

IRC	also	supports	one-to-one	communication,	which	can	be	used	for	private
conversation.	To	use	this	method,	a	user	just	needs	the	nickname	of	another	user
to	whom	she	wants	to	talk.	She	uses	a	special	command	to	send	messages
directly	to	that	user,	who	can	respond	in	kind.	This	is	not	a	secure	form	of
communication,	since	the	messages	are	not	encrypted,	and	they	pass	through
servers	where	they	could	be	monitored.	However,	there	is	so	much	traffic	on	a
typical	IRC	network	that	any	given	message	is	unlikely	to	be	monitored.

The	IRC	Protocol	defines	a	rich	command	set	that	allows	users	to	perform
essential	functions,	such	as	joining	or	leaving	a	channel,	changing	nicknames,
changing	servers,	setting	operating	modes	for	channels,	and	so	forth.	The	exact
command	set	and	features	available	depend	both	on	the	specific	software	used
for	the	user's	IRC	client	and	the	features	available	on	the	IRC	network	itself.	Not
all	IRC	networks	run	the	same	version	of	the	protocol.

IRC	and	the	Modern	Internet
IRC	became	very	popular	in	the	early	1990s	because	of	the	powerful	way	that	it
allows	users	from	anywhere	on	the	Internet	to	meet	and	share	information
dynamically.	It	acts	like	a	text-based	telephone,	but	users	across	the	globe	don't
have	the	expense	of	long-distance	calls.

One	of	the	most	important	characteristics	of	IRC	is	its	open-ended	nature;	it



One	of	the	most	important	characteristics	of	IRC	is	its	open-ended	nature;	it
gives	every	person	the	freedom	to	communicate	in	whatever	way	he	or	she
considers	best.	For	example,	every	IRC	channel	has	an	owner,	who	has	certain
rights	related	to	how	the	channel	is	used,	including	the	ability	to	decide	who
should	be	allowed	in	the	channel.	This	may	seem	autocratic,	but	IRC	lets	anyone
start	a	new	channel	instantly	and	become	that	channel's	owner,	without	the	need
for	prior	registration	or	authorization.	This	means	that	if	you	don't	like	how	a
particular	channel	is	run,	you	can	start	your	own	with	a	minimum	of	fuss.	You
are	not	forced	to	adhere	to	anyone's	rules,	other	than	the	rules	set	forth	for	the
server	(which	are	usually	just	intended	to	prevent	abuse).

This	same	principle	extends	to	the	IRC	networks	themselves.	There	isn't	just	one
single	IRC	network;	there	are	dozens	of	different	ones.	Some	are	large,	well-
established	networks	that	may	have	more	than	100	servers	and	thousands	of
users;	others	are	smaller	and	devoted	to	specific	areas	of	interest	or	geographical
regions.	Anyone	can	set	up	their	own	IRC	network	if	they	have	the	hardware	and
software,	and	some	organizations	have	set	up	private,	dedicated	IRC	servers	for
their	own	use.

IRC	is	considered	by	many	to	be	the	most	important	ancestor	of	the	related
interactive	applications	collectively	known	as	instant	messaging.	These	services
are	offered	by	several	organizations,	including	America	Online	(AOL),	Yahoo,
and	Microsoft's	MSN.	The	idea	behind	them	is	very	similar	to	that	of	IRC.	Each
allows	a	message	sent	by	one	user	to	be	displayed	immediately	to	another,
though	most	are	focused	primarily	on	user-to-user	messages	rather	than	group
messaging.	Instant	messaging	has	surpassed	IRC	in	overall	use,	perhaps	due	to
the	large	subscriber	base	of	services	like	AOL.	However,	IRC	is	still	widely	used
by	thousands	of	enthusiasts	on	a	daily	basis	for	both	entertainment	and	business
purposes.



Chapter	88.	TCP/IP
ADMINISTRATION	AND
TROUBLESHOOTING	UTILITIES
AND	PROTOCOLS

This	final	chapter	on	application	protocols	is	a	bit	different	from	the	previous
ones.	It	doesn't	describe	applications	designed	for	end	users.	Rather,	it	discusses
a	set	of	TCP/IP	troubleshooting	utilities	and	protocols,	which	are	normally	the
province	of	internetwork	administrators.	Even	though	millions	of	people	use
TCP/IP	every	day	without	even	knowing	that	these	applications	exist—much
less	how	they	work—they	are	critically	important	to	those	who	maintain	TCP/IP
internetworks.	Since	many	of	you	are	studying	TCP/IP	so	that	you	can
implement	and	administer	this	technology,	understanding	how	these	applications
work	is	well	worth	your	time.

In	this	chapter,	I	provide	an	overview	of	a	number	of	software	utilities	that	are
commonly	employed	to	help	set	up,	configure,	and	maintain	TCP/IP
internetworks.	These	programs	allow	a	network	administrator	to	perform
functions	such	as	checking	the	identity	of	a	host,	verifying	connectivity	between
two	hosts,	checking	the	path	of	routers	between	devices,	examining	the
configuration	of	a	computer,	and	looking	up	a	Domain	Name	System	(DNS)
domain	name.

The	goal	of	this	chapter	is	to	provide	explanations	of	the	general	purpose	and
function	of	troubleshooting	utilities,	so	you	will	know	how	they	can	help	you
manage	TCP/IP	networks.	As	part	of	these	descriptions,	I	demonstrate	the
typical	syntax	used	to	invoke	each	utility	in	both	UNIX	and	Windows.	Due	to



variations	in	software	implementations,	you	will	need	to	consult	your	operating
system	documentation	for	the	details	on	exactly	how	each	program	should	be
used	on	your	network.	On	Windows	systems,	try	<program> /?	to	see	the
syntax	of	the	program;	on	UNIX/Linux,	try	man <program>.

TIP

BACKGROUND	INFORMATION	Many	of	the	software	tools	described	in	this	section	are	designed
to	manage	the	operation	of	other	TCP/IP	protocols,	such	as	the	Internet	Protocol	(IP),	the	Domain	Name
System	(DNS),	and	the	Dynamic	Host	Configuration	Protocol	(DHCP).	To	fully	appreciate	how	these
utilities	work,	you	need	to	understand	the	basics	of	these	and	other	key	TCP/IP	protocols.	In	particular,	a
number	of	the	utilities	discussed	here	communicate	use	Internet	Control	Message	Protocol	(ICMP)
messages,	so	I	would	recommend	familiarity	with	ICMP	(discussed	in	Part	II-6)	before	proceeding.

TCP/IP	Host	Name	Utility	(hostname)
One	of	the	most	fundamental	of	tasks	in	diagnosing	problems	with	a	networked
computer	is	identifying	it.	Just	as	the	first	thing	we	usually	do	when	we	meet
someone	is	exchange	names,	one	of	the	first	actions	an	administrator	takes	when
accessing	a	device	is	to	determine	its	name,	if	it	is	not	known.	This	is
accomplished	using	the	hostname	utility.

You	may	recall	from	our	discussion	of	TCP/IP	name	systems	in	Part	III-1	that
there	are	two	different	ways	that	hosts	can	be	named.	The	first	way	is	to
manually	assign	flat	names	to	devices	using	host	tables	or	equivalent	means;	this
is	most	often	used	for	devices	that	not	going	to	be	accessed	on	the	public
Internet.	The	second	is	to	give	a	device	a	domain	name	within	DNS.	The
hostname	utility	can	be	used	for	both	types	of	named	hosts,	but	it	functions	in	a
slightly	different	way	for	each.

On	most	systems,	including	Windows	and	many	UNIX	implementations,	the
hostname	utility	is	very	simple.	When	you	enter	the	command	by	itself	on	a	line
with	no	arguments,	it	displays	the	full	name	of	the	host.	If	it	is	entered	with	the	-
s	(short)	parameter	and	the	host	name	is	a	fully	qualified	DNS	domain	name,
only	the	local	label	of	the	node	is	shown	and	not	the	full	domain	name;	if	the
host	has	a	flat	(non-DNS)	name,	the	-s	parameter	has	no	effect.	Here	is	a	simple
example:

% hostname
fearn.pair.com



fearn.pair.com
% hostname -s
fearn

The	hostname	utility	is	also	intended	to	allow	an	administrator	to	set	the	name
of	a	host.	The	syntax	for	this	is	also	simple;	you	just	supply	the	name	of	the	host
as	a	parameter,	as	follows:

hostname <new-hostname>

However,	in	most	implementations,	the	use	of	the	hostname	command	for
setting	a	device's	name	is	either	disabled	or	restricted.	In	Windows	systems,	a
special	applet	in	the	Control	Panel	is	used	to	set	the	device's	name;	attempting	to
set	it	using	hostname	will	result	in	an	error	message.	In	UNIX,	the	superuser	of
the	system	can	use	hostname	to	set	the	device's	name,	but	it	is	more	common	for
this	to	be	done	by	other	means,	such	as	editing	the	configuration	file
/etc/hosts.	If	a	simple	flat	name	is	being	assigned	to	this	host,	the
administrator	has	full	control	over	it.	However,	if	DNS	is	used,	then	the	proper
procedures	for	registering	the	name	must	be	followed.

NOTE

The	hostname	utility	is	not,	strictly	speaking,	tied	into	the	operation	of	DNS	or	other	formal	mechanisms
for	identifying	a	host.	It	simply	displays	what	the	administrator	has	set	it	to	show.	It	makes	sense	for	this
to	be	set	to	the	host's	DNS	name,	but	there	may	be	exceptions,	such	as	in	small	networks	that	might	not
use	DNS.

In	most	operating	systems,	the	-s	parameter	is	the	only	one	that	this	command
supports.	The	parameter	is	not	supported	on	all	implementations	of	the
hostname	command,	however.	On	some	implementations,	if	you	use	hostname
-s,	the	system	may	report	its	host	name	as	being	–s.	On	certain	Linux	systems,
the	hostname	utility	includes	a	few	additional	parameters	that	allow	different
ways	for	the	host	name	to	be	displayed,	as	well	as	some	miscellaneous	functions
such	as	showing	the	version	number	of	the	program.

TIP

KEY	CONCEPT	The	simplest	and	most	basic	of	TCP/IP	administrative	utilities	is	hostname,	which
returns	the	name	of	the	host	on	which	it	is	run.



TCP/IP	Communication	Verification	Utility	(ping)
One	of	the	most	common	problems	that	network	administrators	are	asked	to
solve	is	that	two	hosts	are	not	able	to	communicate.	For	example,	a	user	on	a
corporate	network	might	not	be	able	to	retrieve	one	of	his	files	from	a	local
server,	or	another	user	might	be	having	difficulty	loading	her	favorite	website.	In
these	and	similar	situations,	one	important	step	in	diagnosing	the	problem	is	to
verify	that	basic	communication	is	possible	between	the	TCP/IP	software	stacks
on	the	two	machines.	This	is	most	often	done	using	the	ping	utility,	or	ping6	in
Internet	Protocol	version	6	(IPv6)	implementations.	The	IPv6	version	of	ping
works	in	much	the	same	way	as	IPv4	ping,	but	ping6's	options	and	parameters
reflect	the	changes	made	in	addressing	and	routing	in	IPv6.

NOTE

Some	people	say	that	ping	is	an	acronym	for	Packet	Internet	Groper,	while	others	insist	that	it	is	actually
based	on	the	use	of	the	term	to	refer	to	a	sonar	pulse	sent	by	a	submarine	to	check	for	nearby	objects.	I
really	don't	know	which	of	these	is	true,	but	I	prefer	the	second	explanation.	Consider	that	the	utility
works	in	a	way	similar	to	a	sonar	ping,	and	that	it	was	originally	written	by	a	gentleman	named	Mike
Muuss,	who	worked	at	the	United	States	Army	Ballistics	Research	Laboratory.

ping	is	one	of	the	most	commonly	used	diagnostic	utilities,	and	it	is	present	in
just	about	every	TCP/IP	implementation.	It	is	usually	implemented	and	accessed
as	a	command-line	utility,	though	there	are	also	now	graphical	and	menu-based
versions	of	the	program	on	some	operating	systems.

Operation	of	the	ping	Utility
The	ping	utility	is	implemented	using	Internet	Control	Message	Protocol
(ICMP)	Echo	(Request)	and	Echo	Reply	messages,	which	are	designed
specifically	for	this	type	of	diagnostic	use.	When	Device	A	sends	an	ICMP	Echo
message	to	Device	B,	Device	B	responds	by	sending	an	ICMP	Echo	Reply
message	back	to	Device	A.	The	same	functionality	exists	in	ICMPv6,	the	IPv6
version	of	ICMP;	the	ICMPv6	Echo	and	Echo	Reply	messages	differ	from	the
IPv4	ones	only	slightly	in	their	field	structure.

This	would	seem	to	indicate	that	ping	would	be	an	extremely	simple	utility	that



would	send	one	Echo	message	and	wait	to	see	if	an	Echo	Reply	was	received
back.	If	so,	this	would	mean	that	the	two	devices	were	able	to	communicate;	if
not,	this	would	indicate	a	problem	somewhere	on	the	internetwork	between	the
two.	However,	almost	all	ping	implementations	are	much	more	complex	than
this.	They	use	multiple	sets	of	Echo	and	Echo	Reply	messages,	along	with
considerable	internal	logic,	to	allow	an	administrator	to	determine	all	of	the
following,	and	more:

Whether	or	not	the	two	devices	can	communicate

Whether	congestion	or	other	problems	exist	that	might	allow	communication
to	succeed	sometimes	but	cause	it	to	fail	in	others,	seen	as	packet	loss;	if	so,
how	bad	the	loss	is

How	much	time	it	takes	to	send	a	simple	ICMP	message	between	devices,
which	gives	an	indication	of	the	overall	latency	between	the	hosts	and	also
indicates	if	there	are	certain	types	of	problems

Basic	Use	of	ping
The	most	basic	use	of	the	ping	command	is	to	enter	it	by	itself	with	the	IP
address	of	a	host.	Virtually	all	implementations	also	allow	you	to	use	a	host
name,	which	will	be	resolved	to	an	IP	address	automatically.	When	you	invoke
the	utility	with	no	additional	options,	it	uses	default	values	for	parameters	such
as	what	size	message	to	send,	how	many	messages	to	be	sent,	how	long	to	wait
for	a	reply,	and	so	on.	The	utility	will	transmit	a	series	of	Echo	messages	to	the
host	and	report	back	whether	or	not	a	reply	was	received	for	each.	If	a	reply	is
seen,	it	will	also	indicate	how	long	it	took	for	the	response	to	be	received.	When
the	program	is	finished,	it	will	provide	a	statistical	summary	showing	what
percentage	of	the	Echo	messages	received	a	reply	and	the	average	amount	of
time	it	took	for	them	to	be	received.

NOTE

While	the	inability	to	get	a	response	from	a	device	to	a	ping	has	traditionally	been	interpreted	as	a
problem	in	communication,	this	is	not	always	necessarily	the	case.	In	the	current	era	of	increased
security	consciousness,	some	networks	are	set	up	to	not	respond	to	Echo	messages,	to	protect	against
attacks	that	use	floods	of	such	messages.	In	this	case,	a	ping	will	fail,	even	though	the	host	may	be	quite
reachable.



Example	88-1	shows	an	example	of	using	the	ping	command	on	a	Windows	XP
computer	(mine!),	which,	by	default,	sends	four	32-byte	Echo	messages	and
allows	four	seconds	before	considering	an	Echo	message	lost.	I	use	a	satellite
Internet	connection	that	has	fairly	high	latency	and	also	occasionally	drops
packets.	This	isn't	great	for	me,	but	it	is	useful	for	illustrating	how	ping	works.

Example	88-1.	Verifying	communication	using	the	ping	utility
D:\aa>ping www.pcguide.com
Pinging pcguide.com [209.68.14.80] with 32 bytes of data:
 
Reply from 209.68.14.80: bytes=32 time=582ms TTL=56
Reply from 209.68.14.80: bytes=32 time=601ms TTL=56
Request timed out.
Reply from 209.68.14.80: bytes=32 time=583ms TTL=56
 
Ping statistics for 209.68.14.80:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 582ms, Maximum = 601ms, Average = 588ms

Methods	of	Diagnosing	Connectivity	Problems
Using	ping
Most	people	find	that	using	ping	with	default	settings	is	enough	for	their	needs.
In	fact,	the	utility	can	be	used	in	this	simplest	form	to	perform	a	surprising
number	of	diagnostic	checks.	In	many	cases,	you	can	use	the	ping	command	to
diagnose	connectivity	problems	by	issuing	it	multiple	times	in	sequence,	often
starting	with	checks	at	or	close	to	the	transmitting	device	and	then	proceeding
outward	toward	the	other	device	with	which	the	communication	problem	has
been	observed.	Here	are	some	examples	of	how	ping	can	be	used	in	this	way:

Internal	Device	TCP/IP	Stack	Operation	By	performing	a	ping	on	the
device's	own	address,	you	can	verify	that	its	internal	TCP/IP	stack	is	working.
This	can	also	be	done	using	the	standard	IP	loopback	address,	127.0.0.1.

Local	Network	Connectivity	If	the	internal	test	succeeds,	it's	a	good	idea	to	do
a	ping	on	another	device	on	the	local	network,	to	verify	that	local
communication	is	possible.

Local	Router	Operation	If	there	is	no	problem	on	the	local	network,	it	makes
sense	to	ping	whatever	local	router	the	device	is	using	to	make	sure	it	is



operating	and	reachable.

Domain	Name	Resolution	Functionality	If	a	ping	performed	on	a	DNS
domain	name	fails,	you	should	try	it	with	the	device's	IP	address	instead.	If	that
works,	this	implies	either	a	problem	with	domain	name	configuration	or
resolution.

Remote	Host	Operation	If	all	the	preceding	checks	succeed,	you	can	try
performing	a	ping	to	a	remote	host	to	see	if	it	responds.	If	it	does	not,	you	can
try	a	different	remote	host.	If	that	one	works,	it	is	possible	that	the	problem	is
actually	with	the	first	remote	device	itself	and	not	with	your	local	device.

TIP

KEY	CONCEPT	The	TCP/IP	ping	utility	is	used	to	verify	the	ability	of	two	devices	on	a	TCP/IP
internetwork	to	communicate.	It	operates	by	having	one	device	send	ICMP	Echo	(Request)	messages	to
another,	which	responds	with	Echo	Reply	messages.	The	program	can	be	helpful	in	diagnosing	a	number
of	connectivity	issues,	especially	if	it	is	used	to	test	the	ability	to	communicate	with	other	devices	in
different	locations.	It	also	allows	the	average	round-trip	delay	to	exchange	messages	with	another	device
to	be	estimated.

ping	Options	and	Parameters
In	addition	to	the	basic	uses	described	in	the	previous	sections,	all	ping
implementations	include	a	number	of	options	and	parameters	that	allow	an
administrator	to	fine-tune	how	it	works.	They	allow	ping	to	be	used	for	more
extensive	or	specific	types	of	testing.	For	example,	ping	can	be	set	in	a	mode
where	it	sends	Echo	messages	continually,	to	check	for	an	intermittent	problem
over	a	long	period	of	time.	You	can	also	increase	the	size	of	the	messages	sent	or
the	frequency	with	which	they	are	transmitted,	to	test	the	ability	of	the	local
network	to	handle	large	amounts	of	traffic.

As	with	the	other	utilities	described	in	this	chapter,	the	exact	features	of	the	ping
program	are	implementation-dependent.	Even	though	UNIX	and	Windows
systems	often	include	many	of	the	same	options,	they	usually	use	completely
different	option	codes.	Table	88-1	shows	some	of	the	more	important	options
that	are	often	defined	for	the	utility	on	many	UNIX	systems,	and	where
appropriate,	the	parameters	supplied	with	the	option.	Table	88-2	shows	ping
options	for	a	typical	Windows	system.



Table	88-1.	Common	UNIX	ping	Utility	Options	and	Parameters

Option/Parameters Description

-c <count> Specifies	the	number	of	Echo	messages	that	should	be	sent.

-f Flood	mode;	sends	Echo	packets	at	high	speed	to	stress	test	a	network.
This	can	cause	serious	problems	if	not	used	carefully!

-i <wait-
interval>

Tells	the	utility	how	long	to	wait	between	transmissions.

-m <ttl-value> Overrides	the	default	Time	to	Live	(TTL)	value	for	outgoing	Echo
messages.

-n Numeric	output	only;	suppresses	lookups	of	DNS	host	names	to	save
time.

-p <pattern> Allows	a	byte	pattern	to	be	specified	for	inclusion	in	the	transmitted
Echo	messages.	This	can	be	useful	for	diagnosing	certain	odd	problems
that	may	occur	only	with	certain	types	of	transmissions.

-q Quiet	output;	only	summary	lines	are	displayed	at	the	start	and	end	of
the	program's	execution,	while	the	lines	for	each	individual	message
are	suppressed.

-R Tells	the	utility	to	include	the	Record	Route	IP	option,	so	the	route
taken	by	the	ICMP	Echo	message	can	be	displayed.	This	option	is	not
supported	by	all	implementations.	Using	the	traceroute	utility
(described	in	the	next	section)	is	usually	a	better	idea.

-s <packet-size> Specifies	the	size	of	outgoing	message	to	use.

-S <src-addr> On	devices	that	have	multiple	IP	interfaces	(addresses),	allows	a	ping
sent	from	one	interface	to	use	an	address	from	one	of	the	others.

-t <timeout> Specifies	a	timeout	period,	in	seconds,	after	which	the	ping	utility	will
terminate,	regardless	of	how	many	requests	or	replies	have	been	sent	or
received.

Table	88-2.	Common	Windows	ping	Utility	Options	and	Parameters

Option/Parameters Description

-a If	the	target	device	is	specified	as	an	IP	address,	forces	the	address	to
be	resolved	to	a	DNS	host	name	and	displayed.



-f Sets	the	Don't	Fragment	bit	in	the	outgoing	datagram.

-i <ttl-value> Specifies	the	Time	to	Live	(TTL)	value	to	be	used	for	outgoing	Echo
messages.

-j <host-list> Sends	the	outgoing	messages	using	the	specified	loose	source	route.

-k <host-list> Sends	the	outgoing	messages	using	the	indicated	strict	source	route.

-l <buffer-size> Specifies	the	size	of	the	data	field	in	the	transmitted	Echo	messages.

-n <count> Tells	the	utility	how	many	Echo	messages	to	send.

-r <count> Specifies	the	use	of	the	Record	Route	IP	option	and	the	number	of	hops
to	be	recorded.	It's	usually	preferable	to	use	the	traceroute	utility
(described	in	the	next	section).

-s <count> Specifies	the	use	of	the	IP	Timestamp	option	to	record	the	arrival	time
of	the	Echo	and	Echo	Reply	messages.

-t Sends	Echo	messages	continuously	until	the	program	is	interrupted.

-w <timeout> Specifies	how	long	the	program	should	wait	for	each	Echo	Reply
before	giving	up,	in	milliseconds	(default	is	4,000,	for	4	seconds).



TCP/IP	Route	Tracing	Utility	(traceroute)
The	ping	utility	is	extremely	helpful	for	checking	whether	two	devices	are	able
to	communicate	with	each	other.	However,	it	provides	very	little	information
regarding	what	is	going	on	between	those	two	devices.	In	the	event	that	ping
shows	either	a	total	inability	to	communicate	or	intermittent	connectivity	with
high	loss	of	transmitted	data,	administrators	need	to	know	more	about	what	is
happening	to	IP	datagrams	as	they	are	carried	across	the	internetwork.	This	is
especially	important	when	the	two	devices	are	far	from	each	other,	especially	if
you	are	trying	to	reach	a	server	on	the	public	Internet.

I	described	in	my	overview	of	IP	datagram	delivery	that	when	two	devices	are
not	on	the	same	network,	data	sent	between	them	must	be	delivered	from	one
network	to	the	next	until	it	reaches	its	destination.	This	means	that	any	time	data
is	sent	from	Device	A	on	one	network	to	Device	B	on	another,	it	follows	a	route,
which	may	not	be	the	same	for	each	transmission.	When	communication
problems	arise,	it	is	very	useful	to	be	able	to	check	the	specific	route	taken	by
data	between	two	devices.	A	special	route	tracing	utility	is	provided	for	this
function,	called	traceroute	(abbreviated	tracert	in	Windows	systems,	a
legacy	of	the	old	eight-character	limit	for	DOS	program	names).

The	IPv6	equivalent	of	this	program	is	called	traceroute6,	which	functions	in	a
very	similar	manner	to	its	IPv4	predecessor.	It	obviously	uses	IPv6	datagrams
instead	of	IPv4	ones,	and	responses	from	traced	devices	are	in	the	form	of
ICMPv6	Time	Exceeded	and	Destination	Unreachable	messages	rather	than	their
ICMPv4	counterparts.

Operation	of	the	traceroute	Utility
Like	the	ping	utility,	traceroute	is	implemented	using	ICMP	messages.
However,	unlike	ping,	traceroute	was	not	originally	designed	to	use	a	special
ICMP	message	type	intended	exclusively	for	route	tracing.	Instead,	it	makes
clever	use	of	the	IP	and	ICMP	features	that	are	designed	to	prevent	routing
problems.

Recall	that	the	IP	datagram	format	includes	a	Time	to	Live	(TTL)	field.	This
field	is	set	to	the	maximum	number	of	times	that	a	datagram	may	be	forwarded



before	it	must	be	discarded;	it	exists	to	prevent	datagrams	from	circling	an
internetwork	endlessly.	If	a	datagram	must	be	discarded	due	to	expiration	of	the
TTL	field,	the	device	that	discards	it	is	supposed	to	send	an	ICMP	Time
Exceeded	message	back	to	the	device	that	sent	the	discarded	datagram.	(This	is
explained	in	detail	in	Chapter	32.)	Under	normal	circumstances,	this	occurs	only
when	there	is	a	problem,	such	as	a	router	loop	or	another	misconfiguration	issue.
What	traceroute	does	is	to	force	each	router	in	a	route	to	report	back	to	it	by
intentionally	setting	the	TTL	value	in	test	datagrams	to	a	value	too	low	to	allow
them	to	reach	their	destination.

Suppose	you	have	Device	A	and	Device	B,	which	are	separated	by	Routers	R1
and	R2—three	hops	total	(A	to	R1,	R1	to	R2	and	R2	to	B).	If	you	do	a
traceroute	from	Device	A	to	Device	B,	here's	what	happens	(see	Figure	88-1):

1.	 The	traceroute	utility	sends	a	dummy	User	Datagram	Protocol	(UDP)
message	(sometimes	called	a	probe)	to	a	port	number	that	is	intentionally
selected	to	be	invalid.	The	TTL	field	of	the	IP	datagram	is	set	to	1.	When
Router	R1	receives	the	message,	it	decrements	the	field,	which	will	make
its	value	0.	That	router	discards	the	probe	and	sends	an	ICMP	Time
Exceeded	message	back	to	Device	A.

2.	 Device	A	sends	a	second	UDP	message	with	the	TTL	field	set	to	2.	This
time,	Router	R1	reduces	the	TTL	value	to	1	and	sends	it	to	Router	R2,
which	reduces	the	TTL	field	to	0	and	sends	a	Time	Exceeded	message
back	to	Device	A.

3.	 Device	A	sends	a	third	UDP	message,	with	the	TTL	field	set	to	3.	This
time,	the	message	will	pass	through	both	routers	and	be	received	by	Device
B.	However,	since	the	port	number	was	invalid,	the	message	is	rejected	by
Device	B,	which	sends	back	a	Destination	Unreachable	message	to	Device
A.

So	Device	A	sends	out	three	messages	to	Device	B,	and	it	gets	back	three	error
messages	and	is	happy	about	it!	The	route	to	Device	B	is	thus	indicated	by	the
identities	of	the	devices	sending	back	the	error	messages,	in	sequence.	By
keeping	track	of	the	time	between	when	it	sent	each	UDP	message	and	received
back	the	corresponding	error	message,	the	traceroute	utility	can	also	display
how	long	it	took	to	communicate	with	each	device.	In	practice,	usually	three



dummy	messages	are	sent	with	each	TTL	value,	so	their	transit	times	can	be
averaged	by	the	user	if	desired.

NOTE

Not	all	traceroute	utility	implementations	use	the	technique	described	here.	Microsoft's	tracert
works	by	sending	ICMP	Echo	messages	with	increasing	TTL	values,	rather	than	UDP	packets.	It	knows
it	has	reached	the	final	host	when	it	gets	back	an	Echo	Reply	message.	A	special	ICMP	Traceroute
message	was	also	developed	in	1993,	which	was	intended	to	improve	the	efficiency	of	traceroute	by
eliminating	the	need	to	send	many	UDP	messages	for	each	route	tracing.	Despite	its	technical
advantages,	since	this	message	was	introduced	long	after	TCP/IP	was	widely	deployed,	it	never	became
a	formal	Internet	standard	and	its	use	is	not	seen	as	often	as	the	traditional	method.

Figure	88-1.	Operation	of	the	traceroute/tracert	utility	The	traceroute	utility	identifies	the	devices	in	a
route	by	forcing	them	to	report	back	failures	to	route	datagrams	with	parameters	intentionally	set	to

invalid	values.	The	first	message	sent	by	Device	A	here	has	a	Time	to	Live	(TTL)	value	of	1,	which	will
cause	Router	R1	it	to	drop	it	and	send	an	ICMP	Time	Exceeded	message	back	to	Device	A.	The	second
message	has	a	TTL	value	of	2,	so	it	will	be	dropped	and	reported	by	Router	R2.	The	third	message	will
pass	both	routers	and	get	to	the	destination	host,	Device	B,	but	since	the	message	is	deliberately	chosen
with	a	bogus	port	number,	this	will	cause	an	ICMP	Destination	Unreachable	message	to	be	returned.

These	error	messages	identify	the	sequence	of	devices	in	the	route	between	Devices	A	and	B.

TIP

KEY	CONCEPT	The	traceroute	utility	takes	the	idea	behind	ping	one	step	further,	allowing
administrators	to	not	only	check	communication	between	two	devices,	but	also	letting	them	see	a	list	of
all	the	intermediate	devices	between	the	pair.	It	works	by	having	the	initiating	host	send	a	series	of	test
datagrams	with	TTL	values	that	cause	each	to	expire	sequentially	at	each	device	on	the	route.	The



traceroute	program	also	shows	how	much	time	it	takes	to	communicate	with	each	device	between	the
sending	host	and	a	destination	device.

Basic	Use	of	the	traceroute	Utility
Example	88-2	shows	an	example	of	a	traceroute	sent	between	two	of	the
UNIX	computers	I	use	on	a	regular	basis.	I	added	the	-q2	parameter	to	change
the	default	of	three	dummy	messages	per	hop	to	two,	so	the	output	would	fit
better	on	the	page.

Example	88-2.	Route	tracing	using	the	traceroute	utility
traceroute -q2 www.pcguide.com
traceroute to www.pcguide.com (209.68.14.80), 40 hops max, 40 byte packets
 1  cisco0fe0-0-1.bf.sover.net (209.198.87.10)  1.223 ms  1.143 ms
 2  cisco1fe0.bf.sover.net (209.198.87.12)  1.265 ms  1.117 ms
 3  cisco0a5-0-102.wnskvtao.sover.net (216.114.153.170)  8.004 ms  7.270 ms
 4  207.136.212.234 (207.136.212.234)  7.163 ms  7.601 ms
 5  sl-gw18-nyc-2-0.sprintlink.net (144.232.228.145)  15.948 ms  20.931 ms
 6  sl-bb21-nyc-12-1.sprintlink.net (144.232.13.162)  21.578 ms  16.324 ms
 7  sl-bb27-pen-12-0.sprintlink.net (144.232.20.97)  18.296 ms  *
 8  sl-bb24-pen-15-0.sprintlink.net (144.232.16.81)  18.041 ms  18.338 ms
 9  sl-bb26-rly-0-0.sprintlink.net (144.232.20.111)  20.259 ms  21.648 ms
10  sl-bb20-rly-12-0.sprintlink.net (144.232.7.249)  132.302 ms  37.825 ms
11  sl-gw9-rly-8-0.sprintlink.net (144.232.14.22)  23.085 ms  20.082 ms
12  sl-exped4-1-0.sprintlink.net (144.232.248.126)  43.374 ms  42.274 ms
13  * *
14  pcguide.com (209.68.14.80)  41.310 ms  49.455 ms

In	this	case,	the	servers	are	separated	by	14	hops.	Notice	how	the	elapsed	time
generally	increases	as	the	distance	from	the	transmitting	device	increases,	but	it
is	not	consistent	because	of	random	elements	in	the	delay	between	any	two
devices	(see	the	incongruously	large	value	in	hop	10,	for	example).	Also	notice
the	asterisk	(*)	in	the	seventh	hop,	which	means	that	no	response	was	received
before	the	timeout	period	for	the	second	transmission	with	a	TTL	value	of	7.
Finally,	there	is	no	report	at	all	for	hop	13.	This	machine	may	have	been
configured	not	to	send	Time	Exceeded	messages.

Additional	unusual	results	may	be	displayed	under	certain	circumstances.	For
example,	the	traceroute	program	may	display	a	code	such	a	!H,	!N,	or	!P	to
indicate	receipt	of	an	unexpected	Destination	Unreachable	message	for	a	host,
network,	or	protocol,	respectively.	Other	error	messages	may	also	exist,
depending	on	the	implementation.



traceroute	Options	and	Parameters
As	is	the	case	with	ping,	traceroute	can	be	used	with	an	IP	address	or	host
name.	If	no	parameters	are	supplied,	default	values	will	be	used	for	key
parameters.	On	the	system	I	use,	the	defaults	are	three	probes	for	each	TTL
value,	a	maximum	of	64	hops	tested,	and	packets	40	bytes	in	size.	However,	my
implementation	also	supports	a	number	of	options	and	parameters	to	give	me
more	control	over	how	the	utility	functions	(such	as	the	-q	parameter	I	used	in
Example	88-2).	Some	of	the	typical	options	available	in	UNIX	systems	are
described	in	Table	88-3.	A	smaller	set	of	options	exists	in	Windows,	as	shown	in
Table	88-4.

Table	88-3.	Common	UNIX	traceroute	Utility	Options	and	Parameters

Option/Parameters Description

-g <host-list> Specifies	a	source	route	to	be	used	for	the	trace.

-M <initial-ttl-
value>

Overrides	the	default	value	of	1	for	the	initial	TTL	value	of	the	first
outgoing	probe	message.

-m <max-ttl-
value>

Sets	the	maximum	TTL	value	to	be	used.	This	limits	how	long	a	route
the	utility	will	attempt	to	trace.

-n Displays	the	route	using	numeric	addresses	only,	rather	than	showing
both	IP	addresses	and	host	names.	This	speeds	up	the	display	by	saving
the	utility	from	needing	to	perform	reverse	DNS	lookups	on	all	the
devices	in	the	route	(ICMP	messages	use	IP	addresses,	not	domain
names).

-p <port-number> Specifies	the	port	number	to	be	used	as	the	destination	of	the	probe
messages.

-q <queries> Tells	the	utility	how	many	probes	to	send	to	each	device	in	the	route
(the	default	is	3).

-r Tells	the	program	to	bypass	the	normal	routing	tables	and	send	directly
to	a	host	on	an	attached	network.

-s <src-addr> On	devices	that	have	multiple	IP	interfaces	(addresses),	allows	the
device	to	use	an	address	from	one	interface	on	a	traceroute	using
another	interface.

-S Instructs	the	program	to	display	a	summary	of	how	many	probes	did



-S Instructs	the	program	to	display	a	summary	of	how	many	probes	did
not	receive	a	reply.

-v Sets	verbose	output	mode,	which	informs	the	user	of	all	ICMP
messages	received	during	the	trace.

-w <wait-time> Specifies	how	long	the	utility	should	wait	for	a	reply	to	each	probe,	in
seconds	(the	typical	default	is	3	to	5).

Table	88-4.	Common	Windows	tracert	Utility	Options	and	Parameters

Option/Parameters Description

-d Displays	the	route	using	numeric	addresses	only,	rather	than	showing	both
IP	addresses	and	host	names,	for	faster	display.	This	is	the	same	as	the	-n
option	on	UNIX	systems.

-h <maximum-
hops>

Specifies	the	maximum	number	of	hops	to	use	for	tracing	(the	default	is
30).

-j <host-list> Sends	the	outgoing	probes	using	the	specified	loose	source	route.

-w <wait-time> Specifies	how	long	to	wait	for	a	reply	to	each	probe,	in	milliseconds	(the
default	is	4,000,	for	4	seconds).



TCP/IP	Address	Resolution	Protocol	Utility	(arp)
All	devices	on	an	internetwork	are	considered	to	be	virtually	connected	at	layer
3,	since	the	process	of	routing	lets	any	device	communicate	with	any	other
device.	However,	there	is	no	way	for	devices	on	distant	networks	to
communicate	directly.	The	internetwork	communication	at	layer	3	actually
consists	of	a	number	of	steps,	called	hops,	that	carry	the	data	from	its	source	to
destination.	Each	hop	in	a	route	requires	that	data	be	sent	between	a	pair	of
hardware	devices,	and	each	transmission	must	use	layer	2	hardware	addresses.
Since	TCP/IP	uses	layer	3	addresses,	this	means	each	hop	requires	that	we
translate	the	IP	address	of	the	target	of	the	hop	to	a	hardware	address.	This	is
called	address	resolution;	the	reasons	why	it	is	needed	and	the	methods	used	for
it	are	explained	in	detail	in	Chapter	13.

In	TCP/IP,	address	resolution	functions	are	performed	by	the	aptly	named
Address	Resolution	Protocol	(ARP).	When	a	device	needs	to	transmit	to	a	device
with	a	particular	IP	address,	it	can	use	ARP's	request/reply	messaging	protocol	to
find	out	which	hardware	device	corresponds	to	that	IP	address.	However,	each
such	message	exchange	takes	time	and	network	bandwidth,	so	for	efficiency,
every	device	maintains	an	ARP	cache,	which	is	a	table	containing	mappings
between	IP	and	hardware	addresses.	The	ARP	cache	table	can	contain	a
combination	of	static	cache	entries	that	are	manually	inserted	for	frequently
accessed	devices,	and	dynamic	entries,	which	are	entered	automatically	when	a
request/reply	resolution	is	done.	The	next	time	it	is	necessary	to	send	a	device
mapped	in	the	ARP	cache	table,	the	lookup	process	can	be	avoided.

To	allow	administrators	to	manage	this	ARP	cache	table,	TCP/IP	devices	include
an	arp	utility.	It	has	the	following	three	basic	functions,	which	are	invoked	using
three	different	versions	of	the	command	(which,	for	once,	are	the	same	in	UNIX
and	Windows):

ARP	Cache	Table	Display	When	the	-a	option	is	used	with	the	utility,	it
displays	the	current	contents	of	the	ARP	cache	table.	The	syntax	is	arp -d
<host-name>.	Each	entry	in	the	table	shows	the	IP	address	and	hardware	address
pair	for	one	device	(interface,	actually).	Usually,	it	also	indicates	whether	each
entry	is	static	or	dynamic.	The	exact	format	of	the	display	varies	from	one



implementation	to	the	next;	some	programs	show	IP	addresses,	others	show	host
names,	and	still	others	may	show	both.	Some	systems	default	to	displaying	host
names	but	allow	the	-n	option	to	also	be	used	to	force	only	IP	addresses	(not
names)	to	be	displayed.

ARP	Cache	Table	Entry	Addition	This	version	allows	an	administrator	to
make	a	new	manual	ARP	cache	table	entry	that	maps	the	given	host	name	to	the
specified	hardware	address.	The	syntax	is	arp -s <host-name> <hw-addr>.

ARP	Cache	Table	Entry	Deletion	Using	arp	with	the	-d	option	removes	the
specified	cache	entry	from	the	table.	Some	implementations	allow	the	addition
of	another	parameter	to	specify	that	all	entries	should	be	removed	from	the
cache.	The	basic	syntax	is	arp -d <host-name>.

TIP

KEY	CONCEPT	The	TCP/IP	arp	utility	is	used	by	an	administrator	to	inspect	or	modify	a	host's	ARP
cache	table,	which	contains	mappings	between	TCP/IP	host	names	and	IP	addresses.

Certain	versions	of	the	software	may	also	supplement	these	basic	commands
with	additional	features.	One	common	additional	option	on	UNIX	systems	is	the
ability	to	specify	a	file	from	which	cache	table	entries	may	be	read,	using	the
syntax	arp -f <file-name>.	This	saves	a	considerable	amount	of	time	and
effort	compared	to	typing	each	entry	manually	using	arp -s.

Note	also	that	the	operating	system	may	allow	only	authorized	users	to	access
options	that	cause	the	ARP	cache	table	to	be	changed.	This	is	especially	true	of
the	delete	function.



TCP/IP	DNS	Name	Resolution	and	Lookup
Utilities	(nslookup,	host,	and	dig)
DNS	is	a	critically	important	part	of	TCP/IP	internetworks,	especially	the
modern	Internet,	because	it	allows	hosts	to	be	accessed	using	easily	remembered
names	rather	than	confusing	numerical	addresses.	Two	different	primary	types	of
devices	are	involved	in	the	operation	of	DNS:	DNS	name	servers	that	store
information	about	domains	and	DNS	resolvers	that	query	DNS	servers	to
transform	names	into	addresses,	as	well	as	perform	other	necessary	functions.

DNS	resolvers	are	employed	by	Internet	users	on	a	continual	basis	to	translate
DNS	names	into	address,	but	under	normal	circumstances,	they	are	always
invoked	indirectly.	Each	time	a	user	types	a	DNS	name	into	a	program	such	as	a
web	browser	or	File	Transfer	Protocol	(FTP)	client—or	even	uses	it	in	one	of	the
other	utilities	described	in	this	chapter,	such	as	ping	or	traceroute—the
resolver	automatically	performs	the	name	resolution	without	the	user	having	to
ask.	For	this	reason,	there	is	no	need	for	users	to	manually	resolve	DNS	names
into	addresses.

However,	administrators	often	do	need	to	perform	a	DNS	resolution	manually.
For	example,	when	troubleshooting	a	problem,	the	administrator	may	know	a
host's	name	but	not	its	address.	In	the	case	of	a	security	problem,	the	address
may	show	up	in	a	log	file	but	the	host	name	may	not	be	known.	In	addition,	even
though	users	do	not	need	to	know	the	specifics	of	the	resource	records	that
define	a	DNS	domain,	administrators	often	need	to	be	able	to	check	these	details,
to	make	sure	a	domain	is	set	up	properly.	Administrators	also	need	some	way	to
be	able	to	diagnose	problems	with	DNS	servers	themselves.	To	support	all	of
these	needs,	modern	TCP/IP	implementations	come	equipped	with	one	or	more
DNS	name	resolution	and	information	lookup	utilities.	Here,	we	will	look	at
three	such	utilities:	nslookup,	host,	and	dig.

The	nslookup	Utility
One	of	the	most	common	DNS	diagnostic	utilities	is	nslookup	(for	name	server
lookup),	which	has	been	around	for	many	years.	The	details	of	how	the	program
is	implemented	depend	on	the	operating	system,	though	most	of	them	offer



versions	that	are	quite	similar	in	operation	and	settings.	The	utility	can	normally
be	used	in	two	modes:	interactive	or	noninteractive.

The	noninteractive	version	of	nslookup	is	the	simplest,	and	it	is	most	often	used
when	an	administrator	wants	to	just	quickly	translate	a	name	into	an	address	or
vice	versa.	To	run	this	version,	issue	the	nslookup	command	using	the
following	simple	syntax:

nslookup <host > [<server>]

Here,	<host>	can	be	a	DNS	domain	name,	for	performing	a	normal	resolution,
or	it	may	be	an	IP	address,	for	a	reverse	resolution	to	return	the	associated	DNS
domain	name.	The	<server>	parameter	is	optional;	if	it's	omitted,	the	program
uses	the	default	name	server	of	the	host	where	the	command	was	issued.
Example	88-3	shows	a	simple	example	of	noninteractive	use	of	nslookup.

Example	88-3.	DNS	name	resolution	using	the	nslookup	utility
D:\aa>nslookup www.pcguide.com
Server:  ns1-mar.starband.com
Address:  148.78.249.200
 
Non-authoritative answer:
Name:    pcguide.com
Address:  209.68.14.80
Aliases:  www.pcguide.com

This	example	was	done	on	my	home	PC	that	uses	the	Starband	satellite	Internet
service,	which	is	configured	to	use	Starband's	name	server	(ns1-
mar.starband.com).	The	answer	provided	here	is	labeled	non-authoritative,
because	it	came	from	the	Starband	name	server's	DNS	cache,	rather	than	one	of
the	DNS	name	servers	that	is	a	DNS	authority	for	www.pcguide.com.

NOTE

It	is	also	possible	to	specify	one	or	more	options	to	modify	the	behavior	of	the	lookup	in	noninteractive
mode.	These	options	are	the	same	as	the	parameters	controlled	by	the	nslookup	set	command	described
in	Table	88-5.	They	are	specified	by	preceding	them	with	a	dash.	For	example,	nslookup -timeout=10
www.pcguide.com	would	perform	the	same	lookup	as	in	Example	88-3,	but	with	the	timeout	interval	set
to	10	seconds.

The	interactive	mode	of	nslookup	is	selected	by	simply	issuing	the	name	of	the
command	with	no	parameters.	This	will	cause	the	program	to	display	the	current
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default	name	server's	DNS	name	and	address,	and	then	provide	a	prompt	at
which	the	administrator	may	enter	commands.	Interactive	mode	allows	someone
to	perform	multiple	lookups	easily	without	having	to	type	nslookup	each	time.
More	important,	it	provides	more	convenient	control	over	the	types	of
information	that	can	be	requested	and	how	the	lookups	are	performed.

You	can	usually	determine	the	exact	command	set	available	in	an	nslookup
implementation	by	issuing	the	command	help	or	?	at	the	nslookup	prompt.
Table	88-5	shows	some	of	the	commands	that	are	usually	found	in	most
nslookup	implementations.

Table	88-5.	Typical	nslookup	Utility	Commands

Command
and
Parameters

Description

<host>
[<server>]

Look	up	the	specified	host,	optionally	using	the	specified	DNS	name	server.
Note	that	there	is	no	actual	command	here;	you	just	enter	the	name	directly	at
the	command	prompt.

server
<server>

Change	the	default	server	to	<server>,	using	information	obtained	from	the
current	default	server.

lserver
<server>

Change	the	default	server	to	<server>,	using	information	obtained	from	the
initial	name	server;	that	is,	the	system's	default	server	that	was	in	place	when	the
nslookup	command	was	started	(prior	to	any	preceding	changes	of	the	current
name	server	in	this	session).

root Changes	the	default	name	server	to	one	of	the	DNS	root	name	servers.

ls [-t
<type>]
<name>

Requests	a	list	of	information	available	for	the	specified	domain	name,	by
conducting	a	zone	transfer.	By	default,	the	host	names	and	addresses	associated
with	the	domain	are	listed;	the	-t	option	may	be	used	to	restrict	the	output	to	a
particular	record	type.	Other	options	may	also	be	defined.	(Most	servers	restrict
the	use	of	zone	transfers	to	designated	slave	servers,	so	this	command	may	not
work	for	ordinary	clients.)

help Displays	help	information	(usually	a	list	of	valid	commands	and	options).

? Same	as	help	(works	on	only	some	systems).

set all Displays	the	current	value	of	all	nslookup	options.

Sets	an	option	to	control	the	behavior	of	the	utility.	Most	implementations



set
<option>[=
<value>]

Sets	an	option	to	control	the	behavior	of	the	utility.	Most	implementations
include	quite	a	number	of	options,	some	of	which	are	controlled	by	just
specifying	a	keyword,	while	others	require	a	value	for	the	option.	For	example,
set recurse	tells	the	program	to	use	recursive	resolution,	while	set

norecurse	turns	it	off.	set retry=3	sets	the	number	of	retries	to	3.

exit Quits	the	program.

The	nslookup	utility	is	widely	deployed	on	both	UNIX	and	Windows	systems,
but	the	program	is	not	without	its	critics.	The	complaints	about	it	mainly	center
around	its	use	of	nonstandard	methods	of	obtaining	information,	rather	than
standard	resolution	routines.	I	have	also	read	reports	that	it	can	produce	spurious
results	in	some	cases.	One	example	of	a	significant	problem	with	the	command
is	that	it	will	abort	if	it	is	unable	to	perform	a	reverse	lookup	of	its	own	IP
address.	This	can	cause	confusion,	because	users	mistake	that	error	for	an	error
trying	to	find	the	name	they	were	looking	up.	For	this	and	other	reasons,	a
number	of	people	in	UNIX	circles	consider	nslookup	to	be	a	hack	of	sorts.	In
some	newer	UNIX	systems,	nslookup	has	been	deprecated	(still	included	in	the
operating	system	for	compatibility,	but	not	recommended	and	may	be	removed
in	the	future).	Instead,	a	pair	of	newer	utilities	is	provided:	host	and	dig.

The	host	Utility
The	host	utility	is	most	often	used	for	simple	queries	such	as	those	normally
performed	using	nslookup's	noninteractive	mode.	It	is	invoked	in	the	same	way
as	noninteractive	nslookup:

host <host> [<server>]

The	output	is	also	similar	to	that	of	noninteractive	nslookup,	but	less	verbose.
Here	is	an	example:

%host www.pcguide.com
www.pcguide.com is an alias for pcguide.com.
pcguide.com has address 209.68.14.80

Even	though	host	does	not	operate	interactively,	it	includes	a	number	of	options
that	can	allow	an	administrator	to	get	the	same	information	that	would	have	been
obtained	using	nslookup's	interactive	mode.	Some	of	the	more	common	options
are	shown	in	Table	88-6.



Table	88-6.	Typical	host	Utility	Options	and	Parameters

Option/Parameters Description

-d Turns	on	debug	mode.

-l Provides	a	complete	list	of	information	for	a	domain;	this	is	similar	to
the	ls	command	in	interactive	nslookup.	This	may	be	used	with	the	-t
option	to	select	only	a	particular	type	of	resource	record	for	the
domain.

-r Disables	recursion	in	the	request.	When	this	is	specified,	only	the
server	directly	queried	will	return	any	information;	it	will	not	query
other	servers.

-t <query-type> Specifies	a	query	for	a	particular	resource	record	type,	allowing	any
type	of	DNS	information	to	be	retrieved.

-v Uses	verbose	mode	for	output	(additional	details	are	provided).

-w Waits	as	long	as	necessary	for	a	response	(no	timeout).

The	dig	Utility
The	second	alternative	to	nslookup	is	dig,	which	stands	for	Domain
Information	Groper	(likely	a	play	on	the	supposed	origin	of	the	name	ping).	It
differs	from	the	host	command	in	that	it	provides	considerably	more
information	about	a	domain,	even	when	invoked	in	the	simplest	of	ways.	It	is
also	quite	a	bit	more	complicated,	with	a	large	number	of	options	and	features,
such	as	a	batch	mode	for	obtaining	information	about	many	domains.

The	basic	syntax	for	the	dig	command	is	different	from	that	of	nslookup	and
host.	If	you	specify	a	nondefault	name	server,	it	is	prepended	with	an	at	sign
(@)	and	comes	before	the	host	to	be	looked	up.	You	can	also	specify	a	specific
type	of	resource	record,	like	this:

dig [@<server >] <host >  [<type >]

Example	88-4	shows	the	output	from	running	dig	on	the	same	domain
(www.pcguide.com)	that	I	used	as	an	example	for	nslookup	(Example	88-3)	and
host.	You	can	see	that	it	provides	much	more	information	about	the	domain.

Example	88-4.	DNS	name	resolution	using	the	nslookup	utility
%dig www.pcguide.com
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%dig www.pcguide.com
; <<>> DiG 9.2.1 <<>> www.pcguide.com
;; global options:  printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15912
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 0
;; QUESTION SECTION:
;www.pcguide.com.               IN      A
 
;; ANSWER SECTION:
www.pcguide.com.        3600    IN      CNAME   pcguide.com.
pcguide.com.            3600    IN      A       209.68.14.80
 
;; AUTHORITY SECTION:
pcguide.com.            3600    IN      NS      ns0.ns0.com.
pcguide.com.            3600    IN      NS      ns23.pair.com.
 
;; Query time: 1840 msec
;; SERVER: 209.68.1.87#53(209.68.1.87)
;; WHEN: Tue Nov 18 16:05:08 2003
;; MSG SIZE  rcvd: 109Server:  ns1-mar.starband.com

NOTE

The	dig	utility	is	very	useful,	but	has	still	not	been	implemented	on	some	systems.	Fortunately,	there	is
an	online	dig	utility	you	can	access	using	your	browser	on	the	Internet.	Find	it	at
http://www.gont.com.ar/tools/dig.

The	dig	command	includes	dozens	of	options	and	settings.	Since	this	chapter	is
already	getting	very	long	and	dig	is	by	far	the	most	advanced	of	the	three
utilities,	I	will	stop	here.	Consult	your	system's	documentation	for	the	full
instructions	on	how	dig	works	and	a	list	of	its	parameters.

TIP

KEY	CONCEPT	Most	TCP/IP	implementations	provide	one	or	more	utilities	that	can	be	employed	by
an	administrator	to	manually	resolve	DNS	domain	names	to	IP	addresses	or	perform	related	searches	for
DNS	information.	One	of	the	most	common	is	nslookup,	which	allows	a	host	name	to	be	translated	to	an
address	or	vice	versa;	it	has	both	interactive	and	noninteractive	modes.	On	some	operating	systems,
nslookup	has	been	replaced	by	the	host	utility	for	simple	DNS	lookups	and	by	the	dig	program	for	more
detailed	inspections	of	DNS	resource	information.

http://www.gont.com.ar/tools/dig


TCP/IP	DNS	Registry	Database	Lookup	Utility
(whois/nicname)
Utilities	such	as	nslookup	and	host	allow	administrators	to	resolve	a	DNS
domain	name	to	an	address	and	also	view	detailed	information	about	a	domain's
resource	records.	There	are	cases,	however,	where	administrators	need	to	know
its	DNS	registration	information,	rather	technical	information	about	a	domain.
This	includes	details	such	as	which	organization	owns	the	domain,	when	its
registration	expires,	and	who	are	the	designated	contacts	who	manage	it.

In	the	early	days	of	DNS,	all	domain	names	were	centrally	registered	by	a	single
authority,	called	the	Internet	Network	Information	Center	(InterNIC	or	just
NIC).	To	allow	Internet	users	to	look	up	information	about	domains	and
contacts,	InterNIC	set	up	a	special	server.	To	allow	users	to	retrieve	information
from	this	server,	developers	created	a	protocol	called	both	nicname	and	whois.
It	was	initially	described	in	RFC	812	(in	1982)	and	then	later	in	RFC	943	(in
1985).	Over	time,	the	name	whois	has	become	the	preferred	of	the	two,	and	it	is
the	one	used	today	for	the	utility	program	that	allows	an	administrator	to	look	up
DNS	registration	data.	(It	can	also	be	used	to	look	up	information	about	IP
addresses,	but	is	used	for	that	purpose	much	less	commonly.)

As	the	Internet	grew	and	expanded,	it	moved	away	from	having	a	single
centralized	authority.	The	modern	Internet	has	a	hierarchical	structure	of
authorities	that	are	responsible	for	registering	domain	names	in	different	portions
of	the	DNS	name	space.	In	recent	years,	this	has	been	further	complicated	by	the
deregulation	process	that	allows	multiple	registries	for	the	generic	top-level
domains	such	as	.COM,	.NET,	and	.ORG.	All	of	this	means	that	more	work	is
needed	to	look	up	domain	registration	information,	since	it	is	distributed	across
many	databases	on	different	servers.

To	make	it	easier	for	administrators	to	find	information	about	domains	in	this
large	distributed	database,	modern	TCP/IP	implementations	generally	come	with
an	intelligent	version	of	the	whois	utility.	It	is	able	to	accept	as	input	the	name	of
a	domain	and	automatically	locate	the	appropriate	registry	in	which	that
domain's	information	is	located.	The	utility	is	usually	used	as	follows:

whois [-h <whois-host >] <domain>



In	this	syntax,	<domain>	represents	the	name	about	which	registration
information	is	requested.	The	administrator	can	use	the	-h	parameter	to	force	the
program	to	query	a	particular	whois	server,	but	again,	this	is	usually	not
required.	Some	implementations	also	include	other	options	that	can	be	used	to
direct	queries	to	particular	registries.

Example	88-5	shows	the	sample	output	of	the	whois	command	on	a	FreeBSD
UNIX	machine	(I	have	stripped	out	some	of	the	preliminary	general	information
and	legal	disclaimers	to	shorten	the	listing).

Example	88-5.	DNS	domain	registry	lookup	using	the	whois	program
%whois pcguide.com
Registrant:
  The PC Guide
  2080 Harwood Hill Road
  Bennington, VT 05201
  US
 
  ixl@fearn.pair.com
   +1.8025555555
 
Domain Name: PCGUIDE.COM
 
Administrative & Technical Contact:
  Charles Kozierok
  The PC Guide
  2080 Harwood Hill Road
  Bennington, VT 05201
  US
 
  ixl@fearn.pair.com
   +1.8025555555
 
Domain Name Servers:
  NS23.PAIR.COM
  NS0.NS0.COM
 
 Created:     August 25, 1997
Modified:     July  7, 2003
 Expires:     August 24, 2008
 
** Register Now at http://www.pairNIC.com/ **

In	this	case,	the	registrar	of	the	domain	pcguide.com	is	pairNIC,	the	DNS
registry	division	of	pair	Networks,	the	company	I	have	used	for	web	hosting	for
many	years	(since	1997,	as	you	can	see).	This	output	is	public	information	and
lets	anyone	who	has	an	interest	in	pcguide.com	determine	that	I	own	the	domain
and	learn	how	to	contact	me.	(No,	555-5555	is	not	my	real	phone	number.)	It
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also	tells	them	that	pair	Networks	runs	the	name	servers	that	contain	domain
information	for	my	domain.

Many	operating	systems,	including	Windows,	do	not	come	with	a	whois
command	implementation,	but	there	are	third-party	programs	that	will	support
the	function.	In	recent	years,	many	different	organizations	have	also	set	up
websites	that	implement	the	whois	function,	which	is	much	more	convenient	and
user-friendly	to	those	more	accustomed	to	graphical	user	interface	operating
systems	like	Windows.	Many	of	these	sites	are	provided	as	free	services	by	DNS
registrars,	so	customers	can	check	if	a	name	they	are	interested	in	is	already
taken,	and	if	so,	by	whom.

One	drawback	of	some	of	these	systems	is	that	they	usually	do	not	have	the
intelligence	to	check	all	the	different	registries	where	domain	name	records	are
stored.	In	most	cases,	a	whois	service	provided	by	a	registrar	will	search	for
names	only	in	the	particular	top-level	domains	in	which	the	registrar	operates.
So,	if	the	registrar	deals	with	.COM,	.ORG,	and	.NET,	it	may	support	whois
queries	only	for	those	top-level	domains.	To	check	the	registration	information
for	domains	in	more	obscure	domains,	such	as	some	of	the	less	common
geopolitical	(country	code)	domains,	a	considerable	amount	of	searching	may	be
required.

TIP

KEY	CONCEPT	The	TCP/IP	whois	utility	allows	registration	information	to	be	displayed	for	a	DNS
domain,	such	as	its	owner,	contact	information,	and	the	date	that	its	registration	expires.	The	program	is
most	commonly	found	on	UNIX	operating	systems,	where	it	is	given	intelligence	that	allows	it	to
automatically	query	the	correct	servers	to	find	the	information	for	most	domains.	Newer	Web-based
whois	utilities	also	exist,	but	they	are	usually	limited	to	displaying	information	about	domains	in	only	a
specific	subset	of	top-level	domains.



TCP/IP	Network	Status	Utility	(netstat)
Given	how	complex	TCP/IP	is,	it's	actually	quite	amazing	that	most	of	the	time,
all	of	the	different	protocols,	services,	and	programs	perform	their	jobs	both
efficiently	and	silently.	Most	of	us	don't	even	realize	just	how	much	is	going	on
in	the	background,	and	that's	as	it	should	be.	On	the	other	hand,	when	a	problem
does	occur	on	a	TCP/IP	network,	the	administrator	charged	with	fixing	it	needs
to	obtain	as	much	information	as	possible	about	what	all	those	bits	and	pieces	of
the	suite	are	doing	behind	the	scenes.	The	network	status	utility,	netstat,	serves
this	purpose.

The	netstat	program	is	very	simple	in	concept,	being	designed	for	only	one
purpose:	to	show	information	about	the	operation	of	TCP/IP	on	a	device.	The
complexity	of	TCP/IP,	however,	leads	to	netstat	being	rather	elaborate	itself.
The	program	can	provide	a	large	variety	of	information.	As	usual,	the	options
and	output	of	netstat	depend	on	the	particular	operating	system	type	and
version.	It	is	somewhat	different	on	UNIX	and	Windows	machines,	so	I	will
describe	each	platform's	version	separately.

The	UNIX	netstat	Utility
On	most	UNIX	systems,	the	netstat	utility	is	very	full-featured,	with	a	typical
implementation	including	dozens	of	options	that	can	be	used	to	control	what
information	is	displayed.	These	options	may	not	all	be	used	simultaneously;
rather,	they	are	arranged	into	option	groups,	each	of	which	presents	one	class	of
information.	Within	each	group,	one	option	is	mandatory,	and	that	is	the	one	that
identifies	the	group,	and	hence	the	general	kind	of	information	that	will	be
displayed.	Other	options	are	also	possible	in	each	group,	which	are	optional	and
modify	the	command	to	provide	better	control	of	exactly	what	is	output.	In
essence,	netstat	is	like	many	related	utilities	rolled	into	one.

Table	88-7	provides	a	simplified	summary	of	the	option	groups	for	a	typical
UNIX	netstat	implementation,	in	this	case	FreeBSD.

Table	88-7.	Typical	UNIX	netstat	Option	Groups,	Options,	and	Parameters

Option	Group, Description



Options,	and
Parameters

netstat [-AaLSW] [-f

<family>] [-p
<protocol>] [-n]

Default	invocation	of	netstat,	with	no	mandatory	options.	It
prompts	the	utility	to	display	a	list	of	active	sockets	on	the	host
machine.	The	other	options	shown	can	be	used	to	control	what
precisely	is	output;	for	example,	-a	also	shows	server	processes.

netstat -i [-abdt]
[-f <family>] [-n]
netstat -I
<interface> [-abdt]
[-f <family>] [-n]

Tells	netstat	to	provide	information	about	all	network	interfaces
(-i)	or	a	particular	network	interface	(-I <interface>).	The	-a
option	shows	multicast	addresses	as	well,	-b	displays	bytes	of	data
in	and	out	on	the	interface,	-d	shows	the	number	of	dropped
packets,	and	-t	displays	the	value	of	watchdog	timers.

netstat -w
<interval> -d [-I
<interface>]

Displays	packet	traffic	information	on	all	interfaces	every
<interval>	seconds,	or	just	on	the	specified	interface	if	-I
<interface>	is	included.	If	-d	is	included,	it	also	indicates	the
number	of	dropped	packets.

netstat -s [-s] [-z]
[-f <family>] [-p
<protocol>]

Shows	systemwide	statistics	for	each	of	the	protocols	on	the	system
(which	may	be	modified	to	show	information	for	only	a	particular
address	family	or	protocol).	If	the	-s	option	is	repeated,	counters
that	have	a	value	of	zero	are	suppressed.	The	-z	option	resets	the
statistics	after	they	are	displayed.

netstat -i -s [-f
<family>] [-p
<protocol>] netstat
-I <interface> -s [-
f <family>] [-p
<protocol>]

Displays	statistics	as	for	netstat -s,	but	on	a	per-interface	basis
rather	than	aggregated	for	the	whole	system.

netstat -m Outputs	memory	management	routine	statistics.

netstat -r [-Aa] [-f
<family>] [-n] [-W]

Displays	the	contents	of	the	host's	routing	tables.	The	options	-A
and	-a	provide	additional	information	about	the	routes.

netstat -rs [-s] Displays	routing	statistics.	The	-s	option	suppresses	counters	with
a	zero	value.

netstat -g [-W] [-f
<family>]

Shows	multicast	routing	information.

netstat -gs [-s] [-f
<family>]

Shows	multicast	routing	statistics.	The	-s	option	suppresses
counters	with	a	zero	value.

Most	of	the	options	shown	in	the	option	groups	in	Table	88-7	are	particular	to
those	groups;	for	example,	you	cannot	use	-s	when	issuing	the	command



netstat -i.	However,	there	are	also	a	number	of	universal	options	that	can	be
used	with	more	than	one	of	these	groups	to	modify	the	behavior	of	netstat
variations	in	a	consistent	way.	These	options	are	described	in	Table	88-8.

Table	88-8.	Typical	UNIX	netstat	Universal	Options	and	Parameters

Option/Parameters Description

-f <family> Limits	the	output	of	the	command	to	information	on	a	particular
protocol	address	family,	for	hosts	running	multiple	protocol	suites.	For
example,	the	address	family	for	regular	TCP/IP	is	inet;	for	IPv6,	it	is
inet6.	Others	may	also	be	supported.

-p <protocol> Restricts	output	to	data	related	only	to	a	particular	protocol,	such	as	IP,
TCP,	UDP,	or	ICMP.

-n Shows	network	addresses	in	numeric	form,	instead	of	showing	them	as
symbolic	names.	Also	shows	ports	as	numbers	instead	of	converting
well-known	UDP	and	TCP	port	numbers	to	the	protocol	names	that	use
them	(for	example,	23	rather	than	telnet).

-W Suppresses	the	automatic	truncation	of	addresses	(which	is	sometimes
done	for	display	formatting).

The	netstat	command	can	produce	a	startling	amount	of	output,	especially	if
you	do	not	restrict	it	with	some	of	the	options	in	Table	88-8.	This	is	particularly
true	for	netstat	by	itself	and	with	the	-s	option.	Example	88-6	shows	sample
output	from	running	"plain"	netstat,	but	I	have	truncated	the	list	of	connections
so	it	would	not	be	too	long	(I	also	reformatted	the	listing	so	it	would	fit	on	the
page	better).	Notice	the	last	column,	which	shows	the	current	state	of	the	TCP
connection	(see	the	TCP	finite	state	machine	description	in	Chapter	47).

Example	88-6.	Sample	connections	list	from	the	UNIX	netstat	utility
%netstat
Active Internet connections
Prot  Rcv  Snd  Local Address     Foreign Address       (state)
tcp4  0    0    pcguide.com.http  c-24-118-141-124.3384  ESTABLISHED
tcp4  0    827  pcguide.com.http  webcacheB03a.cac.46075 ESTABLISHED
tcp4  0    0    qs36.smtp         MV1-24.171.17.64.1339  ESTABLISHED
tcp4  0    0    pcguide.com.http  1Cust234.tnt1.le.1338  ESTABLISHED
tcp4  0    0    pcguide.com.http  1Cust234.tnt1.le.1337  FIN_WAIT_1
tcp4  0    84   pcguide.com.http  dial81-131-97-70.2902  FIN_WAIT_1
tcp4  0    0    pcguide.com.http  216.76.14.221.9954     FIN_WAIT_2
tcp4  0    0    pcguide.com.http  216.76.14.221.9945     FIN_WAIT_2
tcp4  0    0    pcguide.com.http  1Cust234.tnt1.le.1326  TIME_WAIT



Example	88-7	shows	an	example	of	the	output	of	netstat -s.	Here,	I	have
limited	the	output	by	using	-p ip	to	tell	the	program	to	show	me	only	the
statistics	for	IP.

Example	88-7.	Sample	IP	statistics	from	the	UNIX	netstat	utility
%netstat -s -p ip
ip:
        57156204 total packets received
        0 bad header checksums
        4 with size smaller than minimum
        0 with data size < data length
        0 with ip length > max ip packet size
        0 with header length < data size
        0 with data length < header length
        0 with bad options
        0 with incorrect version number
        138 fragments received
        6 fragments dropped (dup or out of space)
        128 fragments dropped after timeout
        2 packets reassembled ok
        57085912 packets for this host
        24736 packets for unknown/unsupported protocol
        0 packets forwarded (0 packets fast forwarded)
        44957 packets not forwardable
        4 packets received for unknown multicast group
        0 redirects sent
        66183465 packets sent from this host
        177 packets sent with fabricated ip header
        0 output packets dropped due to no bufs, etc.
        0 output packets discarded due to no route
        0 output datagrams fragmented
        0 fragments created
        0 datagrams that can't be fragmented
        0 tunneling packets that can't find gif
        22 datagrams with bad address in header

The	Windows	netstat	Utility
The	Windows	netstat	utility	is	quite	a	bit	simpler	than	the	UNIX	one,	because
it	has	a	lot	fewer	options.	This	is	good	news	for	those	learning	about	the
program,	but	not	so	wonderful	for	those	who	want	maximum	power	and
flexibility	in	using	it.

Like	the	UNIX	netstat	version,	the	Windows	utility	has	a	set	of	options	groups
that	dictate	the	general	type	of	information	shown,	and	a	few	universal	options
that	can	be	used	with	multiple	groups.	The	option	groups	and	generic	options	are
shown	in	Tables	Table	88-9	and	Table	88-10,	respectively.



Table	88-9.	Typical	Windows	netstat	Option	Groups,	Options,	and
Parameters

Option	Group,	Options,	and
Parameters

Description

netstat [-n] [-o]
[<interval>] netstat -a [-n]
[-o]

When	called	with	no	mandatory	options,	netstat
displays	information	about	active	TCP	connections.

[-p <protocol> [<interval>] Displays	all	active	TCP	connections,	as	well	as	both	TCP
and	UDP	ports	to	which	the	host	is	listening.

netstat -e [<interval>] Shows	statistics	for	Ethernet	interfaces.

netstat -r [<interval>] Displays	the	current	routing	table	for	the	device.

netstat -s [-p <protocol>]
[<interval>]

Displays	TCP/IP	statistics	for	the	system	by	protocol.

Table	88-10.	Typical	Windows	netstat	Universal	Options	and	Parameters

Option/Parameters Description

-n Displays	network	addresses	in	numeric	form	instead	of	symbolic	name
form.	Also	shows	ports	in	numeric	form	instead	of	displaying	standard
process	names	associated	with	well-known	UDP	or	TCP	port	numbers.

-o Displays	the	process	ID	associated	with	each	connection.

-p <protocol> Limits	the	display	to	only	the	information	associated	with	the	specified
protocol.

<interval> Causes	the	netstat	command	to	be	repeated	every	<interval>
seconds,	rather	than	just	displaying	its	information	once.	This	can	be
used	with	any	of	the	netstat	option	groups.	For	example,	netstat -s
5	displays	TCP/IP	statistics	every	5	seconds.

The	output	from	the	Windows	netstat	program	is	fairly	similar	to	that	of	the
UNIX	utility	when	the	same	or	similar	options	are	given,	but	the	UNIX	version
usually	provides	more	details.	Example	88-8	shows	an	example	illustrating
TCP/IP	statistics	on	my	home	Windows	XP	machine,	using	-p icmp	to	restrict
the	output	to	ICMP	statistics	only.



Example	88-8.	Sample	ICMP	statistics	from	the	Windows	netstat	utility
D:\aa>netstat -s -p icmp
ICMPv4 Statistics
                            Received    Sent
  Messages                  243         248
  Errors                    0           0
  Destination Unreachable   9           4
  Time Exceeded             7           0
  Parameter Problems        0           0
  Source Quenches           0           0
  Redirects                 0           0
  Echos                     224         20
  Echo Replies              3           224
  Timestamps                0           0
  Timestamp Replies         0           0
  Address Masks             0           0
  Address Mask Replies      0           0

Example	88-9	shows	the	routing	table	display	from	netstat	(which	I	modified
slightly	to	fit	the	page).	You	would	get	similar	output	using	the	UNIX	netstat
-s -p icmp	or	netstat -r	command,	but	with	additional	information.

Example	88-9.	Sample	routing	table	display	from	the	Windows	netstat	utility
D:\aa>netstat -r
Route Table
=================================================================
Interface List
0x1 ........................... MS TCP Loopback interface
0x2 ...00 04 76 4e 75 3f ...... 3Com 10/100 Mini PCI Ethernet
=================================================================
=================================================================
Active Routes:
  Network Dest     Netmask          Gateway        Interface      Met
  0.0.0.0          0.0.0.0          148.64.128.1   148.64.133.73   30
  127.0.0.0        255.0.0.0        127.0.0.1      127.0.0.1       1
  148.64.128.0     255.255.192.0    148.64.133.73  148.64.133.73   30
  148.64.133.73    255.255.255.255  127.0.0.1      127.0.0.1       30
  148.64.255.255   255.255.255.255  148.64.133.73  148.64.133.73   30
  224.0.0.0        240.0.0.0        148.64.133.73  148.64.133.73   30
  255.255.255.255  255.255.255.255  148.64.133.73  148.64.133.73   1
Default Gateway:      148.64.128.1
=================================================================
Persistent Routes:
  None

TIP

KEY	CONCEPT	TCP/IP	implementations	include	the	netstat	utility	to	allow	information	about
network	status	to	be	displayed.	On	UNIX	systems,	netstat	is	a	full-featured	program	with	many
options	arranged	into	option	groups,	each	of	which	shows	a	particular	type	of	information	about	the
operation	of	TCP/IP	protocols.	On	Windows	systems,	netstat	is	somewhat	more	limited	in	function,



but	it	still	can	display	a	considerable	amount	of	information.



TCP/IP	Configuration	Utilities	(ifconfig,	ipconfig,
and	winipcfg)
A	significant	part	of	any	network	administrator's	job	is	setting	up	and
maintaining	the	devices	that	make	a	TCP/IP	network	function,	a	process
generally	called	configuration.	Networked	hosts	consist	of	both	hardware	and
software	that	work	together	to	implement	all	the	layers	and	functions	of	the
protocol	stack.	An	administrator	uses	hardware	tools	to	configure	physical
devices,	performing	tasks	such	as	installing	network	interface	cards,	connecting
cables,	and	manipulating	switches	and	other	hardware	settings.	Similarly,
administrators	need	tools	to	configure	the	software	that	runs	TCP/IP	interfaces
and	controls	the	operation	of	higher-layer	protocols	on	networked	hosts.	UNIX
administrators	use	the	ifconfig	utility.	On	Windows	NT,	2000,	and	XP,	the
configuration	tool	is	ipconfig.	Earlier	versions	of	Windows	have	the	winipcfg
utility.

The	ifconfig	Utility	for	UNIX
On	UNIX	systems,	administrators	use	the	interface	configuration	utility,
ifconfig,	to	view	and	modify	the	software	settings	that	control	how	TCP/IP
functions	on	a	host.	It	is	a	very	powerful	program	that	allows	an	administrator	to
set	up	and	manage	a	very	wide	array	of	network	settings.	The	implementation	of
ifconfig	varies	greatly	between	flavors	of	UNIX;	while	most	are	similar	in
general	terms,	they	may	have	different	options	and	syntaxes.

You	can	use	the	ifconfig	program	for	a	variety	of	purposes:	to	create	or
remove	a	network	interface,	change	its	settings,	or	simply	examine	the	existing
configuration.	Thus,	like	the	netstat	utility,	ifconfig	is	like	several	related
programs	combined	into	one,	and	how	it	works	depends	on	the	syntax	you	used
to	invoke	it.	And	also	like	netstat,	ifconfig	has	a	number	of	universal	options
that	can	be	applied	to	many	of	its	different	uses.

Table	88-11	provides	a	simplified	summary	of	the	different	functions	that
ifconfig	can	perform	and	the	syntaxes	that	are	used	to	specify	each	in	a	typical
UNIX	implementation	(NetBSD	in	this	case).	You	can	use	ifconfig	to	modify
an	interface's	configuration	by	setting	any	of	several	dozen	configuration



parameters,	using	the	syntax	shown	in	the	last	row	of	that	table.	Table	88-12
describes	the	common	options	and	parameters	that	can	be	used	for	many	of	these
different	modes.	I	have	provided	a	brief	description	of	some	sample	parameters
in	Table	88-13	(see	your	ifconfig	documentation	for	a	complete	list).

Table	88-11.	Typical	UNIX	ifconfig	Syntaxes,	Options,	and	Parameters

Syntax,
Options	and
Parameters

Description

ifconfig [-L]
[-m]
<interface>

When	ifconfig	is	called	with	just	an	interface	specification	and	no	other
options	(other	than	possibly	-L	and	-m),	it	displays	the	configuration
information	for	that	network	interface.

Note	that	entering	ifconfig	by	itself	with	no	interface	displays	just	help
information	for	the	parameter.	To	see	all	interfaces,	use	the	-a	parameter.

ifconfig -a [-
L] [-m] [-b]
[-d] [-u] [-s]
[<family>]

Displays	information	about	all	the	interfaces	on	the	host.	The	output	may
be	restricted	using	the	universal	parameters	shown	or	by	specifying	an
address	family	(see	Table	88-12).

ifconfig -l [-
b] [-d] [-u]
[-s]

Lists	all	available	interfaces	on	the	system.

ifconfig
<interface>
create

Creates	the	specified	logical	network	interface	on	the	host,	which	is	then
configured	using	the	syntax	shown	in	the	last	row	of	this	table.	Note	that
some	variations	of	UNIX	allow	certain	parameters	to	be	set	at	the	time	of
creation.

ifconfig
<interface>
destroy

Destroys	the	specified	logical	interface.

ifconfig
<interface>
[<family>]
[<address>
[<dest-
address>]]
[<parameters>]

Configures	parameters	for	a	particular	interface	on	the	host.	If	the	address
is	being	set,	it	is	the	first	parameter	specified,	after	the	optional	address
family,	if	present.	The	<dest-address>	is	used	to	specify	a	destination
address	for	a	point-to-point	link.	After	this,	any	of	several	dozen	parameters
may	be	specified	for	the	interface,	some	of	which	are	shown	in	Table	88-
13.

Table	88-12.	Typical	UNIX	ifconfig	Universal	Options	and	Parameters

Option/Parameter Description



-L Displays	the	address	lifetime	for	IPv6	addresses.

-m Displays	all	supported	media	for	the	interface.

-b Limits	the	display	of	interface	information	to	broadcast	interfaces.

-d Shows	only	interfaces	that	are	presently	down	(disabled).

-u Shows	only	interfaces	that	are	presently	up	(operational).

-s Shows	only	interfaces	that	may	be	connected.

<family> Specifies	a	particular	address	family,	either	to	limit	output	or	indicate
what	address	type	is	being	configured.	The	value	inet	is	used	for	IPv4
and	inet6	for	IPv6.

Table	88-13.	Typical	UNIX	ifconfig	Interface	Configuration	Parameters

Parameters Description

alias / -
alias

Establishes	or	removes	a	network	address	alias.

arp / -arp Enables	or	disables	the	use	of	ARP	on	this	interface.

delete Removes	the	specified	network	address.

down Marks	an	interface	as	being	down,	disabling	it.

media <type> Sets	the	media	type	of	the	interface	to	a	particular	value.

mtu <n> Sets	the	maximum	transmission	unit	(MTU)	of	the	interface.

netmask
<mask>

Sets	the	network	or	subnet	mask	for	the	interface's	address.

prefixlen	<n> Same	as	netmask	but	allows	the	mask	to	be	specified	using	a	CIDR-style
prefix	length.

up Sets	an	interface	up,	enabling	it.

NOTE

Since	creating,	destroying,	or	modifying	interfaces	can	cause	a	host	to	stop	working	properly,
administrative	(superuser)	rights	are	generally	required	on	most	systems	in	order	to	do	anything	with
ifconfig	other	than	examining	the	existing	configuration.



Example	88-10	shows	sample	output	of	the	ifconfig -a	command	on	one	of
the	UNIX	machines	I	use	regularly,	showing	the	settings	for	its	interfaces.

Example	88-10.	Sample	output	of	the	UNIX	ifconfig	-a	command
%ifconfig -a
fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
  address: 00:a0:c9:8c:f4:a1
  media: Ethernet autoselect (100baseTX full-duplex)
  status: active
  inet 166.84.1.3 netmask 0xffffffe0 broadcast 166.84.1.31
  inet alias 166.84.1.13 netmask 0xffffffff broadcast 166.84.1.13
lo0: flags=8009<UP,LOOPBACK,MULTICAST> mtu 33228
  inet 127.0.0.1 netmask 0xff000000

The	ipconfig	for	Windows	NT,	2000,	and	XP
Windows	takes	a	somewhat	different	approach	to	network	configuration	than
UNIX.	As	described	in	the	previous	section,	you	can	use	the	UNIX	ifconfig
program	both	to	view	and	modify	a	wide	range	of	configuration	parameters.	In
Windows,	however,	most	setup	and	parameter	modification	is	done	using	the
Windows	Control	Panel.	Windows	does	include	a	utility	that	is	somewhat
similar	to	UNIX's	ifconfig,	but	it	has	far	less	functionality	and	is	used	mainly
to	inspect	the	existing	configuration,	not	change	it.	It	also	allows	an
administrator	to	easily	perform	a	few	simple	functions	on	a	host.

On	Windows	NT,	2000,	and	XP,	the	equivalent	of	ifconfig	is	a	command-line
utility	called	ipconfig.	Like	ifconfig,	the	Windows	utility	is	controlled	using
options	that	are	supplied	to	the	program.	However,	because	it	is	so	much	simpler
than	ifconfig,	there	are	only	a	few	options,	as	summarized	in	Table	88-14.

Table	88-14.	Typical	Windows	ipconfig	Options	and	Parameters

Option/Parameters Description

(none) When	called	with	no	options	or	parameters,	ipconfig	displays	the	IP
address,	subnet	mask,	and	default	gateway	for	each	interface	on	the
host.

/all Similar	to	calling	ipconfig	with	no	options,	but	displays	more	detailed
configuration	information	about	the	host's	interfaces.

/release
[<adapter>]

Releases	(terminates)	the	DHCP	lease	on	either	the	specified	adapter
(interface)	or	all	interfaces,	if	none	is	provided.



[<adapter>] (interface)	or	all	interfaces,	if	none	is	provided.

/renew	[<adapter>] Manually	renews	the	DHCP	lease	for	either	the	specified	adapter
(interface)	or	all	adapters,	if	none	is	mentioned.

/displaydns Displays	the	contents	of	the	host's	DNS	resolver	cache.

/flushdns Clears	the	host's	DNS	resolver	cache.

/registerdns Refreshes	(renews)	all	DHCP	leases	and	also	reregisters	any	DNS
names	associated	with	the	host.

/showclassid
<adapter>

Displays	DHCP	class	IDs	associated	with	this	adapter	(these	are	used
to	arrange	clients	into	groups	that	are	given	different	treatment	by
DHCP	servers).	The	adapter	must	be	specified,	even	if	there	is	only
one.

/setclassid
<adapter>
[<classid>]

Modifies	the	DHCP	class	ID	for	the	specified	adapter.

As	mentioned	earlier,	ipconfig	is	most	often	used	to	just	examine	the	existing
configuration.	You	can	see	from	the	list	of	options	in	Table	88-14	that	most	of
the	other	uses	of	ipconfig	are	related	to	controlling	the	operation	of	protocols
such	as	DNS	and	the	Dynamic	Host	Configuration	Protocol	(DHCP),	rather	than
configuring	a	host.	One	common	use	of	ipconfig	is	to	force	a	host	to	seek	out	a
new	DHCP	lease,	which	can	be	done	using	ipconfig /release	followed	by
ipconfig /renew.

Example	88-11	shows	an	example	of	the	output	from	using	the	ipconfig
command	without	any	options.	For	detailed	information	on	interfaces,	you	can
use	the	/all	option,	as	shown	in	the	example	in	Example	88-12	(which	I've
modified	slightly	so	it	is	easier	to	read).

Example	88-11.	Simplified	configuration	information	from	the	Windows
ipconfig	utility
D:\aa>ipconfig
Windows IP Configuration
 
Ethernet adapter Local Area Connection 2:
 
        Connection-specific DNS Suffix  . :
        IP Address. . . . . . . . . . . . : 148.64.133.73
        Subnet Mask . . . . . . . . . . . : 255.255.192.0
        Default Gateway . . . . . . . . . : 148.64.128.1



Example	88-12.	Detailed	configuration	information	from	the	Windows	ipconfig
utility
D:\aa>ipconfig /all
Windows IP Configuration
 
   Host Name . . . . . . . . . . . . : ixl
   Primary Dns Suffix  . . . . . . . :
   Node Type . . . . . . . . . . . . : Hybrid
   IP Routing Enabled. . . . . . . . : No
   WINS Proxy Enabled. . . . . . . . : No
 
Ethernet adapter Local Area Connection 2:
 
   Connection-specific DNS Suffix  . :
   Description . . . . . . . . . . . : 3Com PCI Ethernet Adapter
   Physical Address. . . . . . . . . : 00-04-76-4E-75-3F
   Dhcp Enabled. . . . . . . . . . . : Yes
   Autoconfiguration Enabled . . . . : Yes
   IP Address. . . . . . . . . . . . : 148.64.133.73
   Subnet Mask . . . . . . . . . . . : 255.255.192.0
   Default Gateway . . . . . . . . . : 148.64.128.1
   DHCP Server . . . . . . . . . . . : 148.64.128.1
   DNS Servers . . . . . . . . . . . : 148.78.249.200
                                       148.78.249.201
   Lease Obtained. . . . . . . . . . : April 19, 2003 11:51:37 AM
   Lease Expires . . . . . . . . . . : April 19, 2003 12:21:37 PM

The	winipcfg	Utility	for	Windows	95,	98,	and	Me
Windows	95,	98,	and	Me	have	a	graphical	tool	called	winipcfg,	instead	of	the
ipconfig	command-line	utility.	This	program	allows	you	to	examine	the
configuration	parameters	in	much	the	same	way	as	ipconfig,	and	also	to	release
and	renew	DHCP	leases,	but	it	does	not	support	the	other	options	of	ipconfig
(such	as	displaying	the	host's	DNS	cache).	An	example	of	the	main	winipcfg
screen	is	shown	in	Figure	88-2.

TIP

KEY	CONCEPT	On	UNIX	systems,	the	ifconfig	utility	can	be	used	to	display	or	modify	a	large
number	of	TCP/IP	configuration	settings.	Windows	systems	provide	either	the	command-line	utility
ipconfig	or	the	graphical	tool	winipcfg.	Both	let	an	administrator	see	basic	TCP/IP	configuration
information	for	a	host	and	allow	tasks	to	be	performed	such	as	renewing	a	DHCP	lease,	but	they	are
otherwise	quite	limited	compared	with	the	UNIX	ifconfig	program.



Figure	88-2.	Windows	95/98/Me	winipcfg	utility	The	winipcfg	utility	can	be	used	in	older,	consumer-
oriented	versions	of	Windows	to	check	the	configuration	of	a	host	and	release/renew	DHCP	leases.



Miscellaneous	TCP/IP	Troubleshooting
Protocols
As	soon	as	you	set	up	a	network,	it	will	very	quickly	develop	problems	that	you
will	need	to	address.	Recognizing	that	the	complexity	of	TCP/IP	internetworks
would	make	diagnosing	certain	problems	difficult,	the	suite's	architects	defined	a
number	of	miscellaneous	utility	protocols	that	can	be	helpful	in	testing	and
troubleshooting	networks.	Despite	having	been	around	for	more	than	20	years,
these	protocols	are	somewhat	obscure	and	get	little	attention.	However,	even
though	they	are	no	longer	implemented	on	many	systems,	I	feel	they	are	worth	a
quick	look.

These	simple	protocols	are	designed	to	be	implemented	as	services	that	run	on
TCP/IP	servers.	Each	listens	for	requests	on	a	dedicated	well-known	port
number	and	then	responds	with	a	particular	type	of	information.	These	protocols
can	be	used	with	both	TCP	and	UDP,	enabling	each	transport	protocol	to	be
tested.	In	the	case	of	UDP,	the	server	counts	each	UDP	datagram	sent	to	it	as	a
request	and	sends	a	response	to	it.	When	used	with	TCP,	a	connection	is	first
established	by	the	client	to	the	server.	In	some	of	the	protocols,	this	connection
is	then	used	to	send	data	continuously	between	the	client	and	server;	in	others,
the	establishment	of	the	connection	is	considered	an	implied	request	to	the
server,	which	will	immediately	send	a	response	and	then	close	the	connection.

Table	88-15	provides	a	brief	description	of	each	of	these	troubleshooting
protocols	under	both	UDP	and	TCP.	I	have	shown	for	each	the	port	number	that
the	service	uses	and	also	the	RFC	that	defines	it.

Table	88-15.	Miscellaneous	TCP/IP	Troubleshooting	Protocols

Protocol Well-
Known
Port
Number

Defining
RFC

Description

Echo
Protocol

7 862 Echoes	received	data	back	to	its	originator.	When	used	on
UDP,	the	payload	of	each	message	is	simply	packaged	into	a
return	UDP	datagram	and	sent	back.	For	TCP,	each	byte	sent
by	the	client	is	echoed	back	by	the	server	until	the



by	the	client	is	echoed	back	by	the	server	until	the
connection	is	closed.

Discard
Protocol

9 863 Throws	away	all	data	that	is	sent	to	it.

Character
Generator
Protocol

19 864 Generates	random	characters	of	data	and	sends	them	to	a
device.	When	used	with	UDP,	each	UDP	message	sent	to	the
server	causes	it	to	send	back	a	UDP	message	containing	a
random	amount	(0	to	512	bytes)	of	data.	When	used	with
TCP,	the	server	just	starts	sending	characters	as	soon	as	a
client	establishes	a	connection,	and	continues	until	the
connection	is	terminated	by	the	client.

Quote	of
the	Day
Protocol

17 865 Sends	a	short	message	(selected	by	the	server's
administrator)	to	a	client	device.	For	UDP,	the	message	is
sent	for	each	incoming	UDP	message;	for	TCP,	the	message
is	sent	by	the	server	once	when	the	connection	is	established,
which	is	then	closed.

Active
Users

11 866 Sends	a	list	of	active	users	to	a	device.	For	UDP,	the	list	is
sent	for	each	incoming	UDP	message;	if	it	is	longer	than	512
bytes,	it	will	be	sent	in	multiple	messages.	For	TCP,	the	list
is	sent	automatically	when	the	connection	is	made	to	the
server,	and	then	the	connection	is	terminated.

Daytime
Protocol

13 867 Returns	the	current	time	on	the	server	in	human-readable
form,	in	response	to	receipt	of	a	UDP	message	or	an
incoming	TCP	connection.

Time
Protocol

37 868 Returns	the	current	time	in	machine-readable	form—
specifically,	the	number	of	seconds	since	midnight,	January
1,	1900	GMT.	The	time	is	sent	for	each	UDP	message
received	by	the	server	or	upon	establishment	of	a	TCP
connection.

Note	that	this	protocol	cannot	be	used	for	time
synchronization	of	servers,	because	it	does	not	compensate
for	variability	in	the	time	required	for	the	messages	to	be
carried	over	the	internetwork.
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